@ssoSoft

Lasso 8.5
Language Guide

Trademarks

Lasso, Lasso Professional, Lasso Studio, Lasso Dynamic Markup Language, LDML, Lasso Service, Lasso Connector, Lasso

Web Data Engine, and LassoSoft are trademarks of LassoSoft, LLC. All other products mentioned may be trademarks of

their respective holders. See Appendix C: Copyright Notices in the Lasso Professional 8 Setup Guide for additional
details.

Third Party Links

This guide may contain links to third-party Web sites that are not under the control of LassoSoft. LassoSoft is not respon-
sible for the content of any linked site. If you access a third-party Web site mentioned in this guide, then you do so at your
own risk. LassoSoft provides these links only as a convenience, and the inclusion of the links does not imply that LassoSoft
endorses or accepts any responsibility for the content of those third-party sites.

Copyright
Copyright © 2007 LassoSoft, LLC. This manual may be printed for your personal use. This manual may not be copied,

photocopied, reproduced, translated or converted to any electronic or machine-readable form in whole or in part
without prior written approval of LassoSoft, LLC. See Appendix C: Copyright Notices for additional details.

Date: April 26, 2009

Version: 8.5.6

LassoSoft, LLC

dba OmniPilot Software

P.O. Box 33

Manchester, Washington 98353
U.S.A.

Telephone: (954) 302-3526
Email: info@lassosoft.com
Web Site: http://www.lassosoft.com

Contents

Section |

Lasso Overview. 24

Chapter 1
Introduction. 25
Lasso 8.5 Documentation 25
Lasso 8.5 Language Guide 25
Documentation Conventions 26

Chapter 2
Web Application Fundamentals.................. ... 28
Web Browser Overview 28
Web Server Overview 33
URL Rewrite 33
HTML Forms and URL Parameters 34
HTML, XHTML, and XML 35
AJAX 36
Web Application Servers 36
Web Application Server Languages 37
Error Reporting 37

Chapter 3
Lasso Pages. 38
Introduction 39
Storage Types 39
Naming Lasso Pages 40
Character Encoding 40
Editing Lasso Pages 40
Functional Types 40
Action Methods 41
Table 1: Action Methods 41
Securing Lasso Pages 44
Output Formats 44
File Management 45
Specifying Paths 46

LAsso 8 LANGUAGE GUIDE

CONTENTS

Page Execution Time Limit 48
Code Compilation and Caching 48

Chapter 4
Lasso 8.5Syntax 50

Overview 50
Colon Syntax 52
Table 1: Colon Syntax Delimiters 52
Parentheses Syntax 52
Table 2: Parentheses Syntax Delimiters 53
Square Brackets 53
Table 3: Square Bracket Delimiters 53
LassoScript 55
Table 4: LassoScript Delimiters 55
HTML Form Inputs 58
URLs 58
Compound Expressions 58
Table 5: Compound Expression Delimiters 59

Chapter 5
Lasso 8.5 TagLanguage 61

Introduction 61
Tag Types 62
Table 1: Lasso 8 Tag Types 62
Tag Categories and Naming 67
Table 2: Lasso 8 Tag Categories 67
Table 3: Lasso 8 Synonyms 69
Table 4: Lasso 8 Abbreviations 69
Parameter Types 69
Table 5: Parameter Types 69
Encoding 71
Table 6: Encoding Keywords 71
Data Types 71
Table 7: Primary Lasso 8 Data Types 72
Expressions and Symbols 75
Table 8: Types of Lasso 8 Expressions 76
Table 9: Member Tag Symbol 77
Table 10: Retarget Symbol 77
Table 11: String Expression Symbols 78
Table 12: Math Expression Symbols 78
Table 13: Conditional Expression Symbols 80
Table 14: Logical Expression Symbols 80
Table 15: Logical Expression Symbols 80
Delimiters 81
Table 16: Lasso 8 Delimiters 81
Table 17: HTML/HTTP Delimiters 82
Illegal Characters 83
Table 18: Illegal Characters 83

Chapter 6

Lasso8.5Reference 84
Overview 84
Figure 1: Lasso 8.5 Reference 85

LAsso 8.5 LANGUAGE GUIDE

CONTENTS

LassoScript
Figure 2: Tag Detail Page
Utility

Section |l
Database Interaction

Chapter 7
Database Interaction Fundamentals

Inlines
Table 1: Inline Tag
Table 2: Inline Database Action Parameters
Table 3: Response Parameters
Action Parameters
Table 4: Action Parameter Tags
Table 5: [Action_Params] Array Schema
Results
Table 6: Results Tags
Table 7: [Records_Map] Parameters
Showing Database Schema
Table 8: -Show Parameter
Table 9: -Show Action Requirements
Table 10: Schema Tags
Table 11: [Field_Name]| Parameters
Table 12: [Required_Field] Parameters
Inline Hosts
SQL Statements
Table 14: SQL Inline Parameters
Table 15: -SQL Helper Tags
SQL Transactions
Prepared Statements
Table 16: Prepared Statements

Chapter 8

Searching and Displaying Data.

Overview

Table 1: Command Tags

Table 2: Security Command Tags
Searching Records

Table 3: -Search Action Requirements

Table 4: Operator Command Tags

Table 5: Field Operators

Table 6: Results Command Tags
Finding All Records

Table 7: -FindAll Action Requirements
Finding Random Records

Table 8: -Random Action Requirements
Displaying Data

Table 9: Field Display Tags
Linking to Data

Table 10: Link Tags

Table 11: Link Tag Parameters

Table 12: Link URL Tags

85
86
88

90

90

92

96

98

98
100
101
101
103
104
104
105
105
106
107
107
109
109
110
113
113
114

115
115
117
118
118
119
120
123
125
125
126
126
127
127
129
130
131
132

LAsso 8.5 LANGUAGE GUIDE

CONTENTS

Table 13: Link Container Tags 133
Table 14: Link Parameter Tags 134
Chapter 9
Adding and UpdatingRecords. 141
Overview 141
Table 1: Command Tags 141
Table 2: Security Command Tags 143
Adding Records 143
Table 3: -Add Action Requirements 143
Updating Records 146
Table 4: -Update Action Requirements 146
Deleting Records 150
Table 5: -Delete Action Requirements 150
Duplicating Records 152
Table 6: -Duplicate Action Requirements 152
Chapter 10
SQL DataSources ... 154
Overview 154
Table 1: Data Sources 154
Feature Matrix 156
Table 2: MySQL Data Source 156
Table 3: OpenBase Data Source 156
Table 4: Oracle Data Source 156
Table 5: PostgreSQL Data Source 157
Table 6: Microsoft SQL Server Data Source 157
Table 7: SQLite Data Source 157
SQL Data Source Tags 157
Table 8: SQL Data Source Tags 157
Searching Records 158
Table 9: MySQL Search Field Operators 159
Table 10: Search Command Tags 160
Adding and Updating Records 162
Value Lists 163
Table 11: MySQL Value List Tags 163
Chapter 11
FileMaker Data Sources. 168
Overview 168
Table 1: Data Sources 169
Feature Matrix 170
Table 2: FileMaker Pro Data Source 170
Table 3: FileMaker Server Data Source 170
Performance Tips 170
Compatibility Tips 171
FileMaker Queries 172
Table 4: FileMaker Operators 172
Table 5: FileMaker Search Symbols 173
Table 6: FileMaker Server 9 Logical Operators 174
Table 7: FileMaker Server 9 Additional Commands 175
FileMaker Tags 175
Table 8: FileMaker Data Source Tags 175

LAsso 8.5 LANGUAGE GUIDE

CONTENTS

Primary Key Field and Record ID
Sorting Records
Displaying Data

Table 9: FileMaker Data Display Tags
Value Lists

Table 10: FileMaker Value List Tags
Container Fields

Table 11: Container Field Tags
FileMaker Scripts

Table 12: FileMaker Scripts Tags

Chapter 12

JDBC and ODBC Data Sources

Overview
Table 1: Data Sources
Feature Matrix
Table 2: JDBC Data Sources
Table 3: ODBC Data Sources
Using JDBC Data Sources
Table 4: JDBC Schema Tags
Using ODBC Data Sources

Chapter 13

Other Data Sources

Overview

Table 1: Data Sources
Feature Matrix

Table 2: Spotlight Data Source

Table 3: Custom Data Sources
Spotlight Data Source

Table 4: Common Spotlight Field Names
Custom Data Sources

Section Il

Programming

Chapter 14

Programming Fundamentals

Overview

Figure 1: Error Page
Logic vs. Presentation
Data Output

Table 1: Output Tags
Variables
Includes

Table 2: Include Tags
Data Types

Table 3: Data Type Tags
Symbols
Member Tags
Forms and URLs
Custom Tags

176
177
178
178
184
184
188
188
189
189

192
192
194
194
194
194
195
195

196
196
197
197
197
197
198
202

204
205
205
207
207
208
210
212
213
213
217
218
219
220

LAsso 8.5 LANGUAGE GUIDE

CONTENTS

Chapter 15

Variables

Overview
Page Variables
Table 1: Page Variable Tags
Table 2: Page Variable Symbols
Global Variables
Table 3: Global Tags
Local Variables
Table 4: Local Tags
Table 5: Local Variable Symbols
References
Table 6: Reference Tags and Symbols

Chapter 16

Conditional Logic..................

If Else Conditionals

Table 1: If Else Tags
If Else Symbol

Table 2: If Else Symbol
Select Statements

Table 3: Select Tags
Conditional Tags

Table 4: Conditional Tags
Loops

Table 5: [Loop] Tag Parameters

Table 6: Loop Tags
Iterations

Table 7: Iteration Tags
While Loops

Table 8: While Tags
Abort Tag

Table 9: Abort Tag
Boolean Type

Table 10: Boolean Tag

Table 11: Boolean Symbols

Chapter 17

Encoding.........................

Overview
Encoding Keywords

Table 1: Encoding Keywords
Encoding Controls

Table 2: Encoding Controls
Encoding Tags

Table 3: Encoding Tags

Chapter 18

SessioNS.

Overview
Session Tags
Table 1: Session Tags

222
223
223
223
226
226
229
229
229
230
232

234
234
236
236
237
237
238
238
238
239
240
241
242
242
243
243
243
243
243
244

246
248
248
249
249
249
249

LAsso 8.5 LANGUAGE GUIDE

CONTENTS

Table 2: [Session_Start] Parameters 253
Session Example 255
Chapter 19

Error Control 257
Overview 257
Error Reporting 258
Figure 1: Built-In None Error Message 259
Figure 2: Built-In Minimal Error Message 259
Figure 3: Built-In Full Error Message 259
Table 1: Error Level Tag 260
Figure 4: Lasso Service Error Message 260
Figure 5: Authentication Dialog 260
Custom Error Page 260
Figure 6: Custom Error Page 261
Error Pages 262
Table 2: Error Response Tags 262
Error Tags 262
Table 3: Error Tags 262
Table 4: Error Type Tags 264
Error Handling 265
Table 5: Error Handling Tags 265

Section IV

Upgrading. 269
Chapter 20
Upgrading From Lasso Professional 8............... 270
Introduction 270
New Data Sources 271
Syntax Changes 271
Table 1: Syntax Changes 271
Security Enhancements 278
Lasso Professional 8.0.x 279
Chapter 21
Upgrading From Lasso Professional 7 287
Introduction 287
SQLite 287
Multi-Site 288
Namespaces 289
Digest Authentication 289
On-Demand LassoApps 290
Syntax Changes 290
Tag Name Changes 291
Table 1: Tag Name Changes 291
Chapter 22
Upgrading From Lasso Professional 6............... 292
Introduction 292
Error Reporting 293
Unicode Support 294

LAsso 8.5 LANGUAGE GUIDE

CONTENTS

Bytes Type
Table 1: Tags That Return the Bytes Type
Table 2: Byte and String Shared Member Tags
Table 3: Unsupported String Member Tags
Syntax Changes
Table 4: Syntax Changes
Tag Name Changes
Table 5: Unsupported Tags
Table 6: Tag Name Changes
Table 7: Deprecated Tags

Chapter 23
Upgrading From Lasso Professional 5

Introduction
Tag Name Changes
Table 1: Unsupported Tags
Table 2: Tag Name Changes
Table 3: Deprecated Tags
Syntax Changes
Table 4: Syntax Changes
Lasso MySQL
Table 5: Lasso MySQL Syntax Changes

Chapter 24
Upgrading From Lasso WDE 3.x

Introduction
Syntax Changes
Table 1: Syntax Changes
Table 2: Line Endings
Tag Name Changes
Table 3: Command Tag Name Changes
Table 4: Substitution, Process, and Container Tag Name Changes
Unsupported Tags
Table 5: Unsupported Tags
FileMaker Pro

Section V
Data Types.

Chapter 25
String Operations.

Overview
Table 1: String Tag

String Symbols
Table 2: String Symbols

String Manipulation Tags
Table 3: String Manipulation Member Tags
Table 4: String Manipulation Tags

String Conversion Tags
Table 5: String Conversion Member Tags
Table 6: String Conversion Tags

295
296
296
297
298
298
310
310
310
310

311
311
312
312
312
313
313
315
315

316
316
317
323
326
326
327
328
328
328

331
332
333
333
335
336
337
337
338
338

10

LAsso 8.5 LANGUAGE GUIDE

CONTENTS

String Validation Tags
Table 7: String Validation Member Tags
Table 8: String Validation Tags
String Information Tags
Table 9: String Information Member Tags
Table 10: String Information Tags
Table 11: Character Information Member Tags
Table 12: Unicode Tags
String Casting Tags
Table 13: String Casting Member Tags

Chapter 26

Regular Expressions.

Overview
Table 1: Regular Expression Wild Cards
Table 2: Unicode Properties
Table 3: Regular Expression Combination Symbols
Table 4: Regular Expression Grouping Symbols
Table 5: Regular Expression Replacement Symbols
Table 6: Regular Expression Advanced Symbols
Regular Expression Type
Table 7: Regular Expression Type
Table 8: Regular Expression Accessors
Table 9: Regular Expression Convenience Tags
Table 10: Regular Expression Interactive Tags
String Tags
Table 11: Regular Expression String Tags

Chapter 27

Bytes

Bytes Type
Table 1: Byte Stream Tag
Table 2: Byte Stream Member Tags

Chapter 28

Math Operations

Overview

Table 1: Integer Tag

Table 2: Decimal Tag
Mathematical Symbols

Table 3: Mathematical Symbols

Table 4: Mathematical Assignment Symbols

Table 5: Mathematical Comparison Symbols
Decimal Member Tags

Table 6: Decimal Member Tag

Table 7: [Decimal->SetFormat] Parameters
Integer Member Tags

Table 8: Integer Member Tags

Table 9: [Integer->SetFormat]| Parameters
Math Tags

Table 10: Math Tags

Table 11: [Math_Random] Parameters

Table 12: Trigonmetric and Advanced Math Tags

338
338
339
340
340
341
342
343
343
343

345
347
348
349
349
350
351
351
352
352
353
355
356
356

363
363
364
365
365
366
366
367
367
367
368
368
369
370
370
371
372

11

LAsso 8.5 LANGUAGE GUIDE

CONTENTS

Locale Formatting 373
Table 13: Locale Formatting Tags 373
Chapter 29
Date and Time Operations 374
Overview 374
Date Tags 375
Table 1: Date Substitution Tags 376
Table 2: Date Format Symbols 377
Table 3: Date Format Member Tags 379
Table 4: Date Accessor Tags 380
Duration Tags 380
Table 5: Duration Tags 381
Date and Duration Math 382
Table 6: Date Math Tags 382
Table 7: Date and Duration Math Tags 383
Table 8: Date Math Symbols 384
Chapter 30

Arrays, Maps, and Compound Data Types 386
Overview 386
Arrays 389
Table 1: Array Tag 390
Table 2: Array Member Tags 390
Table 3: [Array->Merge] Parameters 395
Lists 398
Table 4: List Tag 398
Table 5: List Member Tags 399
Maps 401
Table 6: Map Tag 401
Table 7: Map Member Tags 402
Pairs 404
Table 8: Pair Tag 404
Table 9: Pair Member Tags 405
Priority Queues 405
Table 10: Priority Queue Tag 406
Table 11: Priority Queue Member Tags 406
Queues 408
Table 12: Queue Tag 409
Table 13: Queue Member Tags 409
Series 411
Table 14: Series Tag 411
Sets 411
Table 15: Set Tag 412
Table 16: Set Member Tags 412
Stacks 414
Table 17: Stack Tag 414
Table 18: Stack Member Tags 414
Tree Maps 417
Table 19: Tree Map Tag 417
Table 20: Tree Map Member Tags 417
Comparators 420
Table 21: Comparators 420
Matchers 421

12

LAsso 8.5 LANGUAGE GUIDE

CONTENTS

Table 22: Matchers
Iterators
Table 23: Iterator Tags

Table 24: Iterator and Reverse Iterator Member Tags

Chapter 31

Files

File Tags
Table 1: File Tags
Table 2: Line Endings
File Data Type
Table 3: [File] Tag
Table 4: File Open Modes
Table 5: File Read Modes
Table 6: File Streaming Tags
File Uploads
Table 7: File Upload Tags
Table 8: [File_Uploads] Map Elements
File Serving
Table 9: File Serving Tags

Chapter 32

Images and Multimedia................

Overview

Table 1: Tested and Certified Image Formats
Casting Images as Lasso Objects

Table 2: [Image] Tag:

Table 3: [Image] Tag Parameters:
Getting Image Information

Table 4: Image Information Tags
Converting and Saving Images

Table 5: Image Conversion and File Tags
Manipulating Images

Table 6: Image Size and Orientation Tags

Table 7: Image Effects Tags

Table 8: Annotate Image Tag

Table 9: Composite Image Tag

Table 10: Composite Image Tag Operators
Extended ImageMagick Commands

Table 11: ImageMagick Execute Tag
Serving Image and Multimedia Files

Table 12: Image Serving Tag

Chapter 33

Networking,

Network Communication
Table 1: [Net] Tags
Table 2: [Net] Type Member Tags
Table 3: [Net] Type Constants
Table 4: [Net] TCP Non-Blocking Member Tags
Table 5: [Net] Connect Constants
Table 6: [Net] TCP Blocking Member Tags
Table 7: [Net] Wait Constants

421
423
424
424

428
431
434
435
435
435
435
436
438
439
439
440
440

442
443
444
444
444
445
445
446
446
447
447
448
450
451
451
453
453
453
454

457
457
458
458
459
459
460
461

13

LAsso 8.5 LANGUAGE GUIDE

CONTENTS

Table 8: [Net] TCP Listener Member Tags 461
UDP Connections 463
Table 9: [Net] UDP Member Tags 463
Chapter 34
XML 465
Overview 465
XML Glossary 466
XML Data Type 466
Table 1: XML Data Type Tag 466
Table 2: XML Member Tags 467
XPath Extraction 469
Table 3: [XML_Extract] Tag 470
Table 4: Simple XPath Expressions 471
Table 5: Conditional XPath Expressions 473
XSLT Style Sheet Transforms 475
Table 6: [XML_Transform| Tag 475
XML Stream Data Type 476
Table 7: XML Stream Data Type Tag 476
Table 8: XML Stream Node Types 476
Table 9: XML Stream Navigation Member Tags 477
Table 10: XML Stream Member Tags 478
Serving XML 479
Table 11: [XML_Serve] Serving Tags 479
Formatting XML 480
XML Templates 481
Table 12: FileMaker Pro XML Templates 482
Table 13: SQL Server XML Templates 482
Chapter 35

Portable Document Format 484
Overview 484
Working With PDF Documents 485
Table 1: [PDF_Read] Tag and Members 485
Creating PDF Documents 487
Table 2: [PDF_Doc] Tag and Parameters 487
Table 3: [PDF_Doc->Add] Tag and Parameters 489
Table 4: PDF Page Tags 489
Table 5: Page Insertion Tag and Parameters 490
Table 6: PDF Accessor Tags 491
Table 7: [PDF_Doc->Close] Tag 492
Creating Text Content 492
Table 8: PDF Font Tag and Parameters 492
Table 9: [PDF_Font] Member Tags 493
Table 10: [PDF_Text] Tag and Parameters 494
Table 11: [PDF_Doc->DrawText] Tag 495
Table 12: [PDF_List] Tags and Parameters 496
Table 13: Special Characters 497
Creating and Using Forms 497
Table 14: [PDF_Doc] Form Member Tags 497
Table 16: Form Placement Parameters 499
Creating Tables 502
Table 17: [PDF_Table] Tag and Parameters 502
Table 18: [PDF_Table] Member Tags 502

LAsso 8.5 LANGUAGE GUIDE

CONTENTS

Table 19: Cell Content Tags 503
Creating Graphics 505
Table 20: [PDF_Image] Tag and Parameters 505
Table 21: [PDF_Doc| Drawing Member Tags 506
Creating Barcodes 507
Table 22: [PDF_Barcode| Tag and Parameters 508
Example PDF Files 509
Serving PDF Files 512
Table 23: PDF Serving Tags 513
Chapter 36
JavaBeans 514
Overview 514
Installing JavaBeans 515
JavaBeans Type 515
Table 1: JavaBeans Type 515
Creating JavaBeans 516
Chapter 37
iCalendar. 518
Introduction 518
iCalendar Types 520
Table 1: iCalendar Tags and Types 520
Table 2: iCalendar Member Tags 521
Table 3: [iCal_Attribute] Member Tags 521
Table 4: [iCal_Attribute] Value Data Types 522
Table 5: RECUR Map Elements 522
Chapter 38
Process and Shell Support., 524
Overview 524
Installation 524
Security 525
OS Process Type 526
Table 1: OS Process Type 526
Chapter 39
Overview 531
LDAP Type 533
Table 1: LDAP Tags 533
Table 2: [LDAP->Search] Query Parameters 533
Table 3: [LDAP->Code] Return Codes 534

LAsso 8.5 LANGUAGE GUIDE

CONTENTS

Section VI

Concepts. ...

Chapter 40

Namespaces.....................

Overview
Namespace Tags
Table 1: Namespace Tags

Chapter 41

Logging. ...

Overview
Log Tags
Table 1: Lasso Error Log Tags
Log Files
Table 2: File Log Tags
Log Routing
Table 3: Log Preference Tag
Table 4: Log Message Levels
Table 5: Log Destination Codes

Chapter 42

Encryption.

Overview
Encryption Tags

Table 1: Encryption Tags
Cipher Tags

Table 2: Cipher Tags

Table 3: Cipher Algorithms

Table 4: Digest Algorithms
Serialization Tags

Table 5: Serialization Tags
Compression Tags

Table 6: Compression Tags

Chapter 43

Control Tags

Authentication Tags

Table 1: Authentication Tags
Administration Tags

Table 2: Administration Tags
Scheduling Events

Table 3: Scheduling Tag

Table 4: Scheduling Parameters
Process Tags

Table 5: Process Tags
Null Data Type

Table 6: Null Member Tags
Page Content Tags

Table 7: Page Variable Tags
Configuration Tags

541
542
542
543
543
543
544
544
544

546
546
547
549
549
549
550
550
550
551
551

553
554
555
555
558
558
558
560
560
562
562
563
563
564

16

LAsso 8.5 LANGUAGE GUIDE

CONTENTS

Table 8: Configuration Tags 564
Page Execution Time Limit 565
Table 9: Time Limit Tags 565
Code Compilation and Caching 566
Table 10: Time Limit Tags 566
Page Pre- and Post-Processing 566
Table 11: Pre and Post-Process Tags 567
Site Tags 568
Table 12: Site Tags 568
Table 13: Server Tags 569
Chapter 44
Threads 570
Introduction 570
Atomic Operations 571
Table 1: Atomic Tags 571
Thread Tools 572
Table 2: Thread Tools 572
Table 3: Thread Priorities 573
Thread Synchronization 574
Table 4: Thread Synchronization Tools 574
Table 5: [Thread_Lock] Member tags: 574
Table 6: [Thread_Semaphore] Member Tags 575
Table 7: [Thread_RWLock] Member Tags 576
Thread Communication 576
Table 8: Thread Communication Tools 577
Table 9: [Thread_Event] Member Tags: 577
Table 10: [Thread_Pipe] Member Tags: 577
Chapter 45
Tags and Compound Expressions 579
Tag Data Type 579
Table 1: Tag Data Type Member Tags 580
Table 2: [Tag->Run] Parameters 580
Compound Expressions 582
LassoScript Parsing 583
Table 3: Lasso Parser Type Tag 583
Table 4: Lasso Parser Type Member Tags 584
Table 5: Lasso Parser Token Types 585
Chapter 46
Miscellaneous Tags 587
Name Server Lookup 587
Table 1: Name Server Lookup Tag 587
Validation Tags 587
Table 2: Valid Tags 588
Unique ID Tags 588
Table 3: Unique ID Tag 588
Server Tags 588
Table 4: Server Tags 588

17

LAsso 8.5 LANGUAGE GUIDE

CONTENTS

Section VII

Protocols

Chapter 47

Sending Email............ ... oL

Overview
Sending Email
Table 1: Email Tag
Table 2: [Email_Send] Parameters
Table 3: HTML Message [Email_Send] Parameters
Table 4: Attachment [Email_Send] Parameters
Table 5: Email Merge [Email_Send] Parameters
Table 6: Email Tokens
Table 7: Advanced [Email_Send] Parameters
Table 8: SMTP Server [Email_Send] Parameters
Email Status
Table 9: Email Composing and Queuing Tags
Composing Email
Table 10: Email Composing and Queuing Tags
SMTP Type
Table 11: SMTP Tags

Chapter 48

POP .

Overview
POP Type

Table 1: [Email_POP] type
Email Parsing

Table 2: [Email_Parse| type
Helper Tags

Table 3: Email Helper Tags

Chapter 49

HTTP/HTML Content and Controls

Include URLs

Table 1: Include URL Tag

Table 2: [Include_URL] Parameters
Redirect URL

Table 3: Redirect URL Tag
HTTP Tags

Table 4: HTTP Tags
FIP Tags

Table 5: FTP Tags
Cookie Tags

Table 6: Cookie Tags

Table 7: [Cookie_Set] Parameters
Caching Tags

Table 8: [Cache| Tag

Table 9: [Cache] Tag Parameters

Table 11: Cache Control Tags
Server Push

Table 12: Server Push Tag

590
591
591
592
593
595
596
596
597
598
599
599
599
600
602
602

604
604
605
607
609
614
614

615
616
616
618
618
619
619
619
620
621
621
622
624
624
625
627
628
628

18

LAsso 8.5 LANGUAGE GUIDE

CONTENTS

Header Tags

Table 13: Header Tags
Request Tags

Table 14: Request Tags
Client Tags

Table 15: Client Tags
Server Tags

Table 16: Server Tags

Chapter 50

XML-RPC ...

Overview
Calling a Remote Procedure
Table 1: [XML_RPCCall] Tag
Table 2: XML-RPC Built-In Methods

Table 3: XML-RPC and Built-In Data Types

Table 4: XML-RPC Data Type

Table 5: [XML_RPC] Call Tag
Creating Procedures
Processing an Incoming Call

Table 6: [XML_RPC]| Processing Tags

Chapter 51

SOAP .

Overview

Calling SOAP Procedures
Table 1: SOAP Tags
Table 2: [SOAP_Definelag] Parameters
Table 3: Built-In Processors

Defining SOAP Procedures

Low-Level Details

Chapter 52

Wireless Devices.

Overview
Formatting WML
WAP Tags

Table 1: WAP Tags
WML Example

Chapter 53

AJAX and LUAX. ..o

Overview
LJAX Methodology
LJAX JavaScript Library
Table 1: LJAX JavaScript Functions
Table 2: Lasso.includeTarget() Options
LJAX Tags
Table 3: LJAX Tags
LJAX Example

629
629
631
631
632
632
632
633

634
634
634
635
636
636
636
637
637
638

639
641
642
642
645
646
647

652
652
654
655
655

658
659
659
660
660
661
661
663

19

LAsso 8.5 LANGUAGE GUIDE

CONTENTS

Chapter 54
DNS 665
Overview 665
DNS Lookup 666
Table 1: DNS Lookup Tags 666
Table 2: [DNS_Lookup| Parameters 666
Table 3: [DNS_Response] Member Tags 668

Section VIII

LassoScript . ..o 669
Chapter 55
LassoScript Introduction 670
Overview 670
LassoApps 671
Custom Tags 671
Custom Types 671
Custom Data Sources 671
Chapter 56
LasSSOAPRS .« . vt 6/2
Overview 672
Table 1: LassoApp Tags 673
Default LassoApps 673
Administration 674
Serving LassoApps 675
Preparing Solutions 677
Building LassoApps 679
Table 2: [LassoApp_Create] Tag Parameters 680
Tips and Techniques 681
Chapter 57
Custom Tags . .« oo 683
Overview 683
Custom Tags 685
Table 1: Tags For Creating Custom Tags 685
Table 2: [Define_Tag] Parameters 686
Container Tags 695
Web Services, Remote Procedure Calls, and SOAP 696
Atomic Tags 698
Asynchronous Tags 698
Overloading Tags 700
Constants 703
Table 3: [Define_Constant] Tag 703
Libraries 703
Chapter 58
Custom Typeso 705
Overview 705

LAsso 8.5 LANGUAGE GUIDE

CONTENTS

Custom Types
Table 1: Tags for Creating Custom Data Types
Member Tags
Table 2: Built-In Member Tags
Prototypes
Table 3: Prototype Tag
Callback Tags
Table 4: Callback Tags
Symbol Overloading
Table 5: Overloadable Symbols
Table 6: Comparison Callback Tags
Table 7: Symbol Callback Tags
Table 8: Assignment Callback Tags
Inheritance
Libraries

Chapter 59

Custom Data Sources

Overview
Data Source Register
Table 1: Data Source Register
Data Source Type
Table 2: Data Source Member Tags
Table 3: Host Information
Table 4: Result Set Tags

Section IX

Lasso C/C++ APl

Chapter 60

LCAPI Introduction.

Overview

Requirements

Getting Started

Debugging

Frequently Asked Questions

Chapter 61

LCAPITagso

Substitution Tag Operation
Substitution Tag Tutorial

Chapter 62

LCAPI Data Types.

Data Type Operation
Data Type Tutorial

706
706
709
709
711
711
711
712
715
715
716
718
719
721
722

723
723
724
724
724
725
729

732
732
733
734
735

21

LAsso 8.5 LANGUAGE GUIDE

CONTENTS
Chapter 63
LCAPI Data Sources. 747
Data Source Connector Operation 747
Data Source Connector Tutorial 748
Chapter 64
Lasso Connector Protocol /54
Overview 754
Requirements 754
Lasso Web Server Connectors 755
Lasso Connector Operation 756
Table 1: LPCommandBlock Structure Members 756
Lasso Connector Protocol Reference 756
Table 2: Named Parameters 757
Section X
Lasso Java APl 759
Chapter 65
LJAPI Introduction 760
Overview 760
What's New 760
LJAPI vs. LCAPI 761
Requirements 762
Getting Started 762
Debugging 764
Chapter 66
LJAPI Tags. . .. oo /66
Substitution Tag Operation 766
Substitution Tag Tutorial 767
Chapter 67
LJAPI Data Typeso 771
Data Type Operation 771
Data Type Tutorial 771
Table 1: Type initializer and Member Tags 771
Table 2: Accessors 772
Chapter 68
LJAPI Data Sources /81
Data Source Connector Operation 781
Data Source Connector Tutorial 782
Chapter 69
LJAPI Reference 794
LJAPI Interface Reference 794
LJAPI Class Reference 794

22

LAsso 8.5 LANGUAGE GUIDE

CONTENTS

Appendix A

ErrorCodes.

Lasso Professional 8 Error Codes

Table 1: Lasso Professional 8 Error Codes
Lasso MySQL Error Codes

Table 2: Lasso MySQL Error Codes
FileMaker Pro Error Codes

Table 3: FileMaker Pro Error Codes
JDBC Error Codes

Table 4: JDBC Error Codes

Appendix B

Copyright Notice

Appendix C

Index

823
824
827
827
830
831
833
833

23

LAsso 8.5 LANGUAGE GUIDE

24

Section |
Lasso Overview

This section includes an introduction to the fundamental concepts and methodology for building and serving
data-driven Web sites powered by Lasso 8. Every new user should read through all the chapters in this section.

¢ Chapter 1: Introduction includes information about the documentation available for Lasso 8 and about
this book.

* Chapter 2: Web Application Fundamentals includes an introduction to essential concepts and industry
terms related to serving data-driven Web sites.

¢ Chapter 3: Lasso Pages discusses how to create and work with Lasso 8 Lasso pages.

* Chapter 4: Lasso 8 Syntax introduces the syntax of Lasso including square brackets, LassoScript,
compound expressions, colon syntax, and parentheses syntax.

® Chapter 5: Lasso 8 Tag Language introduces the language of Lasso 8.

* Chapter 6: Lasso 8.5 Reference introduces the reference database which contains complete details about
the syntax of every tag in Lasso 8.

After completing Section 1: Lasso Overview you can proceed to Section II: Database Interaction to learn

how to store and retrieve information from a database and to Section Ill: Programming to learn how to

program in Lasso.

Users who are upgrading from a previous version of Lasso should read the appropriate chapters in Section IV:

Upgrading.

The remainder of the Language Guide includes reference material for all the many tags that Lasso supports

and information about how to extend Lasso’s functionality by creating custom tags, custom data sources, and

custom data types in Lasso, C/C++, or Java.

LAsso 8.5 LANGUAGE GUIDE

25

Chapter 1
Introduction

This chapter provides on overview of the Lasso 8.5 documentation, the section outline, and documentation
conventions for this book.

® Lasso 8.5 Documentation describes the documentation included with Lasso 8 products.
® Lasso 8.5 Language Guide describes the volumes and sections in this book.

e Documentation Conventions includes information about typographic conventions used within the
documentation.

Lasso 8.5 Documentation

The documentation for Lasso 8.5 products is divided into several different manuals and also includes several
online resources. The following manuals and resources are available.

¢ Lasso 8.5 Setup Guide is the main manual for Lasso 8.5. It includes documentation of the architecture of
Lasso, installation instructions, the administration interface, and Lasso security. After the release notes, this
is the first guide you should read.

e Lasso 8.5 Language Guide includes documentation of the language used to access data sources, specify
programming logic, and much more.

® Lasso 8.5 Reference provides detailed documentation of each tag in Lasso. This is the definitive reference
to the language of Lasso. This reference is provided as a LassoApp and Lasso MySQL database within Lasso
8.5 and also as an online resource from the LassoSoft Web site.

http://reference.lassosoft.com/

Comments, suggestions, or corrections regarding the documentation may be sent to the following email
address.

documentation@lassosoft.com

Lasso 8.5 Language Guide

This is the guide you are reading now. This guide contains information about programming in Lasso and is
organized into the following sections.

Fundamentals
The first four sections of the Language Guide introduce the language of Lasso, explain fundamental database
interaction and programming concepts, and describe how to upgrade existing solutions.

e Section I: Lasso Overview contains important information about using and programming Lasso that all
developers who create custom solutions powered by Lasso will need to know.

LAsso 8.5 LANGUAGE GUIDE

CHATPER

1 — INTRODUCTION 26

e Section ll: Database Interaction contains important information about how to create Lasso pages that
perform database actions. Actions can be performed in the internal Lasso MySQL database or in external
MySQL, FileMaker Pro, or other databases.

e Section Ill: Programming describes how to program dynamic Lasso pages using Lasso. This section covers
topics ranging from simple data display through advanced error handling and alternate programming
syntaxes.

e Section IV: Upgrading includes details about what has changed in Lasso Professional 8 since Lasso
Professional 7, Lasso Professional 6, Lasso Professional 5, and Lasso WDE 3.x and earlier. The appropriate
chapters in this section are essential reading for any developer who is upgrading from an earlier version of
Lasso.

Reference

The next three sections of the Language Guide provide in-depth information about Lasso’s data types,

advanced programming concepts, and support for Internet protocols.

® Section V: Data Types describes the built-in data types in Lasso including strings, bytes, dates, compound
data types, files, images, network communications, XML, PDE and JavaBeans.

¢ Section VI: Programming describes programming concepts in Lasso including namespaces, logging,
encryption, control tags, threads, custom tags, and compound expressions.

e Section VII: Protocols describes how to use Lasso to interoperate with other Internet technologies such as
email servers and remote Web servers. It describes how to use Lasso to serve images and multimedia files.
It also describes how to use Lasso to serve pages to various clients including Web browsers, WAP browsers
and more.

Extending Lasso

The final three sections of the Language Guide describe how to extend the functionality of Lasso by

programming new tags, data types, and connectors in Lasso, C/C++, or Java. This volume also includes the

appendices.

* Section VIII: LassoScript API contains information about creating LassoApps, custom tags, custom data
types, and data source connectors in LassoScript.

e Section IX: LCAPI contains information about creating tags, data types, and data source connectors in the
C/C++ programming languages. Also describes how to create new Web server connectors.

e Section X: LJAPI contains information about creating tags, data types, and data source connectors in the
Java programming language.

¢ Appendices contain a listing of error codes as well as copyright notices and the index for all three volumes.

Documentation Conventions

The documentation uses several conventions in order to make finding information easier.
Definitions are indicated using a bold, sans-serif type face for the defined word. This makes it easy to find
defined terms within a page. Terms are defined the first time they are used.

Cross References are indicated by an italicized sans-serif typeface. For instance, the current section in this
chapter is Documentation Conventions. When necessary, arrows are used to define a path into a chapter
such as Chapter 1: Introduction > Documentation Conventions.

Code is formatted in a narrow, sans-serif font. Code includes HTML tags, Lasso tags, and any text which
should be typed into a Lasso page. Code is represented within the body text (e.g., [Field] or <body>) or is
specified in its own section of text as follows:

[Field: 'Company_Name']

LAsso 8.5 LANGUAGE GUIDE

CHATPER 1T — INTRODUCTION 27

Code Results represent the result after code is processed. They are indicated by a black arrow and will
usually be the value that is sent to the client’s Web browser. The following text could be the result of the code

example above.

=» LassoSoft

Note: Notes are included to call attention to items that are of particular importance or to include comments
that may be of interest to select readers. Notes may begin with Warning, FileMaker Pro Note, IIS Note, etc. to

specify the importance and audience of the note.

To perform a specific task:
The documentation assumes a task-based approach. The contents following a task heading will provide step-

by-step instructions for the specific task.

LAsso 8.5 LANGUAGE GUIDE

28

Chapter 2
Web Application Fundamentals

This chapter presents an overview of fundamental concepts that are essential to understand before you start
creating data-driven Web sites powered by Lasso.

® Web Browser Overview describes how HTML pages and images are fetched and rendered.

e Web Server Overview describes how HTTP requests and URLs are interpreted.

® HTML Forms and URL Parameters describes how GET and POST arguments are sent and interpreted.
* Web Application Servers describes how interactive content is created and served.

e Web Application Server Languages describes how commands can be embedded within a Lasso page,
processed, and served.

® Error Reporting describes how errors are reported by Lasso and how to customize the amount of
information that is provided to site visitors.

Web Browser Overview

The World Wide Web (WWW) is accessed by end-users through a Web browser application. Popular Web
browsers include Microsoft Internet Explorer and Netscape Navigator. The Web browser is used to access
pages served by one or more remote Web servers. Navigation is made possible via hyperlinks or HTML forms.

The simple point-and-click operation of the Web browser masks a complex series of interactions between the
Web browser and Web servers.

URLs

The location of a Web site and a particular page within a site are specified using a Universal Resource Locator
(URL). All URLs follow the same basic format:

http://www.example.com:80/folder/file.html

The URL is comprised of the following components:

1 The Protocol is specified first, http in the example above and is followed by a colon. The World Wide
Web has two protocols. HTTP (HyperText Transfer Protocol) which is for standard Web pages and is the
default for most Web browsers and HTTPS (HyperText Transfer Protocol Secure) which is for pages served
encrypted via the Secure Socket Layer (SSL).

2 The Host Name is specified next, www.example.com in the example above. The host name can be anything
defined by a domain name registrar. It need not necessarily begin with www, the same server may be
accessible using example.com or by an IP address such as 127.0.0.1.

3 The Port Number follows the host name, 80 in the example above. The port number can usually be left off

because a default is assumed based on the protocol. HITP defaults to port 80 and HTTPS defaults to port
443.

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 2 — WEB APPLICATION FUNDAMENTALS 29

4 The File Path follows a forward slash, ffolder/file.html in the example above. The Web server uses this path
to locate the desired file relative to the root of the Web serving folder configured for the specified domain
name. The root of the Web serving folder is typically C:\InetPub\wwwroot\ for Windows 2000 servers and
ILibrary/WebServer/Documents for Mac OS X servers.

HTTP Request

The URL is used by the Web browser to assemble an HTTP request which is actually sent to the Web server.
The HTTP request resembles the header of an email file. It consists of several lines each of which has a label
followed by a colon and a value.

Note: Most current Web browsers and Web servers support the HTTP/1.1 standard. Lasso Professional 8 also
supports this standard. However, the examples in this book are written for the HTTP/1.0 standard in order to
provide maximum compatibility with older Web browser clients.

The URL http://www.example.com/folder/file.html becomes the following HTTP request:

GET /folderfile.html HTTP/1.0
Accept: */*

Host: www.example.com
User-Agent: Web Browser/4.1

The HTTP request is comprised of the following components:

1 The first line defines the HITP request. The action is GET and the path to what should be returned is
specified /folderffile.ntml. The final piece of information is the protocol and version which should be used to
return the data, HTTP/1.0 in the example above.

2 The Accept line specifies the types of data that can be accepted as a return value. */* means that any type of
data will be accepted.

3 The Host line specifies the host which was requested in the URL.

4 The User-Agent line specifies what type of browser is requesting the information.

HTTP Response

Once an HTTP request has been submitted to a server, an HTTP response is returned. The response consists
of two parts: a response header which has much the same structure as the HTTP request and the actual text or
binary data of the page or image which was requested.

The URL http://www.example.com/folder/file.html might result in the following HTTP response header:

HTTP/1.0 200 OK

Server: Lasso Professional 8.0
MIME-Version: 1.0

Content-type: text/html; charset=iso-8859-1
Content-length: 7713

The HTTP response header is comprised of the following components:

1 The first line defines the type of response. The protocol and version are given followed by a response code,
200 OK in the example above.

2 The Server line specifies the type of Web server that returned the data. Lasso Professional 8 returns Lasso
Professional 8.0 in the example above.

3 The MIME-Version line specifies the version of the MIME standard used to define the remaining lines in
the header.

4 The Content-type line defines the type of data returned. text/html means that ASCII text is being returned
in HTML format. This line could also read text/xml for XML data, image/gif for a GIF image or image/jpeg for a
JPEG image.

The charset=is0-8859-1 parameter specifies the character set of the page. Lasso returns pages in UTF-8
encoding by default or in the character set specified in the [Content_Type] tag.

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 2 — WEB APPLICATION FUNDAMENTALS 30

5 Content-length specifies the length in bytes of the data which is returned along with this HTTP response
header.

The header is followed by the text of the HTML page or binary data of the image which was requested.

Requesting a Web Page

The following are the series of steps which are performed each time a URL is requested from a Web server:

1 The Web browser determines the protocol for the URL. If the protocol is not HITP then it might be passed
off to another application. If the protocol is HTTPS then the Web browser will attempt a secure connection
to the server.

2 The Web browser looks up the IP address of the server through a Domain Name Server (DNS).
3 The Web browser assembles an HTTP request including the path to the requested page.
4 The Web browser parses the HTML returned by the request and renders it for display to the visitor.

5 If the HTML contains any references to images or linked style sheets then additional HTTP requests with
appropriate paths are generated and sent to the Web server.

6 The images and linked style sheets are used to modify the rendered HTML page.
7 Client-side scripting language such as JavaScript are interpreted and may further modify the rendered page.

The Web browser opens a new HTTP request for each HTML page, style sheet, or image file that is requested.
All HTTP requests for a given HTML page can be sent to the same Web server or to different Web servers
depending on how the HTML page is written. For example, many HTML pages reference advertisements
served from a completely different Web server.

Character Sets

All Web pages must be transmitted from server to client using a character set that maps the actual bytes in the
transmission to characters in the fonts used by the client’s Web browser. The Content-Type header in the HTTP
response specifies to the Web browser what character set the contents of the page has been encoded in.

Lasso processes all data internally using double-byte Unicode strings. Since two bytes are used to represent
each character characters from single-byte ASCII are padded with an extra byte. Double-byte strings also allow
for 4-byte or even larger characters using special internally encoded entities.

For transmission to the Web browser Lasso uses another Unicode standard UTF-8 which uses one byte to
represent each character. UTF-8 corresponds roughly to traditional ASCII and the Latin-1 (ISO 8859-1)
character set. Double-byte or 4-byte characters are represented by entities. For example, the entity 並
represents the double byte character ilfi.

For older browsers or other Web clients it may be necessary to send data in a specific character set. Some
clients may expect data to be transmitted in the pre-Unicode standard of Latin-1 (ISO 8859-1). Lasso will
honor the [Content_Type] tag in order to decide what character set to use for transmission to the Web browser.
Using the following tag will result in the Latin-1 (ISO 8859-1) character set being used.

[Content_Type: 'text/html; charset=iso-8859-1']

Forms and Character Sets

Lasso reads data which is posted in forms according to the default character set that is set in Lasso
Administration (or in the character set included in the Content-Type header). However, Web browsers usually
send forms using the same encoding with which the enclosing page was sent. If these character sets are not
matched (for example if the [Content_Type] tag is used to override the default encoding for a particular page)
then Lasso can misinterpret the data being posted by a Web client.

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 2 — WEB APPLICATION FUNDAMENTALS 31

The accept-charset parameter can be used in an HTML <form> tag to ask the browser to send the form in a
specific character set. For example, if Lasso’s default character set is UTF-8 then the following code would
ensure that the form is submitted using that encoding, even if the page this form appears on was served using
a different character set.

<form action="Default.Lasso” method="POST" accept-charset="UTF-8">

</form>

Lasso Professional 8.0.2 introduces a new hidden input named -ContentType. If a hidden input is named
-ContentType in an HTML form then the subsequent parameter will be imported into Lasso encoded using the
specified characters set.

Lasso Professional 8.0.4 introduces a new hidden input named -FormContentType. If a hidden input is named
-FormContentType in an HTML form then all of the parameters in the form will be imported into Lasso encoded
using the specified characters set (unless a specific -ContentType parameter override the character set for a
specific input).

The value for -ContentType should be specified as charset=is0-8859-1 (or any other valid character set) as shown
in the example below. The charset= part is required. It is not sufficient to just put the character set in as the
value.

<input type="hidden" name="-FormContentType" value="charset=utf-8" />
<input type="hidden" name="-ContentType" value="charset=iso-8859-1" />
<input type="hidden" name="Field Name" value="testing emigré" />

This will result in the Field Name input being imported into Lasso using the is0-8859-1 character set. All other
inputs in the form will use the UTF-8 character set.

Note: UTF-8 is an abbreviation for the 8-bit (single-byte) UCS Transformation Format. UCS is in turn an
abbreviation for Universal Character Set. Since 8-bit Universal Character Set Transformation Format is such a
mouthful it helps to think of UTF-8 simply as the most common Unicode character encoding.

Cookies

Cookies allow small amounts of information to be stored in the Web browser by a Web server. Each time the
Web browser makes a request to a specific Web server, it sends along any cookies which the Web server has
asked to be saved. This allows for the Web server to save the state of a visitor’s session within the Web browser
and then to retrieve that state when the visitor next visits the Web site, even if it is days later.

Cookies are set in the HTTP header for a file that is sent from the Web server. A single HTML file can set
many cookies and cookies can even be set in the headers of image files. Each cookie has a name, expiration
date, value, and the IP address or host name of a Web server. The following line in an HITP header would set
a cookie named session-id that expired on January 1, 2010. The cookie will be returned in the HTTP request for
any domains that end in example.com.

Set-Cookie: session-id=102-2659358; path=/; domain=.example.com; expires=Wednesday, 1-January-2010 08:00:00 GMT

Each time a request is made to a Web server, any cookies which are labeled with the IP address or host name
of the Web server are sent along with all HTTP requests for HTML files or image files. The Web server is free
to read these cookies or ignore them. The HTTP request for any file on example.com or www.example.com would
include the following line.

Cookie: session-id=102-2659358

Cookies are useful because small items of information can be stored on the client machine. This allows a
customer ID number, shopping cart ID number, or simple site preferences to be stored and retrieved the next
time the user visits the site.

Cookies are dependent upon support from the Web browser. Most Web browsers allow for cookie support
to be turned off or for cookies to be rejected on a case-by-case basis. The maximum size of cookies is Web
browser dependent and may be limited to 32,000 characters or fewer for each cookie or for all cookies
combined.

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 2 — WEB APPLICATION FUNDAMENTALS 32

Cookies can be set to expire after a certain number of minutes or at the end of the current user’s session
(until they quit their Web browser). However, this expiration behavior should not be counted on. Some
Web browsers do not expire any cookies until the Web browser quits. Others do not expire cookies until the
machine hosting the Web browser restarts. Some Web browsers even allow visitors to alter the expiration
dates of stored cookies.

Authentication

Web browsers support authentication of the visitor. A username and password can be sent along with each
HTTP request to the server. This username and password can be read or ignored by the Web server. If the Web
server is expecting a username and password and does not find any or does not find a valid username and
password then the server can send back a challenge which forces the browser to display an authentication
dialog box.

The following lines at the start of an HTTP response header will force most Web browsers to challenge the
visitor for a username and password. The response code 401 Unauthorized informs the Web browser that the
user is not authorized to view the requested file.

HTTP/1.0 401 Unauthorized

A header line in the response informs the client what types of authentication are understood by the server. By
default Lasso prompts for both basic and digest authentication. Clients that can perform digest authentication
will use it. Older clients will use basic authentication.

WWW-Authenticate: Basic realm="Testing"
WWW-Authenticate: Digest realm="Testing",
nonce="1234567890", uri="http://www.example.com/", algorithm="md5"

A basic authentication response includes a line like the following. The username and password are
concatenated together and encoded using Base64, but are not encrypted.

Authorization: Basic dXNlcm5hbWU6cGFzc3dvemQ=

A digest authentication response includes a line like the following. The realm and nonce are passed back
along with the URL of the requested page. The response portion is made up of an MD5 hashed value which
includes the nonce and the user’s password.

Authorization: Digest username="test", realm="Testing",
nonce="1234567890", uri="http://www.example.com/"
response="9c384179f883e2e9c1eed63ca752560a"

The advantages of digest authentication are numerous. The user’s password is never sent in plain text (or
simply encoded). The realm is remembered so a user can maintain different privileges in different parts of a
Web site. The nonce can also be expired in order to force a user to re-authenticate.

Using either basic or digest authentication, the same username and password will continue to be transmitted
to the Web server until the user re-authenticates or quits the Web browser application.

Site visitors can also specify usernames and passwords within the URL directly. This method allows a
username and password to be sent before an authorization challenge is issued.

http:/lusername:password@www.example.com/folder/default.lasso

Note: This method is no longer supported by all Web servers due to its potential use as a Web site spoofing
technique.

Lasso-based Web sites also support specifying a username and password using -Username and -Password URL
parameters.

http://www.example.com/default.lasso?-username=username&-password=password

Note: See the section on Authentication Tags in the Lasso Control Tags chapter for information about Lasso
tags that automatically prompt for authentication information.

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 2 — WEB APPLICATION FUNDAMENTALS 33

Web Server Overview

The World Wide Web is served to end-users by Web server applications. Popular Web servers include Apache,
WebSTAR, and Microsoft Internet Information Services (IIS). The Web server handles incoming HTTP requests
for URLs from Web browsers. The interaction described in the previous section from the Web browser’s point
of view looks a little different from the Web server’s point of view.

The following are the series of steps which are performed each time a URL is requested from a Web server:

1 The HTTP request is received on one of the ports which is being listened to by the Web server. Most Web
servers listen on port 80 for HTTP requests and on port 443 for secure HTTPS requests.

2 The HTTP request is parsed and split into its components: protocol, host name, file path.

3 The host name is used to decide what virtual host to serve a Web page from. Most Web servers operate
from a single IP address, but serve pages for several different domain names. These may be as simple as
www.example.com and example.com.

4 The path to the page request is added to the server root for the specified virtual host. The virtual hosts may
all start in a different folder on the hard drive.

5 The security settings of the server are checked to see if the user needs to be authenticated to receive the page
they are requesting. If an appropriate username and password are not specified in the HITP request then a
challenge is sent in the HTTP response instead of the request page.

6 Server-side plug-ins or modules are called upon to process the request page. For example, requests for
HTML pages that have a file name with the suffix .lasso will be sent to Lasso Service for processing. The
processed page is returned to the Web server and may even be sent through multiple server-side plug-ins or
modules before being served.

7 The requested HTML page or image is returned to the user with an appropriate HTTP response header.

URL Rewrite

URLs can reference any resource which can be served by a Web server, but in practice they are most often used
to reference specific files. URL rewrite functionality makes it possible to use URLs for their original purpose
and to sever the one-to-one correspondence between URLs and files.

For example, the following two URLs would traditionally reference a pair of files rocket.html and station.html
which are located in the Web server root.

http://www.example.com/rocket.html
http://www.example.com/station.html

However, in a database driven Web site each of these pages may depend primarily on content which is stored
in a database. The files on disk might just be templates into which dynamic content is placed for the files

are served to the site visitor. In this case, it makes sense to create a single template.lasso file which is used as
the template for both files. The particular content which is to be served is passed in a URL parameter. The
following two URLs might serve the same content as the URLs above.

http://www.example.com/template.lasso?page=rocket
http://www.example.com/template.lasso?page=station

URL rewrite can be used to map the original URLs into these dynamic URLs. This allows the site visitor to
bookmark the simple URL and for Lasso to serve the page effectively using the URL referencing the template
and selecting the particular page using a URL parameter.

Irocket.html =» /template.lasso?page=rocket

Lasso includes built-in URL rewrite functionality which is documented in the Lasso 8.5 Setup Guide. Most
Web servers also have built-in URL rewrite tools which can be used with Lasso.

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 2 — WEB APPLICATION FUNDAMENTALS 34

HTML Forms and URL Parameters

HTML forms and URLs allow for significant amounts of data to be transmitted along with the simple HTTP
requests defined in the previous sections. The data to be transmitted can either be included in the URL or
passed in the HTTP request itself.

URL Parameters

A URL can include a series of name/value parameters following the file path. The name/value parameters are
specified following a question mark ?. The name and value are separated by an equal sign = and multiple
name/value parameters are attached to a single URL with ampersands &. The following URL has two name/
value parameters: name1=value1 and name2=value2.

http://www.example.com/folder/file.lasso?name1=value1&name2=value2

The URL parameters are simply added to the file path which is specified in the HTTP request. The URL above
might generate the following HTTP request. Since the parameters follow the word GET they are often referred
to as GET parameters.

GET ffolder/file.lasso?name1=value1&name2=value2 HTTP/1.0
Accept: **

Host: www.example.com

User-Agent: Web Browser/4.1

Since the characters : / ? & = @ # % are used to define the structure of a URL, the file path and URL parameters
cannot include these characters without modifying them so that the structure of the URL is not disturbed. The
characters are modified by encoding them into %nnn entities where nnn is the hexadecimal ASCII code for the
character being replaced. / is encoded as %2f for example.

HTML Forms

HTML forms provide user interface elements in the Web browser so that a visitor can customize the
parameters which will be transmitted to the Web server along with an HTTP request. HTML forms can be
used to modify the GET parameters of a URL or can be used to send POST parameters.

Note: A full discussion of the HTML tags possible within an HTML form is beyond the scope of this section.
Please see an HTML reference for a full listing of HTML form elements.

Example of an HTML form with a GET method:

The following HTML form has an action which specifies the URL that will be returned when this form is
submitted. In this case the URL is http://www.example.com/folderffile.lasso. The method of the form is defined to be
GET. This ensures that the parameters specified by the HTML form inputs will be added to the URL as GET
parameters.

<form action="http://www.example.com/folder/file.Lasso" method="GET">
<input type="text" name="value1" value="value1">
<input type="submit" name="value2" value="value2">

</form>

This form generates the following HITP request. It is exactly the same as the HITP request created by the URL
http://www.example.com/folder/file.lasso?name1=value1&name2=value2.

GET ffolder/file.lasso?name1=value1&name2=value2 HTTP/1.0
Accept: */*

Host: www.example.com

User-Agent: Web Browser/4.1

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 2 — WEB APPLICATION FUNDAMENTALS 35

Example of an HTML form with a POST method:

The following HTML form has an action which specifies the URL that will be returned when this form is
submitted. In this case the URL is http://www.example.com/folder/file.lasso. The method of the form is defined to be
POST. This ensures that the parameters specified by the HTML form inputs will be added to the HTTP request
as POST parameters and that the URL will be left unmodified.

<form action="http://www.example.com/folder/file.Lasso" method="POST">
<input type="text" name="value1" value="value1">
<input type="submit" name="value2" value="value2">

<[form>

This form generates the following HTTP request. The request file is simply that which was specified in the
action, but the method is now POST. The HTML form parameters are specified as the content of the HTTP
request. They are still URL encoded, but now appear at the end of the HTTP request, rather than as part of the
URL.

POST /folder/file.lasso HTTP/1.0

Accept: **

Host: www.example.com

User-Agent: Web Browser/4.1

Content-type: application/x-www-form-urlencoded
Content-length: 27
value1=value1&name2=value2

HTML Forms and URL Responses

The GET and POST parameters passed in HTML forms or URLs are most often used by server-side plug-ins or
modules to provide interactive or data-driven Web pages. The GET and POST parameters are how values are
passed to Lasso in order to specify database actions, search parameters, or for any purpose a Lasso developer

wants.

HTML, XHTML, and XML

HTML stands for HyperText Markup Language and is the standard for the low-level representation of Web

pages. HTML can be crafted by hand using code-level tools such as a text editor or the Eclipse IDE. There are

also many visual design tools such as Dreamweaver and GoLive which can be used to create HTML automati-

cally.

XML (eXtensible Markup Language) resembles HTML, but is more abstract. XML shares the same basic

opening/closing tag structure as HTML, but does not specify a set of predefined tags. Instead, an XML schema

can be created to represent any type of data in XML using a solution-specific tag set.

e All XML tags must have both an opening and a closing tag.

e Tags with no content can be abbreviated as e.g.
 which combines the opening and closing tag into
one. Note that there is a space before the slash.

¢ All tag attributes must have a value and all tag attribute values must be quoted. Double quotes are allowed,
but single quotes are preferred.

e The characters <> and & are reserved for use in specifying the XML tags of a document. These characters
must be escaped as < > and & whenever they are used in tag content or tag attributes.

XHTML is the reformulation of HTML using the strict rules of XML combined with the familiar tags of HTML.

XHTML is an important milestone for HTML since it is the first version of HTML which is easy to parse and

whose specification ensures the creation of valid code.

e HTML tags which are normally specified without closing tags must be written using the abbreviated format.
For example
 is written
 and <hr> is witten <hr />. It is not recommended to write these tags using
the longer format (
</br>) since some older browsers will interpret this as two instances of the tag.

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 2 — WEB APPLICATION FUNDAMENTALS 36

e All tag names and attribute names are specified in lower case. This includes JavaScript handlers like onselect,
onload, onmouseover, etc.

e Since all attributes must have values, single word attributes like nowrap, checked, and selected must be
doubled up as nowrap="nowrap", checked="checked", and selected="selected".

e Since ampersands must be escaped, every ampersand included in a URL must be written as &.
 ...

XHTML represents the future of the HTML standard and is an important key to ensuring the predictable
rendering of a Web site across all standards compliant Web browsers. XHTML compliance also makes it easier
to use emerging technologies such as AJAX. It is recommended that all new Web projects make use of XHTML
when possible.

AJAX

AJAX stands for Asynchronous JavaScript and XML, but has come to represent set of techniques for making
Web sites more dynamic. AJAX is sometimes referred to as Web 2.0 and many of the techniques were
previously bundled under the DHTML moniker.

AJAX uses a combination of JavaScript and its ability to modify the Document Object Model (DOM) and
Cascading Stylesheets (CSS) of a page to dynamically update the contents of a We page without performing a
refresh of the entire page. The XMLHttpRequest JavaScript object (or AcrtiveX control) is used to asynchronously
fetch new content for the Web page and then that new content is merged into the page.

Lasso includes a library of LJAX tags which make creating AJAX sites with Lasso easy. The tags and JavaScript
functions which lasso provides are documented in the LJAX chapter in this manual.

Web Application Servers

A Web Application Server is a program that works in conjunction with a Web server and provides
programmatically generated HTML pages or images to Web visitors. Web application servers include programs
that adhere to the Common Gateway Interface (CGI), programs which have built-in Web servers, plug-

ins or modules for Web server applications, and services or deemons that communicate with Web server
applications.

Lasso Professional 8 is a Web application server which runs as a background service and communicates with
the Web server Apache via a module called Lasso Connector for Apache, the Web server WebSTAR V via a
plug-in called Lasso Connector for WebSTAR, or IIS via an ISAPI filter called Lasso Connector for IIS.

Web application servers are triggered in different ways depending on the Web server being used. Many Web
application servers are triggered based on file suffix. For example, all file names ending in .lasso are processed
by Lasso Service. Any file suffix can be configured to trigger processing by Lasso Service including .html so all
HTML pages will be processed before being served. Web application servers can usually also be set to process
all pages that are served by a Web server.

Most Web application servers function by interpreting a programming or scripting language. Commands in
the appropriate language are embedded in Lasso pages and then executed when an appropriate HTML form
or URL is selected by a Web site visitor. The Web application server accepts the GET and POST parameters in
the HTML form or URL, interprets the commands contained within the referenced Lasso page, and returns a
rendered HTML page to the Web site visitor.

Developers can choose to develop complete Web sites using the scripting language provided by a Web
application server or they can purchase solutions which are written using the scripting language of a
particular Web application server.

Lasso Professional 8 is a scriptable Web application server with a powerful tag-based language called
LassoScript. Custom solutions can be created by following the instructions contained in this Lasso 8
Language guide. Links to pre-packaged, third party solutions can be found on the LassoSoft Web site.

http://www.lassosoft.com/

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 2 — WEB APPLICATION FUNDAMENTALS 37

Web Application Server Languages

There are two main types of languages provided by Web application servers.

e Scripting Languages are used to specify programming logic and are generally close in function to
traditional programming languages. Scripting languages can be used to assemble HTML pages and output
them to the Web visitor. Server-Side JavaScript is an example of a scripting language.

¢ Tag-Based Languages are used to specify data formatting and programming logic within pre-formatted
HTML or XML Lasso pages. The tags embedded in the Lasso page are interpreted and the output is
modified before the page is served to the Web visitor. Server Side Includes (SSI) is an example of a tag-
based language.

Lasso Professional 8 provides one language, LassoScript, which functions as both a scripting language and

a tag-based language. Lasso tags can be used in LassoScripts as a scripting language to define programming
logic. LassoScripts can be used to render individual HTML tags or to render complete HTML documents
programmatically. Lasso tags can also be used as a tag-based language inside square brackets within HTML or
XML code.

Error Reporting

When syntax or logical errors occur while processing a Lasso page, Lasso will display an error page. The
amount of information which is provided on the error page can be customized in a number of ways.

e The error reporting level can be adjusted in Site Administration to control how much information is
provided on the default error page. A reporting level of None provides only a statement that an error
occurred with no details. A level of Minimal provides only the error code and a brief error message. A level of
Full provides detailed troubleshooting information.

¢ The error reporting level can be adjusted for a single Lasso page using the [Lasso_ErrorReporting] tag. For
example, the global error reporting level could be set to Minimal. While a page is being coded it can use
[Lasso_ErrorReporting] to set the level for that page only to Full.

Using the -Local keyword, the [Lasso_ErrorReporting] tag can be used to limit the error information from
sensitive custom tags or include files. With this keyword the tag adjusts the error level only for the
immediate context.

¢ A custom errorlasso page can be created for each Web host. This custom error page can provide an
appropriate level of detail to Web site visitors and can be presented in the same appearance as the rest of
the Web site. In addition, the custom error page can log or even email errors to the site administrator.

® A custom site-wide errorlasso page can be created which will override the built-in error page entirely. This
custom page can be created on a shared site to provide appropriate error information to all users of the
site.

e A custom server-wide errorlasso page can be created which will override the built-in error page for all sites.
This custom page can be created on a shared server to provide appropriate error information to all users of
the server.

More information about each of these options can be found in the Error Control chapter. Consult that
chapter for full details about how to use the [Lasso_ErrorReporting] tag and how to create custom error pages.

LAsso 8.5 LANGUAGE GUIDE

38

Chapter 3
Lasso Pages

This chapter introduces the concept of Lasso pages that contain Lasso tags and LassoScripts. All new users of
Lasso 8 should read this chapter.

e Introduction includes basic information about how Lasso pages are created and used in Lasso 8.
e Storage Types introduces the different methods of storing and retrieving Lasso pages.
® Naming Lasso Pages describes the rules for naming Lasso pages.

¢ Character Encoding describes how Lasso uses the Unicode byte order mark to determine whether to read a
file using the UTF-8 or Latin-1 (also known as ISO 8859-1) character set.

¢ Editing Lasso Pages explains the options which are available for editing Lasso pages.

* Functional Types describes the various ways in which Lasso pages are used and introduces functional
names for different types of Lasso pages.

¢ Action Methods introduces the concept of actions and describes how Lasso pages and Lasso interact to
create an action.

e Securing Lasso Pages explains the importance of maintaining security for your Lasso pages.
¢ Output Formats shows how to use a Lasso page to create output of various types.

¢ File Management explains how the architecture of Lasso 8 influences where files are stored and how they
can be manipulated.

e Specifying Paths shows how URLs, HTML forms, and paths can be used to refer to Lasso pages.

® Page Execution Time Limit describes the built-in limit on the length of time that Lasso pages will be
allowed to execute.

¢ Code Compilation and Caching describes Lasso’s built-in compiler and page cache.

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 3 — LASSO PAGES 39

Introduction

Lasso pages are text files that contain embedded Lasso 8 code. When a Lasso page is processed by Lasso
Service, the embedded Lasso tags are interpreted, executed, and the results are substituted in place of the
tags. The resulting document is then returned to the client. Web sites powered by Lasso 8 are programmed by
creating Lasso pages which include user interface elements, database actions, and display logic.

This chapter describes the different methods of storing, naming, and editing Lasso pages. It also discusses
how multiple Lasso pages and Lasso work together to create actions. The chapter finishes with discussions of
how to output different types of data with Lasso pages and how to reference Lasso pages from within Lasso
tags, URLs, and HTML forms.

Note: Many of the terms used in this chapter are defined in Appendix A: Glossary of the Lasso Professional 8
Setup Guide. Please consult this glossary if you are unsure how any words are being used in this language guide.

Storage Types

The term Lasso Page is used to describe any text file that contains embedded Lasso 8 code. Lasso pages are
usually stored on the local disk of the machine which hosts a Lasso Web server connector, but can also be
stored on a remote machine, the machine which hosts Lasso Service, or even in a database field.

Lasso pages are always text-based, but the structure of the text is not important to Lasso. Lasso will find the
embedded Lasso 8 tags, process them, and replace them with the results. Lasso will not disturb the text that
surrounds the Lasso tags, but may modify text which is contained within Lasso container tags. The most
common types of Lasso pages are described below.

e HTML Lasso Pages contain a mix of Lasso tags and HTML tags. HTML Lasso pages can be edited in
leading visual Web authoring programs with Lasso tags represented as icons or displayed as plain text. The
output is usually HTML suitable for viewing in a Web browser.

e XML Lasso Pages contain a mix of Lasso tags and XML tags. When a developer creates an XML Lasso page
it may not be strictly valid XML code. However, it is constructed in such a way that the output after being
processed by Lasso is valid XML code. XML Lasso pages can be constructed so that their output conforms to
any Document Type Definition (DTD) or XML Schema.

e Text Lasso Pages contain a mix of Lasso tags and ASCII text. Text Lasso pages can be used as the body of
email messages or can be used to output data in any ASCII-compatible form.

¢ Lasso Pages contain only Lasso tags. Pure Lasso pages usually contain programming logic and include
other content types as needed. A pure Lasso page could be a placeholder that returns the appropriate type
of content to whatever client loads the page.

Lasso pages can be stored in a variety of locations depending on how they are going to be used. Four
locations are listed below, along with brief descriptions of how Lasso pages stored within them are used.

® Web Server - Lasso pages are typically stored as text files on the machine which hosts the Web serving
software with a Lasso Web server connector. The Lasso pages are stored along with the HTML and image
files that comprise the Web site. As the client browses the site, they may visit some pages which are
processed by Lasso Service and others that are served without any processing.

Lasso Service - Lasso pages can be stored on the machine which hosts Lasso Service. Usually, these Lasso
pages serve a special purpose such as library files in the LassoStartup folder that contain code which is
executed when Lasso Service starts up.

Database Field - Lasso pages can be stored as text in a database field. When a database action is
performed the contents of the field are returned to the client as if a disk-based text file had been processed
and served. Permission must be granted in Lasso’s administration interface in order to use a database field
in this fashion. See the Setting Up Data Sources chapter in the Lasso Professional 8 Setup Guide for more
information.

Remote Server - Lasso will not process Lasso code which is stored on remote servers, but it can
incorporate content from remote Web servers into the results served to the client or trigger CGI actions on
remote servers using the [Include_URL] tag. See the Files and Logging chapter for more information.

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 3 — LASSO PAGES 40

Naming Lasso Pages

The Lasso Professional 8 Installer will automatically configure your Web server to pass files named with

a .lasso suffix to Lasso Service for processing. Once it has finished processing a file, Lasso Service passes the
resulting file back to the Web server, which in turn sends the file to the client’s Web browser. Files with other
extensions, such as .gif or .jpg image files or .html files are served directly by the Web server without being
processed by Lasso Service.

In addition, the Web server can be configured to send Lasso pages with other extensions such as .xml or .wml
to Lasso Service. It is even possible to configure the Web server to send all .html files to Lasso Service for
processing. See the Setting Site Preferences chapter and the configuration chapters in the Lasso Professional
8 Setup Guide for more information.

In order to promote the portability of your Lasso pages between Macintosh, Windows, and UNIX platforms,
it is best to name them in a multi-platform friendly fashion. Never use reserved characters such as
:?8&/\#%""in file names. Avoid spaces, punctuation, stray periods, and extended ASCII characters. The safest
file names contain only letters, numbers, and underscores. Some file systems are case-sensitive. Make sure
that all references to a file are specified using the same case as the actual file name on disk. One option is to
standardize on lowercase characters for all filenames.

Character Encoding

Lasso uses the standard Unicode byte order mark to determine if a Lasso page is encoded in UTF-8. If no
byte order mark is present then the Lasso page will be assumed to be encoded using the Macintosh (or Mac-
Roman) character set on Mac OS X or the Latin-1 (or ISO 8859-1) character set on Windows or Linux. Lasso
does not support UTF-16 or UTF-32 Lasso pages.

Standard text editors can save files using UTF-8 encoding with the byte order mark included. Consult the
manual for the text editor to see how to change the encoding of Lasso pages and how to include the proper
byte order mark to specify the encoding.

Note: It is recommended to use the Macintosh or Latin-1 character set only for Lasso pages that do not contain
extended, accented, or foreign characters.

Editing Lasso Pages

Lasso pages can be edited in any text editor. If a Lasso page contains markup from a specific language such as
HTML, WML, or XML then it can be edited using an application which is specific to creating that type of file.

In order to make creating and editing Lasso pages which contain HTML easier, LassoSoft supplies a product
called Lasso Studio. Lasso Studio provides tag-specific inspectors, wizards, and builders which allow a
developer to quickly build Lasso pages within either Macromedia Dreamweaver, or Adobe GoLive. More
information about Lasso Studio is available at the following URL:

http://www.lassostudio.com/

Functional Types

Lasso pages can be classified based on the types of Lasso tags they contain or based on the commands they
will perform within a Web site. The following list contains terms commonly used to refer to different types of
Lasso pages. A Lasso page can be classified as being one or more of these types.

® Pre-Lasso is used to refer to a Lasso page that contains only command tags within HTML form inputs and
URLs. Since Lasso does not perform any substitutions on command tags, these Lasso pages do not require
any processing by Lasso before they are served to a client. Pre-Lasso pages can be named with a .html file
name extension and can even be served from a Web server that does not have a Lasso Web server connector
installed.

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 3 — LASSO PAGES 41

® Post-Lasso pages are the most common type of Lasso pages. Post-Lasso pages can contain any
combination of tags in square brackets, command tags in HTML form inputs and URLSs, and LassoScripts.
Post-Lasso pages need to be processed by Lasso Service before they are served to the client. They are usually
named with a .lasso file name extension.

Library Lasso pages are used to modify Lasso’s programming environment by defining new tags and data
types, setting up global constants, and performing initialization code. Libraries are included in other Lasso
pages to modify the environment in which a single Lasso page is processed or loaded at startup to modify
the global environment in which all Lasso pages are processed.

Add Page, Search Page, Update Page, Listing Page, Detail Page and others are Lasso page names
based upon the action which the client will perform when they load the page in their Web browser. For
example, a Lasso page might implement the search page of a site. An update page would allow a user to
edit a record from a database. A listing page is usually the result of a search and contains links to a detail
page which presents more information about each of the records listed.

Add Response, Search Response, Delete Response and others are Lasso pages named based on

the action which results in the Lasso page being served to the client. These are typically called response
pages. For example, a delete response is served in response to the client opting to delete a record from the
database.

e Error Page, Add Error, Search Error and others are Lasso pages that provide an error message to the
client based on the current action.

Action Methods

Web servers and Lasso Service are passive by nature. The software waits until an action is initiated by a client
before any processing occurs. Every page load which is processed by Lasso can be thought of as an action
with two components: a source and a response. A visitor selects a URL or submits an HTML form within the
source Lasso page and receives the response Lasso page. The different types of Lasso actions are summarized
in the table below and then described in more detail in the sections that follow.

Table 1: Action Methods

Action Method Example
URL Action http://www.example.com/default.lasso
HTML Form Action <form action="Action.Lasso" method="post"> ... </form>
Inline Action [Inline: -Database="Contacts', ..., -Search] ... [/Inline]
Scheduled Action [Event_Schedule: -URL="default.lasso', -Delay="10]
Startup Action [LassoStartup/startup.lasso

URL Action

A URL action is initiated or called when a client selects a URL in a source file. The source file could be an
HTML file from the same Web site, an HTML file from another Web site, the “favorites” of a Web browser, or
could be a URL typed directly in a Web browser. The selected URL triggers a designated response file that is
processed and returned to the client.

The characteristics of the URL determine the nature of the action which is performed.

e HTML - If the URL references a file with a .html file name extension then no processing by Lasso will occur
(unless the Web server has been configured to send .html files to Lasso Service.). The referenced HTML file
will be returned to the client unchanged from how it is stored on disk.

http://www.example.com/default.html

e Lasso - If the URL references a file with a .lasso file name extension then Lasso Service will be called upon
to process the file. The referenced Lasso page will be returned to the client after Lasso Service has evaluated
all the Lasso tags contained within.

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 3 — LASSO PAGES 42

http://www.example.com/default.lasso

e Action.Lasso - If the URL references Action.Lasso then any command tags contained in the URL will be
evaluated and an appropriate response will be returned to the user. The response to an Action.Lasso URL will
always be processed by Lasso Service whether it is a .html file, a .lasso file, or a database field.

http://www.example.com/Action.Lasso?-Response=default.html

Note: Lasso will only process files with extensions that have been registered within Lasso Administration. See
the Setting Site Preferences chapter of the Lasso Professional 8 Setup Guide for more information.

HTML Form Action

An HTML form action is initiated or called when a client submits an HTML form in a source file. The source

file could be an HTML file from the same Web site or an HTML file from another Web site. The form action

and inputs of the form are evaluated and trigger a designated response file that is processed and returned to

the client.

The characteristics of the form action determine the nature of the action which is performed.

e Lasso - If the HTML form references a file with a .lasso file name extension then Lasso Service will be
called upon to process the file. The referenced Lasso page will be returned to the client after Lasso Service
has evaluated all the Lasso tags contained within the inputs of the form.

<form action="default.lasso" method="post">

</form>

e Action.Lasso - If the HTML form references Action.Lasso then any command tags contained in the inputs
in the form will be evaluated and an appropriate response will be returned to the user. The response to an
HTML form with an Action.Lasso form action will always be processed by Lasso Service whether it is a .html
file, a .lasso file, or a database field.

<form action="Action.Lasso" method="post">
<input type="hidden" name="-Response" value="default.lasso"

</form>

Note: Lasso will only process files with extensions that have been registered within Lasso Administration. See
the Setting Site Preferences chapter of the Lasso Professional 8 Setup Guide for more information.

Inline Action

Inline actions are initiated when the Lasso page in which they are contained is processed by Lasso Service.

The result of an inline action is the portion of the Lasso page contained within the [Inline] ... [/Inline] tags that

describe the action. As with all Lasso pages, inline actions are processed as the result of a URL being visited

or an HTML form being submitted. However, inline actions are not reliant on command tags specified in the

URL or HTML form.

¢ Inline Tag - The [Inline] ... [/Inline] container tags can be used to implement an inline action within a Lasso
page. The action described in the opening [Inline] tag is performed and the contents of the [Inline] ... [/Inline]
tags is processed as a sub-Lasso page specific to that action.

[Inline: ... Action Description ...]
... Response ...

[/Inline]

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 3 — LASSO PAGES 43

e Multiple Inlines - A single Lasso page can contain many [Inlin€] ... [/Inline] container tags. Each set of tags
is implemented in turn. A single Lasso page can be used to perform many different database actions in
different databases as the result of a single URL action or HTML form action.

[Inline: ... Action One Description ...]
... Response One ...
[/Inline]

[Inline: ... Action Two Description ...]
... Response Two ...
[/Inline]

¢ Nested Inlines - Inlines can be nested so that the results of one inline action are used to influence
the processing of subsequent inline actions. Nested inline actions allow for complex processing to be
performed such as copying records from one database to another or summarizing data in a database.

[Inline: ... Action One Description ...]
[Inline: ... Action Two Description ...]
... Combined Response ...
[/Inline]
[/Inline]

¢ Named Inlines - Inlines can be processed at the top of a Lasso page and their results can be used later in
the Lasso page. This allows the logical processing of an action to be separated from the data formatting.
The results of the inline action are retrieved by specifying the inline’s name in the [Records] ... [/Records]
container tag.

[Inline: -InlineName="Action’, ... Action Description ...]
... Empty ...
[/Inline]

[Records: -InlineName="Action’]
... Response ...
[/Records]

Scheduled Action

Scheduled actions are initiated when they are queued using the [Event_Schedule] tag in a source file. The source
file could be a Lasso page which is loaded as the result of an action by a client or could be loaded as a startup
action. The response to the scheduled action is not processed until the designated date and time for the
action is reached.

Any type of Lasso page can be called as a scheduled action, but the results will not be stored. Scheduled
Lasso pages can effectively be thought of as pure Lasso pages. Scheduled Lasso pages can use logging or email
messages to notify a client that the action has occurred. See the Control Tags chapter for more information.

e Lasso - The URL referenced when the action is scheduled will usually contain a .lasso file name extension.
The referenced Lasso page will be processed when the designated date and time is reached, but the results
will not be returned to any client. For example, the following [Event_Schedule] tag schedules a call to a page
that will send an email report to the administrator of the site every 24 hours (1440 minutes), even after
server restarts:

[Event_Schedule: -URL="http://www.example.com/admin/emailreport.lasso’,
-Delay="1440", -Repeat=True, -Restart=True]

Startup Action

Startup actions are initiated when Lasso Service is launched by placing Lasso pages in the LassoStartup folder.
Lasso pages which are processed at startup are library files which are used to set up the global environment in
which all other pages will be processed. For example, they can add tags and custom data types to the global
environment, set up global constants, or queue scheduled actions.

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 3 — LASSO PAGES 44

e Lasso - Lasso pages with .lasso file name extensions are used at startup to queue scheduled actions
or perform routine tasks on the databases or files managed by Lasso Service. Any Lasso pages in the
LassoStartup folder will be processed every time Lasso Service is launched.

e Library - Libraries of Lasso tags and custom data types can be processed at startup in order to extend
the global environment in which all other pages are processed. All Lasso tags and data types in a library
processed at startup will be available to all other Lasso pages processed by Lasso Service. See the Files and
Logging chapter for more information about libraries.

Securing Lasso Pages

The information being collected or served in a Web site is often of a sensitive nature. Credit card numbers
and visitor’s personal information must be kept secure. Proper Lasso page security is the first step toward
creating a Web site which only provides the information you want it to publish.

The Lasso code contained in a Lasso page should be secured so visitors cannot examine it. Lasso pages
contain information about how to access your databases. They may contain passwords, table and field names,
or custom calculations.

Lasso code in a Lasso page is implicitly secured if it is stored in a Lasso page with a .lasso file extension. The
code in the file will always be processed by Lasso before it is served to visitors. Visitors can access the HTML
source of the file they receive, but cannot access the Lasso source of the original Lasso page.

It is important to ensure that your Lasso pages cannot be accessed unsecurely through other Internet
technologies such as FIP, Telnet, or file sharing. Make sure that the files in your Web serving folder can
only be accessed by trusted developers and administrators. See the Setting Up Security chapter in the Lasso
Professional 8 Setup Guide for more information.

Output Formats

Although Lasso pages are always text files, they can be used to output a wide variety of different data formats.
The most basic Lasso pages match the output format. For example, HTML Lasso pages are used to return
HTML output to Web browsers. But, pure Lasso pages can be used to return data in almost any format
through the use of the [Include] tag and data from database fields.

This section describes how to output the most common data formats from Lasso pages.

Text Formats

Lasso can be used to output any text-based data format. Lasso pages are usually based on a file of the desired
type. The following are common output formats:

e HTML is the most common output format. Usually, HTML output is generated from HTML Lasso pages.
The embedded Lasso tags are processed, altering and adding to the content of the file, but the essential
characteristics of the file remain unchanged.

e XML is rapidly becoming a standard for data exchange on the Internet. XML output is usually generated
through Lasso by processing XML Lasso pages. The embedded Lasso tags are processed, altering and adding
content to the XML data in the file. The resulting XML data can be made to conform to any Document
Type Definition (DTD) or XML Schema desired.

e WML is the language used to communicate with WAP-enabled wireless devices. WML is a language which
is based on XML. It is an example of a DTD or XML Schema to which output data must conform. Lasso
usually generates WML output by processing WML Lasso pages. Developers can create WML Lasso pages by
using a WML authoring tool and then embedding Lasso tags within.

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 3 — LASSO PAGES 45

e PDF or Portable Document Format is Adobe’s machine-independent format for distribution of electronic
documents. Lasso can be used in concert with PDFs in several ways. Lasso can be used to process forms
embedded within PDF files and to return results to a client. Lasso can be used to generate ASCII PDFs
through custom programming. Finally, Lasso can be used to provide access control to PDFs so only
authorized users are able to download certain PDFs.

Binary Formats

Lasso can be used to output a variety of binary data formats. Generally, Lasso is not used to perform any

processing on the binary data being served, but is just a conduit through which pre-existing binary data is

routed. See the Images and Multimedia chapter for more information about each of these methods. The

following list describes common methods of outputting binary data.

¢ URLs can be created and manipulated using Lasso. For example, a database could contain a file name in a
field. Lasso can be used to convert that file name into a valid URL which will then be served as part of an
HTML page. The binary data will be fetched from the client directly without any further action by Lasso.

¢ Database Fields can be used to store binary data such as image files in a container or binary format. If
a Lasso data source connector for the appropriate database supports fetching binary data, then Lasso can
serve the binary data or image files directly from the database field using the [Field], [Image_URL] or -Image
tags.

® Binary Files can be served through Lasso using a combination of the [Include_Raw] tag to output the binary
data and the [Content_Type] tag to report to the client what type of data is being served.

File Management

Lasso 8 introduces a new distributed architecture. Lasso Service can be installed on one machine and a Lasso
Web server connector can be installed into a Web server on a different machine. It is important to realize
where Lasso pages are stored so they can be located on the appropriate machine.

Note: In most Lasso 8 installations Lasso Service and a Lasso Web server connector will be installed on the same
machine. The discussion below still applies since the various components of Lasso 8 will operate out of different
folders. An administrator can set up a machine so the same files are shared by all components of Lasso.

Lasso Web Server Connector

Most Lasso pages for a Web site will be stored on the same machine as a Lasso Web server connector in the
Web serving folder which contains the HTML and image files for the Web site.

¢ Client Lasso Pages are stored alongside the HTML and image files which comprise a Web site. To the
client, these Lasso pages appear no different from plain HTML files except that they contain dynamic data.

¢ Included Files are stored in the Web serving folder. These are files which are incorporated into Lasso pages
using the [Include] and [Include_Raw] tags. Included files could be other Lasso pages, plain HTML files, images
files, PDF files, etc.

e Library Files can be stored in the Web serving folder. These files contain definitions for Lasso tags and data
types. Library files are referenced much like included files. The custom tags and data types defined in the
library file are available only in the pages which load the library file.

¢ Administrative Files are stored in the Web serving folder in a folder named Lasso. These files comprise the
Web-based administration interface for Lasso Service.

Lasso Service

Lasso pages which are stored on the same machine as Lasso Service are used primarily when Lasso Service
starts up to set up the global environment. However, other files which are manipulated by Lasso’s logging and
file tags are also stored on the Lasso Service machine.

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 3 — LASSO PAGES 46

e Startup Lasso Pages are stored in the LassoStartup folder with Lasso Service. These files are processed
when Lasso Service is launched and can perform routine tasks or modify the global environment in which
all other Lasso pages will be processed. Any Lasso tags, data types, or global constants defined in these
libraries will be available to all pages which are processed by Lasso Service.

e Startup LassoApps are stored in the LassoStartup folder with Lasso Service. The default page of each
LassoApp is processed at startup and the LassoApp is pre-loaded into memory for fast serving.

¢ Log Files are created using the [Log] tag. These files can be used to store information about the Lasso pages
which have been processed by Lasso Service. Log files are created on the same machine as Lasso Service.

¢ Uploaded Files are stored in a temporary location in a folder with Lasso Service. Files can be uploaded by
a client using a standard HTML file input. Uploaded files must be moved from their temporary location to
a permanent folder before the page on which they were uploaded finishes processing.

¢ File Tags operate on files in folders on the same machine as Lasso Service. The file tags can be used to
manipulate log files or uploaded files. The file tags are also used to manipulate HTML and other Lasso
pages in the Web serving folder if Lasso Service is installed on the same machine as a Lasso Web server
connector or if file sharing between the two machines facilitates accessing the files as a remote volume. See
the Files and Logging chapter for more information.

Note: A user can only access files to which the group they belong has been granted access . See the
Setting Up Security chapter in the Lasso Professional 8 Setup Guide for more information.

Specifying Paths

Lasso pages can be referenced in many different ways depending on how they are being used. They can be
referenced in any of the following ways:

e A URL can be used to reference a Lasso page with a .lasso file extension directly:

http://mww.example.com/default.lasso

e A URL can be used to reference Lasso pages with any file extensions by calling Action.Lasso and then
specifying the Lasso page in a -Response command tag:

http://www.example.com/Action.Lasso?-Response=default.html
¢ An HTML form can be used to reference a Lasso page with a .lasso file extension directly in the form action:

<form action="default.lasso" method="post">

</form>
e An HTML form can be used to reference Lasso pages with any file extensions by calling Action.Lasso as the
form action and then specifying the Lasso page in a -Response hidden input:
<form action="Action.Lasso" method="post">
<input type="hidden" name="-Response" value="default.htm|">
</form>

® A Lasso page can be referenced from within certain Lasso tags. For instance, the [Include] tag takes a single
Lasso page name as a parameter:

[Include: 'default.lasso’]

Paths are specified for Lasso pages differently depending on what type of Lasso page contains the path
designation and to which type of Lasso page is being referred.

Note: Lasso cannot be used to reference files outside of the Web server root unless specific permission has
been granted within Lasso Administration. See the Setting Up Security chapter in the Lasso Professional 8 Setup
Guide for more information.

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 3 — LASSO PAGES 47

Relative and Absolute Paths

Most paths in Lasso pages follow the same rules as the paths between HTML files served by the Web server.
Relative and absolute paths are interpreted either by the client's Web browser or by Lasso Service. These paths
are all defined within the context of the Web serving folder established by the Web server which is hosting a
Lasso Web server connector. If a single Web server is used to host multiple sites, the Web serving folder could
be different for each virtual host.

¢ Relative Paths between files can be specified using all the rules and features of URL file paths. For
example, the following anchor tag designates a response in the same folder as the current page:

Response

e Paths can use ../ to specify a higher level folder. The following anchor tag designates a response in the
folder one level higher than that which contains the current page:

Response

e Relative paths designated within Lasso tags follow the same basic rules except that ../ cannot be used to
access the parent folder for a Lasso page. For example, the following [Include] tag includes a file from the
same folder as the current page.

[Include: 'include.lasso’]

e Absolute Paths are referenced from the root of the Web serving folder as designated by the Web serving
software. The Web server root is specified using the / character. The following anchor tag designates a
response file contained at the root level of the current Web site:

Response

e Absolute paths designated within Lasso tags work the same as absolute paths in URLs. The following
[Include] tag includes a file contained at the root level of the current Web site.

[Include: ‘finclude.lasso’]

For more information about specifying relative and absolute paths, consult your favorite HTML reference or
the documentation for your Web serving application.

Action.Lasso Paths
If a Lasso page has been called using Action.Lasso in either a URL or in an HTML form action then all paths
within the Lasso page will be evaluated relative to the stated location of Action.Lasso.

e Action.Lasso could be specified as Action.Lasso so it appears to be located in the same folder as the calling
Lasso page. All paths must then be specified as if the referenced Lasso page was located in the same folder
as the calling Lasso pages. Paths relative to the referenced Lasso page will fail, but paths relative to the
calling Lasso page will succeed.

Response

o Action.Lasso could be specified as /Action.Lasso so it appears to be located at the root of the Web serving
folder. All paths must then be specified as if the referenced Lasso page was located at the root of the Web
serving folder. Paths relative to the referenced Lasso page will fail.

Response

e Action.Lasso can also be specified using an arbitrary path such as /Folder/Action.Lasso. In this case all paths will
be relative to the specified location of Action.Lasso.

Response

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 3 — LASSO PAGES 48

Lasso Service Paths

Paths to Lasso pages on the machine hosting Lasso Service are specified differently than those which are used
in Lasso pages on the machine hosting a Lasso Web server connector. Lasso pages on the machine hosting
Lasso Service are usually only referenced by the file tags and log tag.

¢ Most paths should be Fully Qualified Paths specified from the root of the disk on which Lasso Service is
installed. For example, the following path would represent a file in the same folder as Lasso Service in a
typical install on a Windows 2000 machine:

C://Program Files/OmniPilot Software/Lasso Professional 8/default.lasso

¢ The following path would represent the same file if it were in the same folder as Lasso Service in a typical
install on a Mac OS X machine:

[llApplications/Lasso Professional 8/default.lasso

In Mac OS X, the hard drive name is set to a slash / so the fully qualified paths must start with three slashes
/ll. Paths starting with a single slash / are defined to be relative to the Web server root.

For more information about specifying fully qualified paths, consult the Files and Logging chapter.

Note: Fully qualified paths can also be specified in a platform specific fashion. For example, the path
above could be written as C:\Program Files\OmniPilot Software\Lasso Professional 8\default.lasso on Windows or as
Applications:Lasso Professional 8:default.lasso on Macintosh.

Page Execution Time Limit

Lasso includes a limit on the length of time that a Lasso page will be allowed to execute. This limit can help
prevent errors or crashes caused by infinite loops or other common coding mistakes. If a Lasso page runs for
longer than the time limit then it is killed and a critical error is returned and logged.

The execution time limit is set to 10 minutes (600 seconds) by default and can be modified or turned off
in the Setup > Global > Settings section of Lasso Admin. The execution time limit cannot be set below 60
seconds.

The limit can be overridden on a case by case basis by including the [Lasso_ExecutionTimeLimit] tag at the top
of a Lasso page. This tag can set the time limit higher or lower for the current page allowing it to exceed the
default time limit. Using [Lasso_ExecutionTimeLimit: 0] will deactivate the time limit for the current Lasso page
altogether.

On servers where the time limit should be strictly enforced, access to the [Lasso_ExecutionTimeLimit] tag can be
restricted in the Setup > Global > Tags and Security > Groups > Tags sections of Lasso Admin.

Asynchronous tags and compound expressions are not affected by the execution time limit. These processes
run in a separate thread from the main Lasso page execution.

Note: When the execution time limit is exceeded the thread that is processing the current Lasso page will be
killed. If there are any outstanding database requests or network connections open there is a potential for some
memory to be leaked. The offending page should be reprogrammed to run faster or exempted from the time
limit using [Lasso_ExecutionTimeLimit: 0]. Restarting Lasso Service will reclaim any lost memory.

Code Compilation and Caching

Lasso processes pages using a built-in compiler and automatically caches compiled pages for speed. The
operation of this compiler is normally transparent to the site designer so Lasso can appear to operate as an
interpreted language.

When Lasso is asked to process a Lasso page it locates the disk file for the page and notes its modification

time. The first time a page is called it is compiled into low-level byte code. That byte code is executed to
generate the response to the page. The byte code is also stored in a cache. Subsequent calls to the same page

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 3 — LASSO PAGES 49

will check the modification time for the disk file and if the disk file has not been modified will use the cached
byte code for the page.

Note that Lasso is caching the compiled LassoScript for the page, not the results of the page. Lasso processes

each page that is called every time it is called, but only re-compiles the page into byte code when the disk file
for the Lasso page is modified.

Since the cache checks the modification time of the disk file it will be automatically updated each time the
file is modified. The [Compiler_RemoveCachedDoc] tag can also be used to explicitly flush a Lasso page out of
Lasso’s cache and force the Lasso page to be re-compiled the next time it is called.

[Compiler_RemoveCachedDoc: '/default.lasso’]

LAsso 8.5 LANGUAGE GUIDE

50

Chapter 4
Lasso 8.5 Syntax

Lasso Professional 8 supports several different syntax styles and methods of embedding Lasso code within a
Lasso page.
e Overview provides an introduction to the different syntax styles available in Lasso Professional 8.

e Colon Syntax describes the traditional syntax of Lasso which features a tag name followed by a colon and
the parameters of the tag [Tag_Name: Parameters].

® Parentheses Syntax describes a new syntax style in Lasso Professional 8 which features a tag name
followed by parentheses that include the parameters of the tag [Tag_Name(Parameters)].

e Square Brackets describes how to embed Lasso tags in HTML Lasso pages surrounded by square brackets
[...]

® LassoScript describes how to embed Lasso tags in Lasso pages in a block of LassoScript <?LassoScript ... 7>.

® HTML Form Inputs describes how to embed Lasso tags within HTML forms.

® URLs describes how to embed Lasso tags within URLs.

® Compound Expressions describes how to embed Lasso tags within other Lasso expressions using braces

{.}

Overview

Lasso Professional 8 offers a great deal of flexibility in how Lasso code can be written and embedded within
Lasso pages. This allows the developer to select the best syntax style for each programming task. The different
syntax styles and embedding methods are completely interchangeable and a combination of different styles
can be used throughout a single Lasso page.

Syntax Styles

Lasso Professional 8 offers two different syntax styles. Colon syntax is the traditional syntax style of Lasso.
Parentheses syntax is a new syntax style that promotes better coding style by removing ambiguities from
the parser. Parentheses syntax may be an easier transition for developers who are familiar with other
programming languages while colon syntax may be preferred by experienced Lasso developers.

e Colon Syntax - A tag name is followed by a colon : and then the parameters of the tag.
Tag_Name: Parameters

A tag which is used as a parameter to another tag should always be surrounded by parentheses since this
ensures that Lasso associates the parameters with the proper tag.

Tag_Name: (Sub_Tag: Parameters), More Parameters
¢ Parentheses Syntax - A tag name is followed by parentheses (...) which contain parameters of the tag.

Tag_Name(Parameters)

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 4 — LASSO 8.5 SYNTAX 51

A tag which is used as a parameter to another tag can be written the same as if it were at the top-level since
the parameters are automatically associated with the tag.

Tag_Name(Sub_Tag(Parameters), More Parameters)

The two syntax methods can be mixed even within the same expression although it is generally recommended
that one syntax style be used within any single block of Lasso code.

Tag_Name((Sub_Tag: Parameters, Sub_Tag(Parameters)), More Parameters)

Note: The introduction of parentheses syntax does not mean that colon syntax is de-emphasized or deprecated
in any way. Both syntax styles are equally supported in Lasso Professional 8.

Embedding Methods

Lasso Professional 8 offers three different embedding methods. The method to use depends on the particular
needs and outputs for a given block of code. The three different methods can be used alternately throughout
a single Lasso page.

e Square Brackets - Each tag is surrounded by square brackets. The entire bracketed expression is replaced
by the value of the tag. Square brackets are most appropriate when embedding Lasso tags within HTML or
other markup languages.

[Field('Link_Name')]

e LassoScript - An entire block of Lasso code is surrounded by a single <?LassoScript ... 7> container. Each
tag must end with a semi-colon. The entire LassoScript is replaced by the value of all the tags within
concatenated together, but without any inter-tag whitespace. LassoScript is most appropriate when writing
a large block of Lasso code that does not have any output or that has highly structured output.

<?LassoScript
Tag_Name(Parameters);

Tag_Name(Parameters);
»>

Note: These two embedding methods are completely interchangeable. A single tag can be embedded within
a LassoScript container as <?LassoScript Tag_Name(Parameters) 7> or multiple tags can be embedded within square
brackets as [Tag_Name(Parameters); Tag_Name(Parameters)).

® HTML Form Inputs - Lasso tags can be placed in HTML forms. When the form is submitted the command
tags will be interpreted before the response Lasso page is processed by Lasso.

<form action="Action.Lasso" method="POST">
<input type="hidden" name="-Response" value="format.lasso" />
<input type="submit" name="-Token.Action" value="Submit!" />
<[form>

® URLs - Lasso tags can be placed in URLs. When the URL is entered in a Web client the command tags will
be interpreted before the response Lasso page is processed by Lasso.
http://www.example.com/format.lasso?-Token.Action=Submit
Note: Classic Lasso syntax in which complete database operations are performed through HTML form inputs or

URLs has been deprecated. It's use is no longer recommended. However, there are still some command tags that
work even with Classic Lasso support deactivated.

e Compound Expressions - A block of Lasso code can be used as a parameter to a Lasso tag. This allows a
whole series of tags to be executed and the result to be returned as the parameter value.

Tag_Name({If(Condition); Return(True); /If; Return(False);}->Eval())

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 4 — LASSO 8.5 SYNTAX 52

Colon Syntax

Colon syntax style is so-named because it features a tag name followed by a colon : and then the parameters
of the tag. Colon syntax is the traditional syntax of Lasso Professional. Colon syntax is fully supported within
Lasso Professional 8.

Table 1: Colon Syntax Delimiters

Delimiter Description
Separates a tag name from its parameters. Required for tags which have
parameters.

(...) Used to surround tags which have parameters and are used as parameters to
another tag.

, Used to separate parameters.

A simple tag with parameters in colon syntax is specified as follows:
Tag_Name: Parameters

A tag which is used as a parameter to another tag should always be surrounded by parentheses since this
ensures that Lasso associates the parameters with the proper tag.

Tag_Name: (Sub_Tag: Parameters), More Parameters

A tag which does not require any parameters must be written without a colon: It is not valid to have a colon
after a tag name without any parameters.

Simple_Tag

A tag which does not require any parameters can be used as a parameter to another tag with or without
surrounding parentheses.

Tag_Name: (Simple_Tag)
Tag_Name: Simple_Tag

Be careful to avoid ambiguities when specifying tags and parameters. In the following example [Tag_Name]
is being passed [Sub_Tag] as a parameter. It is not clear whether Parameter_3 is intended to be a parameter for
[Tag_Name] or [Sub_Tag].

Tag_Name: Parameter_1, Sub_Tag: Parameter_2, Parameter_3

This code will actually be interpreted as follows by Lasso. The outermost tag is greedy and will claim all the
parameters it can for itself. This leaves only Parameter_2 being passed to [Sub_Tag].

Tag_Name: Parameter_1, (Sub_Tag: Parameter_2), Parameter_3
In order to pass Parameter_2 and Parameter_3 to [Sub_Tag] the following syntax must be used.

Tag_Name: Parameter_1, (Sub_Tag: Parameter_2, Parameter_3)

Note: In early versions of Lasso the colon could be replaced by a comma. This is not allowed in Lasso
Professional 8.

Parentheses Syntax

Parentheses syntax style is so-named because it features a tag name followed by parentheses which surround
the parameters of the tag. Parentheses syntax is new in Lasso Professional 8. The advantages of parentheses
syntax include:

¢ Parentheses syntax is less ambiguous than colon syntax since parameters are always clearly associated with
one tag without knowledge of the parser’s internal rules.

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 4 — LASSO 8.5 SYNTAX 53

e Parentheses syntax is closer to the syntax of programming languages like JavaScript. Developers who are
already familiar with other programming languages should feel right at home in parentheses syntax.

Table 2: Parentheses Syntax Delimiters

Delimiter Description

(...) Used immediately following a tag name to contain the parameters of the tag. Can
be left empty if a tag has no parameters.

Used to separate parameters.

A simple tag with parameters in parentheses syntax is specified as follows:
Tag_Name(Parameters)

A tag which is used as a parameter to another tag can be specified the same as if it were at the top-level of the
expression. The required parentheses in this syntax style ensure that there are no ambiguities.

Tag_Name(Sub_Tag(Parameters), More Parameters)

A tag which does not require any parameters must be written trailing parentheses. However, the trailing
parentheses can also be included without any ill effects.

Simple_Tag
Simple_Tag()

A tag which does not require any parameters can be used as a parameter to another tag with or without
trailing parentheses.

Tag_Name:(Simple_Tag)

Tag_Name(Simple_Tag())

It is impossible to introduce ambiguities when using this syntax. The examples below are the same as those
from the Colon Syntax section, but since the parentheses are required there is no question how the parser
will interpret these expressions.

Tag_Name(Parameter_1, Sub_Tag(Parameter_2), Parameter_3)

Tag_Name(Parameter_1, Sub_Tag(Parameter_2, Parameter_3))

Square Brackets

Square brackets allow Lasso tags to be used as a tag-based markup language. Square brackets are most

convenient when embedding Lasso tags within HTML, XML, or another markup language. Square brackets

have the following advantages:

e Brackets visually distinguish Lasso code from the angle bracket delimited markup languages in which they
are embedded.

* White space between tags is preserved and output to the site visitor.

Lasso tags within square brackets are each executed in turn. The entire bracketed expressions is replaced by

the value of the processed tag. The returned value is encoded using HTML encoding by default. This can be

changed using an encoding keyword or [Encode_Set] ... [[Encode_Sef] tags.

Table 3: Square Bracket Delimiters

Delimiter Description
[Starts a square bracket tag. Required.

] Ends a square bracket tag. Required.

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 4 — LASSO 8.5 SYNTAX 54

To create a square bracket tag:
Place the tag within square brackets. Either colon or parentheses syntax can be used.

[Field: 'Field_Name', -EncodeNone] =» John

[Math_Add:(, 2, 3, 4, 5] = 15

To use container tags with square brackets:

Container tags are specified surrounding a portion of a page. The opening tag is written normally with
parameters. The closing tag has the same name as the opening tag, but preceded with a forward slash /.
Indentation is often used to make the contents of the container tag clear, but is not required. In the following
example a [Loop] tag is used to output the numbers 1 through 5 using the [Loop_Count] tag.

[Loop(5)]
[Loop_Count]
[/Loop]

-> 12345

To specify a comment within square brackets:
Specify a comment using the /* ... */ delimiter. All text between these delimiters will not be processed.

[Field: 'First Name' /* This is a comment */]

To suppress output from a square bracket tag:
e Use the [Null] tag to suppress output from a single square bracket tag.
[Null: Field('First Name')]
e Use the [Output_None] ... [/Output_None] tags around a block of square bracket tags. In the following example,
the expression will return no value even though it contains several [Field] tags.

[Output_None]

[Field('First Name')] [Field('Last Name')]
[/Output_None]

To change the encoding for a square bracket tag:
e Use an encoding keyword on the tag. By default all tags are encoded using -EncodeHTML.
[Field('First_Name', -EncodeNone)]

e Use an [Encode_...] tag to specify the encoding explicitly.
[Encode_HTML: Field('First_Name')]
e Use the [Encode_Sef] ... [[Encode_Set] tags around the square bracket tags. This changes the default encoding
without use of the -EncodeNone keyword in each tag.

[Encode_Set: -EncodeNone]

[Output: '<p>This HTML code will render
with breaks.]
[/Encode_Se]

=» <p>This HTML code will render

with breaks.

To prevent square brackets from being interpreted:

Sometimes it is desirable to have square brackets in a Lasso page which are not interpreted by Lasso. This can
be useful for including Lasso samples on a page, for using array references within JavaScript, or simply for
typographic design flexibility. These methods work for either square bracket or LassoScript syntax.

e Surround the code that should not be processed with [NoProcess] ... [[NoProcess] tags. Lasso will not interpret
any code within this container.

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 4 — LASSO 8.5 SYNTAX 55

[NoProcess]
The [Field] tag returns the value of a database field for the current record.

[/NoProcess]

=» The [Field] tag returns the value of a database field for the current record.

e Surround the code that should not be processed with HTML comments <!-- ... -->. This method is
particularly useful for JavaScript code blocks.

<script langauge="JavaScript">

<l--
array[1] = array[2];
Il-->
</script>
LassoScript

LassoScript allows Lasso tags and symbols to be used as a scripting language in a fashion which is
complementary with the traditional use of Lasso as a tag-based markup language. LassoScripts have the
following advantages:
e Concise format allows better formatting of long code segments.
® Represented as a single object in many visual authoring environments. This makes it easy to separate the
logic of a page from the presentation or to hide implementation details from Web designers who are
working on the visual aspects of the page.
e Comments allow code to be self-documented for better maintainability.
e Compatible with HTML and XML standards for embedding server-side scripting commands.
e Provides scripting-like method of coding for programmers who prefer this method.
Lasso tags contained within a LassoScript execute exactly as they would if they were specified within square
brackets. The value returned by a LassoScript is the concatenation of all the values which are returned from
the tags that make up the LassoScript. No encoding is applied to the output of a LassoScript, but normal
encoding rules apply to each of the tags within a LassoScript that outputs values.
LassoScripts begin with <?LassoScript and end with ?>. Lasso tags within a LassoScript are delimited by a single
semi-colon ; at the end of the tag rather than by square brackets. White space within a LassoScript is ignored.
Comments begin with a double forward slash // and continue to the end of the line. To continue a comment
on another line, another // must be used. All text in a LassoScript must be part of a tag or part of a comment,
no extraneous text is allowed.
Values returned from expressions within a LassoScript are not encoded by default. The [Encode_...] tags can be
used to apply explicit encoding to values output from a LassoScript.
<?LassoScript

Encode_HTML: '
This is the output from the LassoScript.";
»

=>» <:br> This is the output from the LassoScript.

Table 4: LassoScript Delimiters

Delimiter Description

<?LassoScript Starts a LassoScript. Required.

7> Ends a LassoScript. Required.

; Ends a Lasso tag. Required.

I Comment. All text to the end of the line will be ignored.

T Block Comment. All text between the delimiters will be ignored. Allows multi-line
comments.

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 4 — LASSO 8.5 SYNTAX 56

Note: Square brackets [...] are not allowed in LassoScripts. However, it is possible to replace the
<?LassoScript ... ?> delimiters with square brackets [...].

To create a LassoScript with a single tag:

LassoScripts can be used for individual Lasso tags as well as for groups of tags. When only a single tag is
specified, the semi-colon at the end of the tag is optional. The container <?LassoScript ... 7> can be substituted
for the square bracket container [...] if necessary.

<?LassoScript Field: 'Field_Name', -EncodeNone ?>

<?LassoScript Math_Add: 1,2, 3,4,5 7> =» 15

To use container tags within a LassoScript:

Container tags are specified just as they are in square-bracketed Lasso code. The opening container tag must
end with a semi-colon. The closing container tag should start with a forward slash / and end with a semi-
colon. Indentation is usually used to make the contents of the container tag clear, but is not required. In the
following example a [Loop] tag is used to output the numbers 1 through 5 using the [Loop_Count] tag.

<?LassoScript
Loop: 5;
Loop_Count +'";

{Loop;
>

= 12345

To use container tags between LassoScripts:

Container tags can be opened within one LassoScript then closed in a subsequent LassoScript. The following
example shows a mixture of LassoScript and square bracket syntax which implements a loop.

<?LassoScript
Loop: 5;
o

[Loop_Count]

<?LassoScript

ILoop;
o

=> 12345

To specify a comment within a LassoScript:

Use the // symbol to start a comment. All text until the end of the line will be part of the comment and will
not be executed by the LassoScript.

<?LassoScript

Il This LassoScript only contains a comment.
>

<?LassoScript
Il The following line has been commented out. It will not be processed.

I Encode_HTML: 'Testing';
»>

Alternately, specify a multi-line comment using the /* ... */ delimiter. All text between these delimiters will not
be processed.

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 4 — LASSO 8.5 SYNTAX 57

<?LassoScript
/*
These lines have been commented out. The following line will not be processed.
Encode_HTML: 'Testing';
¥
>

To suppress output from a LassoScript:
Use the [Output_None] ... [[Output_None] tags around the LassoScript. In the following example, the LassoScript
will return no value even though it contains several expressions that output values.

<?LassoScript
Output_None;
‘This value will not be seen.";
‘Neither will this value.";
/Output_None;
>

To change the encoding for a LassoScript:

Use the [Encode_Set] ... [[Encode_Set] tags around the LassoScript. In the following example, the LassoScript will
not perform any encoding so HTML values can output from the [Output] tags without use of the -EncodeNone
keyword in each tag.

<?LassoScript
Encode_Set: -EncodeNone;
Output: '<p>This HTML code will render
with breaks.";

[Encode_Set;
>

=» <p>This HTML code will render

with breaks.

To use square brackets to surround a LassoScript:
The <?LassoScript ... ?> delimiters can be replaced by square brackets [...]. The following is a valid LassoScript.

[
Encode_HTML: '
This is the output from the LassoScript.";

]
=>»
 This is the output from the LassoScript.

To convert Lasso square bracket code to a LassoScript:

1 Format the code so each tag is on a separate line.

2 Remove all opening square brackets [.

3 Replace all closing square brackets] with semi-colons ;.

4 Correct the indentation so tags inside container tags are indented.
5 Add <?LassoScript and ?> to the beginning and end of the code.

In the following example the same code is shown in square bracketed Lasso code and then as an equivalent
LassoScript.

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 4 — LASSO 8.5 SYNTAX 58

[Loop: 5]
[Loop_Count]
[/Loop]

<?LassoScript
Loop: 5;
Loop_Count +'"

ILoop;
o

HTML Form Inputs

Lasso tags can be embedded within HTML form inputs in two different ways. A Lasso command tag can be
embedded as the name parameter of an <input>, <select>, or <textarea> tag. Lasso tags in square brackets can
be embedded as either the name or value parameters. For example, the following <input> tag includes a Lasso
command tag -ResponseAnyError as the name parameter and a Lasso substitution tag [Response_FilePath] as the
value parameter.

<input type="hidden" name="-ResponseAnyError" value="[Response_FilePath]">

When the Lasso page that includes the -ResponseAnyError tag is served to a client, the -ResponseAnyError tag will
not be processed until the HTML form in which this <input> is embedded is submitted by a client. However,
the [Response_FilePath] substitution tag is replaced by the name of the current Web page to yield the following
HTML for the <input> tag.

=> <input type="hidden" name="-ResponseAnyError" value="/form.lasso">

Any of the various tag types can be embedded within HTML form inputs, but the details differ for each type
of tag. See the section on Tag Types below for more details.

URLs

Lasso tags can be embedded within the parameters of URLs in two different ways. A Lasso command tag can
be embedded as the name half of a parameter. Lasso tags in square brackets can be embedded as either the
name or value half of a parameter. For example, the following URL includes a Lasso command tag -Token.Name
as the name half of the first parameter and a Lasso substitution tag [Client_Username] as the value half of the
first parameter.

When the Lasso page that includes this tag is served to a client the -Token.Name command tag will remain
unchanged. This tag will not be processed until the URL is selected by a client. The [Client_Username]
substitution tag will be replaced by the name of the current user logged in.

=»

Any of the various tag types can be embedded within URLs, but the details differ for each type of tag. See the
section on Tag Types below for more details.

Compound Expressions

Compound expressions allow for tags to be created within Lasso code and executed immediately. Compound
expressions can be used to process brief snippets of Lasso code inline within another tag’s parameters or can
be used to create reusable code blocks.

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 4 — LASSO 8.5 SYNTAX 59

Table 5: Compound Expression Delimiters

Delimiter Description
{ Starts a compound expression. Required.
} Ends a compound expressions. Required.

Ends a Lasso tag. Required.

3

Evaluating Compound Expressions

A compound expression is defined within curly braces {}. The syntax within the curly braces should match
that for LassoScripts using semi-colons between each Lasso tag. For example, a simple compound expression
that adds 6 to a variable myVariable would be written as follows. The expression can reference page variables.

[Variable: 'myExpression' = { $myVariable += 6; }]

The compound expression will not run until it is asked to execute using the [Tag->Eval] tag. The expression
defined above can be executed as follows.
[Variable: 'myVariable' = 5]

[$myExpression->Eval]
[Variable: 'myVariable']

-> 11

A compound expression returns values using the [Return] tag just like a custom tag. A variation of the
expression above that simply returns the result of adding 6 to the variable, without modifying the original
variable could be written as follows.

[Variable: 'myExpression' = { Return: ($myVariable + 6); }]
This expression can then be called using the [Tag->Eval] tag and the result of that tag will be the result of the
stored calculation.

[Variable: 'myVariable' = 5]
[$myExpression->Eval]

= 11

Alternately, the expression can be defined and called immediately. For example, the following expression
checks the value of a variable myTest and returns Yes if it is True or No if it is False. Since the expression is
created and called immediately using the [Tag->Eval] tag it cannot be called again.

[Variable: 'myTest'= True]
[Encode_HTML: { If: $myTest; Return: 'Yes'; Else; Return: 'No'; /If; }->Eval]

=> Yes

Running Compound Expressions

The same conventions for custom tags may be used within a compound expression provided it is executed
using the [Tag->Run] tag. Compound expressions which are run can access the [Params] array and define local
variables.
For example, the following expression accepts a single parameter and returns the value of that parameter
multiplied by itself. The expression is formatted similar to a LassoScript using indentation to make the flow
of logic clear.
[Variable: 'myExpression’ = {
Local: 'myValue' = (Params->(Get: 1));
Return: #myValue * #myValue;

i

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 4 — LASSO 8.5 SYNTAX 60

This expression can be used as a tag by calling it with the [Tag->Run] tag with an appropriate parameter. The
following example calls the stored tag with a parameter of 5.

[Encode_HTML: $myExpression->(Run: -Params=(Array: 5))]

=25

LAsso 8.5 LANGUAGE GUIDE

61

Chapter 5
Lasso 8.5 Tag Language

This chapter introduces the methodology behind programming data-driven Web sites powered by Lasso 8.
This chapter introduces terminology which is used through the remainder of this language guide. All new
users of Lasso Professional 8 should read through this chapter to familiarize themselves with the structure of
LassoScript.

¢ Introduction describes the layout of this chapter in detail.

® Tag Types introduces the five types of Lasso 8 tags including substitution tags, process tags, container tags,
member tags, and command tags.

¢ Tag Categories and Naming introduces the logic behind the names of Lasso 8 tags.

® Parameter Types describes the different types of parameters that can be specified within a tag.

¢ Encoding contains a discussion of character encoding features for substitution tags.

® Data Types describes the different data types which Lasso 8 offers.

¢ Expressions and Symbols introduces the concept of performing calculations directly within parameters.
¢ Delimiters includes a technical description of the characters used to delimit Lasso 8 tags in any syntax.

The syntax of Lasso 8 including colon syntax, parentheses syntax, square brackets, LassoScript, HTML form
inputs, URLs, and compound expressions is introduced in the previous chapter Lasso 8 Syntax.

Introduction

This chapter describes the syntax features of Lasso 8. Most of the topics in this chapter are interrelated, and
many of the terms used in this chapter are defined in Appendix A: Glossary of the Lasso Professional 8
Setup Guide. Consult this glossary if you are unsure of how any terms are used in this guide.

The first part of this chapter describes the different types and categories of Lasso tags. The next part of the
chapter describes the syntax of individual tags. The different components of tags are discussed, followed by an
introduction to the various parameters that can be specified in Lasso tags. Next, the focus shifts to the values
which are used to specify parameters.

A discussion of Lasso’s built-in data types sets the stage for the introduction of symbols and expressions
which can be used to modify values. Finally, the chapter ends with a technical description of the delimiters
used to specify all the different tag types within Lasso and a brief discussion of syntax rules and guidelines
which make coding Lasso pages within Lasso easier.

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 5 — LASsO 8.5 TAG LANGUAGE 62

Tag Types

Lasso 8 tags are divided into five different types depending on how the tags are used and how their syntax
is specified. Each of the five tag types is listed in the table below and then discussed in more detail in the
sections that follow, including details of how each tag type can be used within a Lasso page.

Table 1: Lasso 8 Tag Types

Tag Type Example

Substitution Tag [Field: '‘Company_Name']

Process Tag [Event_Schedule: -URL="http://www.example.com/]
Member Tag ['String'->(Get: 3)]

Container Tag [Loop: 5] ... Looping Text ... [/Loop]

Command Tag <input type="hidden" name="-Required">

Substitution Tags

Substitution tags return a value which is substituted in place of the tag within the Lasso page being served to
a client. Most of the tags in Lasso are substitution tags. Substitution tags are used to return field values from
a database query, return the results of calculations, or to display information about the state of Lasso Service
and the current page request.

The basic format for substitution tags is different in colon or parentheses syntax. Colon syntax features a tag
name followed by a colon and then one or more parameters separated by commas.

[Substitution_Tag: Tag_Parameter, -EncodingKeyword]
Parentheses syntax features a tag name followed by parentheses which surround the parameters of the tag.
[Substitution_Tag(Tag_Parameter, -EncodingKeyword)]

Every substitution tag also accepts an optional encoding keyword as described later.

Substitution tags have the same basic form when they are expressed in a LassoScript as when they are
expressed in square brackets, except that each tag must end with a semi-colon when expressed in a
LassoScript. The following example shows the format of substitution tags expressed in a LassoScript in both
colon and parentheses syntax

<?LassoScript
Substitution_Tag: Tag_Parameter, -EncodingKeyword;

Substitution_Tag(Tag_Parameter, -EncodingKeyword);
>

To embed a substitution tag within square brackets:

e Specify the substitution tag on its own. The tag will be replaced by its value when the page is served to
a client. For example, the following [Field] tags will be replaced by the company’s information from the
database. The tag is shown in both colon and parentheses syntax:

[Field: 'Company_Name'] =» LassoSoft
[Field('Company_URL')] =¥ http://www.lassosoft.com

e Specify the substitution tag within HTML or XML markup tags. The Lasso tag will be replaced by its
value when the page is served to a client, but the markup tags will be served as written. For example, the
following [Field] tags are replaced by the company’s information from the database within an HTML anchor
tag.

[Field: '‘Company_Name'|

=» LassoSoft

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 5 — LASsO 8.5 TAG LANGUAGE 63

To embed a substitution tag within a LassoScript:

e Specify the substitution tag inside the LassoScript container followed by a semi-colon. The value of the
LassoScript will be the value of the lone substitution tag. For example, the [Field] tag is the value of the
LassoScript in the following code in colon syntax:

<?LassoScript
Field: 'Company_Name';
”»

=» LassoSoft

¢ Specify multiple substitution tags on separate lines of the LassoScript. End each tag with a semi-colon. The
value of the LassoScript will be the concatenation of the value of all the substitution tags. For example, the
[String] tags and [Field] tag define the value of the LassoScript in the following code in parentheses syntax:

<?LassoScript
String('', -EncodeNone);
Field('Company_Name");
String('', -EncodeNone);
>

=» LassoSoft

Note: Every substitution tag accepts an optional encoding parameter which specifies the output format for the
value which is being returned by the tag. Please see the section on Encoding below for more details.

Process Tags

Process tags perform an action which does not return a value. They can be used to alter the HTTP header of
an HTML file being served, to store values, to schedule tasks for later execution, to send email messages, and
more.

The basic format for process tags is identical to substitution tags: a tag name followed by a colon and
then one or more parameters separated by commas. Or, in parentheses syntax the tag name followed by
parentheses which contain the parameters of the tag.

[Process_Tag: Tag_Parameter]

[Process_Tag(Tag_Parameter)]

Process tags have the same basic form when they are expressed in a LassoScript as when they are expressed
in square brackets. Except that each tag must end with a semi-colon when expressed in a LassoScript. The
following examples shows the format of process tags expressed in a LassoScript:

<?LassoScript
Process_Tag: Tag_Parameter;
Process_Tag(Tag_Parameter);
»>

To embed a process tag within square brackets:

e Specify the process tag on its own. The tag will be removed from the Lasso page when it is served. For
example, the following [Email_Send] tag will send an email to a specified email address, but will return no
value in the Web page being served.

[Email_Send: -Host="smtp.myserver.com',
-To='Somebody@example.com’,
-From="Nobody@example.com’,
-Subject="This is the subject of the email’,
-Body="This is the message text of the email]

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 5 — LASsO 8.5 TAG LANGUAGE 64

To embed a process tag within a LassoScript:

e Specify the process tag inside the LassoScript container followed by a semi-colon. Since the process tag
does not return a value it will not affect the return value of the LassoScript. For example, the following
[Email_Send] tag will send an email to a specified email address, but since the LassoScript contains only this
tag it will return no value in the Lasso page being served:

<?LassoScript
Email_Send: -Host="smtp.myserver.com',
-To='Somebody@example.com’,
-From="Nobody@example.com’,
-Subject="This is the subject of the email',
-Body="This is the message text of the email’;
”»

A combination of substitution and process tags can be included in a LassoScript, but the output value of
the LassoScript will be determined solely by the value of the substitution tags.

Member Tags

Member tags modify or return data from a value of a specific data type. Each data type in Lasso has different
member tags. Member tags can either be used in the fashion of process tags to alter a value or they can be
used in the fashion of substitution tags to return a value.

Member tags differ from substitution and process tags in that they must be called using the member symbol
-> and a value from the appropriate data type. The following example shows the structure of member tags in
both colon and parentheses syntax:

[Value->(Tag_Name: Parameters))

[Value->Tag_Name(Parameters)]

For example the [String->Get] member tag requires a value of type string. Member tags are always written in this
fashion in the documentation: the data type followed by the member symbol and the specific tag name. The
following code fetches the third character of the specified string literal:

[Encode_HTML: 'The String->(Get: 3)] =» e

[Encode_HTML('The String'->Get(3))] =» e

Member tags are defined for any of the built-in data types and third parties can create additional member
tags for custom data types. The built-in data types include String, Integer, Decimal, Map, Array, and Pair. More
information can be found in the section on Data Types below.

To embed a member tag within square brackets:
e Specify the member tag as the parameter of an [Encode_HTML] substitution tag. This makes it clear that you
want to output the value returned by the member tag.

[Encode_HTML: The String'->(Get: 3)] =» e
[Encode_HTML: 123->(Type)] =¥ Integer

To embed a member tag within a LassoScript:

e Specify the member tag as the parameter of an [Encode_HTML] substitution tag. This makes it clear that you
want to output the value returned by the member tag.

<?LassoScript
Var:'Text'='The String';

Encode_HTML: $Text->(Get: 3);
»>

b

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 5 — LASsO 8.5 TAG LANGUAGE 65

* Member tags can be specified directly if they are being used in the fashion of a process tag. In the following
example, the [String->Append] member tag is used to add text to the string, but no result is returned.

<?LassoScript
Var:'Text'='The String';
$Text->(Append: ' is longer.");
»>

Container Tags

Container tags are a matching pair of tags which enclose a portion of a Lasso page or LassoScript and either
alter the enclosed contents or change the behavior of tags within the enclosed contents. The opening tag uses
the same syntax as a substitution or process tag. The closing tag has the same name as the opening tag, but
the closing tag is specified with a leading forward slash. This is similar to how HTML markup tags are paired.

In the documentation, container tags are referred to by specifying both tags with an ellipsis representing the
enclosed content. The loop tag will be referred to as [Loop] ... [[Loop]. When the attributes or parameters of one
half of the container tag pair is being discussed, then just the single tag will be named. The opening loop tag
is [Loop] and the closing loop tag is [/Loop].

For example, the following [Loop] tag written in colon syntax has a single parameter which specifies the
number of times the contents of the tag will be repeated. The [/Loop] tag defines the end of the area which will
be repeated:

[Loop: 5] Repeated [/Loop]
=» Repeated Repeated Repeated Repeated Repeated

The same loop written in parentheses syntax:

[Loop(5)] Repeated [/Loop]

=» Repeated Repeated Repeated Repeated Repeated

To embed a container tag within square brackets:

e Specify the opening container tag followed by the contents of the container tags and the closing container
tag. The contents of the container tags will be affected by the parameters passed to the opening container
tag. For example, the following [If] tag will output its contents if its parameter evaluates to True. Since 1 does
indeed equal 1 the output is True.

[If: 1==1] True [/If] =» True

Note: Both the opening and closing tags of a container tag must be contained within the same Lasso page.
Container tags can be nested, but all enclosed container tags must be closed before the enclosing container tag
is closed. See the Conditional Logic chapter for more information.

To embed a container tag within a LassoScript:

e Specify the opening container tag followed by the contents of the container tag and the closing container
tag. Each tag must end with a semi-colon. For readability, the contents of a container tag is often indented.
For example, the following [If] tag will output the contents of the enclosed tags if its parameter evaluates to
True. Since 1 does indeed equal 1 the output is True.

<?LassoScript
If: 1==1;
True;
/If;
»

=» True

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 5 — LASsO 8.5 TAG LANGUAGE 66

Command Tags

Most command tags are actually parameters of the [Inline] tag, but can be used on their own within HTML
forms or URLs. Command tags are used to send additional information in a form submission or URL request
that is flagged for special use by Lasso. This includes specifying field search operators, required form fields,
error response pages, and passing token information.

Command tags names always start with a hyphen, e.g. -Required. Command tags can be though of as “floating
parameters”, as they use the same hyphenated syntax conventions as substitution, process, and container tag
parameters, and can also be used directly as [Inline] tag parameters.

The basic format for a command tag is a tag name starting with a hyphen and an associated value. Since
command tags can be specified within HTML form inputs, URLs, and as parameters of the [Inline] tag, the form
of a command tag is different in each situation.

To embed command tags within an HTML form:

e Specify multiple command tags within the HTML form inputs. Each command tag should be specified in
its own form input with the command tag as the name of the input tag.

<input type="hidden" name="-CommandTag" value="Command Value">

The following example shows a form that contains Lasso command tags. Each -Operator command tag is
contained in an HTML hidden input, which augments a field inputs below it. When the form is submitted,
each field passed to the searchresponse.lasso page will be passed with an Equals operator, meaning the field
value submitted must match values in a database exactly before results will be returned.

<form action="searchresponse.lasso" method="post">
<input type="hidden" name="-Operator" value="equals">
<input type="text" name="Field1" value="">
<input type="hidden" name="-Operator" value="equals">
<input type="text" name="Field2" value="">

<input type="submit" value="Search">

</form>

e Command tags occasionally accept a parameter which is specified just after the name of the tag following
a period. For example, the -Token tag has a name parameter and a value parameter. The -Token tag can be
specified in a form as follows:

<input type="text" name="-Token.Name" value="Default Value">

To embed command tags within a URL:

e Specify multiple command tags within the parameters of the URL. A URL consists of a page reference
followed by a question mark and one or more URL parameters. Each command tag parameter should be
specified as the command tag followed by an equal sign then its value. Individual command tag parameters
should be separated in the URL by ampersands.

http://www.example.com/default.lasso?-CommandTag=Command%20Value

A full action would be specified as follows. The result of selecting this URL in a Web browser would be that
the response page searchresponse.lasso will be returned to the visitor with the result of the search from the
specified database and table.

http://www.example.com/searchresponse.lasso?-Operator=Equals&Field1=Value1&
-Operator=Equals&Field2=Value2

To embed command tags within an [Inline]:

e Specify multiple command tags within the opening [Inline] tag. The command tags will specify the action
which the [Inline] is to perform. The contents of the [Inline] ... [/Inline] tags will be affected by the results of this
action. The following example shows how the -Op tags can be used directly within an [Inline] tag.

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 5 — LASsO 8.5 TAG LANGUAGE 67

[Inline:
-Database="Contacts'
-Table='People’,
-KeyField="ID',
-Op='eq,
'Field1'='Value1',
-Op='eq,
'Field2'='Value2',
-Search]

[/Inline]

Tag Categories and Naming

All of the tags in Lasso 8 are grouped and named according to a few simple rules. These rules define where
the tag can be found in Lasso 8 documentation and in Lasso Administration.

Tag Categories

The following chart describes the major tag categories in Lasso 8. Each tag category is discussed in more detail
later in the book. Look for a chapter which has the same name as the tag category or use the index to locate a
particular tag.

Table 2: Lasso 8 Tag Categories

Tag Category Description

Action Data source actions.

Administration Administration and security tags.

Array Array, map, pair, and other compound data types.

Bytes Byte streams for manipulating binary data and converting data between character
sets.

Client Information about the current visiting client.

Comparators Used to sort and match elements within compound data types.

Conditional Conditional logic and looping tags.

Constant Constant values that are used throughout Lasso.

Custom Tag Create custom Lasso tags, data types, and data sources.

Data Types Tags to cast values to specific data types.

Database Information about the current database.

Date Date manipulation tags.

Email Tags for sending, receiving, and processing email.

Encoding Tags for encoding data.

Encryption Encrypt data so it can be transmitted securely.

Error Tags for reporting and handling errors.

File Tags for manipulating files.

Image Tags for manipulating images.

Include Allows data to be included in a Lasso page.

JavaBeans Call JavaBeans from within Lasso code.

Link Link to other records in the current found set.

Matchers Match elements within compound data types.

Math Mathematical operations and integer member tags.

Namespace Use, load, and unload tag namespaces.

Networking Tags for performing network operartions.

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 5 — LASsO 8.5 TAG LANGUAGE

Operator
Output
PDF
Results
Sessions
String
Tags
Technical
Threads
Utility
Variable
XML

68

Set and retrieve logical and field-level operators.
Tags for formatting or suppressing output.
Tags for creating PDF documents.

Results from the current Lasso action.
Create session variables.

String operations and string member tags.
Member tags of the Null and Tag t ypes.
Tags for performing low-level operations.
Thread communication and synchronization.
Tags which don't fit in any other category.
Tags for creating and manipulating variables.
Tags for processing XML.

Tag Naming Conventions

Tags in Lasso are named according to a set of well-defined naming conventions. Understanding these
conventions will make it easier to locate the documentation for specific tags. We also recommend the
following naming conventions when creating custom tags, libraries, and modules.

e Case is unimportant in both tag name and tag parameter names. All Lasso tags can be written in uppercase,

lowercase, or any combination of mixed case. Tags are always written in title case in the documentation.

The following tag names would all be equivalent, but the first, e.g. title case, is preferred:

[Tag_Name] [tag_name]
[TAG_NAME] [TaG_NaMe]
e Core language tags usually have simple tag names and do not contain underscore characters. For example:
[Variable] [Field]
[If] ... [Else] ... [/If] [Inling] ... [/Inline]

® Most tag names include a category name (or namespace) followed by an underscore then the specific tag

name. For example: [Math_Sin] is the tag in the “Math” category that performs the function “Sine.” Similarly,

[Link_NextRecordURL] is the tag in the “Link” category that returns the URL of the next record in the found
set. Category names appear in tag names based on the following format:

[Category_TagName]

¢ Tag names never start with an underscore character. These tag names are reserved for internal use.

e Some tag names reference another tag or other component of Lasso 8 followed by an underscore then
a specific tag name. For example [MaxRecords_Value] returns the value of the -MaxRecords command tag.
There is no underscore in the words MaxRecords since it is referring to another tag. This association can be

expressed as follows:

[TagReference_TagName]

* Many tag names include a word at the end that specifies what the output of the tag will be. For instance,
[Link_NextRecord] ... [/Link_NextRecord] is a container tag that links to the next record, but [Link_NextRecordURL]

is a substitution tag that returns the URL of the next record. Tags that end in “URL” output URLs. Tags that
end in “List” and most tags that have plural names output arrays. Tags that end in “Name” return the name

of a database entity. Tags that end in “Value” return the value of the named database entity.

[Link_NextRecordURL]
[Action_Params]
[KeyField_Name]

[File_ListDirectory]

[Variables]
[KeyField_Value]

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 5 — LASsO 8.5 TAG LANGUAGE 69

* Member tag names are written in the documentation with the data type followed by the member symbol
then the tag name. For example, the Get tag of the data type string would be written: [String->Get]. All of the
member tags of a particular data type are considered to be part of the category which has the same name as
the data type. All of the string member tags are part of the string category.

¢ Tags created by third parties should start with a prefix which identifies the creator of the tag. For example,
tags from “Example Company” might all start with Ex_. This ensures that the third party tags do not
conflict with built-in tags or other third party tags.

[Ex_TagName] [ExCategory_TagName]

Synonyms and Abbreviations

The following charts detail some standard synonyms and abbreviations in Lasso 8. Any of the synonyms or
abbreviations in the right column can be used instead of the term in the left column, but the term in the left
column is preferred.

Table 3: Lasso 8 Synonyms

Preferred Synonym Example

Field Column [Field_Name] [Column_Name]
Record Row [Records] [Rows]

KeyValue RecordID [KeyField_Value] [RecordID_Value]
Table Layout [Table_Name] [Layout_Name]

Table 4: Lasso 8 Abbreviations

Preferred Abbreviation Example
Operator Op -Operator -Op
Required Req -Required -Req
Variable Var [Variable] [Var]

Some tags which were synonyms in earlier version of Lasso are no longer supported. Please see the
Upgrading Your Solutions section for more information. For a complete list of synonyms and abbreviations
please consult the Lasso 8.5 Reference.

Parameter Types

This section introduces the different types of parameters which can be specified within Lasso tags. This
discussion is applicable to substitution tags, process tags, the opening tag of container tags, and member tags.
Command tag parameters are fully described in the previous section.

Table 5: Parameter Types

Parameter Type Example

Value [Field: 'Field_Name']

Keyword [Error_CurrentError: -ErrorCode]
Keyword/Value [Inline: -Database=(Database_Name), ...]
Name/Value [Variable: 'Variable_Name'="Variable_Value']

Some parameters are required for a tag to function properly. The [Field] and [Variable] tags require that the
field or variable to be returned is specified. In contrast, the keyword in [Error_CurrentError] is optional and
can be safely omitted. If no keyword is specified for an optional parameter then a default will be used. For
a complete listing of required, optional, and default parameters for each tag, please consult the Lasso 8.5
Reference.

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 5 — LASsO 8.5 TAG LANGUAGE 70

A Value is the most basic parameter type, and consists of a basic data type contained within a tag after a
colon character (:). Values include string literals, integer literals, decimal literals, sub-tags, and complex

expressions.
[Field: 'Field_Name'] [Date: '09/29/2003"
[Var_Defined: 'Variable_Name'] [Encode_HTML: 123]

A value can also be the value of a sub-tag. Any substitution tag or member tag can be used as a sub-tag. The
syntax of the sub-tag is the same as that for the substitution tag or member tag except that the tag is enclosed
in parentheses rather than square brackets. The following [Encode_HTML] tags are used to output the value of
several different sub-tags:

[Encode_HTML: (Field: 'Field_Name')] [Encode_HTML: (Date)]
[Encode_HTML: (Loop_Count)] [Encode_HTML: 'String'->(Get: 3)]

A Keyword is a tag-specific parameter that alters the behavior of a tag. Keyword names always start with a
hyphen. This makes it easy to distinguish tag-specific keywords from user-defined parameters. The following
examples of [Server_Date] show how the same tag can be used to generate different content based on the
keyword that is specified:

[Server_Date: -Short] =» 3/24/2001

[Server_Date: -Long] =» March 24, 2001
[Server_Date: -Abbrev] =» Mar 24, 2001
[Server_Date: -Extended] =» 2001-03-24

Note: For backwards compatibility, some tags will accept keyword names without the leading hyphen. This
support is not guaranteed to be in future versions of Lasso so it is recommended that you write all keyword
names with the leading hyphen.

A Keyword/Value parameter is the combination of a tag specific keyword and a user-defined value which
affects the output of a tag. The keyword name is specified followed by an equal sign and the value. Keyword/
value parameters are sometimes referred to as named parameters. For example, the [Date] tag accepts multiple
keyword/value parameters which specify the characteristics of the date which should be output:

[Date: -Year=2001, -Day=24, -Month=3] =» 3/24/2001

Command tags are used like keyword/value parameters in the [Inline] tag. The command tag functions like the
keyword and is written with a leading hyphen. For example, the following [Inline] contains several command
tags that define a database action:

[Inline: -FindAll
-Database="Contacts',
-Table='People’,
-KeyField="1D']

... Results ...

[/Inline]

A Name/Value parameter is the combination of a user-defined name with a user-defined value. The
name and the value are separated by an equal sign. Name/value parameters are most commonly used in
the [Inline] tag to refine the definition of a database action. For example, the previous [Inline] example can be
modified to search for records where the field First_Name starts with the letter s by the addition of a name/
value parameter 'First_Name'='s":

[Inline: -Search,
'First_Name'='s',
-Database="'Contacts',
-Table='People’,
-KeyField="1D]

... Results ...

[/Inline]

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 5 — LASsO 8.5 TAG LANGUAGE 71

Encoding

Encoding keyword parameters specify the character format in which the data output from a substitution tag
should be rendered. Encoding ensures that reserved or illegal characters are changed to entities so that they
will display properly in the desired output format. Encoding keywords allow substitution tags to be used to
output data in any of the following formats:

e HTML text for display in a Web browser (default).

e HTML tags for display in a Web browser.

e XML data for data interchange.

e URL parameters to construct a hyperlink.

e ASCII text for inclusion in an email message or log file.

The following table demonstrates each of the encoding keywords available in Lasso 8.

Table 6: Encoding Keywords

Keyword Encoding Performed

-EncodeNone No encoding is performed.

-EncodeHTML Reserved, illegal, and extended ASCII characters are changed to their
hexadecimal equivalent HTML entities.

-EncodeSmart lllegal and extended ASCII characters are changed to their hexadecimal
equivalent HTML entities. Reserved HTML characters are not changed.

-EncodeBreak ASCII carriage return characters are changed to HTML
.

-EncodeURL lllegal and extended ASCII characters are changed to their equivalent
hexadecimal HTTP URL entities.

-EncodeStrictURL Reserved, illegal and extended ASCII characters are changed to their equivalent
hexadecimal HTTP URL entities.

-EncodeXML Reserved, illegal, and extended ASCII characters are changed to their UTF-8

equivalent XML entities.

To use an encoding keyword:

Append the desired encoding keyword at the end of a substitution tag. For example, angle brackets are
reserved characters in HTML. If you want to include an angle bracket in your HTML output it needs to be
changed into an HTML entity. The entity for < is &lf; and the entity for > is >.

[String: 'HTML Text', -EncodeHTML] =¥ HTML Text

See the Encoding chapter for more information.

Data Types

Every value in Lasso is defined as belonging to a specific data type. The data type determines what member
tags are available and how symbols affect the value. Data types generally correspond to everyday descriptions
of a value with the addition of some data types for structured data. The following table lists the primary data
types available in Lasso:

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 5 — LASsO 8.5 TAG LANGUAGE 72

Table 7: Primary Lasso 8 Data Types

Data Type Example

String "This is a string surrounded by single quotes'

Bytes [Bytes: ‘Binary representation of text or data’]

Integer 1500

Decimal 3.14159

Date 9/29/2002 19:12:02

Duration 168:00:00

Array [Array: 'red', 'green’, 'blue’, 'yellow']

Map [Map: 'Company_Name'="LassoSoft", 'City'='Manchester']

Note: This section describes the primary data types which are used most frequently in Lasso. There are many
other special-purpose data types in Lasso, including PDF, Image, File, and Network Types. These special-purpose
types are described in appropriate chapters later in this guide.

Strings

Strings are any series of alphanumeric characters. String literals are surrounded by single quotes. The results
of a substitution tag will be considered a string if it contains any characters other than numbers. Please see
the String Operations chapter for more information.

Some examples of string values include:
e 'String literal' is a string surrounded by single quotes.
® '123456' is a string literal since it is surrounded by single quotes.

e 'A string with 'quotes\' escaped' is a string that contains quote marks. The quote marks are considered part of
the string since they are preceded by back slashes.

¢ The following [Field] tag returns a string value. Notice that the value of a substitution tag is a string value
since it contains alphabetic characters:

[Field: '‘Company_Name'] =» LassoSoft

¢ The following code sets a variable to a string value, then retrieves that value:

[Variable: 'String' = 'abcdef]
[Variable: 'String'] =¥ abcdef

Bytes

Bytes are streams of binary data. This data type is used to represent incoming data from remote Web
application servers, files on the local hard disk, or BLOB fields in MySQL databases.

Integers

Integers are any series of numeric characters that represent a whole number. Integer literals are never

surrounded by quotes. The results of a substitution tag will be considered an integer if it contains only

numeric characters which represent a whole number. Please see the Math Operations chapter for more

information.

Some examples of integer values include:

® 123456 is an integer literal since it is not surrounded by quotes.

e (-50) is an integer literal. The minus sign (hyphen) is used to define a negative integer literal. The
parentheses are required if the literal is to be used as the right-hand parameter of a symbol.

¢ The following [Field] tag returns an integer value. The value is recognized as an integer since it contains only
numeric characters and represents a whole number:

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 5 — LASsO 8.5 TAG LANGUAGE 73

[Field: 'Employee_Age'] =» 23
¢ The following code sets a variable to an integer value, then retrieves that value:

[Variable: 'Integer' = 1000]
[Variable: 'Integer’] =» 1000

Decimals

Decimals are any series of characters that represent a decimal number. Decimal literals are never surrounded
by quotes. Decimal values must include a decimal point and can be expressed in exponential notation. Please
see the Math Operations chapter for more information.

Some examples of decimal values include:
® 123.456 is a decimal literal since it contains a decimal point and is not surrounded by quotes.

e (-50.0) is a negative decimal literal. The parentheses are required if the literal is to be used as the right-hand
parameter of a symbol.

¢ The following [Field] tag returns a decimal value. The value is recognized as a decimal since it contains
numeric characters and a decimal point:

[Field: 'Annual_Percentage_Rate'] =» 0.12

¢ The following code sets a variable to a decimal value, then retrieves that value:

[Variable: 'Decimal' = 137.48]
[Variable: 'Decimal’] =» 137.48

Dates

Dates are a special data type that represent a date and/or time string. Dates in Lasso 8 can be manipulated in
a similar manner as integers, and calculations can be performed to determine date differences, durations, and
more. For Lasso to recognize a string as a date data type, the string must be explicitly cast as a date data type
using the [Date] tag. When casting as a date data type, the following date formats are automatically recognized
as valid date strings by Lasso:

1/1/2001

1/1/2001 12:34

1/1/2001 12:34:56
1/1/2001 12:34:56 GMT
2001-01-01

2001-01-01 12:34:56
2001-01-01 12:34:56 GMT

The “/”, “-”, and “:" characters are the only punctuation marks recognized in valid date strings by Lasso.
If using a date format not listed above, custom date formats can be defined as date data types using the
[Date] tag with the -Format parameter. See the Date and Time Operations chapter for more information.

Some examples of dates include:
¢ [Date:'9/29/2002 is a valid date data type recognized by Lasso.

e [Date:'9.29.2002 is not recognized by Lasso as a valid date data type due to its punctuation, but can be
converted to a date data type using the [Date] tag with the -Format parameter.

[Date:'9.29.2002', -Format="%m.%d.%Y"]
e Specific date and time information can be obtained from date data types using accessors.
[(Date:'9/29/2002")->DayofYear] =» 272

¢ Date data types can be manipulated using math symbols. Date and time durations can be specified using
the [Duration] tag.

[(Date:'9/29/2002") + (Duration: -Day=2)] =» 10/01/2002

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 5 — LASsO 8.5 TAG LANGUAGE 74

e A valid date data type can be displayed in an alternate format using the [Date_Formaf] tag.
[Date_Format:(Date:'9/29/2002"), -Format="%Y-%m-%d"] =» 2002-09-29

Note: Lasso uses internal standardized date libraries to automatically adjust for leap years and day light
savings time when performing date calculations. The current time and time zone are based on that of the
Web server. For information on special cases with date calculations during day light saving time, see the
Date and Time Operations chapter.

Durations

Durations are a special data type that represent a length of time in hours, minutes, and seconds. Durations
are not 24-hour clock times, and can represent any length of time. Duration data types in Lasso 8 are related
to date data types, and can be manipulated in a similar manner. For Lasso to recognize a string as a duration
data type, the string must be explicitly cast as a duration data type using the [Duration] tag. Any numeric string
formatted as hours:minutes:seconds or just seconds may be cast as a duration data type.

168:00:00
60

Colon characters (:) are the only punctuation marks recognized in valid duration strings by Lasso. The
[Duration] tag always outputs values in hours:minutes:seconds format regardless of what the input format was. See
the Date and Time Operations chapter for more information.

Some examples of durations include:

e [Duration:'169:00:007 is a valid duration data type recognized by Lasso, and represents a duration of 169
hours. This duration will be output as 169:00:00.

e [Duration:'3001 is a valid duration data type recognized by Lasso, and represents a duration of 300 seconds.
This duration will be output as 00:05:00 (five minutes).

Arrays

Arrays are a series of values which can be stored and retrieved by numeric index. Arrays can contain values of
any other data type, including other arrays. Only certain substitution tags return array values. Array values are
never returned from database fields. Please see the Arrays and Maps chapter for more information.

Some examples of how to work with arrays include:

¢ Create an array using the [Array] tag. The following two examples create an array with the days of the week
in it, where each day of the week is a string literal. The second example shows abbreviated syntax where the
colon (:) character is used to specify the start of an array data type.

[Array: 'Monday', 'Tuesday', 'Wednesday', Thursday', 'Friday', 'Saturday', 'Sunday']
[: 'Monday', "Tuesday', 'Wednesday', 'Thursday', 'Friday', 'Saturday', 'Sunday]

e Store an array in a variable using the following code which stores the array created in the code above in a
variable named Week.

[Variable: 'Week' = (Array: 'Monday', "Tuesday', 'Wednesday',
‘Thursday', 'Friday', 'Saturday', 'Sunday')]

e Fetch a specific item from the array using the [Array->Get] member tag. This code fetches the name of the
third day of the week.

[(Variable: 'Week')->(Get:3)] =» Wednesday

e Set a specific item from the array using the [Array->Get] member tag. The following code sets the name of the
third day of the week to its Spanish equivalent Miercoles.

[(Variable: 'Week')->(Get:3) = 'Miercoles']
The new value of the third entry in the array can now be fetched.

[(Variable: 'Week')->(Get:3)] = Miercoles

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 5 — LASsO 8.5 TAG LANGUAGE 75

Maps

Maps are a series of values which can be stored and retrieved by name. Maps can contain values of any other
data type, including arrays or other maps. Only certain substitution tags return map values. Map values are
never returned from database fields. Please see the Arrays and Maps chapter for more information.

Some examples of how to work with maps include:

e Create a map using the [Map] tag. The following creates a map with some user information in it. The name
of each item is a string literal, the values are either string literals or integer literals:
[Map:
'First Name'="John',

‘Last Name'='Doe’,
'Age'=25]

e Store a map in a variable using the following code which stores the map created in the code above in a
variable named Visitor:

[Variable: 'Visitor' = (Map:
'First Name'="John’,
‘Last Name'='Doe’,
'Age'=25)]

e Fetch a specific item from the map using the [Map->Get] member tag. This code fetches the visitor’s first
name:

[(Variable: 'Visitor')->(Get:'First Name')] =» John

e Set a specific item from the map using the [Map->Get] member tag. This code sets the age of the visitor to 29.
Notice that the expression returns no value since the member tag is being used in the fashion of a process
tag to set a value.

[(Variable: 'Visitor')->(Get:'Age') = 29]
The new value of the age entry in the map can now be fetched:

[(Variable: 'Visitor')->(Get:'Age")] =¥ 29

Other Types

Lasso includes numerous other data types including null, booleans, sets, lists, queues, stacks, priority queues,
tree maps, pairs, XML, XMLStream, POP, SMTP, thread tools, and more. See the Data Types section for
complete documentation of the many data types that Lasso offers.

Expressions and Symbols

Virtually all of the values shown in this chapter so far have been simple string, integer or decimal literals. Any
tag in Lasso which accepts a value as a parameter can accept an expression in place of that value. This allows
nested operations to be performed within the parameters of Lasso tags.

This section discusses each of the different types of expressions that can be used as values within Lasso. It
starts with simple expressions and then moves on to more complex expressions.

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 5 — LASsO 8.5 TAG LANGUAGE 76

Table 8: Types of Lasso 8 Expressions

Expression Example

Literal 'String Literal', 100, 150.34
Sub-Tag (Variable: 'Variable_Name')
Member tag (Array: 1, 2, 3, 4)->(Get: 4)
Retarget $String->Uppercase & Get(4)
String Expression ‘String One' + 'String Two'

Math Expression 100/ 4 + 25 - (-20)

Complex Expression ''+100/4 + ''

Conditional Expression ‘azure' == 'blue’'

Logical Expression (‘blue’ !="orange’) || (‘'red" !="green")
If Else Expression ($conditional ? 'True Result' | 'False Result')
Tag Reference \Tag_Name

This section also describes each of the different symbols that can be used to modify expressions specific to
each type of expression.

Literals

Any string literal, integer literal, or decimal literal can be used as a value in Lasso. These are the most basic
types of values and the simplest examples of expressions. These literals are defined in the previous section on
Data Types. Some examples of outputting literal values include:

['String Literal] [123]
[100.14] [(-123)]
Sub-Tags

Substitution tags are Lasso tags that return a value and any substitution tag can be used as a simple
expression in Lasso. The syntax of the sub-tag is the same as that for the substitution tag except that the tag
is enclosed in parentheses rather than square brackets. The value of the expression is simply the value of the
substitution tag. For example, the following expressions output the value of the specified sub-tag.

[(Field: 'Field_Name')] [(Date)]
[(Loop_Count)]

Note: Substitution tags have a default encoding keyword of -EncodeHTML applied when they are the outermost
tag. However, when substitution tags are used as sub-tags or in square brackets without an [Encode_HTML] tag, no
encoding is applied by default. See the Encoding chapter for more information.

Member Tags

Member tags that return values can be used as simple expressions in Lasso. An appropriate member tag for
any given data type can be attached to a value of that data type using the member symbol ->. For example, the
following member tag returns a character from the specified string literal:

[Encode_HTML: 'String'->(Get: 3)]

The value on the left side of the member symbol can be any expression which is valid in Lasso. It can be a
string literal, integer literal, decimal literal, sub-tag, or any of the expressions which are defined below. For
example, the following member tag would return the third character of the name which is returned from the
database:

[Encode_HTML: (Field: 'First Name')->(Get: 3)]

Note: The [Encode_HTML] tag is not technically required in member tag expressions. [String'->(Get: 3)] will evaluate
to the character r. However, for ubiquitous HTML encoding, the use of the [Encode_HTML] tag is recommended.

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 5 — LASsO 8.5 TAG LANGUAGE 77

Table 9: Member Tag Symbol

Symbol Name Example
-> Member ['abcdef->(Get: 3)] =» ¢
Retarget

Many member tags modify the target of the tag but do not return any result. The retarget symbol & can be
used to modify these tags so they modify the target and return the target as a result.

Table 10: Retarget Symbol

Symbol Name Example
& Retarget [$String->Uppercase & Get(3)] =» C

For example, adding the redirection symbol & to the example above results in the value of $Text being
modified and returned.

<?LassoScript
Var:'Text'='The String';
$Text->Append(' is longer.') &;
»>

=» The String is longer.

The retarget symbol allows multiple member tags to be strung together to perform a series of operations on
the target. For example, this code sorts an array and then gets one elements within it. Without first sorting the
array the result would be 4.

[(Array: 2, 4, 3, 5, 1)->Sort & (Get: 2)]

=2

String Expressions

String expressions are the combination of string values with one or more string symbols. A string expression
defines a series of operations that should be performed on the string values. The string values which are to be
operated upon can be either string literals or any expressions which return a string value.

Symbols should always be separated from their parameters by spaces and string literals should always be
surrounded by single quotes. Otherwise, Lasso may have a difficult time distinguishing literals and Lasso tags.

The most common string symbol is + for concatenation. This symbol can be used to combine multiple string
values into a single string value. For example, to add bold tags to the output of a [Field] tag we could use the
following string expression:

['' + (Field: 'CompanyName') + '']
=» LassoSoft

String symbols can also be used to compare strings. String symbols can check if two strings are equal using
the equality == symbol or can check whether strings come before or after each other in alphabetical order
using the greater than > or less than < symbols. For example, the following code reports the proper order for
two strings:

[If: "abc' == 'def]

abc equals def
[Else: abc' < 'def]

abc comes before def
[Else: 'abc' > 'def]

abc comes after def

[/

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 5 — LASsO 8.5 TAG LANGUAGE 78

=» abc comes before def

Note: Always place spaces between a symbol and its parameters. The - symbol can be mistaken for the start of a
negative number, command tag, keyword, or keyword/value parameter if it is placed adjacent to the parameter
that follows.

Table 11: String Expression Symbols

Symbol Name Example

+ Concatenation ['abc' + 'def] =» abcdef

* Repetition ['abc' * 2] =» abcabc

- Deletion ['abcdef - 'cde'] =¥ abf
>> Contains ['abcdef' >> 'bed'] =» True
1>> Not Contains ['abcdef' 1>> 'bed'] =» False
== Equality (Value Only) [abc' == 'def] =» False
=== Equality (Value & Type) [123' == 123] =» False

1= Inequality (Value Only) ['abc' !="def] =» True

I== Inequality (Value & Type) [123' 1= 123] = True

< Less Than ['abc’ < 'def] =» True

> Greater Than ['abc’ > 'def] =» False

Please see the String Operations chapter for more information.

Math Expressions

Math expressions are the combination of decimal or integer values with one or more math symbols. A math
expression defines a series of operations that should be performed on the decimal or integer values. The
numeric values which are to be operated upon can be either decimal or integer literals or any expressions
which return a numeric value.

Symbols should always be separated from their parameters by spaces. This ensures that the + and - symbols
are not mistaken for the sign of one of the parameters.

Simple math operations can be performed directly within an expression. For example, the following
expressions return the value of the specified simple math calculations.

[10 +5] = 15 [10-5]=»5
[10 * 5] =» 50 [10/5] = 2

If the second parameter of the expression is negative it should be surrounded by parentheses.

[10+(-5)]=»5 [10 * (-5)] =» -50
Math expressions can be used on either decimal or integer values. If both parameters of a math symbol are
integer values then an integer result will be returned. However, if either parameter of a math symbol is a
decimal value then a decimal value will be returned. Decimal return values always have at least six significant
digits.

Note: Always place spaces between a symbol and its parameters. The - symbol can be mistaken for the start of a
negative number, command tag, keyword, or keyword/value parameter if it is placed adjacent to the parameter
that follows.

Table 12: Math Expression Symbols

Symbol Name Example

+ Addition [100 + 25] =» 125
- Subtraction [100 - 25] =» 75

* Multiplication [100 * 25] =» 2500
/ Division [100/25] =» 4

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 5 — LASsO 8.5 TAG LANGUAGE

% Modulo

== Equality (Value Only)
=== Equality (Value & Type)
1= Inequality (Value Only)
I== Inequality (Value & Type)

> Greater Than

>= Greater Than or Equal
< Less Than

<= Less Than or Equal

79

[100 % 25] =» 0

[100 == 25] =» False
[100 === 100.0] =» False
[100 != 25] =» True

[100 !==100.0] =» True
[100 > 25] =» True

[100 >= 25] =» True

[100 < 25] =» False

[100 <= 25] =» False

Please see the Math Operations chapter for more information.

Complex Expressions

Complex expressions can be created by combining sub-expressions together using one or more string or
math symbols. The results of the sub-expressions are used as the parameters of the enclosing parameters.
Expressions can be enclosed in parentheses so that the order of operation is clear.

For example, the following complex math expression contains many nested math expressions. The
expressions in the innermost parentheses are processed first and the result is used as a parameter for the
enclosing expression. Notice that spaces are used on either side of each of the mathematical symbols.

[(1+(2%3)+(4.0/5)+(-6)] = 1.8

The following complex string expressions contains many nested string expressions. The expressions in the
innermost parentheses are processed first and the result is used as a parameter for the enclosing expression:

[(‘abc' + (‘def * 2) + (‘abcdef - 'def) + 'def)] =» abcdefdefabedef

String and math expressions can be combined. The behavior of the symbols in the expression is determined
by the parameters of the symbol. If either parameter is a string value then the symbol is treated as a string
symbol. Only if both parameters are decimal or integer values will the symbol be treated as a math symbol.
For example, the following code adds two numbers together using the math addition + symbol and then
appends bold tags to the start and end of that value using the string concatenation + symbol:

[' + (100 + (-35)) + '', -EncodeNone] = 65

Conditional Expressions

Conditional expressions are the combination of values of any data type with one or more conditional
symbols. A conditional expression defines a series of comparisons that should be performed on the
parameter values. The values which are to be operated upon can be valid values or expressions.

Conditional symbols were introduced in the String Expressions and Math Expressions sections above in the
context of comparing string or math values. They can actually be used on values of any data type including
arrays, maps, and custom types defined by third parties.

Values are automatically converted to an appropriate data type for a comparison. For example, the following
comparison returns True even though the first parameter is a number and the second parameter is a string.
The second parameter is converted to the same type as the first parameter, then the values are compared:

[123 == '123] = True

Conditional expressions are used in the [If] ... [/lfl and [While] ... [/While] container tags to specify the condition
under which the contents of the tag will be output. For example, the following [If] tag contains a conditional
expression that will evaluate to True only if the company name is LassoSoft:

[If: (Field: 'Company_Name') == 'LassoSoft]
The company name is LassoSoft

[/l

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 5 — LASsO 8.5 TAG LANGUAGE 80

Table 13: Conditional Expression Symbols

Symbol Name Example

>> Contains ['abcdef' >> 'bed] =» True
1>> Not Contains ['abcdef' 1>> 'bed] =» False
== Equality (Value Only) [100 == 25] =» False

=== Equality (Value & Type) [100 =="100"] =» False

1= Inequality (Value Only) [100 != 25] =» True

I== Inequality (Value & Type) [100 !=="1007 =» True

> Greater Than [100 > 25] = True

>= Greater Than or Equal [100 >= 25] =» True

< Less Than [100 < 25] =¥ False

<= Less Than or Equal [100 <= 25] =» False

Please see the Conditional Logic chapter for more information.

Logical Expressions

Logical expressions are made up of multiple conditional sub-expressions combined with one or more logical
symbols. The values of the conditional sub-expressions are combined according to the operation defined by
the logical symbol.

Logical expressions are most commonly used in the [If] ... [/If] container tag to specify the condition under
which the contents of the tag will be output. A single [If] tag can check multiple conditional expressions if
they are combined into a single logical expressions.

For example, the following [If] tag contains a logical expression that will evaluate to True if one or the other of
the sub-expressions is True. The [If] ... [/If] container tag will display its contents only if the company name is
LassoSoft or the product name is Lasso Professional:

[If: ((Field: 'Company_Name') == 'LassoSoft) ||
((Field: 'Product_Name') == 'Lasso Professional')]
The company name is LassoSoft

il
Table 14: Logical Expression Symbols
Symbol Name Example
&& And [True && False] =» False
I Or [True || False] =¥ True
! Not [! True] =» False

Please see the Conditional Logic chapter for more information.

Note: These logical symbols should not be confused with the logical search operators which can be used to
assemble complex search criteria. See the Database Interaction Fundamentals chapter for more information
about logical search operators.

If Else Expressions

The if else symbol ? | allows a conditional expression to be specified inline. The symbol is a good alternative
to using [If] ... [/If] tags for simple conditional expressions.

Table 15: Logical Expression Symbols

Symbol Name Example
2] If Else [True ? 'TrueResult' | 'FalseResult] =» TrueResult
[False ? TrueResult' | 'FalseResult] =» FalseResult

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 5 — LASsO 8.5 TAG LANGUAGE 81

Please see the Conditional Logic chapter for more information.

In the following example the field First_Name is checked to see if it is empty. If it is then N/A is returned.
Otherwise, the field value is returned.

[Encode_HTML: (Field: 'First_Name') == " ? 'N/A' | (Field: 'First_Name')]

Tag References

The back slash \ can be used to reference tags by name. This allows the member tags of the tag data type to be
used on both built-in and custom tags. For more information about the tag data type consult the Extending
Lasso Guide.

For example, \Field returns a reference to the built-in [Field] tag. Each of the following code samples is an
equivalent way of calling the [Field] tag.

<?LassoScript
Field: 'First_Name";
\Field->(Run: -Params=(Array: 'First_Name'));
\Field->(Invoke: 'First_Name");

»

Similarly, the member tags of a data type can be referenced using the -> symbol and the back slash \ symbol
together. For example, Array->\Join would return a reference the [Array->Join] tag. Each of the following code
samples is an equivalent way of calling the [Array->Join] tag.

<?LassoScript
(Array: 'One', "Two')->(Join: ' - ");
(Array: 'One', "Two')->\Join->(Run: -Params=(Array: ' -));
(Array: 'One', "Two'")->\Join->(Invoke: ' - ");

»>

Delimiters

This section describes the delimiters which are used to define LassoScript and HTML. It is important to
understand how delimiters are used so that tags can be constructed with the proper syntax.

Table 16: Lasso 8 Delimiters

Symbol Name Function

[
]
/
\

Square Bracket
Square Bracket
Forward Slash
Back Slash

Colon
Parentheses

Comma
Equal Sign
Hyphen
Single Quote

Start of tag square bracket syntax.

End of tag in square bracket syntax.

Closing container tag name.

Escapes special characters in strings or returns a reference to a tag or member
tag.

Separates tag name from tag parameters in colon syntax

Surround tag parameters in parentheses syntax. Also used to surround sub-tags
Or expressions.

Separates tag parameters.

Separates name/value parameter.

Starts command tag name and keyword names.
Start and end of a string literal.

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 5 — LASsO 8.5 TAG LANGUAGE

<?LassoScript LassoScript

ol

LassoScript
Curly Brace

Curly Brace
Semi-Colon
Double Slash
Asterisk Slash
Asterisk Slash
Member Symbol
Retarget Symbol
If Else Symbol
Space

82

Start of LassoScript.
End of LassoScript.

Start of compound expression syntax (LassoScript contained within square
bracket syntax).

End of compound expression syntax.

Separates tags within LassoScript.

Start of line comment in LassoScript.

Start of extended comment in LassoScript.

End of extended comment in LassoScript.
Separates data value from member tag.
Separates multiple member tags in expression.
Specifies an inline conditional expression.
Specified between symbols and their parameters.

When possible, parentheses should be used around all expressions, sub-tag calls, and negative literals. The
parentheses will ensure that Lasso accurately parses each expression. If an expression does not seem to be
working correctly, try adding parentheses to make the order of operation explicit.

Unlike symbols, white space is generally not required around delimiters. White space may be used to format

code in order to make it more readable.

Note: The double quote " was a valid Lasso separator in earlier versions of Lasso but has been deprecated in
Lasso Professional 8. It is not guaranteed to work in future versions of Lasso.

The following table shows the delimiters which are used in HTML pages and HTTP URLs.

Table 17: HTML/HTTP Delimiters

Symbol Name Function

< Angle Bracket Start of an HTML or XML tag.

> Angle Bracket End of an HTML or XML tag.

= Equal Sign Separates name/value parameter or attribute.

" Double Quote Start and end of HTML string value.

? Question Mark Separates path from parameters in URL.

Hash Mark Separates path from target in URL.

& Ampersand Separates URL parameters.

/ Forward Slash Folder delimiter in URL paths or designation of Web server root if used at the

Dot Dot Slash
Space

start of a URL path.
Up one folder level in URL paths.
Separates tag attributes.

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 5 — LASsO 8.5 TAG LANGUAGE 83

lllegal Characters

The following chart details characters which can cause Lasso problems if they appear in a Lasso page or
within Lasso code outside of a string literal. These characters are not valid in tag names, keyword names, or
parameter names.

For best results use a dedicated HTML editor such as Macromedia Dreamweaver or Adobe GolLive or a text
editor to create Lasso pages.

Table 18: lllegal Characters

Symbol Name Function

\0 Null Character The null-character is often used as and end-of-file marker. Lasso may abort
processing if it reads a null character within a Lasso page.

Note: The non-breaking space is now recognized as white space by Lasso when it is encountered within Lasso
statements.

LAsso 8.5 LANGUAGE GUIDE

84

Chapter 6
Lasso 8.5 Reference

This chapter documents how to use the Lasso 8.5 Reference.
e Overview provides an overview of the Lasso 8.5 Reference and how to access it.
® LassoScript discusses browsing the Lasso 8.5 Reference by tag type or category.

e Utility discusses how all available tags can be listed.

Overview

The Lasso 8.5 Reference is a resource provided by LassoSoft for finding descriptions, usage guidelines, and
detailed examples of Lasso tags. It is the official reference for all tags in Lasso 8. The reference is hosted by
LassoSoft software on their Web site and is also available as a local LassoApp and database included with
each installation of Lasso.

To access the Lasso 8.5 Reference:

e The Lasso 8.5 Reference can be accessed at LassoSoft at the following URL. This reference is the most up-
to-date version of the reference since updates to the database can be made between incremental updates of
Lasso.

http://reference.lassosoft.com/

¢ The Lasso 8.5 Reference can be accessed through the Setup > Site > Summary section in Lasso
Administration. Alternately, the following URL will bring up the reference on the local machine. The host
name can be changed from localhost to the actual domain name of the Lasso server in order to access the
reference on another server. Logging in to the Lasso Reference requires a local username and password.

http:/localhost/Reference.LassoApp

Note: The name and URL of the Lasso Reference has changed for Lasso 8.5. This change reflects the evolution of
the reference to include documentation of every aspect of Lasso rather than simply descriptions about the tags in
Lasso.

Components

The local version of the Lasso 8.5 Reference consists of two components. The interface is provided by the
Reference.LassoApp file located in the LassoApps directory of the Lasso application folder. The data for the
reference is stored within the internal datta source in a database named LDML8_Reference. Both components
are installed as part of the standard Lasso installation.

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 6 — LASSO 8.5 REFERENCE 85
Figure 1: Lasso 8.5 Reference

alalal Lassa Refersnce 8.5.008 ==
Lasso85

Tag: += Adesnian dsmgement CHRBpEnY: Symbes Support: Prefemes
Type: Gymo werukac 50 Snas Lases U6 ., Lasto R
Tag: « ASolon [Concabenation] Categony: Symb Seppart: Prefemes
Type! Symbs wWerslaaz L D deuge Lages B.E . Losss B0
Tagi Bb AnG Logea CALBRETY 500 SRR Frefemes
Type: Symb Weruion: 4.0 el Lagee BY . Laweo B0
Tag: : Amay Category: Symbo Support: Prefermed
Trpe: Symiol Wk 14 0 LBk B.F . LaEsS T8
Tagi = Abtignmdat Eabegeary: Hymb Seppart: Prifpmes
Type: Sy Worskn: 50 ol Lasss 0.5 ., Lo 50

THQ! _= Assgnment anc ¥aue Categenyz Symbe
Warsisac 7.0

Sepport: Frefemes
Tkt Bembal Sl Lages Hb ... Lasks 7.0

Tag: {) Brates Category: Drlmeer Seppart: Frrfemes
Type: Daimser Wersiaaz 6.0 Seese Lass B . Lassa B0
Tag: © Creon Eatmpoary: Beimzer Ssppart: Frefemes
Trpe: Debmser Wersken: 1.0 St Lases A3 . Lassa 1
Tag: , Dotorria Catepory: Delmbier Sepport: Preferes
Type: Delmeer Wershan 19 SR LAES B o LA L
Tag! »» Codsm Catageny: Symix Sappart: Frofamss
Type: Symbed Wemlen: 5.0 Eetnc Lases B.5 . Lasss 50
Tag! = Decement CALEQOy: Sy Sepport: Frefemes
Typb: Bymbal Werkian: b 0 Sala: Lacks B5 ., Lacea B
Togt § Dovign categony: Sy Sepport: Prefemes
THPE SyMDo Wersian: 5.0 Seqs: Laseo A5 . Lasso 50
Thi! /= Disitn Ategament Calmgaarys Symbal Ssppart: Brifames
Type: Symbo Werilon: 5.0 Sefac Lases ALY Lassa 50

© 1996 06 Omriitie Safneare, Ine

Sections of the Interface

The interface is divided into four sections, navigable via tabs at the top of the screen. These sections are:
¢ LassoScript — Provdes information about all of the tags in Lasso and an overview of LassoScript.

e Utility - Provides a collection of utilities for Lasso including regular expressions, XPath, and Unicode.

Navigation

Navigation occurs by selecting the tab for the desired section at the top of the interface. Doing so will display
the default screen for that tab and additional tabs for any subsections. Many screens have a blue sidebar

on the left. The sidebar generally provides a search interface, navigation summary and controls, and other
options.

LassoScript

The LassoScript section of the reference provides detailed documentation of more than one thousand tags
which are provided by Lasso. The tags can be browsed by category, type, Lasso version, or change. Or, the
reference can be searched for specific tags or for tags which contains keywords in their description. The detail
for each tag provides a summary of the tag, a description, sample syntax, parameter details, change notes, and
examples.

Overview

The LassoScript > Overview section of the reference provides a summary of the language. This overview
should be read by new users who want to become familiar with the language or by anyone who wants a
refresher on the basics of the language.

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 6 — LAsso 8.5 REFERENCE 86

Browsing

The LassoScript > Browse section of the reference allows for browsing the tags in Lasso by category,
type, version, and more. This section also allows tags to be searched by tag name or keywords in the tag
description. All of the browse, search, and navigation controls are included in the blue sidebar to the left.

Tags can be searched by entering or selecting values from the following fields, and then selecting
the Search button. The Find All button will restore the default values for all search parameters. The red x next
to each search parameter can also be used to restore only that parameter to its default.

e Tag - Searches for tags by name.

¢ Category - Pull-down menu listing all Lasso tag categories (e.g. Database, Array, XML, PDF, etc.).

¢ Type - Pull-down menu listing all possible tag types (e.g. Substitution, Member, Symbol, etc.).

e Set - Pull-down menu listing all available tag sets. All preferred Lasso tags belong to the Lasso 8.5 set.

e Support - Pull-down menu listing the types of tag support in Lasso Professional 8. A Preferred tag is part of
the core syntax for Lasso 8.5. An Abbreviation is an abbreviation of a preferred tag. A Synonym is a synonym of
a preferred tag. A Deprecated tag is supported in Lasso 8.5, but may not be supported in a future version.

¢ Changes - Allows tags to be searched depending on whether they are new or have modified functionality
in Lasso 8.5. Options include New, Updated, or Unchanged.

¢ Description - Searches for a keyword within the descriptions of the tags.

The summary reports how many tags have been found. The navigation controls page through the found tags

displaying one hundred tags at a time. The options allow the tag listing to be re-sorted by tag name, type, set,

or support.

Search results are displayed in the right hand side of the window. Each tag includes its tag name, type,

category, support, what version it was introduced, and what Lasso sets it belongs to. Selecting a tag name

shows the detail page for the tag.

Figure 2: Tag Detail Page

[adaian Lassa Reference 85,008 =
Lasso85 . . T .

¥ = Addition Asslgnment

Tag Wink += ASCHHEN AIENMER CaRgary Fyro

Suppart L Wersion %0

Change Unchanged Data Ssurce Ay

Output Tyse Mase SpeurEy Hane

Emplamantation LCAFL BE1S ebsse 8.5, Lasso &0,
Lises 7.0, Lineo &0,
Lasss 5.6

¥ Descripthon

|

L

|

|

Tr Symbal T |
|

|

|

|

= mion the value of S PGt paremater 10 She walus of the left paramTer and Bebs Do (et |
|

pasameter o (he newaing value. The Ift fararrtt: Soud Be & wenatee (hal contsin 4 siring
Eenmal, o iateser value.

That dymbl geviermi malheeatics] GEDon I both pirarmelert S3ALn Bamal or rEeger vwalus
The: resclt mill B¢ & decmal il etier strareler b a Sedmsl vakoe

F

Thet eymibol peviorme ening concatenation if efer fameler 4 8 deng. The reet it e 19
parameter folowed by the right pacameter.

Kole: [T Ehe parareiey &N The Aght hast U of The symol i & negalie sl | Shousd e
srgunded by pererieics For exarspi, (fvar += (<1}

fiVariablay "Lefl_ Passssiss’ | += Bighl Papassios |

=1LanacScript
{¥artable: “laft_Parszster’ | += Right_Perassetar]
T

arLeaaaSeripe
FLeli Parsmeies += Righi_Peseseiesi
E

© 1996 08 Omiitlet Safeare, Ine

LAasso 8.5 LANGUAGE GUIDE

CHAPTER 6 — LASsSO 8.5 REFERENCE 87

Detail

The LassoScript > Detail section of the reference provides information about a single Lasso tag. The search
and navigation controls are still available in the blue sidebar to the left. The found set for the browse and
detail sections is identical.

The detail for each section includes the following sections. Each section can be collapsed and, after navigating
to another tag, the reference will remember the state of each section.

e Overview - Lists information about the tag. See below for details.
¢ Description - Defines what a tag does, and how and where it is used.
® Syntax - Shows a syntax example for the tag.

e Parameters - Lists all parameters or modifiers that can be used with the tag. Required Parameters must be
present in the tag syntax for the tag to work properly, while Optional Parameters do not.

¢ Change Notes - Provides information about how a tag has changed from different versions of Lasso, and
if applicable, what tag it replaces.

e Examples - Provides examples of how the tag can be used to perform a specific function within a Lasso
solution.

¢ Related Tags - A list of tags which are related to the current tag.
e Category Tags - A list of additional tags which are in the same category as the current tag.
The overview lists the following tag information:

e Category - Specifies the tag category (e.g. Array, Encoding, etc.). Selecting the tag category displays the
Browse > Category page.

* Type - Specifies the tag type (e.g. Command, Container, etc.).

e Set - Specifies the versions of Lasso in which the tag is supported. All native Lasso Professional 8.5 tags
belong to the Lasso 8.5 set.

e Support - Specifies the tag support in Lasso Professional 8. A Preferred tag is part of the core syntax for
Lasso 8. An Abbreviation is an abbreviation of a preferred tag. A Synonym is a synonym of a preferred tag. A
Deprecated tag is supported in Lasso 8, but support may be dropped in a future version of Lasso. Deprecated
tags are not recommended for use in new projects. Any returns all support types.

¢ Version - Specifies the version of Lasso from which the tag originated (e.g. 7.0, 6.0, 5.0, 3.6.6.2, etc.).

¢ Change - Specifies whether a tag is new, updated, or unchanged between the last major release and the
current release.

e Data Source - Specifies the data source with which the tag can be used.

e Output Type - Specifies what data type the tag will output. Many tags output multiple data types in which
case each data type or Any is shown.

e Security - Specifies whether access to the tag can be controlled through Lasso Administration. Options
include Classic for tags that are disabled with Classic Lasso, Tag for tags that are controlled by tag
permissions, File for tags that are controlled by file permissions, Database for tags that are controlled by
database permissions, and LJAPI for tags that are disabled if LJAPI support is disabled.

¢ Lasso 3 Equivalent - For tags which have been updated since Lasso 3.x, a Lasso 3.x tag is listed that
provides similar functionality to the current tag.

e Lasso 8.5 Equivalent - For tags which are not preferred Lasso 8.5 syntax, an equivalent Lasso 8.5 tag is
listed that provides similar functionality to the current tag.

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 6 — LASsSO 8.5 REFERENCE 88
L] L]
Utility

The Utility section of the reference provides several useful tools including the following.

® Regular Expressions - Provides a quick reference to the symbols which can be used to specify regular
expressions in Lasso. Also allows regular expressions to be performed on live data and shows the Lasso
syntax which corresponds to each expression.

e XML XPaths - Provides a quick reference to the symbols which can be used to specify XPath expressions
in Lasso. Also allows XPaths to be applied on XML data and shows the Lasso syntax which corresponds to
each expression.

¢ Unicode Code Tables - Provides a quick reference to all of the Unicode Code Tables. The detail for each
characters shows the Lasso, HTML, and Unicode entities for the character, Unicode characteristics for the
character, and more.

LAsso 8.5 LANGUAGE GUIDE

89

Section |l
Database Interaction

This section includes an introduction to interacting with databases in Lasso Professional 8 and more specific
discussions of particular database actions and tags and techniques particular to MySQL and FileMaker Pro
databases.

¢ Chapter 7: Database Interaction Fundamentals introduces the concepts required to work with databases
in Lasso Professional 8.

® Chapter 8: Searching and Displaying Data discusses how to create search queries and display the results
of those queries.

¢ Chapter 9: Adding and Updating Records discusses how to create queries to add, update, and delete data-
base records.

® Chapter 10: SQL Data Sources documents tags for all data sources which support SQL including MySQL,
SQLite, PostgreSQL, Oracle, OpenBase, Microsoft SQL Server, and others.

e Chapter 11: FileMaker Data Sources documents tags specific to the FileMaker Pro, FileMaker Server
Advanced 7 or higher, and FileMaker Server 9 or 10 data source connectors including tags to execute
FileMaker scripts, return images from a FileMaker container field, and display information in repeating
fields and portals.

* Chapter 12: JDBC and ODBC Data Sources documents tags specific to the JDBC and ODBC data source
connector.s

¢ Chapter 13: Other Data Sources documents tags specific to the Spotlight data source and some custom
and third-party connectors.

LAsso 8.5 LANGUAGE GUIDE

90

Chapter 7
Database Interaction Fundamentals

One of the primary purposes of Lasso is to perform database actions which are a combination of pre-
defined and visitor-defined parameters and to format the results of those actions. This chapter introduces the
fundamentals of specifying database actions in Lasso.

¢ Inline Database Actions includes full details for how to use the [Inline] tag to specify database actions.
® Action Parameters describes how to get information about an action.

¢ Results includes information about how to return details of a Lasso database action.

¢ Showing Database Schema describes the tags that can be used to examine the schema of a database.

e SQL Statements describes the -SQL command tag and how to issue raw SQL statements to SQL-compliant
data sources.

¢ SQL Transactions describes how to perform reversible SQL transactions using Lasso.

Inlines

The [Inline] ... [/Inline] container tags are used to specify a database action and to present the results of that
action within a Lasso page. The database action is specified using parameters as keyword/value parameters
within the opening [Inline] tag. Additional name/value parameters specify the user-defined parameters of the
database action. Each [Inline] normally represents a single database action, but when using SQL statements
a single inline can be use to perform batch operations as well. Additional actions can be performed in
subsequent or nested [Inline] ... [/Inline] tags.

Table 1: Inline Tag

Tag/Parameter Description

[Inling] ... [/Inline] Performs the database action specified in the opening tag. The results of the
database action are available inside the container tag or later on the page within
[ResultSet] ... [/ResultSet] tags.

-Database Specifies the name of the database which will be used to perform the database
action. If no -Host is specified then the database is used to determine what data
source should process the inline action. (Optional)

-Host Specifies the connection parameters for a host within the inline. This provides
an alternative to setting up data source hosts within Lasso Site Administration.
(Optional)

-InlineName Specifies a name for the inline. The same name can be used with the [ResultSet]
... [/[ResultSet] tags to return the records from the inline later on the page.
(Optional)

-Log Specifies at what log level the statement from the inline should be logged. Values
include None, Detail, Warning, and Critical. If not specified then the default log
level for action statements will be used. (Optional)

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 7 — DATABASE INTERACTION FUNDAMENTALS 91

-StatementOnly Specifies that the inline should generate the internal statement required to
perform the action, but not actually perform the action. The statement can be
fetched with [Action_Statement]. (Optional)

-Table Specifies the table that should be used to perform the database action. Most
database actions require that a table be specified. The -Table is used to
determine what encoding will be used when interpreting database results so a
-Table may be necessary even for an inline with a -SQL action. (Optional)

-Username Specifies the name of the user whose permissions should be used to perform
the database action. If no -Username is specified then the permissions of the
surrounding inline will be used or the permissions of the calling Lasso page
itself. An inline with just a -Username and -Password, but no database action
can be used to run the contained portion of the page with the permissions of the
specified user. (Optional)

-Password Specifies the password for the user. (Required if -Username is specified.)

The results of the database action can be displayed within the contents of the [Inline] ... [/Inline] container tags
using the [Records] ... [/Records] container tags and the [Field] substitution tag. Alternately, the [Inline] can be
named using -InlineName and the results can be displayed later using [ResultSet] ... [/[ResultSef] tags.

The entire database action can be specified directly in the opening [Inline] tag or visitor-defined aspects of
the action can be retrieved from an HTML form submission. [Link_...] tags can be used to navigate a found
set in concert with the use of [Inline] ... [/Inline] tags. Nested [Inline] ... [/Inline] tags can be used to create complex
database actions.

Inlines can log the statement (SQL or otherwise) that they generate. The optional -Log parameter controls
at what level the statement is logged. Setting -Log to None will suppress logging from the inline. If no -Log is
specified then the default log-level set for the data source in Site Administration will be used.

The -StatementOnly option instructs the data source to generate the implementation-specific statement required
to perform the desired database action, but not to actually perform it. The generated statement can be
returned with [Action_Statement]. This is useful in order to see the statement Lasso will generate for an action,
perform some modifications to that statement, then re-issue the statement using -SQL in another inline.

To change the log level for an inline database action:
Use the -Log parameter within the opening [Inline] tag.

e Suppress the action statement from being logged by setting -Log='None'. The action statement will not be
logged no matter how the various log levels are routed.

[Inline: -Search, -Database="Example’, -Table="Example’, -Log='None', ...]
[/Inline]

¢ Log the action statement at the critical log level by setting -Log='Critical'. This can be useful when debugging
a Web site since the action statement generated by this inline can be seen even if action statements are
generally being suppressed by the log routing preferences.

[Inline: -Search, -Database="Example’, -Table='Example', -Log="Critical’, ...]
[/Inling]

To see the action statement generated by an inline database action:

Use the [Action_Statement] tag within the [Inline] ... [/Inline] tags. The tag will return the action statement that

was generated by the data source connector to fulfill the specified database action. For SQL data sources like
MySQL and SQLite a SQL statement will be returned. Other data sources may return a different style of action
statement.

[Inline: -Search, -Database="Example’, -Table="Example’, ...]
[Action_Statement]

[nline]

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 7 — DATABASE INTERACTION FUNDAMENTALS 92

To see the action statement that would be generated by the data source without actually performing the
database action the -StatementOnly parameter can be specified in the opening [Inline] tag. The [Action_Statement]
tag will return the same value is would for a normal inline database action, but the database action will not
actually be performed.

[Inline: -Search, -Database="Example', -Table='Example', -StatementOnly, ...]
[Action_Statement]

[/I.n.I.ine]

Database Actions

A database action is performed to retrieve data from a database or to manipulate data which is stored in a
database. Database actions can be used in Lasso to query records in a database that match specific criteria, to
return a particular record from a database, to add a record to a database, to delete a record from a database,
to fetch information about a database, or to navigate through the found set from a database search. In
addition, database actions can be used to execute SQL statements in compliant databases.

The database actions in Lasso are defined according to what action parameter is used to trigger the action.
The following table lists the parameters which perform database actions that are available in Lasso.

Table 2: Inline Database Action Parameters

Tag Description

-Search Finds records in a database that match specific criteria, returns detail for a
particular record in a database, or navigates through a found set of records.

-FindAll Returns all records in a specific database table.

-Random Returns a single, random record from a database table.

-Add Adds a record to a database table.

-Update Updates a specific record from a database table.

-Duplicate Duplicates a specific record in a database table. Only works with FileMaker Pro
databases.

-Delete Removes a specified record from a database table.

-Show Returns information about the tables and fields within a database.

-SQL Executes a SQL statement in a compatible data source. Only works with SQLite,
MySQL, and other SQL databases.

-Prepare Creates a prepared SQL statement in a compatible data source. Nested inlines
with an -Exec action will execute the prepared statement with different values.

-Exec Executes a prepared statement. Must be called from an inline nested within an
inline with a -Prepare action.

-Nothing The default action which performs no database interaction, but simply passes the

parameters of the action.

Note: Table 2: Database Action Parameters lists all of the database actions that Lasso supports. Individual data
source connectors may only support a subset of these parameters. The Lasso Connector for MySQL and the
Lasso Connector for SQLite do not support the -Duplicate action. The Lasso Connector for FileMaker Pro does
not support the -SQL action. See the documentation for third party data source connectors for information about
what parameters they support.

Each database action parameter requires additional parameters in order to execute the proper database action.
These parameters are specified using additional parameters and name/value pairs. For example, a -Database
parameter specifies the database in which the action should take place and a -Table parameter specifies the
specific table from that database in which the action should take place. Name/value pairs specify the query
for a -Search action, the initial values for the new record created by an -Add action, or the updated values for
an -Update action.

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 7 — DATABASE INTERACTION FUNDAMENTALS 93

Full documentation of which [Inline] parameters are required for each action are detailed in the section specific
to that action in this chapter, the Searching and Displaying Data chapter, or the Adding and Updating
Records chapter.

Example of specifying a -FindAll action within an [Inline]:

The following example shows an [Inline] ... [/Inline] tag that has a -FindAll database action specified in the opening
tag. The [Inline] tag includes a -FindAll parameter to specify the action, -Database and -Table parameters to specify
the database and table from which records should be returned, and a -KeyField parameter which specifies the
key field for the table. The entire database action is hard-coded within the [Inline] tag.

The tag [Found_Count] returns how many records are in the database. The [Records] ... [[Records] container tags
repeat their contents for each record in the found set. The [Field] tags are repeated for each found record
creating a listing of the names of all the people stored in the Contacts database.

[Inline: -FindAll,
-Database="Contacts',
-Table='People’,
-KeyField="ID']
There are [Found_Count] record(s) in the People table.
[Records]

[Field: 'First_Name'] [Field: 'Last_Name']
[/Records]
[/Inling]

=» There are 2 record(s) in the People table.
John Doe
Jane Doe

Example of specifying a -Search action within an [Inline]:

The following example shows an [Inline] ... [/Inline] tag that has a -Search database action specified in the
opening tag. The [Inline] tag includes a -Search parameter to specify the action, -Database and -Table parameters
to specify the database and table records from which records should be returned, and a -KeyField parameter
which specifies the key field for the table. The subsequent name/value parameters, 'First_ Name'='John' and
'Last_Name'='Doe’, specify the query which will be performed in the database. Only records for John Doe will be
returned. The entire database action is hard-coded within the [Inline] tag.

The tag [Found_Count] returns how many records for John Doe are in the database. The [Records] ... [[Records]
container tags repeat their contents for each record in the found set. The [Field] tags are repeated for each
found record creating a listing of all the records for John Doe stored in the Contacts database.

[Inline: -Search,
-Database='Contacts’,
-Table='People’,
-KeyField="ID",
'First_Name'="John’,
'Last_Name'='Doe’]
There were [Found_Count] record(s) found in the People table.
[Records]

[Field: 'First_Name"] [Field: 'Last_Name']
[/Records]
[/Inline]

=>» There were 1 record(s) found in the People table.
John Doe

Using HTML Forms

The previous two examples show how to specify a hard-coded database action completely within an opening
[Inline] tag. This is an excellent way to embed a database action that will be the same every time a page is
loaded, but does not provide any room for visitor interaction.

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 7 — DATABASE INTERACTION FUNDAMENTALS 94

A more powerful technique is to use values from an HTML form or URL to allow a site visitor to modify
the database action which is performed within the [Inline] tag. The following two examples demonstrate two
different techniques for doing this using the singular [Action_Param] tag and the array-based [Action_Params] tag.

Example of using HTML form values within an [Inline] with [Action_Param]:

An inline-based database action can make use of visitor specified parameters by reading values from an
HTML form which the visitor customizes and then submits to trigger the page containing the [Inline] ... [/Inline]
tags.

The following HTML form provides two inputs into which the visitor can type information. An input

is provided for First_Name and one for Last_Name. These correspond to the names of fields in the

Contacts database. The action of the form is set to response.lasso which will contain the [Inling] ... [/Inline] tags that
perform the actual database action. The action tag specified in the form is -Nothing which instructs Lasso to
perform no database action when the form is submitted.

<form action="/response.lasso" method="POST">

First Name: <input type="text" name="First_Name" value="">

Last Name: <input type="text" name="Last_Name" value="">

<input type="submit" value="Search">

</form>

The [Inline] tag on response.lasso contains the name/value parameter 'First_Name'=(Action_Param: 'First_Name'). The
[Action_Param] tag instructs Lasso to fetch the input named First_Name from the action which resulted in the
current page being served, namely the form shown above. The [Inline] contains a similar name/value parameter
for Last_Name.

[Inline: -Search,
-Database="Contacts',
-Table='People’,
-KeyField='ID",
'First_Name'=(Action_Param: 'First_Name'),
'Last_Name'=(Action_Param: 'Last_Name')]
There were [Found_Count] record(s) found in the People table.
[Records]

[Field: 'First_Name'] [Field: 'Last_Name']

[/Records]

[/Inling]

If the visitor entered Jane for the first name and Doe for the last name then the following results would be
returned.

=>» There were 1 record(s) found in the People table.
Jane Doe

As many parameters as are needed can be named in the HTML form and then retrieved in the response page
and incorporated into the [Inline] tag.

Note: The [Action_Param] tag is equivalent to the [Form_Param] tag used in prior versions of Lasso.

Example of using an array of HTML form values within an [Inline] with [Action_Params]:

Rather than specifying each [Action_Param] individually, an entire set of HTML form parameters can be entered
into an [Inline] tag using the array-based [Action_Params] tag. Inserting the [Action_Params] tag into an [Inline]
functions as if all the parameters and name/value pairs in the HTML form were placed into the [Inline] at the
location of the [Action_Params] parameter.

The following HTML form provides two inputs into which the visitor can type information. An input

is provided for First_Name and one for Last_Name. These correspond to the names of fields in the

Contacts database. The action of the form is set to response.lasso which will contain the [Inline] ... [/Inline] tags
that perform the actual database action. The database action is -Nothing which instructs Lasso to perform no
database action when the HTML form is submitted.

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 7 — DATABASE INTERACTION FUNDAMENTALS 95

<form action="/response.lasso" method="POST">

First Name: <input type="text" name="First_Name" value="">

Last Name: <input type="text" name="Last_Name" value="">

<input type="submit" value="Search">

</form>

The [Inline] tag on response.lasso contains the array parameter [Action_Params]. This instructs Lasso to take all the
parameters from the HTML form or URL which results in the current page being loaded and insert them in
the [Inline] as if they had been typed at the location of [Action_Params]. This will result in the name/value pairs
for First_Name, Last_Name, and the -Nothing action to be inserted into the [Inline]. The latest action specified has
precedence so the -Search tag specified in the actual [Inline] tag overrides the -Nothing which is passed from the

HTML form.

[Inline: (Action_Params),
-Search,
-Database="Contacts',
-Table='People’,
-KeyField='ID]
There were [Found_Count] record(s) found in the People table.
[Records]

[Field: 'First_Name'] [Field: 'Last_Name']

[/Records]

[/Inling]

If the visitor entered Jane for the first name and Doe for the last name then the following results would be
returned.

=>» There were 1 record(s) found in the People table.
Jane Doe

As many parameters as are needed can be named in the HTML form. They will all be incorporated into the
[Inline] tag at the location of the [Action_Params] tag. Any parameters in the [Inline] after the [Action_Params] tag will
override conflicting settings from the HTML form.

Note: [Action_Params] is a replacement for the -ReUseFormParams keyword in prior versions of Lasso. See the
Upgrading section for more information.

HTML Form Response Pages

Every HTML form or URL needs to have a response page specified so Lasso knows what Lasso page to process
and return as the result of the action. The referenced Lasso page could contain simple HTML or complex
calculations, but some Lasso page must be specified.

To specify a Lasso page within an HTML form or URL:

e The HTML form action can be set to the location of a Lasso page. For example, the following HTML <form>
tag references the file /response.lasso in the root of the Web serving folder.

<form action="/response.lasso" method="POST"> ... </form>

e The URL can reference the location of a Lasso page before the question mark ? delimiter. For example, the
following anchor tag references the file response.lasso in the same folder as the page in which this anchor is
contained.

 Link

e The HTML form can reference /Action.Lasso and then specify the path to the Lasso page in a -Response tag.
For example, the following HTML <form> tag references the file response.lasso in the root of the Web serving
folder. The path is relative to the root because the placeholder /Action.Lasso is specified with a leading
forward slash /.

<form action="/Action.Lasso" method="POST">
<input type="hidden" name="-Response" value="response.lasso">
<[form>

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 7 — DATABASE INTERACTION FUNDAMENTALS 96

e The URL can reference Action.Lasso and then specify the path to the Lasso page in a -Response tag. For
example, the following anchor tag references the file response.lasso in the same folder as the page in which
the link is specified. The path is relative to the local folder because the placeholder Action.Lasso is specified
without a leading forward slash /.

 Link

The -Response tag can be used on its own or action specific response tags can be used so a form is sent to
different response pages if different actions are performed using the form. Response tags can also be used to
send the visitor to different pages if different errors happen when the database action is attempted by Lasso.
The following table details the available response tags.

Table 3: Response Parameters

Tag Description

-Response Default response tag. The value for this response tag is used if no others are
specified.

-ResponseAnyError Default error response tag. The value for this response tag is used if any error
occurs and no more specific error response tag is set.

-ResponseReqFieldMissingError Error to use if a -Required field is not given a value by the visitor.

-ResponseSecurityError Error to use if a security violation occurs because the current visitor does not

have permission to perform the database action.

-LayoutResponse FileMaker Server data sources will format the results using the layout specified in
this tag rather than the layout used to specify the database action.

See the Error Control chapter for more information about using the error response pages.

Setting HTML Form Values

If the Lasso page containing an HTML form is the response to an HTML form or URL, then the values of the
HTML form inputs can be set to values retrieved from the previous Lasso page using [Action_Param].

For example, if a form is on default.lasso and the action of the form is default.lasso then the same page will be
reloaded with new form values each time the form is submitted. The following HTML form uses [Action_Param]
tags to automatically restore the values the user specified in the form previously, each time the page is
reloaded.

<form action="default.lasso" method="POST">

First Name:
<input type="hidden" name="First_Name" value="[Action_Param: 'First_Name']">

First Name:
<input type="hidden" name="Last_Name" value="[Action_Param: 'Last_Name']">

<input type="submit" value="Submit">
</form>

Tokens

Tokens can be used with HTML forms and URLs in order to pass data along with the action. Tokens are
useful because they do not affect the operation of a database action, but allow data to be passed along with
the action. For example, meta-data could be associated with a visitor to a Web site without using sessions or
cookies.
¢ Tokens can be set in a form using the -Token.TokenName=TokenValue parameter. Multiple named tokens can be
set in a single form.
<form action="response.lasso" method="POST">

<input type="hidden" name="-Token.TokenName" value="TokenValue">
<[form>

e Tokens can be set in a URL using the -Token.TokenName=TokenValue parameter. Multiple named tokens can be
set in a single URL.

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 7 — DATABASE INTERACTION FUNDAMENTALS 97

 Link

e Tokens set in an HTML form or URL are available in the response page of the database action. Tokens are
not available inside [Inline] ... [/Inline] tags on the responses page unless they are explicitly set within the [Inline]
tag itself.

e Tokens can be set in an [Inline] using the -Token.TokenName=TokenValue parameter. Multiple named tokens can
be set in a single [Inline].

¢ Tokens set in an [Inline] are only available immediately inside the [Inline]. They are not available to
nested [Inlines] unless they are set specifically within each [Inline].

¢ By default, tokens are included in the [Link_...] tags and in [Action_Params]. Unless specifically set otherwise,
tokens will be redefined on pages which are returned using the [Link_...] tags.

Nesting Inline Database Actions

Database actions can be combined to perform compound database actions. All the records in a database that
meet certain criteria could be updated or deleted. Or, all the records from one database could be added to

a different database. Or, the results of searches from several databases could be merged and used to search
another database.

Database actions are combined by nesting [Inline] ... [/Inline] tags. For example, if [Inline] ... [/Inline] tags are placed
inside the [Records] ... [[Records] container tag within another set of [Inline] ... [/Inline] tags then the inner [Inline]
will execute once for each record found in the outer [Inling].

All database results tags function for only the innermost set of [Inline] ... [/Inline] tags. Variables can pass through
into nested [Inline] ... [/Inline] tags, but tokens cannot, these need to be reset in each [Inline] tag in the hierarchy.

SQL Note: Nested inlines can also be used to perform reversible SQL transactions in transaction-compliant SQL
data sources. See the SQL Transactions section at the end of this chapter for more information.

Example of nesting [Inline] ... [/Inline] tags:

This example will use nested [Inline] ... [/Inline] tags to change the last name of all people whose last name

is currently Doe in a database to Person. The outer [Inline] ... [/Inline] tags perform a hard-coded search for all
records with Last_Name equal to Doe. The inner [Inline] ... [/Inline] tags update each record so Last_Name is now
equal to Person. The output confirms that the conversion went as expected by outputting the new values.

[Inline: -Search,
-Database='Contacts’,
-Table='People’,

-KeyField='ID',
'Last_Name'='Doe’,
-MaxRecords="All"]
[Records]

[Inline: -Update,
-Database='Contacts’,
-Table='People’,
-KeyField='ID',
-KeyValue=(KeyField_Value),
'Last_Name'='Person]

Name is now [Field: 'First_Name'] [Field: 'Last_Name']

[/Inline]

[/Records]

[/Inline]

=» Name is now Jane Person
Name is now John Person

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 7 — DATABASE INTERACTION FUNDAMENTALS 98

Array Inline Parameters

Most parameters can be used within an [Inline] tag to specify an action. In addition, parameters and name/
value parameters can be stored in an array and then passed into an [Inline] as a block. Any single value in an
[Inline] which is an array data type will be interpreted as a series of parameters inserted at that location in the
array. This technique is useful for programmatically assembling database actions.

Many parameters can only take a single value within an [Inline] tag. For example, only a single action can be
specified and only a single database can be specified. The last action parameter defines the value that will
be used for the action. The last, for example, -Database parameter defines the value that will be used for the
database of the action. If an array parameter comes first in an [Inline] then all subsequent parameters will
override any conflicting values within the array parameter.

Example of using an array to pass values into an [Inline]:

The following LassoScript performs a -FindAll database action with the parameters first specified in an array
and stored in the variable Params, then passed into the opening [Inline] tag all at once. The value for -MaxRecords
in the [Inline] tag overrides the value specified within the array parameter since it is specified later. Only the
number of records found in the database are returned. Note that the action -FindAll is specified as a pair with a
dummy value.

<?LassoScript
Variable: 'Params'=(Array:
-FindAll=",
-Database='Contacts’,
-Table='People’,
-MaxRecords=50
);
Inline: (Var: 'Params'), -MaxRecords=100;
"There are ' + (Found_Count) + 'record(s) in the People table.";
/Inline;
»>

=>» There are 2 record(s) in the People table.

Action Parameters

Lasso has a set of substitution tags which allow for information about the current action to be returned. The
parameters of the action itself can be returned or information about the action’s results can be returned.
The following table details the substitution tags which allow information about the current action to be
returned. If these tags are used within an [Inline] ... [/Inline] container tag they return information about the
action specified in the opening [Inline] tag. Otherwise, these tags return information about the action which
resulted in the current Lasso page being served.

Even Lasso pages called with a simple URL such as http://www.example.com/response.lasso have an implicit -Nothing
action. Many of these substitution tags return default values even for the -Nothing action.

Table 4: Action Parameter Tags

Tag Description

[Action_Param] Returns the value for a specified name/value parameter. Equivalent to [Form_
Param].

[Action_Params] Returns an array containing all of the parameters and name/value parameters
that define the current action.

[Action_Statement] Returns the statement that was generated by the datasource to implement the

requested action. For SQL datasources this will return a SQL statement. Other
datasources may return different values.

[Database_Name] Returns the name of the current database.
[KeyField_Name] Returns the name of the current key field.

LAsso 8.5 LANGUAGE GUIDE

[KeyField_Value]

[Lasso_CurrentAction]
[MaxRecords_Value]

[Operator_LogicalValue]
[Response_FilePath]
[SkipRecords_Value]
[Table_Name]
[Token_Value]
[Search_Arguments]
[Search_Fieldltem]
[Search_Operatorltem]

[Search_Valueltem]
[Sort_Arguments]
[Sort_Fieldltem]
[Sort_Orderltem]

CHAPTER 7 — DATABASE INTERACTION FUNDAMENTALS 99

Returns the name of the current key value if defined. Equivalent to [RecordID_
Value].

Returns the name of the current Lasso action.

Returns the number of records from the found set that are currently being
displayed.

Returns the value for the logical operator.

Returns the path to the current Lasso page.

Returns the current offset into a found set.

Returns the name of the current table. Equivalent to [Layout_Name].

Returns the value for a specified token.

Container tag repeats once for each name/value parameter of the current action.
Returns the name portion of a name/value parameter of the current action.

Returns the operator associated with a name/value parameter of the current
action.

Returns the value portion of a name/value parameter of the current action.
Container tag repeats once for each sort parameter.

Returns the field which will be sorted.

Returns the order by which the field will be sorted.

The individual substitution tags can be used to return feedback to site visitors about what database action is
being performed or to return debugging information. For example, the following code inserted at the top of a
response page to an HTML form or URL or in the body of an [Inline] ... [/Inline] tag will return details about the
database action that was performed.

Action: [Lasso_CurrentAction]

Database: [Database_Name]

Table: [Table_Name]

Key Field: [KeyField_Name]

KeyValue: [KeyField_Value]

MaxRecords: [MaxRecords_Value]
SkipRecords: [SkipRecords_Valug]
Logical Operator: [Operator_LogicialValue]
Statement: [Action_Statement]

=» Action: Find All
Database: Contacts
Table: People
Key Field: ID
KeyValue: 100001
MaxRecords: 50
SkipRecords: 0
Logical Operator: AND
Statement: SELECT * FROM Contacts.People LIMIT 50

The [Action_Params] tag can be used to return information about the entire Lasso action in a single array. Rather
than assembling information using the individual substitution tags it is often easier to extract information
from the [Action_Params] array. The schema of the array returned by [Action_Params] is detailed in Table 5:
[Action_Params] Array Schema.

The schema shows the names of the values which are returned in the array. Even if -Layout is used to specify
the layout for a database action, the value of that tag is returned after -Table in the [Action_Params] array.

To output the parameters of the current database action:

The value of the [Action_Params] tag in the following example is formatted to show the elements of the
returned array clearly. The [Action_Params] array contain values for -MaxRecords, -SkipRecords, and -OperatorLogical
even though these aren’t specified in the [Inline] tag.

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 7 — DATABASE INTERACTION FUNDAMENTALS 100

[Inline: -Search,

-Database="Contacts',

-Table='People’,
-KeyField="ID']
[Action_Params]
[/Inling]

=> (Array:
(Pair: (-Search) = (),

Pair: (-MaxRecords)

(
(
(
(
(Pair: (-SkipRecords)
(

(_

Pair: (-Database) = (Contacts)),

Pair: (-Table) = (People)),

Pair: (-KeyField) = (ID)),
(_
(_
(_

Pair: (-OperatorLogical) =

Table 5: [Action_Params] Array Schema

Name Description

Action The action parameter is always returned first. The name of the first item is set to
the action parameter and the value is left empty.

-Database If defined, the name of the current database.

-Table If defined, the name of the current table.

-KeyField If defined, the name of the field which holds the primary key for the specified
table.

-KeyValue If defined, the particular value for the primary key.

-MaxRecords Always included. Defaults to 50.

-SkipRecords Always included. Defaults to 0.

-OperatorLogical Always included. Defaults to AND.

-ReturnField If defined, can have multiple values.

-SortOrder, -SortField
-Token

Name/Value Parameter
-Required

-Operator
-OperatorBegin

-OperatorEnd

If defined, can have multiple values. -SortOrder is always defined for each -
SortField. Defaults to ascending.

If defined, can have multiple values each specified as -Token.TokenName with
the appropriate value.

If defined, each name/value parameter is included.

If defined, can have multiple values. Included in order within name/value
parameters.

If defined, can have multiple values. Included in order within name/value
parameters.

If defined, can have multiple values. Included in order within name/value
parameters.

If defined, can have multiple values. Included in order within name/value
parameters.

The [Action_Params] array contains all the parameters and name/value parameters required to define a database
action. It does not include any -Response... parameters, the -Username and -Password parameters, -FMScript...
parameters, -InlineName keyword or any legacy or unrecognized parameters.

To output the name/value parameters of the current database action:

Loop through the [Action_Params] tag and display only name/value pairs for which the name does not start
with a hyphen, i.e. any name/value pairs which do not start with a keyword. The following example shows a
search of the People table of the Contacts database for a person named John Doe.

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 7 — DATABASE INTERACTION FUNDAMENTALS 101

[Inline: -Search,
-Database="Contacts',
-Table='People’,
-KeyField='ID",
'First_Name'='John’,
'Last_Name'="Doe’]
[Loop: (Action_Params)->Size]
[If: I(Action_Params)->(Get: Loop_Count)->(First)->(BeginsWith: '-')]

[Encode_HTML: (Action_Params)->(Get: Loop_Count)]
/]
[/Loop]
[/Inling]

=»
(Pair: (First_Name)

(Pair: (Last_Name)

(John))
(Doe))

To display action parameters to a site visitor:

The [Search_Arguments] ... [/Search_Arguments] container tag can be used in conjunction with the [Search_Fieldltem],
[Search_Valueltem] and [Search_Operatorltem] substitution tags to return a list of all name/value parameters and
associated operators specified in a database action.

[Search_Arguments]

[Search_Operatorltem] [Search_Fleldltem] = [Search_Valueltem]
[/Search_Arguments]

The [Sort_Arguments] ... [/Sort_Arguments] container tag can be used in conjunction with the [Sort_Fieldltem]
and [Sort_Orderltem] substitution tags to return a list of all name/value parameters and associated operators
specified in a database action.

[Sort_Arguments]

[Sort_Operatorltem] [Sort_Fleldltem] = [Sort_Orderltem]
[/Sort_Arguments]

Results

The following table details the substitution tags which allow information about the results of the current
action to be returned. These tags provide information about the current found set rather than providing data
from the database or providing information about what database action was performed.

Table 6: Results Tags

Tag Description

[Field] Returns the value for a specified field from the result set.

[Found_Count] Returns the number of records found by Lasso.

[Records] ... [/Records] Loops once for each record in the found set. [Field] tags within the [Records] ... [/

Records] tags will return the value for the specified field in each record in turn.
Can be used with an -InlineName to return the records for a named inline outside
of the inline container.

[Records_Array] Returns the complete found set in an array of arrays. The outer array contains

one item for every record in the found set. The item for each record is an array
containing one item for each field in the result set.

[Records_Map] Returns the complet found set in a map of maps. See the table below for details
about the parameters and output of [Records_Map].
[ResultSet_Count] Returns the number of result sets which were generated by the inline. This will

generally only be applicable to inlines which include a -SQL parameter with
multiple statements. An optional -InlineName parameter will return the number of
result sets that a named inline has, outside of the inline container.

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 7 — DATABASE INTERACTION FUNDAMENTALS 102

[ResultSet] ... [/ResultSet] Returns a single result set from an inline. The opening tag requires an integer
parameter which specifies which result set to return. An optional -InlineName
parameter will return the indicated result set from a named inline.

[Shown_Count] Returns the number of records shown in the current found set. Less than or
equal to [MaxRecords_Value].

[Shown_First] Returns the number of the first record shown from the found set. Usually
[SkipRecords_Value] plus one.

[Shown_Last] Returns the number of the last record shown from the found set.

[Total_Records] Returns the total number of records in the current table. Works with FileMaker

Pro databases only.

Note: Examples of using most of these tags are provided in the following Searching and Displaying Data
chapter.

The found set tags can be used to display information about the current found set. For example, the following
code generates a status message that can be displayed under a database listing.

Found [Found_Count] records of [Total_Records] Total.

Displaying [Shown_Count] records from [Shown_First] to [Shown_Last].

=» Found 100 records of 1500 Total.
Displaying 10 records from 61 to 70.

These tags can also be used to create links that allow a visitor to navigate through a found set.

Records Array

The [Records_Array] tag can be used to get access to all of the data from an inline operation. The tag returns
an array with one element for each record in the found set. Each element is itself an array that contains one
element for each field in the found set.

The tag can either be used to quickly output all of the data from the inline operation or can be used with the
[lterate] ... [/lterate] or other tags to get access to the data programmatically.

[Inline: -Search, -Database="Contacts', -Table="People']
[Records_Array]
[/Inline]

=> (Array: (Array: (John), (Doe)), (Array: (Jane), (Doe)), ..)
The output can be made easier to read using the [lterate] ... [/lterate] tags and the [Array->Join] tag.

[Inline: -Search, -Database="Contacts', -Table="People’]
[Iterate: Records_Array, (Var: 'Record')]
"[Encode_HTML: $Record->(Join: ", ")]"

[/lterate]
[/Inling]

=» "John", "Doe"

"Jane", "Doe"

The output can be listed with the appropriate field names by using the [Field_Names] tag. This tag returns an
array that contains each field name from the current found set. The [Field_Names] tag will always contain the
same number of elements as the elements of the [Records_Array] tag.

[Inline: -Search, -Database="Contacts', -Table="People']
"[Encode_HTML: Field_Names->(Join: ", ")]"

[lterate: Records_Array, (Var: 'Record")]

"[Encode_HTML: $Record->(Join: ", ")]"

[/lterate]
[/Inline]

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 7 — DATABASE INTERACTION FUNDAMENTALS 103

=» "First_Name", "Last_Name"

"John", "Doe"

"Jane", "Doe"

Together the [Field_Names] and [Records_Array] tags provide a programmatic method of accessing all the data
returned by an inline action. When used appropriately these tags can yield better performance than using
[Records] ... [/Records], [Field], and [Field_Name] tags.

Records Map

The [Records_Map] tag functions similarly to the [Records_Array] tag, but returns all of the data from an inline
operation as a map of maps. The keys for the outer map are the key field values for each record from the
table. The keys for the inner map are the field names for each record in the found set.

[Inline: -Search, -Database="Contacts', -Table="People', -KeyField='ID"]

[Records_Map]
[/Inline]

=» (Map: (1)=(Map: (First)=(John), (Last)=(Doe)), (2)=(Map: (First)=(Jane), (Last)=(Doe)), ...)

The output of the [Records_Map] tag can be modified with the following parameters.

Table 7: [Records_Map] Parameters

Tag Description
-KeyField The name of the field to use as the key for the outer map. Defaults to the current
[KeyField_Name], “ID”, or the first field of the database results.

-ReturnField Specifies a field name that should be included in the inner map. Should be called
multiple times to include multiple fields. If no -ReturnField is specified then all
fields will be returned.

-ExcludeField The name of a field to exclude from the inner map. If no -excludeField is
specified then all fields will be returned.

-Fields An array of field names to use for the inner map. By default the value for [Field_
Names] will be used.

-Type By default the tag returns a map of maps. By specifying -Type="array’ the tag will
instead return an array of maps. This can be useful when the order of records is
important.

Result Sets

An inline which uses a -SQL action can return multiple result sets. Each SQL statement within the -SQL action
is separated by a semi-colon and generates its own result set. This allows multiple SQL statements to be

issued to a data source in a single connection and for the results of each statement to be reviewed individu-
ally.

In the following example the [ResultSet_Counf] tag is used to report the number of result sets that the inline
returned. Since the -SQL parameter contains two SQL statements, two result sets are returned. The two result
sets are then looped through by passing the [ResultSet_Count] tag to the [Loop] ... [/Loop] tag and passing the
[Loop_Count] as the parameter for the [ResultSet] ... [/ResultSet] tags Finally, the [Records] ... [[Records] tags are used
as normal to display the records from each result set.

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 7 — DATABASE INTERACTION FUNDAMENTALS 104

[Inline: -Search, -Database="Contacts', -Table="People’,
-SQL="SELECT * FROM People; SELECT * From Companies']
[ResultSet_Count] Result Sets
<hr />
[Loop: ResultSet_Count]
[ResultSet: Loop_Count]
[Records]
[Field: '"Name'|

[/Records]
<hr />
[/ResultSet]
[/Loop]
[/Inling]

=» 2 Result Sets
<hr />
John Doe

Jane Doe

<hr />
LassoSoft

<hr />

All of the tags from the preceding table including [Records] ... [/Records], [Records_Array], [Field_Names],
[Found_Count], etc. can be used within the [ResultSef] ... [[ResultSet] tags.

The same example can be rewritten using a named inline. An -InlineName parameter with the name MyResults
is added to the opening [Inline] tag, the [ResultSet_Count] tag, and the opening [ResultSet] tag. Now the result sets
can be output from any where on the page below the closing [/Inline] tag. The results of the following example
will be the same as those shown above.

[Inline: -InlineName="MyResults', -Search, -Database='Contacts', -Table='"People’,
-SQL="SELECT * FROM People; SELECT * From Companies']
[/Inling]

[ResultSet_Count: -InlineName="MyResults'] Result Sets
<hr >
[Loop:(ResultSet_Count: -InlineName="MyResults")]
[ResultSet: Loop_Count, -InlineName="MyResults']
[Records]
[Field: 'Name']

[/Records]
<hr >
[/ResultSet]
[/Loop]

Showing Database Schema

The schema of a database can be inspected using the [Database_...] tags or the -Show parameter which allows
information about a database to be returned using the [Field_Name] tag. Value lists within FileMaker Pro
databases can also be accessed using the -Show parameter. This is documented fully in the FileMaker Pro
Data Sources chapter.

Table 8: -Show Parameter

Tag Description
-Show Allows information about a particular database and table to be retrieved.

The -Show parameter functions like the -Search parameter except that no name/value parameters, sort tags,
results tags, or operator tags are required. -Show actions can be specified in [Inline] ... [/Inline] tags, HTML forms,
or URLs.

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 7 — DATABASE INTERACTION FUNDAMENTALS 105

Table 9: -Show Action Requirements

Tag Description

-Show The action which is to be performed. Required.

-Database The database which should be searched. Required.

-Table The table from the specified database which should be searched. Required.
-KeyField The name of the field which holds the primary key for the specified table.

Recommended.

The tags detailed in Table 9: Schema Tags allow the schema of a database to be inspected. The
[Field_Name] tag must be used in concert with a -Show action or any database action that returns results
including -Search, -Add, -Update, -Random, or -FindAll. The [Database_Names] ... [/Database_Names] and
[Database_TableNames] ... [/Database_TableNames| tags can be used on their own.

Table 10: Schema Tags

Tag

Description

[Database_Names]
[Database_Nameltem]

[Database_RealName]
[Database_TableNames]

[Database_TableNameltem]

[Field_Name]

[Field_Names]

[Required_Field]

[Table_RealName]

Container tag repeats for every database available to the current user in Lasso.
Requires internal [Database_Nameltem] tag to show results.

When used inside [Database_Names] ... [/[Database_Names] container tags
returns the name of the current database.

Returns the real name of a database given an alias.

Container tag repeats for every table available to the current user within a
database. Accepts one required parameter, the name of the database. Requires
internal [Database_TableNameltem] tag to show results. Synonym is [Database_
LayoutNames].

When used inside [Database_TableNames] ... [[Database_TableNames]
container tags returns the name of the current table. Synonym is [Database_
LayoutNameltem].

Returns the name of a field in the current database and table. A number
parameter returns the name of the field in that position within the current table.
Other parameters are described below. Synonym is [Column_Name].

Returns an array containing all the field names in the current result set. This is
the same data as returned by [Field_Name], but in a format more suitable for
iterating or other data processing. Synonym is [Column_Names].

Returns the name of a required field. Requires one parameter which is the
number of the field name to return or a -Count keyword to return the total number
of required fields.

Returns the real name of a table given an alias. Requires a -Database parameter
which specifies the database in which the table or alias resides.

Note: See the previous Records Array section for an example of using [Field_Names].

To list all the databases available to the current user:

The following example shows how to list the names of all available databases using

the [Database_Names] ... [/Database_Names] and [Database_Nameltem] tags. This code will list all databases available
to the current user. An [Inline] ... [/Inline] with a -Username and -Password can be wrapped around this code to
display the databases availble to a given Lasso user.

[Database_Names]

[Loop_Count]: [Database_Nameltem]
[/Database_Name]

=»
1: Contacts

2: Examples

3: Site

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 7 — DATABASE INTERACTION FUNDAMENTALS 106

To list all the tables within a database:

The following example shows how to list the names of all the tables within a database using

the [Database_TableNames] ... [/Database_TableNames] and [Database_TableNameltem] tags. The tables within the

Site database are listed. This code will list all tables within the databases which are available to the current
user. An [Inline] ... [/Inline] with a -Username and -Password can be wrapped around this code to display the tables
availble to a given Lasso user.

[Database_TableNames: 'Site']

[Loop_Count]: [Database_TableNameltem]
[/Database_TableNames]

=»
1: _outgoingemail

2: _outgoingemailprefs

3: _schedule

4: _sessions

To list all the fields within a table:

The [Field_Name] tag accepts a number of optional parameters which allow information about the tags in the
current table to be returned. These parameters are detailed in Table 10: [Field_Name] Parameters.

Table 11: [Field_Name] Parameters

Parameter Description

Number The position of the field name to be returned. Required unless -Count is
specified.

-Count Returns the number of fields in the current table.

-Type Returns the type of the field rather than the name. Types include Text, Number,
Image, Date/Time, Boolean, or Unknown. Requires that a number parameter be
specified.

-Protection Returns the protection status of the field rather than the name. Protection
statuses include None or Read Only. Requires that a number parameter be
specified.

To return information about the fields in a table:

The following example demonstrates how to return information about the fields in a table using the
[Inline] ... [/Inline] tags to perform a -Show action. [Loop] ... [/Loop] tags loop through the number of fields

in the table and the name, type, and protection status of each field is returned. The fields within the
Contacts Web table are shown. A -Username and -Password may be required if the database and table are only
available to certain Lasso users.

[Inline: -Show,
-Database='Contacts’,
-Table='People’,
-KeyField="ID']
[Loop: (Field_Name: -Count)]

[Loop_Count]: [Field_Name: (Loop_Count)]
([Field_Name: (Loop_Count), -Type], [Field_Name: (Loop_Count), -Protection])
[/Loop]
[/Inline]

=»
1: Creation Date (Date, None)

2: ID (Number, Read Only)

3: First_Name (Text, None)

4: Last_Name (Text, None)

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 7 — DATABASE INTERACTION FUNDAMENTALS 107

To list all the required fields within a table:

The [Required_Field] tag accepts a number of optional parameters which allow information about the tags in
the current table to be returned. These parameters are detailed in Table 11: [Required_Field] Parameters.

Table 12: [Required_Field] Parameters

Parameter Description

Number The position of the field name to be returned. Required unless -Count is
specified.

-Count Returns the number of required fields in the current table.

The [Required_Field] substitution tag can be used to return a list of all required fields for the current action. A
-Show action is used to retrieve the information from the database and then [Loop] ... [/Loop] tags are used to
loop through all the required fields. In the example that follows the People table of the Contacts database has
only one required field, the primary key field ID.

[Inline: -Show,
-Database="'Contacts',
-Table='People’]
[Loop: (Required_Field: -Count)]

[Required_Field: (Loop_Count)]
[/Loop]
[/Inling]

=»
ID

Inline Hosts

Lasso provides two different methods to specify the data source which should execute an inline database
action. The connection characteristics for the data source host can be specified entirely within the inline or
the connection characteristics can be specified within Lasso Site Administration and then looked up based on
what -Database is specified within the inline.

Each of the methods is described in more detail below including when one method may be preferable to the
other method and drawbacks of each method. The database method is used throughout most of the examples
in this documentation.

Database Method

When Lasso executes an inline it performs several tasks. First, if the inline contains a -Username and -Password
then they are used to authenticate against the users which have been defined in Lasso Security. Second, if the
inline contains a -Database then it is used to look up what host and data source should be used to service the
inline. Third, the inline action is checked against Lasso security based on the permissions of the current user.
The permissions can depend on both the -Database and -Table. The -Table is additionally used to look up what
encoding should be used for the results of the database action. Finally, the action is issued against the speci-
fied data source for processing and the results are returned.

If an inline does not have a specified -Username and -Password then it inherits the authentication of the
surrounding inline or the page as a whole. If an inline does not have a specified -Database then it inherits the
-Database (and -Table and -KeyField) from the surrounding inline.

* Advantages - When using the database method, all of the connection characteristics for the data source
host are defined in Lasso Site Administration. This makes it easy to change the characteristics of a host, and
even move databases from one host to another, without modifying any LassoScript code. Lasso’s built-in
security system is used to vette all database actions before they occur. This ensures that security is handled
within Lasso rather than relying on the data source host to be set up properly.

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 7 — DATABASE INTERACTION FUNDAMENTALS 108

¢ Disadvantages - Setting up a new data source when using the database method requires visiting Lasso
Site Administration and configuring Lasso security. This helps promote good security practices, but can be
an impediment when working on simple Web sites or when quickly mocking up solutions. In addition,
having part of the set up for a Web site in Lasso Site Administration means that Lasso must be configured
properly in order to deploy a solution. It is sometimes desirable to have all of the configuration of a solu-
tion contained within the code files of the solution itself.

Inline Host Method

With the inline host method all of the characteristics of the data source host which will be used to process
the inline database action are specified directly within the inline. Lasso security is not checked when the
inline host method is used.

e Advantages - Data source hosts can be quickly specified directly within an inline. No need to visit Lasso
Site Administration to set up a new data source host. Reduced overhead since Lasso’s security settings don't
need to be checked.

¢ Disadvantages - The username and password for the host must be embedded within the Lasso code.
Switching data source hosts can be more difficult if inline hosts have been hard coded. Lasso does not
provide any security for what actions can be performed on the data source. Any desired security settings
must be configured directly within the data source itself.

Inline hosts are specified using a -Host parameter within the inline. The value for the parameter is an array
that specifies the connection characteristics for the inline host. The following example shows an inline host
for the MySQL data source connector which connects to localhost using a username of Root.

Inline:
-Host=(Array: -Datasource="mysqlds', -Name='"localhost', -Username="root'),
-SQL="SHOW DATABASES';
Records_Array;
{Inline;

The following table lists all of the parameters that can be specified within the -Host array. Some data sources
may required just that the -Datasource be specified, but most data sources will require -Datasource, -Name,
-Username, and -Password.

The -Host parameter can also take a value of inherit which specifies that the -Host from the surrounding inline
should be used. This is necessary when specifying a -Database within nested inlines to prevent Lasso from
looking up the database as it would using the database method.

Table 13: -Host Array Parameters

Parameter Description

-DataSource Required data source name. The name for each data source can be found in
Lasso Site Administration in the Setup > Data Sources > Connectors section.
Required.

-Name The IP address, DNS host name, or connection string for the data source.
Required for most data source.

-Port The port for the data source. Optional.

-Username The username for the data source connection. Required for most data sources.

-Password The password for the username. Required if a username was specified.

-Schema The schema for the data source connection. Required for some data sources .

-Extra Configuration information which may be used by some data sources. Optional.

-TableEncoding The table encoding for the data source connection. Defaults to UTF-8. Optional.

Note that the -Username and -Password specified in this -Host array are sent to the remote data source. They are
not used to authenticate against Lasso security. Consult the documentation for each data source for details
about which parameters are required, their format, and whether the -Extra parameter is used.

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 7 — DATABASE INTERACTION FUNDAMENTALS 109

Once a -Host array has been specified the rest of the parameters of the inline will work much the same as they
do in inlines which use a configured data source host. The primary differences are explained here:

¢ Nested inlines will inherit the -Host from the surrounding inline if they are specified with -Host='inherit' or if
they do not contain a -Database parameter.

¢ Nested inlines which have a -Database parameter and no -Host parameter will use the -Database parameter to
look up the data source host.

e Nested inlines can specify a different -Host parameter than the surrounding inline. Lasso can handle arbi-
trarily nested inlines each of which use a different host.

e The parameters -Database, -Table, -KeyField (or -Key), and -Schema may be required depending on the database
action. Inline actions such as -Search, -FindAll, -Add, -Update, -Delete, etc. require that the database, table, and
keyfield be specified just as they would need to be in any inline.

® Some SQL statements may also require that a -Database be specified. For example, in MySQL, a host-level
SQL statement like SHOW DATABASES doesn't require that a -Database be specified. A table-level SQL state-
ment like SELECT * FROM "people” won't work unless the -Database is specified in the inline. A fully qualified
SQL statement like SELECT * FROM “contacts™."people” will also work without a -Database.

SQL Statements

Lasso provides the ability to issue SQL statements directly to SQL-compliant data sources, including the
MySQL data source. SQL statements are specified within the [Inline] tag using the -SQL command tag. Many
third-party databases that support SQL statements also support the use of the -SQL command tag.

SQL inlines can be used as the primary method of database interaction in Lasso 8, or they can be used along
side standard inline actions (e.g. -Search, -Add, -Update, -Delete) where a specific SQL function is desired that
cannot be replicated using standard database commands.

For most data sources multiple SQL statements can be specified within the -SQL parameter separated by

a semi-colon. Lasso will issue all of the statements to the data source at once and will collect all of the
results into result sets. The [ResultSet_Count] tag returns the number of result sets which Lasso found. The
[ResultSet] ... [/ResultSef] tag can then be used with an integer parameter to return the results from one of the
result sets.

Important: Visitor supplied values must be encoded when they are concatenated into SQL statements. Encoding
these values ensures that no invalid characters are passed to the data source and helps to prevent SQL injection
attacks. The [Encode_SQL] tag should be used to encode values for MySQL data sources. The [Encode_SQL92] tag
should be used to encode values for other SQL-compliant data sources including JDBC data sources and SQLite.
The -Search, -Add, -Update, etc. database actions automatically perform encoding on values passed as name/value
pairs into an inline.

SQL Language Note: Documentation of SQL itself is outside the realm of this manual. Please consult the
documentation included with your data source for information on what SQL statements are supported by it.

FileMaker Note: The -SQL inline parameter is not supported for FileMaker data sources.

Table 14: SQL Inline Parameters

Tag Description

-SQL Issues one or more SQL command to a compatible data source. Multiple
commands are delimited by a semicolon. When multiple commands are used, all
will be executed, however only the last command issued will return results to the
[Inling] ... [/Inline] tags unless the [ResultSet] ... [/ResultSet] tags are used.

-Database A database in the data source in which to execute the SQL statement.

-Table A table in the database. The encoding specified for this table in Site
Administration will be used for the return value from the data source. Only
required if an encoding other than the default for the data source is necessary.

-MaxRecords The maximum number of records to return. Optional, defaults to 50.

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 7 — DATABASE INTERACTION FUNDAMENTALS 110

-SkipRecords The offset into the found set at which to start returning records. Optional, defaults
to 1.

The -Database parameter can be any database within the data source in which the SQL statement should

be executed. The -Database parameter will be used to determine the data source, table references within the
statement can include both a database name and a table name, e.g. Contacts.People in order to fetch results
from multiple tables. For example, to create a new database in MySQL, a CREATE DATABASE statement can be
executed with -Database set to Site.

The -Table parameter is optional. If specified, Lasso will use the character set established for the table in
Site Administration when it interprets the data returned by the data source. If no -Table is specified then the
default character encoding will be used.

When referencing the name of a database and table in a SQL statement (e.g. Contacts.People), only the true
file names of a database or table can be used as MySQL does not recognize Lasso aliases in a SQL command.
Lasso 8 contains two SQL helper tags that return the true file name of a SQL database or table, as shown in
Table 13: SQL Helper Tags.

Table 15: -SQL Helper Tags

Tag Description

[Database_RealName] Returns the actual name of a database from an alias. Useful for determining the
true name of a database for use with the -SQL tag.

[Table_RealName] This tag returns the actual name of a table from an alias. Useful for determining
the true name of a table for use with the -SQL tag.

[Encode_SQL] Encodes illegal characters in MySQL string literals by escaping them with

a backslash. Helps to prevent SQL injection attacks and ensures that SQL
statements only contain valid characters. This tag must be used to encode visitor-
supplied values within SQL statements for MySQL data sources.

[Encode_SQL92] Encodes illegal characters in SQL string literals by escaping them with a
backslash. Helps to prevent SQL injection attacks and ensures that SQL
statements only contain valid characters. This tag can be used to encode values
for JDBC and most other SQL-compliant data sources.

To determine the true database and table name for a SQL statement:

Use the [Database_RealName] and [Table_RealName] tags. When using the -SQL tag to issue SQL statements to a
MySQL host, only true database and tables may be used (bypassing the alias). The [Database_RealName] and

[Table_RealName] tags can be used to automatically determine the true name of a database and table, allowing
them to be used in a valid SQL statement.

[Var_Set:'Real_DB' = (Database_RealName:'Contacts_Alias')]
[Var_Set:'Real_TB' = (Table_RealName:'Contacts_Alias')]
[Inline: -Database ='Contacts_Alias', -SQL="select * from ((Var:'Real_DB') + ' + (Var:'Real _TB")

Results from a SQL statement are returned in a record set within the [Inline] ... [/Inline] tags. The results can be
read and displayed using the [Records] ... [/Records] container tags and the [Field] substitution tag. However,
many SQL statements return a synthetic record set that does not correspond to the names of the fields of the
table being operated upon. This is demonstrated in the examples that follow.

To issue a SQL statement:
Specify the SQL statement within [Inline] ... [/Inline] tags in a -SQL command tag.

¢ The following example calculates the results of a mathematical expression 1+ 2 and returns the value as
a [Field] value named Result. Note that even though this SQL statement does not reference a database, a
-Database tag is still required so Lasso knows to which data source to send the statement.

[Inline: -Database="Example', -SQL="SELECT 1+2 AS Resullt]

The result is: [Field: 'Result].
[/Inline]

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 7 — DATABASE INTERACTION FUNDAMENTALS
=»
The result is 3.

¢ The following example calculates the results of several mathematical expressions and returns them as field
values One, Two, and Three.

[Inline: -Database="Example’,
-SQL='SELECT 1+2 AS One, sin(.5) AS Two, 5%2 AS Three']

The results are: [Field: 'One’], [Field: 'Two'], and [Field: Three'].
[/Inling]

=»
The results are 3, 0.579426, and 1.

¢ The following example calculates the results of several mathematical expressions using Lasso and
returns them as field values One, Two, and Three. It demonstrate how the results of Lasso expressions and
substitution tags can be used in a SQL statement.

[Inline: -Database="Example',
-SQL="SELECT '+ (1+2) + ' AS One, ' + (Math_Sin: .5) +
"AS Two, ' + (Math_Mod: 5, 2) + ' AS Three']

The results are: [Field: 'One, [Field: 'Two'], and [Field: 'Three'.
[/Inline]

=»
The results are 3, 0.579426, and 1.

¢ The following example returns records from the Phone_Book table where First_Name is equal to John. This is
equivalent to a -Search using Lasso.

[Inline: -Database="Example’,

-SQL='SELECT * FROM Phone_Book WHERE First_Name = \'John\"]
[Records]

[Field: 'First_Name'"] [Field: 'Last_Name']
[/Records]
[/Inling]

=»
John Doe

John Person

To encode visitor supplied values in a SQL statement:

All visitor supplied values must be encoded before they are concatenated into a SQL statement in order to
ensure the validity of the SQL statement and to prevent SQL injection. Values from the [Action_Param], [Cookie],
[Field], and [Token_Value] tags should be encoded as well as values from any calculations which rely on these
tags. The [Encode_SQL] tag should be used to encode values within SQL statements for MySQL data sources.

The [Encode_SQL92] tag should be used to encode values for other SQL-compliant data sources including JDBC
data sources and SQLite.

¢ The following example encodes the action parameter for First_ Name using [Encode_SQL] for a MySQL data
source.

[Inline: -Database="Example’,
-SQL="SELECT * FROM Phone_Book WHERE First_Name =\" + (Encode_SQL: (Action_Param: 'First_Name')) +'\"|

[/Iﬁ.l.ine]

e The following example encodes the action parameter for First_ Name using [Encode_SQL92] for a SQLite (or
other SQL-compliant) data source.
[Inline: -Database="Example’,
-SQL="SELECT * FROM Phone_Book WHERE First_Name =\" + (Encode_SQL92: (Action_Param: 'First_Name')) + '\"]

[/Iﬁ.l.ine]

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 7 — DATABASE INTERACTION FUNDAMENTALS 112

If a value is known to be a number then the [Integer] or [Decimal] tags can be used to cast the value to the
appropriate data type instead of using an encoding tag. Also, date values which are formatted using
[Date_Format] or [Date->Format] do not generally need to be encoded since they have been parsed and refor-
matted into a known valid format.

To issue a SQL statement with multiple commands:

Specify the SQL statements within [Inline] ... [/Inline] tags in a -SQL command tag, with each SQL command
separated by a semi-colon. The following example adds three unique records to the Contacts database. Note
that all single quotes within the SQL statement have been properly escaped using the \ character, as described
at the beginning of this chapter.

[Inline: -Database="Contacts',
-SQL="INSERT INTO Contacts.People (First_Name, Last_Name) VALUES
(\JohnV', \'Jakob\’);
INSERT INTO Contacts.People (First_Name, Last_Name) VALUES
(\Tom\', \'Smith\");
INSERT INTO Contacts.People (First_Name, Last_Name) VALUES
(\'Sally\', 'Brown\')’]
[/Inline]

To automatically format the results of a SQL statement:

Use the [Field_Name] tag and [Loop] ... [/Loop] tags to create an HTML table that automatically formats the results
of a-SQL command. The -MaxRecords tag should be set to All so all records are returned rather than the default
(50).

The following example shows a REPAIR TABLE Contacts.People SQL statement being issued to a MySQL database,

and the result is automatically formatted. The statement returns a synthetic record set which shows the results
of the repair.

Notice that the database Contacts is specified explicitly within the SQL statement. Even though the database is
identified in the -Database command tag within the [Inline] tag it still must be explicitly specified in each table
reference within the SQL statement.

[Inline: -Database="Contacts',
-SQL='REPAIR TABLE Contacts.People’,
-MaxRecords="All']
<table border="1">
<tr>
[Loop: (Field_Name: -Count)]
<td>[Field_Name: (Loop_Count)]</td>
[/Loop]
<ftr>
[Records]
<tr>
[Loop: (Field_Name: -Count)]
<td>[Field: (Field_Name: Loop_Count)]</td>
[/Loop]
<ftr>
[/Records]
</table>
[/Inline]

The results are returned in a table with bold column headings. The following results show that the table did
not require any repairs. If repairs are performed then many records will be returned.

=>» TableOp Msg_Type Msg_Text
People Check Status OK

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 7 — DATABASE INTERACTION FUNDAMENTALS 113

SQL Transactions

Lasso supports the ability to perform reversible SQL transactions provided that the data source used (e.g.
MySQL 4 .x) supports this functionality. See your data source documentation to see if transactions are
supported.

FileMaker Note: SQL transactions are not supported for FileMaker Pro data sources.

SQL transactions can be achieved within nested [Inline] ... [/Inline] tags. A single connection to MySQL or JDBC
data sources will be held open from the opening [Inline] tag to the closing [/Inline] tag. Any nested inlines that
use the same data source will make use of the same connection.

Note: When using named inlines, the connection is not available in
subsequent [Records: -InlineName='Name ... [[Records] tags.

To open a transaction and commit or rollback in MySQL:

Use nested -SQL inlines, where the outer inline performs a transaction, and the inner inline commits or rolls
back the transaction depending on the results of a conditional statement.

[Inline: -Database="Contacts’, -SQL="START TRANSACTION;
INSERT INTO Contacts.People (Title, Company) VALUES (\Mr.\', \'LassoSoft\');']
[If: (Error_CurrentError) != (Error_NoError)]
[Inline: -Database="Contacts', -SQL="ROLLBACK;]
[/Inline]
[Else]
[Inline: -Database="Contacts', -SQL="COMMIT;']
[/Inline]

[/

[/Inline]

To fetch the last inserted ID in MySQL:

Used nested -SQL inlines, where the outer inline performs an insert query, and the inner inline retrieves the
ID of the last inserted record using the MySQL last_insert_id() function. Because the two inlines share the same
connection, the inner inline will always return the value added by the outer inline.

[Inline: -Database="Contacts',
-SQL='INSERT INTO People (Title, Company) VALUES (\Mr\', \'LassoSoft\');']
[Inline: -SQL="SELECT last_insert_id()
[Field: 'last_insert_id()]
[/Inling]
[/Inling]

=23

Prepared Statements

Lasso supports the ability to use prepared statements to speed up database operations provided that the
data source used (e.g. MySQL 4 .x) supports this functionality. See your data source documentation to see if
prepared statements are supported.

A prepared statement can speed up database operations by cutting down on the amount of overhead which
the data source needs to perform for each statement. For example, processing the following INSERT state-
ment requires the data source to load the people table, determine its primary key, load information about its
indexes, and determine default values for fields not listed. After the new record is inserted the indexes must
be updated. If another INSERT is performed then all of these steps are repeated from scratch.

INSERT INTO people (‘first name’, “last name’) VALUES ("John", "Doe");

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 7 — DATABASE INTERACTION FUNDAMENTALS 114

When this statement is changed into a prepared statement then the data source knows to expect multiple

executions of the statement. The data source can cache information about the table in memory and re-use
that information for each execution. The data source might also be able to defer some operations such as

finalizing index updates until after several statements have been executed.

The specific details of how prepared statements are treated are data source independent. The savings in over-
head and increase in speed may vary depending on what type of SQL statement is being issues, the size of the
table and indexes that are being used, and other factors.

The statement above can be rewritten as a prepared statement by replacing the values with question marks.
The name of the table and field list are defined just as they were in the original SQL statement. This statement
is a template into which particular values will be placed before the data source executes it.

INSERT INTO people (first name’, ‘last name’) VALUES (?, ?)

The particular values are specified as an array. Each element of the array corresponds with one question mark
from the prepared statement. To insert John Doe into the People table the following array would be used.

(Array: "John", "Doe")

Two new database actions are used to prepare statement and execute them. -Prepare is similar to -SQL, but
informs Lasso that you want to create a prepared statement. Nested inlines are then issues with an -Exec
action that gives the array of values which should be plugged into the prepared statement.

Table 16: Prepared Statements

Tag Description

-Prepare Prepares a SQL statement for multiple executions. The statement should contain
question marks in place of values that will be substitued in by the -Exec arrays.

-Exec Executes a prepared statement with specific values specified as an array. Multiple
inlines with -Exec statements should be specified immediately within the inline
with the -Prepare action.

-Database A database in the data source in which to prepare the SQL statement. Required
only for the -Prepare action.

The prepared statement and values shown above would be issued by the following inlines. The outer inline
prepares the statement and the inner inline executes it with specific values. Note that the inner inline does
not contain any -Database or -Table parameters. These are inherited from the outer inline so don't need to be
specified again.

Inline: -Database="Contacts', -Table='People’, -Prepare='INSERT INTO people (first name’, "last name’) VALUES (?, ?)';
Inline: -Exec=(Array: "John", "Doe");
{Inline;

{Inline;

If the executed statement returns any values then those results can be inspected within the inner inline. The
inline with the -Prepare action will never return any results itself, but each inline with an -Exec result may
return a result as if the full equivalent SQL statement were issued in that inline.

LAsso 8.5 LANGUAGE GUIDE

Chapter 8
Searching and
Displaying Data

This chapter documents the Lasso command tags which search for records and data within Lasso compatible
databases and display the results.

e Overview provides an introduction to the database actions described in this chapter and presents
important security considerations.

e Searching Records includes instructions for searching records within a database.
¢ Displaying Data describes the tags that can be used to display data that result from database searches.

e Linking to Data includes requirements and instructions for navigating through found sets and linking to
particular records within a database.

Overview

Lasso provides command tags for searching records within Lasso compatible databases. These command tags
are used in conjunction with additional command tags and name/value parameters in order to perform the
desired database action in a specific database and table or within a specific record.

The command tags documented in this chapter are listed in Table 1: Command Tags. The sections that
follow describe the additional command tags and name/value parameters required for each database action.

Table 1: Command Tags

Tag Description

-Search Searches for records within a database.

-FindAll Finds all records within a database.

-Random Returns a random record from a database. Only works with FileMaker Pro
databases.

How Searches are Performed

This section describes the steps that take place each time a search is performed using Lasso.
1 Lasso checks the database, table, and field name specified in the search to ensure that they are all valid.

Note: If an inline host is specified with a -Host array then step 2 is skipped since Lasso security is bypassed.

2 Lasso security is checked to ensure that the current user has permission to perform a search in the
desired database, table, and field. Filters are applied to the search criteria if they are defined within Lasso
Administration.

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 8 — SEARCHING AND DISPLAYING DATA 116

3 The search query is formatted and sent to the database application. FileMaker Pro search queries are
formatted as URLs and submitted to the Web Companion. MySQL search queries are formatted as SQL
statements and submitted directly to MySQL.

4 The database application performs the desired search and assembles a found set. The database application
is responsible for interpreting search criteria, wild cards in search strings, field operators, and logical
operators.

5 The database application sorts the found set based on sort criteria included in the search query. The
database application is responsible for determining the order of records returned to Lasso.

6 A subset of the found set is sent to Lasso as the result set. Only the number of records specified
by -MaxRecords starting at the offset specified by -SkipRecords are returned to Lasso. If any -ReturnField
command tags are included in a search then only those fields named by the -ReturnField command tags are
returned to Lasso.

7 The result set can be displayed and manipulated using Lasso tags that return information about the result
set and Lasso tags that return fields or other values.

Character Encoding
Lasso stores and retrieves data from data sources based on the preferences established in the Setup > Data
Sources section of Lasso Administration. The following rules apply for each standard data source.

Inline Host - The character encoding can be specified explicitly using a -TableEncoding parameter within the
-Host array.

MySQL - By default all communication is in the Latin-1 (ISO 8859-1) character set. This is to preserve
backwards compatibility with prior versions of Lasso. The character set can be changed to the Unicode
standard UTF-8 character set in the Setup > Data Sources > Tables section of Lasso Administration.

FileMaker Pro - By default all communication is in the MacRoman character set when Lasso Professional
is hosted on Mac OS X or in the Latin-1 (ISO 8859-1) character set when Lasso Professional is hosted on
Windows. The preference in the Setup > Data Sources > Databases section of Lasso Administration can be
used to change the character set for cross-platform communications.

JDBC - All communication with JDBC data sources is in the Unicode standard UTF-8 character set.

See the Lasso Professional 8 Setup Guide for more information about how to change the character set settings
in Lasso Administration.

Error Reporting

After a database action has been performed, Lasso reports any errors which occurred via the [Error_CurrentError]
tag. The value of this tag should be checked to ensure that the database action was successfully performed.

To display the current error code and message:
The following code can be used to display the current error message. This code should be placed in a Lasso
page which is a response to a database action or within a pair of [Inline] ... [/Inline] tags.

[Error_CurrentError: -ErrorCode]: [Error_CurrentError]

If the database action was performed successfully then the following result will be returned.

=» 0: No Error

To check for a specific error code and message:

The following example shows how to perform code to correct or report a specific error if one occurs. The
following example uses a conditional [If] ... [/If] tag to check the current error message and see if it is equal to
[Error_NoRecordsFound].

[If: (Error_CurrentError) == (Error_NoRecordsFound)]
No records were found!

[/

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 8 — SEARCHING AND DISPLAYING DATA 117

Full documentation about error tags and error codes can be found in the Error Control chapter. A list of all
Lasso error codes and messages can be found in Appendix B: Error Codes.

Classic Lasso

If Classic Lasso support has been disabled within Lasso Administration then database actions will not be
performed automatically if they are specified within HTML forms or URLs. Although the database action will
not be performed, the -Response tag will function normally. Use the following code in the response page to
the HTML forms or URL to trigger the database action.

[Inline: (Action_Params)]
[Error_CurrentError: -ErrorCode]: [Error_CurrentError]
[/Inline]

See the Database Interaction Fundamentals chapter in this guide and the Setting Site Preferences chapter
in the Lasso Professional 8 Setup Guide for more information.

Note: The use of Classic Lasso has been deprecated. All solutions should be transitioned over to the
[Inling] ... [Inline] tag based methods described in this chapter.

Security

Lasso has a robust internal security system that can be used to restrict access to database actions or to allow
only specific users to perform database actions. If a database action is attempted when the current visitor has
insufficient permissions then they will be prompted for a username and password. An error will be returned
if the visitor does not enter a valid username and password.

Note: If an inline host is specified with a -Host array then Lasso security is bypassed.

An [Inline] ... [/Inline] can be specified to execute with the permissions of a specific user by specifying -Username
and -Password command tags within the [Inline] tag. This allows the database action to be performed even
though the current site visitor does not necessarily have permissions to perform the database action. In
essence, a valid username and password are embedded into the Lasso page.

Table 2: Security Command Tags

Tag Description

-Username Specifies the username from Lasso Security which should be used to execute the
database action.

-Password Specifies the password which corresponds to the username.

To specify a username and password in an [Inline]:

The following example shows a -FindAll action performed within an [Inline] tag using the permissions granted
for username SiteAdmin with password Secret.

[Inline: -FindAll,
-Database='Contacts',
-Table='People’,
-Username='SiteAdmin’,
-Password="Secret']

[Error_CurrentError: -ErrorCode]: [Error_CurrentError]

[/Inline]

A specified username and password is only valid for the [Inline] ... [/Inline] tags in which it is specified. It is not
valid within any nested [Inline] ... [/Inline] tags. See the Setting Up Security chapter of the Lasso Professional 8
Setup Guide for additional important information regarding embedding usernames and passwords into [Inline]
tags.

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 8 — SEARCHING AND DISPLAYING DATA 118

Searching Records

Searches can be performed within any Lasso compatible database using the -Search command tag. The -Search
command tag is specified within [Inline] ... [/Inline] tags. The -Search command tag requires that a number of
additional command tags be defined in order to perform the search. The required command tags are detailed
in Table 3: -Search Action Requirements.

Note: If Classic Lasso syntax is enabled then the -Search command tag can also be used within HTML forms or
URLs. The use of Classic Lasso syntax has been deprecated so solutions which rely on it should be updated to
use the inline methods described in this chapter.

Additional command tags are described in Table 4: Operator Command Tags and Table 6: Results
Command Tags in the sections that follow.

Table 3: -Search Action Requirements

Tag Description

-Search The action which is to be performed. Required.

-Database The database which should be searched. Required.

-Table The table from the specified database which should be searched. Required.

-KeyField The name of the field which holds the primary key for the specified table.
Recommended.

-KeyValue The particular value for the primary key of the record which should be returned.

Using -KeyValue overrides all the other search parameters and returns the single
record specified. Optional.

Name/Value Parameters A variable number of name/value parameters specify the query which will be
performed.
-Host Optional inline host array. See the section on Inline Hosts in the Database

Interaction Fundamentals chapter for more information.

Any name/value parameters included in the search action will be used to define the query that is performed
in the specified table. All name/value parameters must reference a field within the database. Any fields which
are not referenced will be ignored for the purposes of the search.

To search a database using [Inline] ... [/Inline] tags:

The following example shows how to search a database by specifying the required command tags within an
opening [Inline] tag. -Database is set to Contacts, -Table is set to People, and -KeyField is set to ID. The search returns
records which contain John with the field First_Name.

The results of the search are displayed to the visitor inside the [Inline] ... [/Inline] tags. The tags inside the
[Records] ... [/Records] tags will repeat for each record in the found set. The [Field] tags will display the value for
the specified field from the current record being shown.

[Inline: -Search,
-Database="Contacts',
-Table='People’,
-KeyField="ID",
'First_Name'='John']

[Records]

[Field: 'First_Name'] [Field: 'Last_Name']
[/Records]

[/Inline]

If the search was successful then the following results will be returned.

=»
John Person

John Doe

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 8 — SEARCHING AND DISPLAYING DATA 119

Additional name/value parameters and command tags can be used to generate more complex searches. These
techniques are documented in the following section on Operators.

To search a database using visitor-defined values:

The following example shows how to search a database by specifying the required command tags within an
opening [Inline] tag, but allow a site visitor to specify the search criteria in an HTML form.

The visitor is presented with an HTML form in the Lasso page default.lasso. The HTML form contains two
text inputs for First_Name and Last_Name and a submit button. The action of the form is the response page
response.lasso which contains the [Inline] ... [/Inline] tags that will perform the search. The contents of the
default.lasso file include the following.

<form action="response.lasso" method="POST">

First Name: <input type="text" name="First_Name" value="">

Last Name: <input type="text" name="Last_Name" value="">

<input type="submit" name="-Nothing" value="Search Database">
</form>

The search is performed and the results of the search are displayed to the visitor inside the [Inline] ... [/Inline] tags
in response.lasso. The values entered by the visitor in the HTML form in default.lasso are inserted into the [Inline]
tag using the [Action_Param] tag. The tags inside the [Records] ... [[Records] tags will repeat for each record in the
found set. The [Field] tags will display the value for the specified field from the current record being shown.
The contents of the response.lasso file include the following.

[Inline: -Search,
-Database="Contacts',
-Table='People’,
-KeyField='ID',
'First_Name'=(Action_Param: 'First_Name'),
'Last_Name'=(Action_Param: 'Last_Name')]

[Records]

[Field: 'First_Name'] [Field: 'Last_Name']
[/Records]

[/Inling]

If the visitor entered John for First_ Name and Person for Last_Name then the following result would be returned.

=»
John Person

Operators

Lasso includes a set of command tags that allow operators to be used to create complex database queries.
These command tags are summarized in Table 4: Operator Command Tags.

Table 4: Operator Command Tags

Tag Description

-OperatorLogical Specifies the logical operator for the search. Abbreviation is -OpLogical. Defaults
to and.

-Operator When specified before a name/value parameter, establishes the search operator

for that name/value parameter. Abbreviation is -Op. Defaults to bw. See below for
a full list of field operators. Operators can also be written as -BW, -EW, -CN, etc.

-OperatorBegin Specifies the logical operator for all search parameters until -OperatorEnd is
reached. Abbreviation is -OpBegin.

-OperatorEnd Specifies the end of a logical operator grouping started with -OperatorBegin.
Abbreviation is -OpEnd.

The operator command tags are divided into two categories.

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 8 — SEARCHING AND DISPLAYING DATA 120

¢ Field Operators are specified using the -Operator command tag before a name/value parameter. The field
operator changes the way that the named field is searched for the value. If no field operator is specified
then the default begins with bw operator is used. See Table 5: Field Operators for a list of the possible
values for this tag. Field operators can also be abbreviated as -BW, -EW, -CN, etc.

¢ Logical Operators are specified using the -OperatorLogical, -OperatorBegin, and -OperatorEnd tags. These tags
specify how the results of different name/value parameters are combined to form the full results of the
search.

Field Operators

The possible values for the -Operator command tag are listed in Table 5: Field Operators. The default operator
is begins with bw. Case is unimportant when specifying operators.

Field operators are interpreted differently depending on which data source is being accessed. For example,
FileMaker Pro interprets bw to mean that any word within a field can begin with the value specified for that
field. MySQL interprets bw to mean that the first word within the field must begin with the value specified.
See the chapters on each data source or the documentation that came with a third-party data source
connector for more information.

Several of the field operators are only supported in MySQL or other SQL databases. These include the ft full
text operator and the rx nrx regular expression operators.

Table 5: Field Operators

Operator Description

-Op="bw' or -BW Begins With. Default if no operator is set.

-Op='cn' or -CN Contains.

-Op="ew' or -EW Ends With.

-Op="eq' or -EQ Equals.

-Op="t' or -FT Full Text. MySQL databases only.

-Op='gt' or -GT Greater Than.

-Op='gte' or -GTE Greater Than or Equals.

-Op='It' or -LT Less Than.

Op='lte' or -LTE Less Than or Equals.

-Op="neq' or -NEQ Not Equals.

-Op="rx' or -RX RegExp. Regular expression search. SQL databases only.
-Op="nrx" or -NRX Not RegExp. Opposite of RegExp. SQL databases only.

Note: In previous versions of Lasso the field operators could be specified using either a short form, e.g. bw or
a long form, e.g. Begins With. In Lasso Professional 8 only the short form is preferred. Use of the long form is
deprecated. It is supported in this version, but may not work in future versions of Lasso Professional.

To specify a field operator in an [Inline] tag:

Specify the field operator before the name/value parameter which it will affect. The following [Inline] ... [/Inline]
tags search for records where the First_Name begins with J and the Last_Name ends with son.

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 8 — SEARCHING AND DISPLAYING DATA 121

[Inline: -Search,
-Database="Contacts',
-Table='People’,
-KeyField='ID",
-Operator="bw', 'First_Name'="J',
-Operator="ew', 'Last_Name'="son’]
[Records]

[Field: 'First_Name'] [Field: 'Last_Name']
[/Records]
[/Inling]

The results of the search would include the following records.

=»
John Person

Jane Person

Logical Operators

The logical operator command tag -OperatorLogical can be used with a value of either AND or OR. The command
tags -OperatorBegin, and -OperatorEnd can be used with values of AND, OR, or NOT. -OperatorLogical applies to all
search parameters specified with an action . -OperatorBegin applies to all search parameters until the matching
-OperatorEnd tag is reached. The case of the value is unimportant when specifying a logical operator.

e AND specifies that records which are returned should fulfil all of the search parameters listed.
* OR specifies that records which are returned should fulfil one or more of the search parameters listed.

e NOT specifies that records which match the search criteria contained between the -OperatorBegin and
-OperatorEnd tags should be omitted from the found set. NOT cannot be used with the -OperatorLogical tag.

Note: In lieu of a NOT option for -OperatorLogical, many field operators can be negated individually by
substituting the opposite field operator. The following pairs of field operators are the opposites of each
other: eq and neq, It and gte, gt and Ite.

FileMaker Note: The -OperatorBegin and -OperatorEnd tags do not work with Lasso Connector for FileMaker Pro.

To perform a search using an AND operator:

Use the -OperatorLogical command tag with an AND value. The following [Inline] ... [/Inline] tags return records
for which the First_Name field begins with John and the Last_Name field begins with Doe. The position of the
-OperatorLogical command tag within the [Inline] tag is unimportant since it applies to the entire action.

[Inline: -Search,
-Database="Contacts',
-Table='People’,
-KeyField='ID',
-OperatorLogical="AND",
'First_Name'="John’,
'Last_Name'='Doe’]

[Records]

[Field: 'First_Name'] [Field: 'Last_Name']
[/Records]
[/Inline]

To perform a search using an OR operator:

Use the -OperatorLogical command tag with an OR value. The following [Inline] ... [/Inline] tags return records for
which the First_Name field begins with either John or Jane. The position of the -OperatorLogical command tag
within the [Inline] tag is unimportant since it applies to the entire action.

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 8 — SEARCHING AND DISPLAYING DATA 122

[Inline: -Search,
-Database="Contacts',
-Table='People’,
-KeyField='ID",
-OperatorLogical="OR’,
'First_Name'='John’,
'First_Name'='Jane']

[Records]

[Field: 'First_Name'] [Field: 'Last_Name']
[/Records]
[/Inling]

To perform a search using a NOT operator:

Use the -OperatorBegin and -OperatorEnd command tags with a NOT value. The following [Inline] ... [/Inline] tags
return records for which the First_Name field begins with John and the Last_Name field is not Doe. The operators
tags must surround the parameters of the search which are to be negated.

[Inline: -Search,
-Database="Contacts',
-Table='People’,
-KeyField='ID',
'First_Name'='John’,
-OperatorBegin='NOT',

‘Last_Name'='Doe’,
-OperatorEnd="NOT']
[Records]

[Field: 'First_Name'] [Field: 'Last_Name']
[/Records]
[/Inling]

To perform a search with a complex query:

Use the -OperatorBegin and -OperatorEnd tags to build up a complex query. As an example, a query can be
constructed to find records in a database whose First_Name and Last_Name both begin with the same letter J, or
M. The desired query could be written in pseudo-code as follows.

((First_Name begins with J) AND (Last_Name begins with J)) OR
((First_Name begins with M) AND (Last_Name begins with M))

The pseudo code is translated into a URL as follows. Each line of the query becomes a pair of
-OpBegin=AND and -OpEnd=AND tags with a name/value parameter for First_Name and Last_Name contained
inside. The two lines are then combined using a pair of -OpBegin=OR and -OpEnd=OR tags. The nesting of the

command tags works like the nesting of parentheses in the pseudo code above to clarify how Lasso should
combine the results of different name/value parameters.

<a href="Iresponse.lasso?-Search&
-Database=Contacts&
-Table=People&
-KeyField=ID&
-OpBegin=0OR&
-OpBegin=AND&
First_Name=J&
Last_Name=J&
-OpEnd=AND&
-OpBegin=AND&
First_Name=M&
Last_Name=M&
-OpEnd=AND&
-OpEnd=0OR">
First Name and Last Name both begin with J or M
<[a>

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 8 — SEARCHING AND DISPLAYING DATA 123

The following results might be returned when this link is selected.

=»
Johnny Johnson

Jimmy James

Mark McPerson

Results

Lasso includes a set of command tags that allow the results of a search to be customized. These command
tags do not change the found set of records that are returned from the search, but they do change the data
that is returned to Lasso for formatting and display to the visitor. The results command tags are summarized
in Table 6: Results Command Tags.

Table 6: Results Command Tags

Tag Description

-Distinct Specifies that only records with distinct values in all returned fields should be
returned. MySQL databases only.

-MaxRecords Specifies how many records should be shown from the found set. Optional,
defaults to 50.

-SkipRecords Specifies an offset into the found set at which records should start being shown.
Optional, defaults to 1.

-ReturnField Specifies a field that should be returned in the results of the search. Multiple

-ReturnField tags can be used to return multiple fields. Optional, defaults to
returning all fields in the searched table.

-SortField Specifies that the results should be sorted based on the data in the named field.
Multiple -SortField tags can be used for complex sorts. Optional, defaults to
returning data in the order it appears in the database.

-SortOrder When specified after a -SortField parameter, specifies the order of the sort,
either ascending, descending or custom. Optional, defaults to ascending for each
-SortField.

-SortRandom Sorts the returned results randomly. MySQL databases only.

-UseLimit Specifies that a MySQL LIMIT should be used instead of Lasso's built-in tools for
limiting the found set. MySQL databases only.

-NoValueLists Specifies that value lists should not be fetched with the results. This applies

to FileMaker Server data sources and may apply to others as well. Check the
chapters on each data source for details.

The results command tags are divided into three categories.

e Sorting is specified using the -SortField and -SortOrder command tags. These tags change the order of the
records which are returned by the search. The sort is performed by the database application before Lasso
receives the record set.

The -SortRandom tag can be used to perform a random sort on the found set from MySQL databases. Note
that the sort will be random each time a set of records is returned so -MaxRecords and -SkipRecords cannot be
used to navigate a found set that is sorted randomly.

¢ The portion of the Found Set being shown is specified using the -MaxRecords and -SkipRecords tags.
-MaxRecords sets the number of records which will be shown between the [Records] ... [[Records] tags that
format the results for the visitor. The -SkipRecords tag sets the offset into the found set which is shown.
These two tags define the window of records which are shown and can be used to navigate through a found
set.
The -UseLimit tag instructs MySQL data sources to use a SQL LIMIT tag to restrict the found set based on the

values of the -MaxRecords and -SkipRecords tags. This may increase performance when many records are being
found, but -MaxRecords is set to a low value.

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 8 — SEARCHING AND DISPLAYING DATA 124

¢ The Fields which are available are specified using the -ReturnField tag. Normally, all fields in the table that
was searched are returned. If any -ReturnField tags are specified then only those fields will be available to be
returned to the visitor using the [Field] tag. Specifying -ReturnField tags can improve the performance of Lasso
by not sending unnecessary data between the database and the Web server.

Note: In order to use the [KeyField_Value] tag within an inline the keyfield must be specified as one of the -
ReturnField values.

¢ The -Distinct tag instructs MySQL data sources to return only records which contain distinct values across
all returned fields. This tag is useful when combined with a single -ReturnField tag and a -FindAll to return all
distinct values from a single field in the database.

To return sorted results:

Specify -SortField and -SortOrder command tags within the search parameters. The following inline includes
sort command tags. The records are first sorted by Last_Name in ascending order, then sorted by First_ Name in
ascending order.

[Inline: -Search,
-Database='Contacts',
-Table='People’,
-KeyField='ID",
'First_Name'="J',
-SortField="Last_Name', -SortOrder="Ascending’,
-SortField="First_Name', -SortOrder="Ascending']
[Records]

[Field: 'First_Name'] [Field: 'Last_Name']
[/Records]
[/Inline]

The following results could be returned when this inline is run. The returned records are sorted in order of
Last_Name. If the Last_Name of two records are equal then those records are sorted in order of First_Name.

=»
Jane Doe

John Doe

Jane Person

John Person

To return a portion of a found set:

A portion of a found set can be returned by manipulating the values for -MaxRecords and -SkipRecords. In the
following example, a search is performed for records where the First_Name begins with J. This search returns
four records, but only the second two records are shown. -MaxRecords is set to 2 to show only two records and
-SkipRecords is set to 2 to skip the first two records.

[Inline: -Search,
-Database="Contacts',
-Table='People’,
-KeyField='ID",
'First_Name'='J',
-MaxRecords=2,
-SkipRecords=2]

[Records]

[Field: 'First_Name']
[/Records]
[/Inline]

The following results could be returned when this inline is run. Neither of the Doe records from the
previous example are shown since they are skipped over.

=»
Jane Person

John Person

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 8 — SEARCHING AND DISPLAYING DATA 125

To limit the fields returned in search results:

Use the -ReturnField command tag. If a single -ReturnField command tag is used then only the fields that are
specified will be returned. If no -ReturnField command tags are specified then all fields within the current table
will be shown. In the following example, only the First_Name field is shown since it is the only field specified
within a -ReturnField command tag.

[Inline: -Search,
-Database='Contacts',
-Table='People’,
-KeyField="ID",
'First_Name'="J,
-ReturnField="First_Name]

[Records]

[Field: 'First_Name']
[/Records]
[/Inline]

The following results could be returned when this link is selected. The Last_Name field cannot be shown for
any of these records since it was not specified in a -ReturnField command tag.

=»
Jane

John

Jane

John

If [Field: 'Last_Name'] were specified inside the [Inline] ... [/Inline] tags and not specified as a -ReturnField then an
error would be returned rather than the indicated results.

Finding All Records

All records can be returned from a database using the -FindAll command tag. The -FindAll command tag
functions exactly like the -Search command tag except that no name/value parameters or operator tags are
required. Sort tags and tags which sort and limit the found set work the same as they do for -Search actions.
-FindAll actions can be specified in [Inline] ... [/Inline] tags.

Note: If Classic Lasso syntax is enabled then the -FindAll command tag can also be used within HTML forms or
URLs. The use of Classic Lasso syntax has been deprecated so solutions which rely on it should be updated to

use the inline methods described in this chapter.

Table 7: -FindAll Action Requirements

Tag Description

-FindAll The action which is to be performed. Required.

-Database The database which should be searched. Required.

-Table The table from the specified database which should be searched. Required.

-KeyField The name of the field which holds the primary key for the specified table.
Recommended.

-Host Optional inline host array. See the section on Inline Hosts in the Database

Interaction Fundamentals chapter for more information.

To find all records within a database:

The following [Inline] ... [/Inline] tags find all records within a database Contacts and displays them. The results
are shown below.

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 8 — SEARCHING AND DISPLAYING DATA 126

[Inline: -FindAll,
-Database="Contacts',
-Table='People’,
-KeyField="ID']
[Records]

[Field: 'First_Name'] [Field: 'Last_Name']
[/Records]
[/Inling]

=»
Jane Doe

John Person

Jane Person

John Doe

To return all unique field values:

The unique values from a field in a MySQL database can be returned using the -Distinct tag. Only records
which have distinct values across all fields will be returned. In the following example, a -FindAll action is used
on the People table of the Contacts database. Only distinct values from the Last_Name field are returned.

[Inline: -FindAll,
-Database='Contacts',
-Table='People’,

-Distinct,
-SortField="First_Name',
-ReturnField="First_Name]
[Records]

[Field: 'First_Name']
[/Records]
[/Inline]

The following results are returned. Even though there are multiple instances of John and Jane in the
database, only one record for each name is returned.

=»
Jane

John

Finding Random Records

A random record can be returned from a database using the -Random command tag. The -Random command
tag functions exactly like the -Search command tag except that no name/value parameters or operator tags are
required. -Random actions can be specified in [Inline] ... [/Inline] tags.

Note: If Classic Lasso syntax is enabled then the -Random command tag can also be used within HTML forms or
URLs. The use of Classic Lasso syntax has been deprecated so solutions which rely on it should be updated to
use the inline methods described in this chapter.

Table 8: -Random Action Requirements

Tag Description

-Random The action which is to be performed. Required.

-Database The database which should be searched. Required.

-Table The table from the specified database which should be searched. Required.

-KeyField The name of the field which holds the primary key for the specified table.
Recommended.

-Host Optional inline host array. See the section on Inline Hosts in the Database

Interaction Fundamentals chapter for more information.

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 8 — SEARCHING AND DISPLAYING DATA 127

To find a single random record from a database:

The following inline finds a single random record from a FileMaker Pro database Contacts.fp3 and displays it.
-MaxRecords is set to 1 to ensure that only a single record is shown. One potential result is shown below. Each
time this inline is run a different record will be returned.

[Inline: -Random,
-Database='Contacts’,
-Table='People’,
-KeyField='ID',
-MaxRecords=1]
[Records]

[Field: 'First_Name'] [Field: 'Last_Name']
[/Records]
[/Inline]

=»
Jane Person

To return multiple records sorted in random order:

The -SortRandom tag can be used with the -Search or -FindAll actions to return many records from a MySQL
database sorted in random order. In the following example, all records from the People table of the
Contacts database are returned in random order.

[Inline: -FindAll,
-Database='Contacts’,
-Table='People’,
-KeyField='ID",
-SortRandom]
[Records]

[Field: 'First_Name'] [Field: 'Last_Name']
[/Records]
[/Inling]

=»
John Doe

Jane Doe

Jane Person

John Person

Displaying Data

The examples in this chapter have all relied on the [Records] ... [/Records] tags and [Field] tag to display the results
of the search that have been performed. This section describes the use of these tags in more detail.

Table 9: Field Display Tags

Tag Description

[Records] ... [/Records] Loops through each record in a found set. Optional -InlineName parameter
specifies that results should be returned from a named inline. Synonym is [Rows]
... [[Rows].

[Field] Returns the value for a database field. Requires one parameter, the field name.

Optional parameter -Recordindex specifies what record in the current found set a
field should be shown from. Synonym is [Column].

The [Field] tag always returns the value for a field from the current record when it is used within
[Records] ... [/Records] tags. If the [Field] tag is used outside of [Records] ... [/Records] tags then it returns
the value for a field from the first record in the found set. If the found set is only one record then the
[Records] ... [/Records] tags are optional.

FileMaker Note: Lasso Connector for FileMaker Pro includes a collection of FileMaker Pro specific tags which
return database results. See the FileMaker Pro Data Sources chapter for more information.

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 8 — SEARCHING AND DISPLAYING DATA 128

To display the results from a search:

Use the [Records] ... [[Records] tags and [Field] tag to display the results of a search. The following [Inline] ... [/Inline]
tags perform a -FindAll action in a database Contacts. The results are returned each formatted on a line by itself.
The [Loop_Count] tag is used to indicate the order within the found set.

[Inline: -FindAll,
-Database='Contacts’,
-Table='People’,
-KeyField="ID']
[Records]

[Loop_Count]: [Field: 'First_Name'] [Field: 'Last_Name']
[/Records]
[/Inline]

=»
1: Jane Doe

2: John Person

3: Jane Person

4: John Doe

To display the results for a single record:

Use [Field] tags within the contents of the [Inline] ... [/Inline] tags. The [Records] ... [[Records] tags are unnecessary if
only a single record is returned. The following [Inline] ... [/Inline] tags perform a -Search for a single record whose
primary key ID equals 1. The [KeyField_Value] is shown along with the [Field] values for the record.

[Inline: -Search,
-Database="Contacts',
-Table='People',
-KeyField='ID",
-KeyValue=1]

[KeyField_Value]: [Field: 'First_Name'] [Field: 'Last_Name']
[/Inling]

=»
1: Jane Doe

To display the results from a named inline:

Use the -InlineName parameter in both the opening [Inline] tag and in the opening [Records] tag. The

[Records] ... [[Records] tags can be located anywhere in the page after the [Inline] ... [/Inline] tags that define the
database action. The following example shows a -FindAll action at the top of a page in a LassoScript with the
results formatted later.

<?LassoScript
Inline: -FindAll,
-Database="Contacts',
-Table='People’,
-KeyField='ID",
-InlineName="FindAll Results";

{Inline;
o

... Page Contents ...

[Records: -InlineName="FindAll Results']

[Loop_Count]: [Field: 'First_Name'] [Field: 'Last_Name']
[/Records]

=»
1: Jane Doe

2: John Person

3: Jane Person

4: John Doe

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 8 — SEARCHING AND DISPLAYING DATA 129

To display the results from a search out of order:

The -Recordindex parameter of the [Field] tag can be used to show results out of order. Instead of using
[Records] ... [/[Records] tags to loop through a found set, the following example uses [Loop] ... [/Loop] tags to loop
down through the found set from [MaxRecords_Value] to 1. The [Field] tags all reference the [Loop_Count] in their
-Recordindex parameter.

[Inline: -FindAll,
-Database='Contacts’,
-Table='People’,
-KeyField="1D"]
[Loop: -LoopFrom=(MaxRecords_Value), -LoopTo=1, -LoopIncrement=-1]

[Loop_Count]: [Field: 'First_Name', -Recordindex=(Loop_Count)]
[Field: 'Last_Name', -RecordIndex=(Loop_Count)]
[/Loop]
[/Inline]

=»
4: John Doe

3: Jane Person

2: John Person

1: Jane Doe

Linking to Data

This section describes how to create links which allow a visitor to manipulate the found set. The following
types of links can be created.

¢ Navigation - Links can be created which allow a visitor to page through a found set. Only a portion of the
found set needs to be shown, but the entire found set can be accessed.

e Detail - Links can be created which allow detail about a particular record to be shown in another Lasso
page.
¢ Sorting - Links can be provided to re-sort the current found set on a different field.

Note: If Classic Lasso syntax is enabled then the links tags can be used to trigger actions using command tags
embedded in URLs. The use of Classic Lasso syntax has been deprecated so solutions which rely on it should be

updated to use the inline methods described in this chapter.

Most of the link techniques implicitly assume that the records within the database are not going to change
while the visitor is navigating through the found set. The database search is actually performed again for
every page served to a visitor and if the number of results change then the records being shown to the visitor
can be shifted or altered as soon as another link is selected.

Link Tags

Lasso 8 includes many tags which make creating detail links and navigation links easy within Lasso solutions.
The general purpose link tags are specified in Table 10: Link Tags. The common parameters for all link tags
are specified in Table 11: Link Tag Parameters.

The remainder of the chapter lists and demonstrates the link URL, container, and parameter tags. Tags which
generate URLs for links automatically are listed in Table 12: Link URL Tags. Container tags which generate
entire HTML anchor tags <a> automatically are listed in Table 13: Link Container Tags. Tags which provide
parameter arrays for each link option are listed in Table 14: Link Parameter Tags.

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 8 — SEARCHING AND DISPLAYING DATA 130

Table 10: Link Tags

Tag Description

[Link] ... [/Link] General purpose link tag that provides an anchor tag with the specified
parameters. The -Response parameter is used as the URL for the link.

[Link_Params] General purpose link tag that processes a set of parameters using the common
rules for all link tags.

[Link_SetFormat] Sets a standard set of options that will be used for all link tags that follow in the

current Lasso page.

[Link_URL] General purpose link tag that provides a URL based on the specified parameters.
The -Response parameter is used as the URL for the link.

Each of the general purpose link tags implement the basic behavior of all the link tags, but are not usually
used on their own. The section on Link Tag Parameters below describes the common parameters that all link
tags interpret. The following sections include the link URL, container, and parameter tags and examples of
their use.

Note: The [Link_...] tags do not include values for the -SQL, -Username, -Password or the -ReturnField tags in the links
they generate.

Link Tag Parameters

All of the link tags accept the same parameters which allow the link that is being formed to be customized.
These parameters include all the command tags which can be passed to the opening [Inline] tag and a series
of parameters detailed in Table 11: Link Tag Parameters which allow various command tags to be removed
from the generated link tags.

The link tags interpret their parameters as follows.

¢ The parameters are processed in the order they are specified within the link tag. Later parameters override
earlier parameters.

Most link tags process [Action_Params] first, then any parameters specified in [Link_SetFormat], and finally
the parameters specified within the link tag itself. The general purpose link tags do not include [Action_
Params] automatically.

Parameters of type array are inserted into the parameters as if each item of the array was specified in order
at the location of the array.

Many command tags will only be included once in the resulting link. These include -Database, -Table,
-KeyField, -MaxRecords, and any other command tags that can only be specified once within an inline. The
last value for the command tag will be included in the resulting link.

Only one action such as -Search, -FindAll, or -Nothing will be included in the resulting link. The last action
specified in the link tag will be used.

Command tags such as -Required, -Op, -OpBegin, -OpEnd, -SortField, -SortOrder, and -Token will be included in
the order they are specified within the tag.

The resulting link will consist of the action followed by all command tags specified once in alphabetical
order, and finally all name/value parameters and command tags that are specified multiple times in the
same order they were specified in the parameters.

e All -No... parameters are interpreted at the location they occur in the parameters. If a -NoDatabase parameter
is specified early in the parameter list and a -Database command tag is included later then the -Database
command tag will be included in the resulting link.

¢ The -NoClassic parameter removes all command tags that are not essential to specifying the search and
location in the found set to an [Inline] tag. The -Database, -Table, -KeyField, and action are all removed. All
name/value parameters, -Sort... tags, -Op tags, and either -MaxRecords and -SkipRecords or -KeyValue are
included.

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 8 — SEARCHING AND DISPLAYING DATA 131

e The value of the -Response command tag will be used as the URL for the resulting link. The link tags always
link to a response file on the same server they are called. If not specified the -Response will be the same as
[Response_FilePath].

e The -SQL, -Username, -Password, and -ReturnField tags are never returned by the link tags.

Note: The [Referrer] and [Referrer_URL] tags are special cases which simply return the referrer specified in the HTTP
request header. They do not accept any parameters.

Table 11: Link Tag Parameters

Tag Description

Command Tag Inserts the specified command tag. Either appends the command tag or overrides
an existing command tag with the new value.

Name/Value Pair Inserts the specified name/value pair.

Array Parameter An array of pairs is inserted as if each name/value pair in the array was specified
in the tag parameters at the location of the array.

-NoAction Removes the action command tag.

-NoClassic Removes all parameters required to specify an action in Classic Lasso leaving
only those parameters required to specify the query and current location in the
found set.

-NoDatabase Removes the -Database command tag.

-NoTable Removes the -Table or -Layout command tag. -NoLayout is a synonym.

-NoKeyField Removes the -KeyField command tag.

-NoKeyValue Removes the -KeyValue command tag.

-NoOperatorLogical Removes the -OperatorLogical command tag.

-NoResponse Removes the -Response command tag.

-NoMaxRecords Removes the -MaxRecords command tag.

-NoSkipRecords Removes the -SkipRecords command tag.

-NoParams Removes name/value pairs, -Operator, -OperatorBegin, -OperatorEnd, and -
Required tags.

-NoSort Removes all -Sort... command tags.

-NoToken, -NoToken.Name Removes the -Token command tag. With a parameter as -NoToken.Name
removes the specified token command tag.

-NoTokens Removes all -Token... command tags.

-NoSchema Removes the -Schema command tag for JDBC data sources.

-No.Name Removes a specified name/value parameter.

-Response Specifies the file that will be used as the URL for the link tag. The link tags

always link to a file on the current server.

Link URL Tags

The tags listed in Table 12: Link URL Tags each return a URL based on the current database action. Each of
these tags accepts the same parameters as specified in Table 11: Link Tag Parameters above and corresponds
to matching container and parameter tags. Examples of the link tags are included in the Link Examples
section that follows.

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 8 — SEARCHING AND DISPLAYING DATA

Table 12: Link URL Tags

132

Tag

Description

[Link_CurrentActionURL]
[Link_FirstGroupURL]

[Link_PrevGroupURL]
[Link_NextGroupURL]
[Link_LastGroupURL]
[Link_CurrentRecordURL]
[Link_FirstRecordURL]

[Link_PrevRecordURL]

[Link_NextRecordURL]

[Link_LastRecordURL]

[Link_DetailURL]

[Referrer_URL]

Returns a link to the current Lasso action.

Returns a link to the first group of records based on the current Lasso action.
Sets -SkipRecords to 0.

Returns a link to the next group of records based on the current Lasso action.
Changes -SkipRecords.

Returns a link to the next group of records based on the current Lasso action.
Changes -SkipRecords.

Returns a link to the last group of records based on the current Lasso action.
Changes -SkipRecords.

Returns a link to the current record. Sets -MaxRecords to 1 and changes -
SkipRecords.

Returns a link to the first record based on the current Lasso action. Sets -
MaxRecords to 1 and -SkipRecords to 0.

Returns a link to the next record based on the current Lasso action. Sets -
MaxRecords to 1 and changes
-SkipRecords.

Returns a link to the next record based on the current Lasso action. Sets -
MaxRecords to 1 and changes
-SkipRecords.

Returns a link to the last record based on the current Lasso action. Sets -
MaxRecords to 1 and changes
-SkipRecords.

Returns a link to the current record using the primary key and key value.
Changes -KeyValue.

Returns a link to the previous page which the visitor was at before the current
page. [Referer_URL] is a synonym.

Note: The [Referrer_URL] tag is a special case which simply returns the referrer specified in the HTTP request
header. It does not accept any parameters.

Link Container Tags

The tags listed in Table 13: Link Container Tags each return an anchor tag based on the current database
action. The anchor tags surround the contents of the container tag. If the link tag is not valid then no result is
returned. Each of these tags accepts the same parameters as specified in Table 11: Link Tag Parameters above
and corresponds to matching URL and parameter tags. Examples of the link tags are included in the Link
Examples section that follows.

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 8 — SEARCHING AND DISPLAYING DATA

Table 13: Link Container Tags

133

Tag

Description

[Link_CurrentAction]
[Link_FirstGroup]

[Link_PrevGroup]
[Link_NextGroup]
[Link_LastGroup]
[Link_CurrentRecord]
[Link_FirstRecord]
[Link_PrevRecord]

[Link_NextRecord]

[Link_LastRecord]

[Link_Detail]

[Referrer]

Returns a link to the current Lasso action.

Returns a link to the first group of records based on the current Lasso action.
Sets -SkipRecords to 0.

Returns a link to the previous group of records based on the current Lasso
action. Changes -SkipRecords.

Returns a link to the next group of records based on the current Lasso action.
Changes -SkipRecords.

Returns a link to the last group of records based on the current Lasso action.
Changes -SkipRecords.

Returns a link to the current record. Sets -MaxRecords to 1 and changes -
SkipRecords.

Returns a link to the first record based on the current Lasso action. Sets -
MaxRecords to 1 and -SkipRecords to 0.

Returns a link to the previous record based on the current Lasso action. Sets
-MaxRecords to 1 and changes -SkipRecords.

Returns a link to the next record based on the current Lasso action. Sets -
MaxRecords to 1 and changes
-SkipRecords.

Returns a link to the last record based on the current Lasso action. Sets -
MaxRecords to 1 and changes
-SkipRecords.

Returns a link to the current record using the -KeyField and -KeyValue. Changes
-KeyValue.

Returns a link to the previous page which the visitor was at before the current
page. [Referer] is a synonym.

Note: The [Referrer] ... [[Referrer] tag is a special case which simply returns the referrer specified in the HTTP request
header. It does not accept any parameters.

Link Parameter Tags

The tags listed in Table 14: Link Parameter Tags each return an array of parameters based on the current
database action. Each of these tags accepts the same parameters as specified in Table 11: Link Tag Parameters
above and corresponds to matching container and URL tags. Examples of the link tags are included in the
Link Examples section that follows.

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 8 — SEARCHING AND DISPLAYING DATA

Table 14: Link Parameter Tags

134

Tag

Description

[Link_CurrentActionParams]

[Link_FirstGroupParams]
[Link_PrevGroupParams]
[Link_NextGroupParams]

[Link_LastGroupParams]

[Link_CurrentRecordParams]

[Link_FirstRecordParams]

[Link_PrevRecordParams]

[Link_NextRecordParams]

[Link_LastRecordParams]

[Link_DetailParams]

t

Returns a link to the current Lasso action.

Returns a link to the first group of records based on the current Lasso action.
Sets -SkipRecords to 0.

Returns a link to the previous group of records based on the current Lasso
action. Changes -SkipRecords.

Returns a link to the next group of records based on the current Lasso action.
Changes -SkipRecords.

Returns a link to the last group of records based on the current Lasso action.
Changes -SkipRecords.

Returns a link to the current record. Sets -MaxRecords to 1 and changes -
SkipRecords.

Returns a link to the first record based on the current Lasso action. Sets -
MaxRecords to 1 and -SkipRecords to 0.

Returns a link to the previous record based on the current Lasso action. Sets
-MaxRecords to 1 and changes
-SkipRecords.

Returns a link to the next record based on the current Lasso action. Sets -
MaxRecords to 1 and changes
-SkipRecords.

Returns a link to the last record based on the current Lasso action. Sets -
MaxRecords to 1 and changes
-SkipRecords.

Returns a link to the current record using the primary key and key value.
Changes -KeyValue.

Note: There is no link parameter tag equivalent to the referrer tags.

Link Examples

The basic technique for using the link tags is the same as that which was described to allow site visitors to

enter values into HTML forms and then use those values within an [Inline] ... [/Inline] action. The [Inline] tags can
have some command tags and search parameters specified explicitly, with variables, an array, [Action_Params],
or one of the link tags defining the rest.

For example, an [Inling] ... [/Inline] could be specified to find all records within a database as follows. The entire
action is specified within the opening [Inline] tag. Each time a page with the code on it is visited the action will
be performed as written.

[Inline: -FindAll,
-Database="Contacts',
-Table='People’,
-KeyField='ID",
-MaxRecords=10]

[/Inling]
The same inline can be modified so that it can accept parameters from an HTML form or URL which is

used to load the page it is on, but can still act as a standalone action. This is accomplished by adding an
[Action_Params] tag to the opening [Inline] tag.

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 8 — SEARCHING AND DISPLAYING DATA 135

[Inline: (Action_Params),
-Search,
-Database="Contacts',
-Table='People’,
-KeyField='ID",
-MaxRecords=4]

[/Inling]
Any command tags or name/value pairs in the HTML form or URL that triggers the page with this inline will
be passed into the inline through the [Action_Params] tag as if they had been typed directly into the [Inline].

However, the command tags specified directly in the [Inline] tag will override any corresponding tags from the
[Action_Params].

Since the action -Search is specified after the [Action_Params] array it will override any other action

from the array. The action of this inline will always be -Search. Similarly, all of the -Database, -Table,
-KeyField, or -MaxRecords tags will have the values specified in the [Inline] overriding any values passed in
through [Action_Params].

The various link tags can be used to generate URLs which work with the specified inline in order to change
the set of records being shown, the sort order and sort field, etc. The link tags are able to override any
command tags not specified in the opening [Inline] tag, but the basic action is always performed exactly as
specified.

Navigation Links

Navigation links are created by manipulating the value for -SkipRecords so that the visitor is shown a different
portion of the found set each time they follow a link or by setting -KeyValue to an appropriate value to show
one record in a database.

To create next and previous links:

The [Link_NextGroup] ... [/Link_NextGroup] and [Link_PrevGroup] ... [/Link_PrevGroup] tags can be used with the inline
specified above to page through a set of found records.

The [Link_SetFormat] tag is used to include a -NoClassic parameter in each link tag that follows. This ensures that
the -Database, -Table, and -KeyField are not included in the links generated by the link tags.

The full inline is shown below. It uses the [Records] ... [[Records] tags to show the people that have been found
in the database and includes next and previous links to page through the found set.

[Inline: (Action_Params),
-Search,
-Database='Contacts',
-Table='People’,
-KeyField="ID",
-MaxRecords=4]

<p>[Found_Count] records were found, showing [Shown_Count]
records from [Shown_First] to [Shown_Last].

[Records]

[Field: 'First_Name'] [Field: 'Last_Name']
[/Records]

[Link_SetFormat: -NoClassic]

[Link_PrevGroup]
Previous [MaxRecords_Value] Records [/Link_PrevGroup]

[Link_NextGroup]
Next [MaxRecords_Value] Records [/Link_NextGroup]
[/Inling]

The first time this page is loaded the first four records from the database are shown. Since this is the first
group of records in the database only the Next 4 Records link is displayed.

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 8 — SEARCHING AND DISPLAYING DATA 136

=» <p>16 records were found, showing 4 records from 1 to 4.

Jane Doe

John Person

Jane Person

John Doe

Next 4 Records

If the Next 4 Records link is selected then the same page is reloaded. The value for -SkipRecords is taken from
the link tag and passed into the opening [Inline] tag through the [Action_Params] array. The following results are
displayed. This time both the Next 4 Records and the Previous 4 Records links are displayed.

=» <p>16 records were found, showing 4 records from 5 to 8.

Jane Surname

John Last_Name

Mark Last_Name

Tom Surname

Previous 4 Records

Next 4 Records

To create first and last links:

Links to the first and last groups of records in the found set can be added using the
[Link_FirstGroup] ... [/Link_FirstGroup] and [Link_LastGroup] ... [/Link_LastGroup] tags. The following inline includes
both next/previous links and first/last links.

[Inline: (Action_Params),
-Search,
-Database="Contacts',
-Table='People’,
-KeyField='ID",
-MaxRecords=4]

<p>[Found_Count] records were found, showing [Shown_Count]
records from [Shown_First] to [Shown_Last].

[Records]

[Field: 'First_Name'] [Field: 'Last_Name']
[/Records]

[Link_SetFormat: -NoClassic]

[Link_FirstGroup]
First [MaxRecords_Value] Records [/Link_FirstGroup]

[Link_PrevGroup]
Previous [MaxRecords_Value] Records [/Link_PrevGroup]

[Link_NextGroup]
Next [MaxRecords_Value] Records [/Link_NextGroup]

[Link_LastGroup]
Last [MaxRecords_Value] Records [/Link_LastGroup]
[/Inline]

The first time this page is loaded the first four records from the database are shown. Since this is the

first group of records in the database only the Next 4 Records and Last 4 Records links are displayed. The
Previous 4 Records and First 4 Records links will automatically appear if either of these links are selected by the
visitor.

=» <p>16 records were found, showing 4 records from 1 to 4.

Jane Doe

John Person

Jane Person

John Doe

Next 4 Records

Last 4 Records

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 8 — SEARCHING AND DISPLAYING DATA 137

To create links to page through the found set:

Many Web sites include page links which allow the visitor to jump directly to any set of records within the
found set. The example -FindAll returns 16 records from Contacts so four page links would be created to jump to
the 1st, 5th, 9th, and 13th records.

A set of page links can be created using the [Link_CurrentActionURL] tag as a base and then customizing the
-SkipRecords value as needed. The following loop creates as many page links as are needed for the current
found set.

[Inline: (Action_Params),
-Search,
-Database="Contacts',
-Table='People’,
-KeyField='ID",
-MaxRecords=4]

<p>[Found_Count] records were found, showing [Shown_Count]
records from [Shown_First] to [Shown_Last].

[Records]

[Field: 'First_Name'] [Field: 'Last_Name']
[/Records]

[Link_SetFormat: -NoClassic]
[Variable: '‘Count' = 0]
[While: $Count < (Found_Count)]

Page [Loop_Count]
<[a>
[Variable: 'Count' = $Count + (MaxRecords_Value)]
[/While]

[/Inling]

The results of this code for the example -Search would be the following. There are four page links. The first is
equivalent to the First 4 Records link created above and the last is equivalent to the Last 4 Records link created
above.

=» <p>16 records were found, showing 4 records from 1 to 4.

Jane Doe

John Person

Jane Person

John Doe

Page 1

Page 2

Page 3

Page 4

Sorting Links

Sorting links are created by adding or manipulating -SortField and -SortOrder command tags. The same found
set is shown, but the order is determined by which link is selected. Often, the column headers in a table of
results from a database will represent the sort links that allow the table to be resorted by the values in that
specific column.

To create links that sort the found set:

The following code performs a -Search in an inline and formats the results as a table. The column heading
at the top of each table column is a link which re-sorts the results by the field values in that column.

The links for sorting the found set are created by specifying -NoSort and -SortField parameters to the
[Link_FirstGroup] ... [/Link_FirstGroup] tags.

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 8 — SEARCHING AND DISPLAYING DATA 138

[Inline: (Action_Params),
-Search,
-Database="Contacts',
-Table='People’,
-KeyField='ID",
-MaxRecords=4]

[Link_SetFormat: -NoClassic]
<table>
<tr>
<th>
[Link_FirstGroup: -NoSort, -SortOrder="First_Name']
First Name
[/Link_FirstGroup]
<Jth>
<th>
[Link_FirstGroup: -NoSort, -SortOrder="Last_Name']
Last Name
[/Link_FirstGroup]
<Jth>
<ftr>

[Records]
<tr>
<td>[Field: 'First_Name']</td>
<td>[Field: 'Last_Name'|l</td>
</ftr>
[/Records]

</table>
[/Inline]

Detail Links

Detail links are created in order to show data from a particular record in the database table. Usually, a listing
Lasso page will contain only limited data from each record in the found set and a detail Lasso page will
contain significantly more information about a particular record.

A link to a particular record can be created using the [Link_Detail] ... [/Link_Detail] tags to set the -KeyField and
-KeyValue fields. This method is guaranteed to return the selected record even if the database is changing while
the visitor is navigating. However, it is difficult to create next and previous links on the detail page. This
option is most suitable if the selected database record will need to be updated or deleted.

Alternately, a link to a particular record can be created using [Link_CurrentAction] ... [/Link_CurrentAction] and
setting -MaxRecords to 1. This method allows the visitor to continue navigating by records on the detail page.

To create a link to a particular record:

There are two Lasso pages involved in most detail links. The listing Lasso page default.lasso includes the
[Inling] ... [/Inline] tags that define the search for the found set. The detail Lasso page response.lasso includes the
[Inling] ... [/Inline] tags that find and display the individual record.

1 The [Inline] tag in default.lasso simply performs a -FindAll action. Each record in the result set is displayed with
a link to response.lasso created using the [Link_Detail] ... [/Link_Detail] tags.

[Inline:-FindAll,

-Database='Contacts’,
-Table='People',
-KeyField='ID',
-MaxRecords=4]

[Link_SetFormat: -NoClassic]

[Records]

[Link_Detail: -Response="response.lasso']

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 8 — SEARCHING AND DISPLAYING DATA 139

[Field: 'First_Name'] [Field: 'Last_Name']
[/Link_Detail]
[/Records]
[/Inling]

=»
Jane Doe

John Person

Jane Person

John Doe

2 The [Inline] tag on response.lasso uses [Action_Params] to pull the values from the URL generated by the link
tags. The results contain more information about the particular records than is shown in the listing. In this
case, the Phone_Number field is included as well as the First_Name and Last_Name.

[Inline:(Action_Params),
-Search,
-Database='Contacts’,
-Table='People’,
-KeyField="1D']

[Field: 'First_Name'] [Field: 'Last_Name']

[Field: 'Phone_Number'

[/I‘n.I.ine]

=»
Jane Doe

555-1212

To create a link to the current record in the found set:

There are two Lasso pages involved in most detail links. The listing Lasso page default.lasso includes

the [Inline] ... [/Inline] tags that define the search for the found set. The detail Lasso page response.lasso includes
the [Inline] ... [/Inline] tags that find and display the individual record. The [Link_CurrentAction] ... [/Link_CurrentAction]
tags are used to create a link from default.lasso to response.lasso showing a particular record.

1 The [Inline] tag on default.lasso simply performs a -FindAll action. Each record in the result set is displayed with
a link to response.lasso created using the [Link_CurrentAction] ... [/Link_CurrentAction] tag.

[Inline:-FindAll,
-Database='Contacts’,
-Table='People’,
-KeyField='ID',
-MaxRecords=4]
[Link_SetFormat: -NoClassic]
[Records]

[Link_CurrentAction: -Response="response.lasso', -MaxRecords=1]
[Field: 'First_Name'] [Field: 'Last_Name']
[/Link_CurrentAction]
[/Records]
[/Inline]

=»
Jane Doe

John Person

Jane Person

John Doe

2 The [Inline] tag in response.lasso uses [Action_Params] to pull the values from the URL generated by the link
tags. The results contain more information about the particular records than is shown in the listing. In this
case, the Phone_Number field is included as well as the First_Name and Last_Name.

The detail page can also contain links to the previous and next records in the found set. These are created
using the [Link_PrevRecord] ... [/Link_PrevRecord] and [Link_NextRecord] ... [/Link_NextRecord] tags. The visitor can
continue navigating the found set record by record.

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 8 — SEARCHING AND DISPLAYING DATA 140

[Inline:(Action_Params),
-Search,
-Database="Contacts',
-Table='People’,
-KeyField="ID']

[Field: 'First_Name'] [Field: 'Last_Name']

[Field: 'Phone_Number']

[Link_SetFormat: -NoClassic]

[Link_PrevRecord] Previous Record [/Link_PrevRecord]

[Link_NextRecord] Next Record [/Link_NextRecord]
[/Inling]

=»
Jane Last_Name

555-1212

Previous Record

Next Record

LAsso 8.5 LANGUAGE GUIDE

141

Chapter 9
Adding and Updating Records

This chapter documents the Lasso command tags which add, update, delete, and duplicate records within
Lasso compatible databases.

e Overview provides an introduction to the database actions described in this chapter and presents
important security considerations.

¢ Adding Records includes requirements and instructions for adding records to a database.
¢ Updating Records includes requirements and instructions for updating records within a database.
¢ Deleting Records includes requirements and instructions for deleting records within a database.

¢ Duplicating Records includes requirements and instructions for duplicating records within a database.

Overview

Lasso provides command tags for adding, updating, deleting, and duplicating records within Lasso
compatible databases. These command tags are used in conjunction with additional command tags and
name/value parameters in order to perform the desired database action in a specific database and table or
within a specific record.

The command tags documented in this chapter are listed in Table 1: Command Tags. The sections that
follow describe the additional command tags and name/value parameters required for each database action.

Table 1: Command Tags

Tag Description

-Add Adds a record to a database.

-Update Updates a record or records within a database.

-Delete Removes a record or records from a database.

-Duplicate Duplicates a record within a database. Works with FileMaker Pro databases.

Character Encoding

Lasso stores and retrieves data from data sources based on the preferences established in the Setup > Data
Sources section of Lasso Administration. The following rules apply for each standard data source.

Inline Host - The character encoding can be specified explicitly using a -TableEncoding parameter within the
-Host array.

MySQL - By default all communication is in the Latin-1 (ISO 8859-1) character set. This is to preserve
backwards compatibility with prior versions of Lasso. The character set can be changed to the Unicode
standard UTF-8 character set in the Setup > Data Sources > Tables section of Lasso Administration.

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 9 — ADDING AND UPDATING RECORDS 142

FileMaker Pro - By default all communication is in the MacRoman character set when Lasso Professional
is hosted on Mac OS X or in the Latin-1 (ISO 8859-1) character set when Lasso Professional is hosted on
Windows. The preference in the Setup > Data Sources > Databases section of Lasso Administration can be
used to change the character set for cross-platform communications.

JDBC - All communication with JDBC data sources is in the Unicode standard UTF-8 character set.

See the Lasso Professional 8 Setup Guide for more information about how to change the character set settings
in Lasso Administration.

Error Reporting

After a database action has been performed, Lasso reports any errors which occurred via the [Error_CurrentError]
tag. The value of this tag should be checked to ensure that the database action was successfully performed.

To display the current error code and message:
The following code can be used to display the current error message. This code should be placed in a format
file which is a response to a database action or within a pair of [Inline] ... [/Inline] tags.

[Error_CurrentError: -ErrorCode]: [Error_CurrentError]

If the database action was performed successfully then the following result will be returned.

0: No Error

To check for a specific error code and message:

The following example shows how to perform code to correct or report a specific error if one occurs. The
following example uses a conditional [If] ... [/If] tag to check the current error message and see if it is equal to
[Error_AddError].

[If: (Error_CurrentError) == (Error_AddError)]
An Add Error has occurred!

/]

Full documentation about error tags and error codes can be found in the Error Control chapter. A list of all
Lasso error codes and messages can be found in Appendix B: Error Codes.

Classic Lasso

If Classic Lasso support has been disabled within Lasso Administration then database actions will not be
performed automatically if they are specified within HTML forms or URLs. Although the database action will
not be performed, the -Response tag will function normally. Use the following code in the response page to
the HTML forms or URL to trigger the database action.

[Inline: (Action_Params)]
[Error_CurrentError: -ErrorCode]: [Error_CurrentError]
[/Inling]

See the Database Interaction Fundamentals chapter and the Setting Site Preferences chapter of the Lasso
Professional 8 Setup Guide for more information.

Security

Lasso has a robust internal security system that can be used to restrict access to database actions or to allow
only specific users to perform database actions. If a database action is attempted when the current visitor has
insufficient permissions then they will be prompted for a username and password. An error will be returned
if the visitor does not enter a valid username and password.

Note: If an inline host is specified with a -Host array then Lasso security is bypassed.

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 9 — ADDING AND UPDATING RECORDS 143

An [Inline] ... [/Inline] can be specified to execute with the permissions of a specific user by specifying -Username
and -Password command tags within the [Inline] tag. This allows the database action to be performed even
though the current site visitor does not necessarily have permissions to perform the database action. In
essence, a valid username and password are embedded into the format file.

Table 2: Security Command Tags

Tag Description

-Username Specifies the username from Lasso Security which should be used to execute the
database action.

-Password Specifies the password which corresponds to the username.

To specify a username and password in an [Inline]:

The following example shows a -Delete action performed within an [Inline] tag using the permissions granted
for username SiteAdmin with password Secret.

[Inline: -Delete,
-Database="Contacts',
-Table='People’,
-KeyField='ID',
-KeyValue=137,
-Username="SiteAdmin’,
-Password="Secret']

[Error_CurrentError: -ErrorCode]: [Error_CurrentError]

[/Inling]

A specified username and password is only valid for the [Inline] ... [/Inline] tags in which it is specified. It is not
valid within any nested [Inline] ... [/Inline] tags. See the Setting Up Security chapter of the Lasso Professional 8
Setup Guide for additional important information regarding embedding usernames and passwords into [Inline]
tags.

Adding Records

Records can be added to any Lasso compatible database using the -Add command tag. The -Add command
tag requires that a number of additional command tags be defined in order to perform the -Add action. The
required command tags are detailed in the following table.

Table 3: -Add Action Requirements

Tag Description

-Add The action which is to be performed. Required.

-Database The database in which the record should be added. Required.

-Table The table from the specified database in which the record should be added.
Required.

-KeyField The name of the field which holds the primary key for the specified table.
Recommended.

Name/Value Parameters A variable number of name/value parameters specify the initial field values for the

added record. Optional.

-Host Optional inline host array. See the section on Inline Hosts in the Database
Interaction Fundamentals chapter for more information.

Any name/value parameters included in the -Add action will be used to set the starting values for the record
which is added to the database. All name/value parameters must reference a writable field within the
database. Any fields which are not referenced will be set to their default values according to the database’s
configuration.

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 9 — ADDING AND UPDATING RECORDS 144

Lasso returns a reference to the record which was added to the database. The reference is different depending
on what type of database to which the record was added.

e SQL Data Sources - The -KeyField tag should be set to the primary key field or auto-increment field of the
table. Lasso will return the added record as the result of the action by checking the specified key field for
the last inserted record. The [KeyField_Value] tag can be used to inspect the value of the auto-increment field
for the inserted record.

If no -KeyField is specified, the specified -KeyField is not an auto-increment field, or -MaxRecords is set to 0
then no record will be returned as a result of the -Add action. This can be useful in situations where a large
record is being added to the database and there is no need to inspect the values which were added.

FileMaker Pro - The [KeyField_Value] tag is set to the value of the internal Record ID for the new record. The
Record ID functions as an auto-increment field that is automatically maintained by FileMaker Pro for all
records.

FileMaker Pro automatically performs a search for the record which was added to the database. The found
set resulting from an -Add action is equivalent to a search for the single record using the [KeyField_Value].

The value for -KeyField is ignored when adding records to a FileMaker Pro database. The value
for [KeyField_Value] is always the internal Record ID value.

Note: Consult the documentation for third-party data sources to see what behavior they implement when
adding records to the database.

To add a record using [Inline] ... [/Inline] tags:

The following example shows how to perform an -Add action by specifying the required command tags
within an opening [Inline] tag. -Database is set to Contacts, -Table is set to People, and -KeyField is set to ID.
Feedback that the -Add action was successful is provided to the visitor inside the [Inline] ... [/Inline] tags using the
[Error_CurrentError] tag. The added record will only include default values as defined within the database itself.

[Inline: -Add,
-Database='Contacts',
-Table='People’,
-KeyField="ID']

<p>[Error_CurrentError: -ErrorCode]: [Error_CurrentError]

[/Inline]

If the -Add action is successful then the following will be returned.

=» 0: No Error

To add a record with data using [Inline] ... [/Inline] tags:

The following example shows how to perform an -Add action by specifying the required command tags within
an opening [Inline] tag. In addition, the [Inline] tag includes a series of name/value parameters that define

the values for various fields within the record that is to be added. The First_Name field is set to John and the
Last_Name field is set to Doe. The added record will include these values as well as any default values defined
in the database itself.

[Inline: -Add,
-Database='Contacts',
-Table='People’,
-KeyField="ID",
'First_Name'='John',
'Last_Name'='Doe’]

<p>[Error_CurrentError: -ErrorCode]: [Error_CurrentError]

Record [Field: 'ID'] was added for [Field: 'First_Name'] [Field: 'Last_Name'].

[/Inline]

The results of the -Add action contain the values for the record that was just added to the database.

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 9 — ADDING AND UPDATING RECORDS 145

=» 0: No Error
Record 2 was added for John Doe.

To add a record using an HTML form:

The following example shows how to perform an -Add action using an HTML form to send values into an
[Inline] tag through [Action_Params]. The text inputs provide a way for the site visitor to define the initial values
for various fields in the record which will be added to the database. The site visitor can set values for the
fields First_Name and Last_Name.

<form action="response.lasso" method="POST">

First Name: <input type="text" name="First_Name" value="">

Last Name: <input type="text" name="Last_Name" value="">

<input type="submit" name="-Nothing" value="Add Record">
</form>

The response page for the form, response.lasso, contains the following code that performs the action using an
[Inline] tag and provides feedback that the record was successfully added to the database. The field values for
the record that was just added to the database are automatically available within the [Inline] ... [/Inline] tags.

[Inline: (Action_Params),
-Add,
-Database="Contacts',
-Table='People’,
Keyfield='1D"]
<p>[Error_CurrentError: -ErrorCode]: [Error_CurrentError]

Record [Field: 'ID'] was added for [Field: 'First_Name'] [Field: 'Last_Name'].
[/Inling]

If the form is submitted with Mary in the First Name input and Person in the Last Name input then the following
will be returned.

=» 0: No Error
Record 3 was added for Mary Person

To add a record using a URL:

The following example shows how to perform an -Add action using a URL to send values into an [Inline] tag
through [Action_Params]. The name/value parameters in the URL define the starting values for various fields in
the database: First_Name is set to John and Last_Name is set to Person.

Add John Person

The response page for the URL, response.lasso, contains the following code that performs the action using
[Inline] tag and provides feedback that the record was successfully added to the database. The field values for
the record that was just added to the database are automatically available within the [Inline] ... [/Inline] tags.

[Inline: (Action_Params),
-Add,
-Database='Contacts’,
-Table='People',
Keyfield='1D"]
<p>[Error_CurrentError: -ErrorCode]: [Error_CurrentError]

Record [Field: 'ID'] was added for [Field: 'First_Name'] [Field: 'Last_Name'].
[/Inling]

If the link for Add John Person is selected then the following will be returned.

=» 0: No Error
Record 4 was added for John Person.

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 9 — ADDING AND UPDATING RECORDS 146

Updating Records

Records can be updated within any Lasso compatible database using the -Update command tag. The
-Update command tag requires that a number of additional command tags be defined in order to perform the
-Update action. The required command tags are detailed in the following table.

Table 4: -Update Action Requirements

Tag Description

-Update The action which is to be performed. Required.

-Database The database in which the record should be added. Required.

-Table The table from the specified database in which the record should be added.
Required.

-KeyField The name of the field which holds the primary key for the specified table. Either a
-KeyField and -KeyValue or a -Key is Required.

-KeyValue The value of the primary key of the record which is to be updated.

-Key An array that specifies the search parameters to find the records to be updated.

Either a -KeyField and -KeyValue or a -Key is Required.

Name/Value Parameters A variable number of name/value parameters specifying the field values which
need to be updated. Optional.

-Host Optional inline host array. See the section on Inline Hosts in the Database
Interaction Fundamentals chapter for more information.

Lasso has two methods to find which records are to be updated.

¢ -KeyField and -KeyValue - Lasso can identify the record which is to be updated using the values for the
command tags -KeyField and -KeyValue. -KeyField must be set to the name of a field in the table. Usually, this
is the primary key field for the table. -KeyValue must be set to a valid value for the -KeyField in the table. If no
record can be found with the specified -KeyValue then an error will be returned.

The following inline would update the record with an ID of 1 so it has a last name of Doe.

Inline: -Update,
-Database="Contacts',
-Table='People’,
-KeyField="D',
-KeyValue=1,
'Last_Name'='Doe";

/Inline;

Note that if the specified key value returns multiple records then all of those records will be updated within
the target table. If the -KeyField is set to the primary key field of the table (or any field in the table which has
a unique value for every record in the table) then the inline will only update one record.

¢ -Key - Lasso can identify the records that are to be updated using a search which is specified in an array.
The search can use any of the fields in the current database table and any of the operators and logical oper-
ators which are described in the previous chapter.

The following inline would update all records in the people database which have a first name of John. to
have a last name of Doe.

Inline: -Update,
-Database="Contacts',
-Table='People’,
-Key=(Array: -Eq, 'First_Name'='John’),
‘Last_Name'='Doe";
/Inline;

Care should be taken when creating the search in a -Key array. An update can very quickly modify up to all
of the records in a database and there is no undo. Update inlines should be debugged carefully before they
are deployed on live data.

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 9 — ADDING AND UPDATING RECORDS 147

Any name/value parameters included in the update action will be used to set the field values for the record
which is updated. All name/value parameters must reference a writable field within the database. Any fields
which are not referenced will maintain the values they had before the update.

Lasso returns a reference to the record which was updated within the database. The reference is different
depending on what type of database is being used.

® SQL Data Sources - The [KeyField_Value] tag is set to the value of the key field which was used to identify
the record to be updated. The -KeyField should always be set to the primary key or auto-increment field of
the table. The results when using other fields are undefined.

If the -KeyField is not set to the primary key field or auto-increment field of the table or if -MaxRecords is set
to 0 then no record will be returned as a result of the -Update action. This is useful if a large record is being
updated and the results of the update do not need to be inspected.

¢ FileMaker Pro - The [KeyField_Value] tag is set to the value of the internal Record ID for the updated record.
The Record ID functions as an auto-increment field that is automatically maintained by FileMaker Pro for
all records.

Lasso automatically performs a search for the record which was updated within the database. The found set
resulting from an -Update action is equivalent to a search for the single record using the [KeyField_Value].

Note: Consult the documentation for third-party data sources to see what behavior they implement when
updating records within a database.

To update a record with data using [Inline] ... [/Inline] tags:

The following example shows how to perform an -Update action by specifying the required command tags
within an opening [Inline] tag. The record with the value 2 in field ID is updated. The [Inline] tag includes a
series of name/value parameters that define the new values for various fields within the record that is to be
updated. The First_Name field is set to Bob and the Last_Name field is set to Surname. The updated record will
include these new values, but any fields which were not included in the action will be left with the values
they had before the update.

[Inline: -Update,
-Database='Contacts',
-Table='People’,
-KeyField="ID",
-KeyValue=2,
'First_Name'='Bob',
'Last_Name'='Surname']

<p>[Error_CurrentError: -ErrorCode]: [Error_CurrentError]

Record [Field: 'ID'] was added for [Field: 'First_Name'] [Field: 'Last_Name'].

[/Inline]

The updated field values from the -Update action are automatically available within the [Inline].

=» 0: No Error
Record 2 was updated to Bob Surname.

To update a record using an HTML form:

The following example shows how to perform an -Update action using an HTML form to send values into an
[Inline] tag. The text inputs provide a way for the site visitor to define the new values for various fields in the
record which will be updated in the database. The site visitor can see and update the current values for the
fields First_Name and Last_Name.

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 9 — ADDING AND UPDATING RECORDS 148

[Inline: -Search,
-Database="Contacts',
-Table='People’,
-KeyField='ID",
-KeyValue=3]

<form action="response.lasso" method="POST">
<input type="hidden" name="-KeyValue" value="[KeyField_Value]">

First Name: <input type="text" name="First_Name"
value="[Field: 'First_Name']">

Last Name: <input type="text" name="Last_Name"
value="[Field: 'Last_Name']">

<input type="submit" name="-Update" value="Update Record">
</form>

[/Inline]

The response page for the form, response.lasso, contains the following code that performs the action using an
[Inline] tag and provides feedback that the record was successfully updated in the database. The field values
from the updated record are available automatically within the [Inline] ... [/Inline] tags.

[Inline: (Action_Params),
-Update,
-Database='Contacts’,
-Table='People’,
Keyfield="1D"]
<p>[Error_CurrentError: -ErrorCode]: [Error_CurrentError]

Record [Field: 'ID'] was updated to [Field: 'First_Name'] [Field: 'Last_Name'].
[/Inline]

The form initially shows Mary for the First Name input and Person for the Last Name input. If the form is
submitted with the Last Name changed to Peoples then the following will be returned. The First Name field is
unchanged since it was left set to Mary.

=» 0: No Error
Record 3 was updated to Mary Peoples.

To update a record using a URL:

The following example shows how to perform an -Update action using a URL to send field values to an
[Inline] tag. The name/value parameters in the URL define the new values for various fields in the database:
First_Name is set to John and Last_Name is set to Person.

<a href="response.lasso?-KeyValue=4&
First_Name=John&Last_Name=Person"> Update John Person

The response page for the URL, response.lasso, contains the following code that performs the action using
[Inling] ... [/Inline] tags and provides feedback that the record was successfully updated within the database.

[Inline: (Action_Params),
-Update,
-Database='Contacts’,
-Table='People’,
Keyfield='ID"]
<p>[Error_CurrentError: -ErrorCode]: [Error_CurrentError]

Record [Field: 'ID'] was updated to [Field: 'First_Name'] [Field: 'Last_Name].
[/Inline]

If the link for Update John Person is submitted then the following will be returned.

=» 0: No Error
Record 4 was updated for John Person.

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 9 — ADDING AND UPDATING RECORDS 149

To update several records at once:

The following example shows how to perform an -Update action on several records at once within a single
database table. The goal is to update every record in the database with the last name of Person to the new last
name of Peoples.

There are two methods to accomplish this. The first method is to use the -Key parameter to find the records
that need to be updated within a single -Update inline. The second method is to use an outer inline to find the
records to be updated and then an inner inline which is repeated once for each record.

The -Key method has the advantage of speed and is the best choice for simple updates. The nested inline
method can be useful if additional processing is required on each record before it is updated within the data
source.

e The inline uses a -Key array which performs a search for all records in the database Last_Name equal to
Person. The update is performed automatically on this found set.

[Inline: -Update,
-Database="Contacts',
-Table='People’,
-Key=(Array: -Eq, 'Last_Name'="Person’),
-MaxRecords="All',
'Last_Name'="Peoples’]

[/Inline]

¢ The outer [Inline] ... [/Inline] tags perform a search for all records in the database with Last_Name equal to
Person. This forms the found set of records which need to be updated. The [Records] ... [[Records] tags repeat
once for each record in the found set. The -MaxRecords="All' command tag ensures that all records which
match the criteria are returned.

The inner [Inling] ... [/Inline] tags perform an update on each record in the found set. Substitution tags
are used to retrieve the values for the required command tags -Database, -Table, -KeyField, and -KeyValue.
This ensures that these values match those from the outer [Inling] ... [/Inline] tags exactly. The name/value
pair 'Last_Name'='Peoples' updates the field to the new value.

[Inline: -Search,
-Database="Contacts',
-Table="People’,
-KeyField="ID',
-MaxRecords="All',
'Last_Name'="Person']

[Records]

[Inline: -Update,
-Database=(Database_Name),
-Table=(Table_Name),
-KeyField=(KeyField_Name),
-KeyValue=(KeyField_Value),
'Last_Name'="Peoples']

<p>[Error_CurrentError: -ErrorCode]: [Error_CurrentError]

Record [Field: 'ID'] was updated to
[Field: 'First_Name'] [Field: 'Last_Name.

[/Inline]

[/Records]
[/Inline]

This particular search only finds one record to update. If the update action is successful then the following

will be returned for each updated record.

=> 0: No Error
Record 4 was updated to John Peoples.

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 9 — ADDING AND UPDATING RECORDS 150

Deleting Records

Records can be deleted from any Lasso compatible database using the -Delete command tag. The

-Delete command tag can be specified within an [Inline] tag, an HTML form, or a URL. The -Delete command
tag requires that a number of additional command tags be defined in order to perform the -Delete action. The
required command tags are detailed in the following table.

Table 5: -Delete Action Requirements

Tag Description

-Delete The action which is to be performed. Required.

-Database The database in which the record should be added. Required.

-Table The table from the specified database in which the record should be added.
Required.

-KeyField The name of the field which holds the primary key for the specified table. Either a
-KeyField and -KeyValue or a -Key is Required.

-KeyValue The value of the primary key of the record which is to be deleted. Required.

-Key An array that specifies the search parameters to find the records to be updated.
Either a -KeyField and -KeyValue or a -Key is Required.

-Host Optional inline host array. See the section on Inline Hosts in the Database

Interaction Fundamentals chapter for more information.

Lasso has two methods to find which records are to be deleted.

¢ -KeyField and -KeyValue - Lasso can identify the record which is to be deleted using the values for the
command tags -KeyField and -KeyValue. -KeyField must be set to the name of a field in the table. Usually, this
is the primary key field for the table. -KeyValue must be set to a valid value for the -KeyField in the table. If no
record can be found with the specified -KeyValue then an error will be returned.

The following inline would delete the record with an ID of 1.

Inline: -Delete,
-Database="Contacts',
-Table="People’,
-KeyField='"D',
-KeyValue=1;

/Inline;

Note that if the specified key value returns multiple records then all of those records will be deleted from
the target table. If the -KeyField is set to the primary key field of the table (or any field in the table which has
a unique value for every record in the table) then the inline will only delete one record.

e -Key - Lasso can identify the records that are to be deleted using a search which is specified in an array.
The search can use any of the fields in the current database table and any of the operators and logical
operators which are described in the previous chapter.

The following inline would delete all records in the people database which have a first name of John.

Inline: -Delete,

-Database="Contacts',

-Table='People’,

-Key=(Array: -Eq, 'First_Name'='John");
/Inline;

Care should be taken when creating the search in a -Key array. A delete can very quickly remove up to all of
the records in a database and there is no undo. Delete inlines should be debugged carefully before they are
deployed on live data.

Lasso returns an empty found set in response to a -Delete action. Since the record has been deleted from the
database the [Field] tag can no longer be used to retrieve any values from it. The [Error_CurrentError] tag should
be checked to ensure that it has a value of No Error in order to confirm that the record has been successfully
deleted.

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 9 — ADDING AND UPDATING RECORDS 151

There is no confirmation or undo of a delete action. When a record is removed from a database it is removed
permanently. It is important to set up Lasso security appropriately so accidental or unauthorized deletes don’t
occur. See the Setting Up Security chapter in the Lasso Professional 8 Setup Guide for more information
about setting up database security.

To delete a record with data using [Inline] ... [/Inline] tags:

The following example shows how to perform a delete action by specifying the required command tags
within an opening [Inline] tag. The record with the value 2 in field ID is deleted.

[Inline: -Delete,
-Database='Contacts’,
-Table='People’,
-KeyField='ID",
-KeyValue=2]

<p>[Error_CurrentError: -ErrorCode]: [Error_CurrentError]

[/nline]

If the delete action is successful then the following will be returned.

=» 0: No Error

To delete several records at once:

The following example shows how to perform a -Delete action on several records at once within a single
database table. The goal is to delete every record in the database with the last name of Peoples.

Warning: These techniques can be used to remove all records from a database table. It should be used with
extreme caution and tested thoroughly before being added to a public Web site.

There are two methods to accomplish this. The first method is to use the -Key parameter to find the records
that need to be deleted within a single -Delete inline. The second method is to use an outer inline to find the
records to be deleted and then an inner inline which is repeated once for each record.

The -Key method has the advantage of speed and is the best choice for simple deletes. The nested inline
method can be useful if additional processing is required to decide if each record should be deleted.

¢ The inline uses a -Key array which performs a search for all records in the database Last_Name equal to
Peoples. The records in this found set are automatically deleted.

[Inline: -Delete,

-Database='Contacts',

-Table='People’,

-Key=(Array: -Eq, 'Last_Name'="Peoples’)]
[/Inline]

¢ The outer [Inling] ... [/Inline] tags perform a search for all records in the database with Last_Name equal to
Peoples. This forms the found set of records which need to be updated. The [Records] ... [[Records] tags repeat
once for each record in the found set. The -MaxRecords="All' command tag ensures that all records which
match the criteria are returned.

The inner [Inline] ... [/Inline] tags delete each record in the found set. Substitution tags are used to retrieve the
values for the required command tags -Database, -Table, -KeyField, and -KeyValue. This ensures that these values
match those from the outer [Inline] ... [/Inline] tags exactly.

[Inline: -Search,
-Database="Contacts',
-Table='People’,
-KeyField="D',
-MaxRecords="All',
'Last_Name'="Peoples’]

[Records]

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 9 — ADDING AND UPDATING RECORDS 152

[Inline: -Delete,
-Database=(Database_Name),
-Table=(Table_Name),
-KeyField=(KeyField_Name),
-KeyValue=(KeyField_Value)]

<p>[Error_CurrentError: -ErrorCode]: [Error_CurrentError]
[/Inline]

[/Records]
[/Inline]

This particular search only finds one record to delete. If the delete action is successful then the following
will be returned for each deleted record.

=>» 0: No Error

Duplicating Records

Records can be duplicated within any Lasso compatible database using the -Duplicate command tag.

The -Duplicate command tag can be specified within an [Inline] tag, an HTML form, or a URL. The

-Duplicate command tag requires that a number of additional command tags be defined in order to perform
the -Duplicate action. The required command tags are detailed in the following table.

Note: Lasso Connector for MySQL and Lasso Connector for SQLite do not support the -Duplicate command tag.

Table 6: -Duplicate Action Requirements

Tag Description

-Duplicate The action which is to be performed. Required.

-Database The database in which the record should be added. Required.

-Table The table from the specified database in which the record should be added.
Required.

-KeyField The name of the field which holds the primary key for the specified table.
Required.

-KeyValue The value of the primary key of the record which is to be duplicated. Required.

Name/Value Parameters A variable number of name/value parameters specifying field values which should

be modified in the duplicated record. Optional.

-Host Optional inline host array. See the section on Inline Hosts in the Database
Interaction Fundamentals chapter for more information.

Lasso identifies the record which is to be duplicated using the values for the command tags -KeyField and
-KeyValue. -KeyField must be set to a field in the table which has a unique value for every record in the table.
Usually, this is the primary key field for the table. -KeyValue must be set to a valid value for the -KeyField in the
table. If no record can be found with the specified -KeyValue then an error will be returned.

Any name/value parameters included in the duplicate action will be used to set the field values for the
record which is added to the database. All name/value parameters must reference a writable field within the
database. Any fields which are not referenced will maintain the values they had from the record which was
duplicated.

Lasso always returns a reference to the new record which was added to the database as a result of the

-Duplicate action. This is equivalent to performing a -Search action which returns a single record found set
containing just the record which was added to the database.

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 9 — ADDING AND UPDATING RECORDS 153

To duplicate a record with data using [Inline] ... [/Inline] tags:

The following example shows how to perform a duplicate action within a FileMaker Pro database by
specifying the required command tags within an opening [Inline] tag. The record with the value 2 for the
keyfield value is duplicated. The [Inline] tag includes a series of name/value parameters that define the new
values for various fields within the record that is to be updated. The First_Name field is set to Joe and the
Last_Name field is set to Surname. The new record will include these values, but any fields which were not
specified in the action will be left with the values they had from the source record.

[Inline: -Duplicate,
-Database="Contacts.fp3',
-Table='People’,
-KeyField='ID",
KeyValue=2,
'First_Name'='"Joe',
'Last_Name'="Surname']

<p>[Error_CurrentError: -ErrorCode]: [Error_CurrentError]

Record [Field: 'ID'] was duplicated for [Field: 'First_Name'] [Field: 'Last_Name'].

[/Inline]

If the duplicate action is successful then the following will be returned. The values from the [Field] tags are
retrieved from the record which was just added to the database as a result of the duplicate action.

=» 0: No Error
Record 6 was duplicated for Joe Surname.

LAsso 8.5 LANGUAGE GUIDE

154

Chapter 10
SQL Data Sources

This chapter documents tags and behaviors which are specific to the SQL data sources in Lasso. These include
the data sources for MySQL, SQLite, Oracle, OpenBase, PostgreSQL, and SQL Server. See the appropriate
chapter for information about other data sources including FileMaker Data Sources, JDBC and ODBC Data
Sources, and Other Data Sources (Spotlight, custom data source).

e Overview introduces the SQL data sources and includes tips for working with the data sources.

® Feature Matrix includes a table which lists all of the features of each SQL data source and highlights the
differences between them.

e SQL Tags describes tags specific to SQL data sources.
e Searching Records describes unique search operations that can be performed using SQL data sources.

¢ Adding and Updating Records describes unique add and update operations that can be performed using
SQL data sources.

e Value Lists describes how to retrieve and show lists of allowed field values for ENUM and SET fields in SQL
data sources.

Overview

This chapter documents tags and features unique to SQL data sources. Most of the features of Lasso work
equally across all data sources. The differences specific to each SQL data source are noted in the features
matrix and in the descriptions of individual features.

Table 1: Data Sources

Data Source Description

MySQL Supports MySQL 3.x, 4.x, or 5.x data sources.

OpenBase Supports OpenBase data sources.

Oracle Supports Oracle data sources. The Oracle "Instant Client" libraries must be

installed in order to activate this data source. See the Oracle Data Sources
section in the Lasso Setup Guide for more information.

PostgreSQL Supports PostgreSQL data sources. The PostgreSQL client libraries must be
installed in order to activate this data source. See the PostgreSQL Data Sources
section in the Lasso Setup Guide for more information.

SQL Server Supports Microsoft SQL Server. The SQL Server client libraries must be installed
in order to activate this data source. See the SQL Server Data Sources section in
the Lasso Setup Guide for more information.

SQLite SQLite is the internal data source which is used for the storage of Lasso's
preferences and security settings.

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 10 — SQL DATA SOURCES 155

Tips for Using MySQL Data Sources

¢ Always specify a primary key field using the -KeyField command tag in -Search, -Add, and -Findall actions. This
will ensure that the [KeyField_Value] tag will always return a value.

e Use -KeyField and -KeyValue to reference a particular record for updates, duplicates, or deletes.

e Data sources can be case-sensitive. For best results, reference database and table names in the same letter-
case as they appear on disk in your Lasso code. Field names may also be case sensitive (such as in Oracle
and PostgreSQL).

® Most data sources will truncate any data beyond the length they are set up to store. Ensure that all fields
have sufficient capacity for the values that need to be stored in them.

¢ Use -ReturnField command tags to reduce the number of fields which are returned from a -Search action.
Returning only the fields that need to be used for further processing or shown to the site visitor reduces the
amount of data that needs to travel between Lasso Service and the data source.

e When an -Add or -Update action is performed on a database, the data from the added or updated record is
returned inside the [Inline] ... [/Inline] tags. If the -ReturnField parameter is used, then only those fields specified
should be returned from an -Add or -Update action. Setting -MaxRecords=0 can be used as an indication that
no record should be returned.

e See the Site Administration Utilities chapter in the Lasso Professional 8 Setup Guide for information about
optimizing tables for optimum performance and checking tables for damage.

Security Tips

¢ The -SQL command tag can only be allowed or disallowed at the host level for users in Lasso
Administration. Once the -SQL command tag is allowed for a user, that user may access any database within
the allowed host inside of a SQL statement. For that reason, only trusted users should be allowed to issue
SQL queries using the -SQL command tag. For more information, see the Setting Up Security chapter in
the Lasso Professional 8 Setup Guide.

® SQL statements which are generated using visitor-defined data should be screened carefully for unwanted
commands such as DROP or GRANT. See the Setting Up Data Sources chapter of the Lasso Professional 8
Setup Guide for more information.

e Always quote any inputs from site visitors that are incorporated into SQL statements. The [Encode_SQL] tag
should be used on any visitor supplied values which are going to be passed to a MySQL data source. The
[Encode_SQL92] tag should be used on any visitor supplies values which will be passed to another SQL-
based data source such as SQLite or JDBC data sources.

Encoding the values ensures that quotes and other reserved characters are properly escaped within the SQL
statement. The tags also help to prevent SQL injection attacks by ensuring that all of the characters within
the string value are treated as part of the value. Values from [Action_Param], [Cookie], [Token_Value], [Field], or
calculations which rely in part on values from any of these tags must be encoded.

For example, the following SQL SELECT statement includes quotes around the [Action_Param] value and uses
[Encode_SQL] to encode the value. The apostrophe (single quote) within the name is escaped as \' so it will
be embedded within the string rather than ending the string literal.

[Variable: 'SQL_Statement'='"SELECT * FROM Contacts.People WHERE ' +
'‘Company LIKE \" + (Encode_SQL: (Action_Param: '‘Company")) +]

If [Action_Param] returns McDonald's for First_Name then the SQL statement generated by this code would
appear as follows. Notice that the apostrophe in the company name is escaped.

SELECT * FROM Contacts.People WHERE Company LIKE 'McDonald\'s";

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 10 — SQL DATA SOURCES 156

Feature Matrix

The following tables detail the features of each data source in this chapter. Since some features are only
available in certain data sources it is important to check these tables when reading the documentation in
order to ensure that each data source supports your solutions required features.

Table 2: MySQL Data Source

Feature

Description

Friendly Name
Internal Name
Module Name
Inline Host Attributes

Actions
Operators

KeyField

Lasso Connector for MySQL
mysqlds
MySQLConnector.dll, MySQLConnector.dylib, or MySQLConnector.so

Requires -Name specifying connection URL (i.e. mysgl.example.com), -
Username, and -Password. Optional -Port defaults to 3306.

-Add, -Delete, -Exec, -FindAll, -Prepare, -Search, -Show, -SQL, -Update

-BW, -CN, -EQ, -EW, -FT, -GT, -GTE, -LT, -LTE, -NBW, -NCN, -NEW. -NRX, -RX
-OpBegin/-OpEnd with And, Or, Not.

-KeyField/-KeyValue and -Key=(Array)

Table 3: OpenBase Data Source

Feature

Description

Friendly Name
Internal Name
Module Name
Inline Host Attributes

Lasso Connector for OpenBase
openbaseds
OpenBaseConnector.dll, OpenBaseConnector.dylib, or OpenBaseConnector.so

Requires -Name specifying connection URL (i.e.'openbase.example.com/data-
base’), -Username, and -Password.

Actions -Add, -Delete, -FindAll, -Search, -Show, -SQL, -Update
Operators -BW, -CN, -EQ, -EW, -GT, -GTE, -LT, -LTE, -NBW, -NCN, -NEW.
-OpBegin/-OpEnd with And, Or, Not.
KeyField -KeyField/-KeyValue
Table 4: Oracle Data Source
Feature Description

Friendly Name
Internal Name
Module Name
Inline Host Attributes

Actions
Operators

KeyField
Note

Lasso Connector for Oracle
oracle
SQLConnector.dll, SQLConnector.dylib, or SQLConnector.so

Requires -Name specifying connection URL (i.e.'oracle.example.com:1521/myda-
tabase), -Username, and -Password.

-Add, -Delete, -FindAll, -Search, -Show, -SQL, -Update

-BW, -CN, -EQ, -EW, -GT, -GTE, -LT, -LTE, -NBW, -NCN, -NEW.
-OpBegin/-OpEnd with And, Or, Not.

-KeyField/-KeyValue

Field names are case sensitive. Al field names and key field names within the
inline must be specified with the proper case.

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 10 — SQL DATA SOURCES

Table 5: PostgreSQL Data Source

157

Feature

Description

Friendly Name
Internal Name
Module Name
Inline Host Attributes

Actions
Operators

KeyField
Note

Lasso Connector for PostgreSQL
postgresql
SQLConnector.dll, SQLConnector.dylib, or SQLConnector.so

Requires -Name specifying connection URL (i.e. postgresql.example.com),
-Username, and -Password.

-Add, -Delete, -FindAll, -Search, -Show, -SQL, -Update

-BW, -CN, -EQ, -EW, -GT, -GTE, -LT, -LTE, -NBW, -NCN, -NEW.
-OpBegin/-OpEnd with And, Or, Not.

-KeyField/-KeyValue

Field names are case sensitive. Al field names and key field names within the
inline must be specified with the proper case.

Table 6: Microsoft SQL Server Data Source

Feature

Description

Friendly Name
Internal Name
Module Name
Inline Host Attributes

Lasso Connector for SQL Server
sqlserver
SQLConnector.dll, SQLConnector.dylib, or SQLConnector.so

Requires -Name specifying connection URL (i.e. sqlserver.example.com\mydata-
base), -Username, and -Password.

Actions -Add, -Delete, -FindAll, -Search, -Show, -SQL, -Update
Operators -BW, -CN, -EQ, -EW, -GT, -GTE, -LT, -LTE, -NBW, -NCN, -NEW.
-OpBegin/-OpEnd with And, Or, Not.
KeyField -KeyField/-KeyValue
Table 7: SQLite Data Source
Feature Description

Friendly Name
Internal Name
Module Name
Actions
Operators

KeyField

Lasso Internal

sqliteconnector

Built-In

-Add, -Delete, -FindAll, -Search, -Show, -SQL, -Update

-BW, -CN, -EQ, -EW, -GT, -GTE, -LT, -LTE, -NBW, -NCN, -NEW.
-OpBegin/-OpEnd with And, Or, Not.

-KeyField/-KeyValue

SQL Data Source Tags

Lasso 8 includes tags to identify which type of MySQL data source is being used. These tags are summarized

in the following table.

Table 8: SQL Data Source Tags

Tag

Description

[Lasso_DatasourcelsMySQL]

[Lasso_DatasourcelsOpenBase]

Returns True if a database is hosted by MySQL. Requires one string value, which
is the name of a database.

Returns True if a database is hosted by OpenBase. Requires one string value,
which is the name of a database.

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 10 — SQL DATA SOURCES 158

[Lasso_DatasourcelsOracle] Returns True if a database is hosted by Oracle. Requires one string value, which
is the name of a database.

[Lasso_DatasourcelsPostgreSQL] Returns True if a database is hosted by PostgreSQL. Requires one string value,
which is the name of a database.

[Lasso_DatasourcelsSQLServer] Returns True if a database is hosted by Microsoft SQL Server. Requires one
string value, which is the name of a database.

[Lasso_DatasourcelsSQLite] Returns True if a database is hosted by SQLite. Requires one string value, which

is the name of a database.

To check whether a database is hosted by MySQL:

The following example shows how to use [Lasso_DatasourcelsMySQL] to check whether the database Example is
hosted by MySQL or not.

[If: (Lasso_DatasourcelsMySQL: 'Example')]
Example is hosted by MySQL!

[Else]
Example is not hosted by MySQL.

/]
=» Example is hosted by MySQL!

To list all databases hosted by MySQL:

Use the [Database_Names] ... [/Database_Names] tags to list all databases available to Lasso. The [Lasso_
DatasourcelsMySQL] tag can be used to check each database and only those that are hosted by MySQL will be
returned. The result shows two databases, Site and Example, which are available through MySQL.

[Database_Names]
[If: (Lasso_DatasourcelsMySQL:(Database_Nameltem))]

[Database_Nameltem]

[/i]

[/Database_Names]

=»
Example

Site

Searching Records

In Lasso 8, there are unique search operations that can be performed using MySQL data sources. These search
operations take advantage of special functions in MySQL such as full-text indexing, regular expressions,
record limits, and distinct values to allow optimal performance and power when searching. These search
operations can be used on MySQL data sources in addition to all search operations described in the
Searching and Displaying Data chapter.

Search Field Operators

Additional field operators are available for the -Operator (or -Op) tag when searching MySQL data sources.
These operators are summarized in Table 2: MySQL Search Field Operators. Basic use of the -Operator tag is
described in the Searching and Displaying Data chapter.

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 10 — SQL DATA SOURCES 159

Table 9: MySQL Search Field Operators

Operator Description

-Op="t' or -FT Full-Text Search. If used, a MySQL full-text search is performed on the field
specified. Will only work on fields that are full-text indexed in MySQL. Records
are automatically returned in order of high relevance (contains many instances
of that value) to low relevance (contains few instances of the value). Only one
ft operator may be used per action, and no -SortField parameter should be

specified.

-Op="nrx" or -RX Regular Expression. If used, then regular expressions may be used as part of
the search field value. Returns records matching the regular expression value for
that field.

-Op="nrx" or -NRX Not Regular Expression. If used, then regular expressions may be used as

part of the search field value. Returns records that do not match the regular
expression value for that field.

Note: For more information on full-text searches and regular expressions supported in MySQL, see the MySQL
documentation.

To perform a full-text search on a field:

If a MySQL field is indexed as full-text, then using -Op="ft' before the field in a search inline performs a MySQL
full text search on that field. The example below performs a full text search on the Jobs field in the Contacts
database, and returns the First_Name field for each record that contain the word Manager. Records that contain
the most instances of the word Manager are returned first.

[Inline: -Search, -Database="Contacts', -Table="People’,
-Op=1t,
'Jobs'="Manager']
[Records]
[Field:'First_Name']

[/Records]
[/Inling]

=» Mike

Jane

To use regular expressions as part of a search:

Regular expressions can be used as part of a search value for a field by using -Op="rx' before the field in
a search inline. The following example searches for all records where the Last_Name field contains eight
characters using a regular expression.

[Inline: -Search, -Database="Contacts', -Table="People’,
-Op="rx,
'Last_Name'="{8}',
-MaxRecords="All"]
[Records]
[Field:'Last_Name'], [Field:'First_Name']

[/Records]
[/Inling]

=» Lastname, Mike

Lastname, Mary Beth

The following example searches for all records where the Last_Name field doesn't contain eight characters. This
is easily accomplished using the same inline search above using -Op="nrx' instead.

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 10 — SQL DATA SOURCES 160

[Inline: -Search, -Database="Contacts', -Table="People’,
-Op="nrx,
'Last_Name'="{8}',
-MaxRecords="All"]
[Records]
[Field:'Last_Name'], [Field:'First_Name']

[/Records]
[/Inling]

=» Doe, John

Doe, Jane

Surname, Bob

Surname, Jane

Surname, Margaret

Unknown, Thomas

Search Command Tags

Additional search command tags are available when searching the data sources in this chapter using the [Inline]
tag. These tags allow special search functions to be performed without writing SQL statements. These
operators are summarized in the following table.

Table 10: Search Command Tags

Tag Description

-UseLimit Prematurely ends a -Search or FindAll action once the specified number of
records for the -MaxRecords tag have been found and returns the found records.
Requires the -MaxRecords tag. This issues a LIMIT or TOP statement.

-SortRandom Sorts returned records randomly. Is used in place of the -SortField and -
SortOrder parameters. Does not require a value.
-Distinct Causes a -Search action to only output records that contain unique field values

(comparing only returned fields). Does not require a value. May be used with the
-ReturnField parameter to limit the fields checked for distinct values.

-GroupBy Specifies a field name which should by used as the GROUP BY statement.
Allows data to be summarized based on the values of the specified field.

To immediately return records once a limit is reached:

Use the -UseLimit tag in the search inline. Normally, Lasso will find all records that match the inline search
criteria and then pair down the results based on -MaxRecords and -SkipRecords values. The -UseLimit tag instructs
the data source to terminate the specified search process once the number of records specified for -MaxRecords
is found. The following example searches the Contacts database with a limit of five records.

[Inline: -FindAll,

-Database='Contacts', -Table="People’,
-MaxRecords="5',

-UseLimit]

[Found_Count]

[/Inling]

=5

Note: If the -UseLimit tag is used, the value of the [Found_Count] tag will always be the same as the -MaxRecords value
if the limit is reached. Otherwise, the [Found_Count] tag will return the total number of records in the specified table
that match the search criteria if -UseLimit is not used.

To sort results randomly:

Use the -SortRandom tag in a search inline. The following example finds all records and sorts first by last name
then randomly.

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 10 — SQL DATA SOURCES 161

[Inline: -FindAlll, -Database="Contacts', -Table="People’,
Keyfield='ID',
-SortRandom]
[Records]
[Field:'ID']
[/Records]
[/Inling]

- 52813647

Note: Due to the nature of the -SortRandom tag, the results of this example will vary upon each execution of the
inline.

To return only unique records in a search:

Use the -Distinct parameter in a search inline. The following example only returns records that contain distinct
values for the Last_Name field.

[Inline: -FindAll, -Database="Contacts', -Table="People’,
-ReturnField="Last_Name',
-Distinct]
[Records]
[Field:'Last_Name']

[/Records]
[/Inling]

=» Doe

Surname

Lastname

Unknown

The -Distinct tag is especially useful for generating lists of values that can be used in a pull-down menu. The
following example is a pull-down menu of all the last names in the Contacts database.

[Inline: -Findall, -Database="Contacts', -Table="People’,
-ReturnField="Last_Name',
-Distincf]
<select name="Last_Name">
[Records]
<option value="[Field: 'Last_Name']">
[Field: 'Last_Name']
</Option>
[/Records]
</Select>
[/Inline]

Searching Null Values

When searching tables in a SQL data source, NULL values may be explicitly searched for within fields

using the [Null] tag. A NULL value in a SQL data source designates that there is no other value stored in that
particular field. This is similar to searching a field for an empty string (e.g. 'fieldname'="), however NULL values
and empty strings are not the same in SQL data sources. For more information about NULL values, see the

documentation for the data source.

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 10 — SQL DATA SOURCES 162

[Inline: -Search,
-Database='Contacts', -Table="People’,
-Op='eq,
"Title'=(Null),
-MaxRecords="All']
[Records]
Record [Field:'ID'] does not have a title.

[/Records]
[/Inling]

=» Record 7 does not have a title.

Record 8 does not have a title.

Adding and Updating Records

In Lasso 8, there are special add and update operations that can be performed using SQL data sources in
addition to all add and update operations described in the Adding and Updating Data chapter.

Multiple Field Values

When adding or updating data to a field in MySQL, the same field name can be used several times in an
-Add or -Update inline. The result is that all data added or updated in each instance of the field name will be
concatenated in a comma-delimited form. This is particularly useful for adding data to SET field types.

To add or update multiple values to a field:

The following example adds a record with two comma delimited values in the Jobs field:

[Inline: -Add, -Database="Contacts', -Table="People’,
-KeyField='ID',

'Jobs'='"Customer Service',

'Jobs'='Sales']

[Field:'Title']

[/Inling]

=» Customer Service, Sales
The following example updates the Jobs field of a record with three comma-delimited values:

[Inline: -Update, -Database='Contacts', -Table='People’,
-KeyField='ID",

-KeyValue='5,

'Jobs'='Customer Service',

'Jobs'='Sales',

"Jobs'='Support’]

[Field:'Title"]

[/Inline]

=» Customer Service, Sales, Support

Note: The individual values being added or updated should not contain commas.

Adding or Updating Null Values

NULL values can be explicitly added to fields using the [Null] tag. A NULL value in a SQL data source designates
that there is no value for a particular field. This is similar to setting a field to an empty string (e.g.
fieldname'="), however the two are different in SQL data sources. For more information about NULL values, see
the data source documentation.

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 10 — SQL DATA SOURCES 163

To add or update a null value to a field:

Use the [Null] tag as the field value. The following example adds a record with a NULL value in the Last_Name
field.

[Inline: -Add, -Database="Contacts', -Table="People’,
-KeyField='ID",

'Last_Name'=(Null)]

[/Inline]

The following example updates a record with a NULL value in the Last_Name field.

[Inline: -Update, -Database='Contacts', -Table='People’,
-KeyField='ID",

-KeyValue='5,

'Last_Name'=(Null)]

[/Inline]

Value Lists

A value list in Lasso is a set of possible values that can be used for a field. Value lists in MySQL are lists of
pre-defined and stored values for a SET or ENUM field type. A value list from a SET or ENUM field can be
displayed using the tags defined in Table 4: MySQL Value List Tags. None of these tags will in -SQL inlines or
if -NoValueLists is specified.

Table 11: MySQL Value List Tags

Tag Description

[Value_List] ... [/Value_List] Container tag repeats each value allowed for ENUM or SET fields. Requires
a single parameter: the name of an ENUM or SET field from the current
table. This tag will not work in -SQL inlines or if -NoValueLists is specified.

[Value_Listltem] Returns the value for the current item in a value list. Optional -Checked or -
Selected parameter returns only values currently contained in the ENUM or SET
field.

[Selected] Displays the word Selected if the current value list item is contained in the data
of the ENUM or SET field.

[Checked] Displays the word Checked if the current value list item is contained in the data
of the ENUM or SET field.

[Option] Generates a series of <option> tags for the value list. Requires a single

parameter: the name of an ENUM or SET field from the current table.

Note: See the Searching and Displaying Data chapter for information about the -Show command tag which is
used throughout this section.

To display values for an ENUM or SET field:

e Perform a -Show action to return the schema of a MySQL database and use the [Value_List] tag to display the
allowed values for an ENUM or SET field. The following example shows how to display all values from the
ENUM field Title in the Contacts database. SET field value lists function in the same manner as ENUM value
lists, and all examples in this section may be used with either ENUM or SET field types.

[Inline: -Show, -Database="Contacts', -Table="People’]
[Value_List: 'Title']

[Value_Listltem]
[/Value_List]
[/Inline]

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 10 — SQL DATA SOURCES 164

=
Mr.

Mrs.

Ms.

Dr.

e The following example shows how to display all values from a value list using a named inline. The same
name Values is referenced by -InlineName in both the [Inline] tag and [Value_List] tag.

[Inline: -InlineName="Values', -Show, -Database='Contacts', -Table="People’]
[/Inling]

[Value_List: 'Title', -InlineName="Values']

[Value_Listltem]
[/Value_List]

=>
Mr.

Mrs.

Ms.

Dr.

To display an HTML pop-up menu in an -Add form with all values from a value list:

¢ The following example shows how to format an HTML <select> ... </select> pop-up menu to show all
the values from a value list. A select list can be created with the same code by including size and/or
multiple parameters within the <select> tag. This code is usually used within an HTML form that performs an
-Add action so the visitor can select a value from the value list for the record they create.

The example shows a single <select> ... </select> within [Inline] ... [/Inline] tags with a -Show command. If many
value lists from the same database are being formatted, they can all be contained within a single set of
[Inline] ... [/Inline] tags.

<form action="response.lasso" method="POST">
<input type="hidden" name="-Add" value="">
<input type="hidden" name="-Database" value="Contacts">
<input type="hidden" name="-Table" value="People">
<input type="hidden" name="-KeyField" value="ID">

[Inline: -Show, -Database='Contacts', -Table='People']
<select name="Title">
[Value_List: Title']
<option value="[Value_Listltem]">[Value_Listltem]</option>
[/Value_List]
</select>
[/Inline]

<p><input type="submit" name="-Add" value="Add Record">
</form>

e The [Option] tag can be used to easily format a value list as an HTML <select> ... </select> pop-up menu. The
[Option] tag generates all of the <option> ... </option> tags for the pop-up menu based on the value list for the
specified field. The example below generates exactly the same HTML as the example above.

<form action="response.lasso" method="POST">
<input type="hidden" name="-Add" value="">
<input type="hidden" name="-Database" value="Contacts">
<input type="hidden" name="-Table" value="People">
<input type="hidden" name="-KeyField" value="ID">

[Inline: -Show, -Database='Contacts', -Table='People']
<select name="Title">
[Option: 'Title']
</select>
[/Inline]

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 10 — SQL DATA SOURCES 165

<p><input type="submit" name="-Add" value="Add Record">
</form>

To display HTML radio buttons with all values from a value list:

The following example shows how to format a set of HTML <input> tags to show all the values from a value list
as radio buttons. The visitor will be able to select one value from the value list. Check boxes can be created
with the same code by changing the type from radio to checkbox.

<form action="response.lasso" method="POST">
<input type="hidden" name="-Add" value="">
<input type="hidden" name="-Database" value="Contacts">
<input type="hidden" name="-Table" value="People">
<input type="hidden" name="-KeyField" value="ID">

[Inline: -Show, -Database='Contacts', -Table="People]
[Value_List: Title']

<input type="radio" name="Title" value="[Value_Listltem]"> [Value_Listltem]
[/Value_List]

[/Inline]

<p><input type="submit" name="-Add" value="Add Record">
</form>

To display only selected values from a value list:

The following examples show how to display the selected values from a value list for the current record. The
record for John Doe is found within the database and the selected value for the Title field, Mr. is displayed.

¢ The -Selected keyword in the [Value_Listltem] tag ensures that only selected value list items are shown. The
following example uses a conditional to check whether [Value_Listltem: -Selected] is empty.

[Inline: -Search, -Database='Contacts', -Table="People’,
-KeyField="1D',
-KeyValue=126]
[Value_List: Title"
[If: (Value_Listltem: -Selected) = "]

[Value_Listltem: -Selected]
[/
[/Value_List]
[/Inline]

=>
Mr.

¢ The [Selected] tag ensures that only selected value list items are shown. The following example uses a
conditional to check whether [Selected] is empty and only shows the [Value_Listltem] if it is not.

[Inline: -Search, -Database='Contacts', -Table="People’,
-KeyField="D',
-KeyValue=126]
[Value_List: 'Title']
[If: (Selected) '=""

[Value_Listltem]
/]
[/Value_List]
[/Inline]

=»
Mr.

e The [Field] tag can also be used simply to display the current value for a field without reference to the value
list.

{[Field: Title]

=>
Mr.

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 10 — SQL DATA SOURCES 166

To display an HTML pop-up menu in an -Update form with selected value list values:

¢ The following example shows how to format an HTML <select> ... </select> select list to show all the values
from a value list with the selected values highlighted. The [Selected] tag returns Selected if the current value
list item is selected in the database or nothing otherwise. This code will usually be used in an HTML form
that performs an -Update action to allow the visitor to see what values are selected in the database currently
and make different choices for the updated record.

<form action="response.lasso" method="POST">
<input type="hidden" name="-Update" value="">
<input type="hidden" name="-Database" value="Contacts">
<input type="hidden" name="-Table" value="People">
<input type="hidden" name="-KeyField" value="ID">
<input type="hidden" name="-KeyValue" value="127">

[Inline: -Search, -Database='Contacts', -Table="People’,
-KeyField="ID',
-KeyValue=126]
<select name="Title" multiple size="4">
[Value_List: 'Title']
<option value="[Value_Listltem]" [Selected]>[Value_Listltem]</option>
[/Value_List]
</select>
[/Inline]

<p><input type="submit" name="-Update" value="Update Record">
<[form>

¢ The [Option] tag automatically inserts Selected parameters as needed to ensure that the proper options are
selected in the HTML select list. The example below generates exactly the same HTML as the example
above.

<form action="response.lasso" method="POST">
<input type="hidden" name="-Update" value="">
<input type="hidden" name="-Database" value="Contacts">
<input type="hidden" name="-Table" value="People">
<input type="hidden" name="-KeyField" value="ID">
<input type="hidden" name="-KeyValue" value="127">

[Inline: -Search, -Database='Contacts', -Table="People’,
-KeyField="ID',
-KeyValue=126]
<select name="Title" multiple size="4">
[Option: 'Title']
</select>
[/Inline]

<p><input type="submit" name="-Update" value="Update Record">
<[form>

To display HTML check boxes with selected value list values:

The following example shows how to format a set of HTML <input> tags to show all the values from a value
list as check boxes with the selected check boxes checked. The [Checked] tag returns Checked if the current value
list item is selected in the database or nothing otherwise. Radio buttons can be created with the same code by
changing the type from checkbox to radio.

<form action="response.lasso" method="POST">
<input type="hidden" name="-Update" value="">
<input type="hidden" name="-Database" value="Contacts">
<input type="hidden" name="-Table" value="People">
<input type="hidden" name="-KeyField" value="ID">
<input type="hidden" name="-KeyValue" value="127">

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 10 — SQL DATA SOURCES

[Inline: -Search, -Database="Contacts', -Table="People’,
-KeyField='"ID",
-KeyValue=126]

[Value_List: Title']

<input type="checkbox" name="Title" value="[Value_Listltem]" [Checked]>
[Value_Listltem]

[/Value_List]

[/Inling]

<p><input type="submit" name="-Update" value="Update Record">
<[form>

Note: Storing multiple values is only supported using SET field types.

167

LAsso 8.5 LANGUAGE GUIDE

168

Chapter 11
FileMaker Data Sources

This chapter documents tags and behaviors which are specific to the FileMaker data sources in Lasso. These
include the data sources for FileMaker Pro 4, 5, or 6, FileMaker Server Advanced 7 or higher, and FileMaker
Server 9 or higher. See the appropriate chapter for information about other data sources including SQL Data
Sources, JDBC and ODBC Data Sources, and Other Data Sources (Spotlight, custom data sources).

® Overview introduces FileMaker data sources.

® Feature Matrix includes a table which lists all of the features of each FileMaker data source and highlights
the differences between them.

¢ Performance Tips includes recommendations which will help ensure that FileMaker is used to its full
potential.

® Compeatibility Tips includes recommendations which help ensure that FileMaker databases can be
transferred to a different back-end data source.

¢ FileMaker Queries describes how queries are specified differently for each of the FileMaker data sources
and how these query formats differ from those used for SQL data sources.

e FileMaker Tags describes tags specific to FileMaker data sources.

® Primary Key Field and Record ID describes how the built-in record IDs in FileMaker can be used as
primary key fields.

e Sorting Records describes how custom sorts can be performed in FileMaker databases.

¢ Displaying Data describes methods of returning field values from FileMaker databases including repeating
field values and values from portals.

e Value Lists describes how to retrieve and format value list data from FileMaker databases.

¢ Container Fields describes how to retrieve images and other data stored in container fields.

* FileMaker Scripts describes how to activate FileMaker scripts in concert with a Lasso database action.

Overview

Lasso Professional allows access to FileMaker Pro data sources through the Lasso Connector for FileMaker
Pro. Connections can be made to any version of FileMaker Pro that includes Web Companion including
FileMaker Pro 4.x and FileMaker Pro 5.x and 6.x Unlimited. FileMaker Pro 3 is not supported nor are
solutions which use the FileMaker runtime engine.

Lasso Professional allows access to FileMaker Server Advanced 7 or higher and FileMaker Server 9 or higher
through the Lasso Connector for FileMaker SA. Lasso provides several tags and options which are unique
to FileMaker Server connections including -LayoutResponse and -NoValueLists. Lasso cannot connect directly to
FileMaker Pro 7, 8, or 9.

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 11 — FILEMAKER DATA SOURCES 169

Table 1: Data Sources

Data Source Description

FileMaker Pro Suports FileMaker Pro 4.x, FileMaker Pro Unlimited 5.x and 6.x.

FileMaker Server Supports FileMaker Server Advanced 7 or higher and FileMaker Server 9 or
higher.

Please see the Setting Up Data Sources chapter in the Lasso Professional Setup Guide for information about
how to configure FileMaker for access through Lasso Professional.

LassoScript is a predominantly data source-independent language. It does include many FileMaker specific
tags which are documented in this chapter. However, all of the common procedures outlined in the Data
Source Fundamentals, Searching and Displaying Data, and Adding and Updating Records chapters can be
used with FileMaker data sources.

Note: The tags and procedures defined in this chapter can only be used with FileMaker data sources. Any
solution which relies on the tags in this chapter cannot be easily retargeted to work with a different back-end
database.

Terminology

Since Lasso works with many different data sources this documentation uses data source agnostic terms to
refer to databases, tables, and fields. The following terms which are used in the FileMaker documentation are
equivalent to their Lasso counterparts.

e Database - Database is used to refer to a single FileMaker database file. FileMaker databases differ from
other databases in Lasso in that they contain layouts rather than individual data tables. Even in FileMaker 7
Lasso see individual layouts rather than data tables. From a data storage point of view, a FileMaker database
is equivalent to a single MySQL table.

¢ Layout - Within Lasso a FileMaker layout is treated as equivalent to a Table. The two terms can be used
interchangeably. This equivalence simplifies Lasso security and makes transitioning between back-end data
sources easier. All FileMaker layouts can be thought of as views of a single data table. Lasso can only access
fields which are contained in the layout named within the current database action.

® Record - FileMaker records are referenced using a single -KeyValue rather than a -KeyField and -KeyValue pair.
The -KeyField in FileMaker is always the record ID which is set internally.

¢ Fields - The value for any field in the current layout in FileMaker can be returned including the values for
related fields, repeating fields, and fields in portals.

Although the equivalence of FileMaker databases to MySQL databases and FileMaker layouts to MySQL tables
is imperfect, it is an essential compromise in order to map both database models onto Lasso Professional’s
two-tier (e.g. database and table) security model.

Important: Every database which is referenced by a related field or a portal must have the same permissions
defined. If a related database does not have the proper permissions then FileMaker will not just leave the related
fields blank, but will deny the entire database request.

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 11 — FILEMAKER DATA SOURCES 170

Feature Matrix

The following tables detail the features of each data source in this chapter. Since some features are only
available in certain data sources it is important to check these tables when reading the documentation in
order to ensure that each data source supports your solutions required features. See the section on FileMaker
Queries for important information about how FileMaker queries differ between each FileMaker data source
and from SQL data sources.

Table 2: FileMaker Pro Data Source

Feature Description

Friendly Name Lasso Connector for FileMaker Pro

Internal Name fmremotedatasource

Module Name FMPConnector.dll, FMPConnector.dylib, or FMPConnector.so

Inline Host Attributes Requires -Name specifying connection URL (i.e. filemaker.example.com),
-Username, and -Password. Optional -Port defaults to 591.

Actions -Add, -Delete, -Duplicate, -FindAll, -Random, -Search, -Show, -Update

Operators -BW, -CN, -EQ, -EW, -GT, -GTE, -LT, -LTE, -NBW, -NCN, -NEW. Note that
operators act on words rather than the entire field in this data source.

KeyField The internal record ID is used as the key field so only -KeyValue is required.

Logical Operators Supports -OpLogical. No support for -OpBegin or -OpEnd.

Table 3: FileMaker Server Data Source

Feature Description

Friendly Name Lasso Connector for FileMaker SA

Internal Name fmserveradvanceddatasource

Module Name FMSAConnector.dll, FMSAConnector.dylib, or FMSAConnector.so

Inline Host Attributes Requires -Name specifying connection URL (i.e. filemaker.example.com),
-Username, and -Password. Optional -Port defaults to 80.

Actions -Add, -Delete, -Duplicate, -FindAll, -Random, -Search, -Show, -Update

Operators -BW, -CN, -EQ, -EW, -GT, -GTE, -LT, -LTE, -NBW, -NCN, -NEW. Note that
operators act on words rather than the entire field in this data source.

KeyField The internal record ID is used as the key field so only -KeyValue is required.

Logical Operators Supports -OpLogical. No support for -OpBegin or -OpEnd.

Performance Tips

This section contains a number of tips which will help get the best performance from a FileMaker database.
Since queries must be performed sequentially within FileMaker, even small optimizations can yield
significant increases in the speed of Web serving under heavy load.

¢ Dedicated FileMaker Machine - For best performance, place the FileMaker Pro or FileMaker Server on a
different machine from Lasso Service and the Web server.

¢ FileMaker Server - If a FileMaker database must be accessed by a mix of FileMaker clients and Web
visitors through Lasso, it should be hosted on FileMaker Server. Lasso can access the database directly
through FileMaker Server Advanced 7 or higher, FileMaker Server 9 or higher, or through a single FileMaker
Pro 4, 5, or 6 client which is connected as a guest to FileMaker Server.

¢ Web Companion - When using FileMaker Pro, always ensure that the latest version of FileMaker Web
Companion for the appropriate version of FileMaker is installed.

¢ Index Fields - Any fields which will be searched through Lasso should have indexing turned on. Avoid
searching on unstored calculation fields, related fields, and summary fields.

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 11 — FILEMAKER DATA SOURCES 171

e Custom Layouts - Layouts should be created with the minimal number of fields required for Lasso. All
the data for the fields in the layout will be sent to Lasso with the query results. Limiting the number of
fields can dramatically cut down the amount of data which needs to be sent from FileMaker to Lasso.

® Value Lists - For FileMaker Server data sources use the -NoValueLists tag to suppress the automatic sending
of value lists from FileMaker when those value lists are not going to be used on the response page.

¢ Layout Response - For FileMaker Server data sources use the -LayoutResponse tag to specify what layout
should be used to return results from FileMaker. A different layout can be used to specify the request and
for the result of the request.

¢ Return Fields - For FileMaker Pro data sources use the -ReturnField tag to limit the number of fields which
are returned to Lasso. If no -ReturnField tag is specified then all of the data for the fields in the current layout
will be sent to Lasso with the query results.

Note: ReturnField does not work with FileMaker Server. The -LayoutResponse tag should be used instead to return a
custom layout that contains only the fields that will be shown on the response page.

¢ Sorting - Sorting can have a serious impact on performance if large numbers of records must be sorted.
Avoid sorting large record sets and avoid sorting on calculation fields, related fields, unindexed fields, or
summary fields.

¢ Contains Searching - FileMaker is optimized for the default Begins With searches (and for numerical
searches). Use of the contains operator cn can dramatically slow down performance since FileMaker will
not be able to use its indices to optimize searches.

® Max Records - Using -MaxRecords to limit the number of records returned in the result set from FileMaker
can speed up performance. Use -MaxRecords and -SkipRecords or the [Link_...] tags to navigate a visitor through
the found set.

e Calculation Fields - Calculation fields should be avoided if possible. Searching or sorting on unindexed,
unstored calculation fields can have a negative effect on FileMaker performance.

¢ FileMaker Scripts - The use of FileMaker scripts should be avoided if possible. When FileMaker executes
a script, no other database actions can be performed at the same time. FileMaker scripts can usually be
rewritten as LassoScripts to achieve the same effect, often with greater performance.

In addition to these tips, MySQL can be used to shift some of the burden off of FileMaker. MySQL can
usually perform database searches much faster than FileMaker. Lasso also includes sessions and compound
data types that can be used to perform some of the tasks of a database, but with higher performance for small
amounts of data.

Compatibility Tips
Following these tips will help to ensure that it easy to transfer data from a FileMaker database to another data
source, such as a MySQL database, at a future date.

¢ Database Names - Database, layout, and field names should contain only a mix of letters, numbers, and
the underscore character. They should not contain any punctuation other than spaces.

e Calculation Fields - Avoid the use of calculation fields. Instead, perform calculations within Lasso and
store the results back into regular fields if they will be needed later.

® Summary Fields - Avoid the use of summary fields. Instead, summarize data using [Inline] searches within
Lasso.

¢ Scripts - Avoid the use of FileMaker scripts. Most actions which can be performed with scripts can be
performed using the database actions available within Lasso.

® Record ID - Create a calculation field named ID and assign it to the following calculation. Always use the
-KeyField='ID" within [Inline] database actions, HTML forms, and URLs. This ensures that when moving to a
database that relies on storing the key field value explicitly, a unique key field value is available.

Status(CurrentRecordID)

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 11 — FILEMAKER DATA SOURCES 172

FileMaker Queries

The queries generated by inlines for FileMaker data sources differ from the queries generated for other data
sources in several significant ways. This section includes a description of how search operators, logical opera-
tors, and other keywords are used to construct queries for each of the FileMaker data sources.

Search Operators

By default FileMaker performs a “begins with” search for each field in a query. FileMaker uses full-text search
automatically so “begins with” actually means “any word in the field begins with”. For example, if a search for
John in the FullName field is performed then records with the names John Doe or Johnny Doe or even Eric Johnson
will be returned. Each of these field values contains a word that “begins with” the specified parameter.

¢ FileMaker Pro - In most versions of FileMaker Pro and FileMaker Pro Unlimited it is possible to use a
field multiple times within a single query with different search operators.

¢ FileMaker Server - In FileMaker Server each field can only be specified one time within each search query.
See the information about FileMaker search symbols below for strategies to perform complex queries in
FileMaker Server.

Lasso also provides the following operators which allow different queries to be performed. Each operator
should be specified immediately before the field and its search value are specified. Note that this list of opera-
tors is somewhat different from those supported by other data source connectors including other FileMaker
data source connectors.

Table 4: FileMaker Operators

Tag Description

-BW Begins with matches records where any word in the field begins with the specified
substring. This is the default if no other operator is specified.

-CN Contains matches records where any word in the field contains the substring.

-EQ Equals matches records where any word in the field exactly matches the string.

-EW Ends with matches records where any word in the field ends with the specified
substring.

-GT Greater than matches records where the field value is greater than the parameter.

-GTE Greater than or equals.

-LT Less than matches records where the field value is less than the parameter.

-LTE Less than or equals.

-RX Use a FileMaker search expression. See the table below for a list of symbols.

Each of the operators operates on words within the FileMaker field. If a FullName field contains the value
John Doe then the search term -BW, ‘FullName'="John’ will match the record and so will the search term
-BW, ‘FullName’="Doe’.

Note that there is no -NEQ operator or other negated operators. It is necessary to use a -Not query to omit
records from the found set instead. For example, to find records where the field FirstName is not Joe the
following search terms must be used.

-Not,
-Op="Eq, 'FirstName'="Joe',

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 11 — FILEMAKER DATA SOURCES 173

The -RX operator can be used to pass a raw FileMaker search expression as a query. This allows the use of any
of the FileMaker search symbols. See the FileMaker documentation for a full list of how these symbols work.

Table 5: FileMaker Search Symbols

Symbol Description
@ Matches one character.
* Matches zero or more characters. A single * matches non-empty fields.

Matches values between a range of values such as 1..10 or A..Z. Can be written
as two or three periods.

Matches one number.

Quotes surround a substring which should be matched literally.

= Matches a whole word. =John will match John, but not Johnny. A single =
matches empty field.

== Matches a whole field value rather than word by word. Should be specified at the
start of the search term.

<><=>= Matches values less than, greater than, less than or equal to, or greater than or
equal to a specified value.

? Matches a record with invalid data in the field.

Il Matches today's date.

! Matches records which have a duplicate value. Both records will be returned.

The range symbol .. is most useful for performing searches within a date range. For example a date in 2006
can be found by searching for -RX, 'DateField'="1/1/2006 .. 12/31/2006'".

Logical Operators

FileMaker data sources default to performing an “and” search. The records which are returned from the data
source must match all of the criteria that are specified. It is also possible to specify -OpLogical to switch to an
“or” search where the records which are returned from the data source may match any of the criteria that are
specified.

For example, the following criteria returns records where the FirstName is John and the LastName is Doe.
-EQ, 'FirstName'="John', -EQ, 'LastName'='Dog'

The following criteria instead returns records where the FirstName is John or the LastName is Doe. This would
return records for John Doe as well as Jane Doe and John Walker.

-OpLogical="or', -EQ, 'FirstName'="John’, -EQ, 'LastName'='Doe’

FileMaker 9/10 Complex Queries

Note: This section applies to FileMaker Server 9 and FileMaker Server 10.

A FileMaker Server 9 search request is made up of one more queries. By default a single query is generated
and all of the search terms within it are combined using an “and” operator. Additional queries can be added
to either extend the found set using an “or” operator or to omit records from the found set using a “not”
operator. These queries correspond precisely to find requests within the FileMaker Pro user interface.

Each field can only be listed once per query. The standard Lasso operators can be used for most common
search parameters like equals, begins with, ends with, contains, less than, greater than, etc. FileMaker's stan-
dard find symbols can be used for more complex criteria. It may also be necessary to use multiple queries for
more complex search criteria.

FileMaker Server 9 search requests do not support not equals operator or any of the not variant operators.

Instead, these should be created by combining an omit query with the appropriate affirmative operator. The
-OpLogical, -OpBegin, and -OpEnd operators are not supported. The -Or and -Not operators must be used instead.

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 11 — FILEMAKER DATA SOURCES 174

Table 6: FileMaker Server 9 Logical Operators

Tag Description

-Or Starts a new query. Records which match the query will be added to the result
set.

-Not Starts an omit query. Records which match the query will be omitted from the
result set.

A search with a single query uses an “and” operator to combine each of the search terms. Records where the
field FirstName begins with the letter J and the field LastName begins with the letter D can be found using the
following search terms in Lasso. Each record in the result set will match every search term in the query.

-BW, 'FirstName'="J',
-BW, 'LastName='D'

We start an additional query using an -Or operator. FileMaker runs the first and second queries independently
and then combines the search results. The result of the following search terms will be to find every record
where the field FirstName begins with the letter J and the field LastName begins with either the letter D or the
letter S. Each records in the result set will match either the first query or the second query.

-BW, 'FirstName'="J',
-BW, 'LastName='D'
.Or‘

-BW, 'FirstName'="J',
-BW, 'LastName="S'

Note that each field name can only appear once per query, but the same field name can be used in multiple
queries. The FirstName search term is repeated in both queries so that all returned records will have a FirstName
starting with J. If the FirstName search term was left out of the second query then the result set would contain
ever records the field FirstName begins with the J and the field LastName begins with the letter D and every
record where the field LastName begins with the letter S.

The result set can be narrowed by adding an omit query using a -Not operator. FileMaker will run the first
query and any -Or queries first generating a complete result set. Then, the -Not queries will be run and any
records which match those queries will be omitted from the found set. The result of the following search
terms will be to find every record where the field FirstName begins with the letter J and the field LastName
begins withthe letter D except for the record for John Doe. Each records in the result set will match the first
query and will not match the second query.

-BW, 'FirstName'="J',
-BW, 'LastName="D'
-Not,

-BW, 'FirstName'="John',
-BW, 'LastName="Doe'

It is possible to construct most searches positively using only a single query or a few -Or queries, but some-
times it is more logical to construct a large result set and then use one or more -Not queries to omit records
from it.

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 11 — FILEMAKER DATA SOURCES 175

Additional Commands

FileMaker Server 9 supports a number of additional unique commands which are summarized in the
following table. Most of these commands passed through to FileMaker without modification by Lasso. The
FileMaker Server 9 Custom Web Publishing with XML and XSLT documentation should be consulted for full
details about these commands.

Table 7: FileMaker Server 9 Additional Commands

Command Description

-LayoutResponse Returns the result set using the layout specified in this tag rather than the layout
used to specify the database action.

-NoValueLists Suppresses the fetching of value list data for FileMaker Server data sources.

-Relatedsets.Filter If set to "layout" FileMaker will return only the number of related records shown

in portals on the current layout. Defaults to returning all records up to the number
set by -Relatedsets.Max.

-Relatedsets.Max Sets the number of related records returned. Can be set to a number or "all".

-Script and -Script.Param Runs a script after the find has been processed and sorted. The optional
parameter can be accessed from within the script.

-Script.Prefind and -Script.Prefind.Param Runs a script before the find is processed.
-Script.Presort and -Script.Presort.Param Runs a script after the find has been processed, but before the results are sorted.

FileMaker Tags

Lasso includes tags that allow the type of a database to be inspected.

Table 8: FileMaker Data Source Tags

Tag Description
[Lasso_DataSourcelsFileMaker] Returns True if the specified database is hosted by FileMaker Pro 4, 5, or 6.
[Lasso_DataSourcelsFileMakerSA] Returns True if the specified database is hosted by FileMaker Server Advanced 7

or higher or FileMaker Server 9 or higher.

To check whether a database is hosted by FileMaker:

The following example shows how to use these tags to check whether or note the database Example is hosted
by FileMaker Pro, FileMaker Server Advanced 7 or higher, or FileMaker Server 9 or higher.

[If: (Lasso_DataSourcelsFileMaker: 'Example.fp7')]
Example is hosted by FileMaker Pro!

[Else: (Lasso_DataSourcelsFileMakerSA: 'Example.fp7')]
Example is hosted by FileMaker Server!

[Else]
Example is not hosted by FileMaker.

[/l

=» Example is hosted by FileMaker Server!

To list all databases hosted by FileMaker:

Use the [Database_Names] ... [[Database_Names] tags to list all databases available to Lasso. The [Lasso_
DataSourcels...] tag scan be used to check each database and only those that are hosted by FileMaker Pro
will be returned. The result shows two databases, Contacts.fp5 and Example.fp5, which are available through
FileMaker Pro.

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 11 — FILEMAKER DATA SOURCES 176

[Database_Names]
[If: (Lasso_DataSourcelsFileMaker: (Database_Nameltem))]

FMP [Database_Nameltem]
[Else: (Lasso_DataSourcelsFileMakerSA: (Database_Nameltem))]

FMSA [Database_Nameltem]
[Else: (Lasso_DataSourcelsFileMaker9: (Database_Nameltem))]

FMS9 [Database_Nameltem]

[/

[/Dabase_Names]

=>» <br /[>FMP Example.fp5

FMP Contacts.fp5

Primary Key Field and Record ID

FileMaker databases include a built-in primary key value called the Record ID. This value is guaranteed to

be unique for any record in a FileMaker database. It is predominantly sequential, but should not be relied
upon to be sequential. The values of the record IDs within a database may change after an import or after a
database is compressed using Save a Copy As.... Record IDs can be used within a solution to refer to a record
on multiple pages, but should not be stored as permanent references to FileMaker records.

Note: The tag [RecordID_Value] can also be used to retrieve the record ID from FileMaker records. However, for
best results, it is recommended that the [KeyField_Value] tag be used.

To return the current record ID:

The record ID for the current record can be returned using [KeyField_Value]. The following example shows
[Inling] ... [/Inline] tags that perform a -FindAll action and return the record ID for each returned record using the
[KeyFleld_Value] tag.

[Inline: -Database='Contacts.fp5', -Layout="People', -FindAll]
[Records]

[KeyField_Value]: [Field: 'First_Name'] [Field: 'Last_Name']
[/Records]
[/Inline]

=» <pr>126: John Doe

127: Jane Doe

4096: Jane Person

To reference a record by record ID:

For -Update and -Delete command tags the record ID for the record which should be operated upon can be

referenced using -KeyValue. The -KeyField does not need to be defined or should be set to an empty string if it

is, -KeyField=".

e The following example shows a record in Contacts.fp5 being updated with -KeyValue=126. The name of the
person referenced by the record is changed to John Surname.

[Inline: -Database="Contacts.fp5',

-Layout="People’,

-KeyValue=126,

'First_Name'='John’,

'Last_Name'='Surname',

-Update]

[KeyField_Value]: [Field: 'First_Name"] [Field: 'Last_Name']

[/Inling]

=»
126: John Surname

¢ The following example shows a record in Contacts.fp5 being deleted with -KeyValue=127. The -KeyField
command tag is included, but its value is set to the empty string.

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 11 — FILEMAKER DATA SOURCES 177

[Inline: -Database="Contacts.fp5',
-Layout="People’,
-KeyField=",

-KeyValue=126,
-Delete]
[/Inline]

To access the record ID within FileMaker:

The record ID for the current record in FileMaker can be accessed using the calculation value
Status(CurrentRecordID) within FileMaker.

Sorting Records

In addition to the Ascending and Descending values for the -SortOrder tag, FileMaker data sources can also accept
a custom value.

In FileMaker Pro 4, 5, or 6, the value Custom can be used as the -SortOrder for any field which is formatted with
a value list in the current layout. The field will be sorted according to the order of values within the value list.

In FileMaker Server, the value for -SortOrder should name a value list. The order of that value list will be used
as the custom sorting order for records in the result set. Note also that FileMaker Server only support the
specification of nine sort fields in a single database search.

To return custom sorted results:

Specify -SortField and -SortOrder command tags within the search parameters. The following [Inline] ... [/Inline] tags
include sort command tags specified in hidden inputs. The records are first sorted by title in Custom order,
then by Last_Name and First_Name in ascending order. The Title field will be sorted in the order of the elements
within the value list associated with the field in the database. In this case, it will be sorted as Mr, Mrs., Ms.

[Inline: -FindAll,
-Database="Contacts.fp5',
-Table='People',
-KeyField="ID',
-SortField="Title', -SortOrder="Custom’,
-SortField="Last_Name', -SortOrder='Ascending’,
-SortField="First_Name', -SortOrder="Ascending’]
[Records]

[Field: 'Title'] [Field: 'First_Name'] [Field: ‘Last_Name']
[/Records]
[/Inline]

If FileMaker Server is being used then the line which specifies the sort would look as follows. The value list
Title is used to sort the field Title.

-SortField="Title', -SortOrder="Title',
The following results could be returned when this page is loaded. Each of the records with a title of Mr.
appear before each of the records with a title of Mrs. Within each title, the names are sorted in ascending
alphabetical order.

=»
Mr. John Doe

Mr. John Person

Mrs. Jane Doe

Mrs. Jane Person

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 11 — FILEMAKER DATA SOURCES 178

Displaying Data

FileMaker includes a number of container tags and substitution tags that allow the different types of
FileMaker fields to be displayed. These tags are summarized in FileMaker Data Display Tags and then
examples are included in the sections that follow.

See also the sections on Value Lists and Images for more information about returning values from FileMaker
fields.

Table 9: FileMaker Data Display Tags

Tag Description

[Field] Can be used to reference FileMaker fields including related fields and repeating
fields. Fields from the current table are named simply (e.g. [Field: 'First_Name').
Fields from a related record are named with the related database name, two
colons, and the name of the field (e.g. [Field: ‘Calls::Approved]). The record ID
of a related record can also be found by specifying -RecordID (e.g. [Field: 'Calls::
Approved', -RecordID]).

[Repeating] ... [/Repeating] Container tag repeats for each defined repetition of a repeating field. Requires a
single parameter, the name of the repeating field from the current layout.

[Repeating_Valueltem] Returns the value for each repetition of a repeating field.

[Portal] ... [/Portal] Container tag repeats for each record in a portal. Requires a single parameter,
the name of the portal relationship from the current layout. Fields from the portal
can be found using the same method as for related records (e.g. [Field: 'Calls::
Approved] within a portal showing records from the Calls database).

Note: All fields which are referenced by Lasso must be contained in the current layout in FileMaker. For portals
and repeating fields only the number of repetitions shown in the current layout will be available to Lasso.

Related Fields

Related fields are named using the relationship name followed by two colons :: and the field name. For
example, a related field Call_Duration from a Calls.fp5 database might be referenced as Calls.fp5::Call_Duration. Any
related fields which are included in the layout specified for the current Lasso action can be referenced using
this syntax. Data can be retrieved from related fields or it can be set in related fields when records are added
or updated.

Important: Every database which is referenced by a related field or a portal must have the same permissions
defined. If a related database does not have the proper permissions then FileMaker will not just leave the related
fields blank, but will deny the entire database request.

To return data from a related field:

Specify the name of the related field within a [Field] tag. The related field must be contained in the current
layout either individually or within a portal. In a one-to-one relationship, the value from the single related
record will be returned. In a one-to-many relationship, the value from the first related record as defined by
the relationship options will be returned. See the section on Portals below for more control over one-to-
many relationships.

The following example shows a -FindAll action being performed in a database Contacts.fp5. The related field
Last_Call_Time from the Calls.fp5 databases is returned for each record through a relationship named Calls.fp5.

[Inline: -Database="Contacts.fp5', -Layout="People', -FindAll]
[Records]

[KeyField_Value]: [Field: 'First_Name'] [Field: 'Last_Name]
(Last call at: [Field: 'Calls::Last_Call_Time").
[/Records]
[/Inling]

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 11 — FILEMAKER DATA SOURCES 179

=»
126: John Doe (Last call at 12:00 pm).

127: Jane Doe (Last call at 9:25 am).

4096: Jane Person (Last call at 4:46 pm).

To return the record ID for a related field:

Add the -RecordID parameter to the [Field] tag which would return the value for a related field. Adding the
following tag within the [Records] ... [[Records] tags in the example above would return the record ID for the
related Calls record rather than the value for the Last_Call_Time field.

[Field: 'Calls::Last_Call_Time', -RecordID]

To set the value for a related field:

Specify the name of the related field within the action which adds or updates a record within the database.
The related field must be contained in the current layout either individually or within a portal. In a one-to-
one relationship, the value for the field in a single related record will be modified.

In a one-to-many relationship, the record ID of the related record must be used within the inline to specify
which related record should be modified. Otherwise, the value for the field in the first related record as
defined by the relationship options will be modified. See the section on Portals below for more control over
one-to-many relationships.

The following example shows an -Update action being performed in a database Contacts.fp5. The related field
Last_Call_Time from the Calls.fp5 database is updated for Jane Person. The new value is returned.

[Inline: -Database="Contacts.fp5',
-Layout="People’,
-KeyValue=4096,
'Calls.fp5::Last_Call_Time'="1:45 am’,
-Update]

[KeyField_Value]: [Field: 'First_Name'] [Field: 'Last_Name]
(Last call at: [Field: 'Calls.fp5::Last_Call_Time']).
[/Inling]

=»
4096: Jane Person (Last call at 1:45 pm).

Portals

Portals allow one-to-many relationships to be displayed within FileMaker databases. Portals allow data from
many related records to be retrieved and displayed in a single Lasso page. A portal must be present in the
current FileMaker layout in order for its values to be retrieved using Lasso.

Important: Every database which is referenced by a related field or a portal must have the same permissions
defined. If a related database does not have the proper permissions then FileMaker will not just leave the related
fields blank, but will deny the entire database request.

Only the number of repetitions formatted to display within FileMaker will be displayed using Lasso. A portal
must contain a scroll bar in order for all records from the portal to be displayed using Lasso.

Fields in portals are named using the same convention as related fields. The relationship name is followed by
two colons :: and the field name. For example, a related field Call_Duration from a Calls.fp5 database might be
referenced as Calls.fp5::Call_Duration.

Note: Everything that is possible to do with portals can also be performed using nested [Inling] ... [/Inline] tags to
perform actions in the related database. Portals are unique to FileMaker databases.

To return values from a portal:

Use the [Portal] ... [/Portal] tags with the name of the portal referenced in the opening [Portal] tag. [Field] tags
within the [Portal] ... [/Portal] tags should reference the fields from the current portal row using related field
syntax.

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 11 — FILEMAKER DATA SOURCES 180

The following example shows a portal Calls.fp5 that is contained in the People layout of the Contacts.fp5
database. The Time, Duration, and Number of each call is displayed.

[Inline: -Database="Contacts.fp5', -Layout="People’, -FindAll]
[Records]
<p>Calls for [Field: 'First_Name'] [Field: 'Last_Name]:
[Portal: 'Calls.fp5"]

[Field: 'Calls.fp5::Number'] at [Field: 'Calls.fp5::Time']
for [Field: 'Calls.fp5::Duration'] minutes.
[/Portal]
[/Records]
[/Inling]

=>» <p>Calls for John Doe:

555-1212 at 12:00 pm for 15 minutes.

<p>Calls for Jane Doe:

555-1212 at 9:25 am for 60 minutes.

<p>Calls for Jane Person:

555-1212 at 2:23 pm for 55 minutes.

555-1212 at 4:46 pm for 5 minutes.

To add a record to a portal:

A record can be added to a portal by adding the record directly to the related database. In the following
example the Calls.fp5 database is related to the Contacts.fp5 database by virtue of a field Contact_ID that stores
the ID for the contact which the calls were made to. New records added to Calls.fp5 with the appropriate
Contact_ID will be shown through the portal to the next site visitor.

In the following example a new call is added to the Calls.fp5 database for John Doe. John Doe has an ID of 123 in
the Contacts.fp5 database. This is the value used for the Contact_ID field in Calls.fp5.

[Inline: -Add,
-Database="Calls.fp5',
-Layout="People,
'Contact_|D'=123,
‘Number'='555-1212,
‘Time'="12:00 am',
‘Duration'=55]

[/Inline]

To update a record within a portal:

Lasso allows records within a portal to be updated by specifying the record ID of the related record within
the inline. The structure of the field name is Relation::Field.RecordID. The record ID for a related record can

be found using the [Field] tag with a -RecordID parameter. Rather than returning the value for the field name
specified, the [Field] tag will return the record ID for the related record. For example, the field name for the
Call_Duration field in the Calls.fp5 database on the record with ID 1234 would look like Calls.fp5::Call_Duration.1234
and could be generated with Calls.fp5::Call_Duration.[Field: 'Calls.fp5::Call_Duration', -RecordID].

For example, the following code assumes that there is a contacts database with a People layout and a related
Calls database. The calls for each contact are listed through a portal on the People layout. This code will create
an array of related fields from the Calls database to be updated in each record. The name of each field is
created using the [Field] tag with the -RecordID parameter and the value for the field is set to Yes. The nested
inline does an update of the Contacts database, but actually updates records in the Calls database through the
portal.

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 11 — FILEMAKER DATA SOURCES 181

[Inline: -Database="Contacts.fp5', -Layout="People', -FindAll]
[Records]
[Var: 'myUpdateArray' = (Array)]
[Portal: 'Calls.fp5']
[$myUpdateArray->(Insert: 'Calls.fp5::Approved.' + (Field: "Calls.fo5::Approved', -RecordID) = 'Yes')\
[/Porta]
[Inline: -Database="Contacts.fp5',
-Layout="People’,
-KeyField=(KeyField_Value),
$myUpdateArray,
-Update’]
[/Inling]
[/Records]
[/Inling]

It is also possible to use a field to return the record ID of each record in the portal, then use that value in
nested [Inline] ... [/Inline] tags to update the related record. Create a calculation field named RecordID within the
related database (e.g. Calls.fp5) that contains the following FileMaker calculation.

Status(CurrentRecordID)

Place that field within the portal shown within the main database (e.g. Contacts.fp5). To perform an update of
a portal row, use [Inline] ... [/Inline] tags which reference the related database and the RecordID from the portal.

The following example shows how to update every record contained within a portal. The field Approved is set
to Yes for each call from the Calls.fp5 database for all contacts from the Contacts.fp5 database.

[Inline: -Database="Contacts.fp5', -Layout="People', -FindAll]
[Records]
[Portal: 'Calls.fp51]
[Inline: -Database="Calls.fp5',
-Layout="People’,
-KeyField=(Field: 'Calls.fp5::RecordID’),
'Approved'='Yes',
-Update']
[/Inline]
[/Portal]
[/Records]
[/Inline]

The results of the action will be shown the next time the portal is viewed by a site visitor.

To delete a record from a portal:

The same method as described above for updating records within a portal can be used to delete records
from a portal. In the following example, all records from Contacts.fp5 are returned and every record from the
Calls.fp5 portal is deleted.

[Inline: -Database="Contacts.fp5', -Layout="People’, -FindAll]
[Records]
[Portal: 'Calls.fp5']
[Inline; -Database="Calls.fp5',
-Layout="People’,
-KeyField=(Field: 'Calls.fp5::RecordID’),
-Delete]
[/Inling]
[/Portal]
[/Records]
[/Inling]

No records will be contained in the portal the next time the site is viewed by a site visitor. However, not all
records in Calls.fp5 have necessarily been deleted. Any records which were not associated with a contact in
Contacts.fp5 will still remain in the database.

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 11 — FILEMAKER DATA SOURCES 182

Repeating Fields

Repeating fields in FileMaker allow many values to be stored in a single field. Each repeating field is defined
to hold a certain number of values. These values can be retrieved using the tags defined in this section. See
the documentation for FileMaker for more information about how to create and use repeating fields within
FileMaker.

In order to display or set values in a repeating field, the layout referenced in the current database action must
contain the repeating field formatted to show the desired number of repetitions. If a field is set to store eight
repetitions, but only to show two, then it will appear to be a two-repetition field to Lasso.

Note: The use of repeating fields is not recommended. Usually a simple text field which contains multiple values
separated by returns can be used for the same effect through Lasso. For more complex solutions a related
database and [Portal] ... [[Portal] tags or nested [Inling] ... [/Inline] tags can often be easier to use and maintain than a
solution with repeating fields.

To return values from a repeating field:

Use the [Repeating] ... [/Repeating] and [Repeating_Valueltem] tags to return each of the values from a repeating
field. The opening [Repeating] tag takes a single parameter which names a field from the current FileMaker
layout that repeats. The contents of the [Repeating] ... [[Repeating] tags is repeated for each repetition and the
[Repeating_Valueltem] tag is used to return the value for the current repetition.

The following example shows a repeating field Customer_ID that has four repetitions. Normally, only the first
repetition has a defined value, but for a contact that has multiple accounts, multiple values are defined. Since
Jane Person has two customer accounts, two repetitions of Customer_ID are returned.

[Inline: -Database="Contacts', -Layout="People’, 'Last_Name'='Person’, -Search]
[Records]
<p>[Field: 'First_Name'] [Fleld: 'Last_Name']
[Repeating: 'Customer_ID']

Customer ID [Loop_Count]: [Repeating_Valueltem].
[/Repeating]
[/Records]
[/Inline]

=» <p>Jane Person

Customer ID 1: 100123.

Customer ID 2: 123654.

To add a record with a repeating field:

A record can be added with values in a repeating field by referencing the field multiple times within the -Add
action. The following example shows a new contact being added to Contacts.fp5. The contact Jimmy Last_Name is
given three customer ID numbers referenced by the field Customer_ID multiple times. The added record is
returned showing all three customer IDs are stored.

[Inline: -Database="Contacts’,
-Layout="People’,
'First_Name'="Jimmy",
'Last_Name'='Last_Name',
'‘Customer_ID'="2001',
'‘Customer_ID'="2010",
'‘Customer_|D'='2061',
-Add]
<p>[Field: 'First_Name'] [Field: 'Last_Name']
[Repeating: 'Customer_ID']

Customer ID [Loop_Count]: [Repeating_Valueltem].
[/Repeating]
[/Inling]

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 11 — FILEMAKER DATA SOURCES 183

=» <p>Jimmy Last_Name

Customer ID 1: 2001.

Customer ID 2: 2010.

Customer ID 3: 2061.

To update a record with a repeating field:

A repeating field can be updated by referencing it multiple times within the -Update action. The following
example shows an HTML form which displays four repetitions of the field Customer_ID and allows each of
them to be modified. Notice that the four repetitions are created using the looping [Repeating] ... [/Repeating]
container tags.

<form action="response.lasso" method="POST">
<input type="hidden" name="-Database" value="Contacts.fp5">
<input type="hidden" name="-Layout" value="People">
<input type="hidden" name="-KeyValue" value="[KeyField_Value]">

<p>First Name:

<input type="text" name="First_Name" value="[Field: 'First_Name']">

Last Name:

<input type="text" name="Last_Name" value="[Field: 'Last_Name']">

[Repeating: 'Customer ID'

Customer ID:
<input type="text" name="Customer_ID" value="[Repeating_Valueltem]">
[/Repeating]

<p><input type="submit" name="-Update" value="Update this Record">
<[form>

To delete values from a repeating field:

® Records which contain repeating fields can be deleted using the same technique for deleting any FileMaker
records. All repetitions of the repeating field will be deleted along with the record. The following
[Inling] ... [/Inline] tags will delete the record with a record ID of 127.

[Inline: -Database="Contacts.fp5', -Table="People’, -KeyValue=127, -Delete]
<p>The record was deleted.
[/Inline]

e A single repetition of a repeating field can be deleted by setting its value to an empty string. The
other values in the repeating field will not slide down to fill in the missing repetition. The following
[Inling] ... [/Inline] will set the first repetition of a repeating field Customer_ID to the empty string, but leave the
second and third repetitions unchanged.

The values for the repeating field are first placed in an array so that they can be referenced by number
within the opening [Inline] tag.

[Variable: 'Customer_ID' = (Array: ", ", ")]
[Repeating: 'Customer_ID']

[(Variable: '‘Customer_ID")->(Get: Loop_Count) = (Repeating_Valueltem)]
[/Repeating]

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 11 — FILEMAKER DATA SOURCES 184

[Inline: -Update,
-Database="Contacts.fp5',
-Table='People’,
-KeyValue=127,
'Customer_|D'=",
'Customer_ID'=(Variable: 'Customer_ID)->(Get: 2),
'Customer_ID'=(Variable: 'Customer_ID')->(Get: 3),
<p>[Field: 'First_Name'] [Fleld: 'Last_Name']
[Repeating: 'Customer_ID']

Customer ID [Loop_Count]: [Repeating_Valueltem].
[/Repeating]
[/Inline]

The results show that the value for the first repetition of the repeating field has been deleted, but the second
and third repetitions remain intact.

=» <p>Jimmy Last_Name

Customer ID 1: .

Customer ID 2: 2010.

Customer ID 3: 2061.

Value Lists

Value lists in FileMaker allow a set of possible values to be defined for a field. The items in the value list
associated with a field on the current layout for a Lasso action can be retrieved using the tags defined in
FileMaker Value List Tags. See the documentation for FileMaker for more information about how to create
and use value lists within FileMaker.

In order to display values from a value list, the layout referenced in the current database action must contain
a field formatted to show the desired value list as a pop-up menu, select list, check boxes, or radio buttons.
Lasso cannot reference a value list directly. Lasso can only reference a value list through a formatted field in
the current layout.

Table 10: FileMaker Value List Tags

Tag Description

[Value_List] ... [/Value_List] Container tag repeats for each value in the named value list. Requires a single
parameter, the name of a field from the current layout which has a value list
assigned to it.

[Value_Listltem] Returns the value for the current item in a value list. Optional -Checked or -
Selected parameter returns only currently selected values from the value list.

electe isplays the word Selected if the current value list item is selected in the fie
[Selected] Displays th d Selected if th t value list item is selected in the field

associated with the value list.

[Checked] Displays the word Checked if the current value list item is selected in the field
associated with the value list.

[Option] Generates a series of <option> tags for the value list. Requires a single
parameter, the name of a field from the current layout which has a value list
assigned to it.

-NoValueLists Suppresses the fetching of value list data for FileMaker Server data sources.

Note: See the Searching and Displaying Data chapter for information about the -Show command tag which is
used throughout this section.

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 11 — FILEMAKER DATA SOURCES 185

To display all values from a value list:

¢ The following example shows how to display all values from a value list using a -Show action within
[Inline] ... [/Inline] tags. The field Title in the Contacts.fp5 database contains five values Mr, Mrs., Ms., and Dr.
The -Show action allows the values for value lists to be retrieved without performing a database action.

[Inline: -Database="Contacts.fp5', -Layout="People', -Show]
[Value_List: Title']

[Value_Listltem]
[/Value_List]
[/Inline]

=»
Mr.

Mrs.

Ms.

Dr.

¢ The following example shows how to display all values from a value list using a named inline. The same
name Values is referenced by -InlineName in both the [Inline] tag and [Value_List] tag.

[Inline: -InlineName="Values', -Database='Contacts.fp5', -Layout='People’, -Show]
[/Inline]

[Value_List: 'Title', -InlineName="Values']

[Value_Listltem]
[/Value_List]

=>
Mr.

Mrs.

Ms.

Dr.

To display an HTML pop-up menu in an -Add form with all values from a value list:

¢ The following example shows how to format an HTML <select> ... </select> pop-up menu to show all
the values from a value list. A select list can be created with the same code by including size and/or
multiple parameters within the <select> tag. This code is usually used within an HTML form that performs an
-Add action so the visitor can select a value from the value list for the record they create.

The example shows a single <select> ... </select> within [Inline] ... [/Inline] tags with a -Show command. If many
value lists from the same database are being formatted, they can all be contained within a single set of
[Inling] ... [/Inline] tags.

<form action="response.lasso" method="POST">
<input type="hidden" name="-Add" value="">
<input type="hidden" name="-Database" value="Contacts.fp5">
<input type="hidden" name="-Table" value="People">
<input type="hidden" name="-KeyField" value="ID">

[Inline: -Database="Contacts.fp5', -Layout="People', -Show]
<select name="Title">
[Value_List: Title"
<option value="[Value_Listltem]">[Value_Listltem]</option>
[/Value_List]
</select>
[/Inline]

<p><input type="submit" name="-Add" value="Add Record">
<[form>

e The [Option] tag can be used to easily format a value list as an HTML <select> ... </select> pop-up menu. The
[Option] tag generates all of the <option> ... </option> tags for the pop-up menu based on the value list for the
specified field. The example below generates exactly the same HTML as the example above.

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 11 — FILEMAKER DATA SOURCES 186

<form action="response.lasso" method="POST">
<input type="hidden" name="-Add" value="">
<input type="hidden" name="-Database" value="Contacts.fp5">
<input type="hidden" name="-Table" value="People"?
<input type="hidden" name="-KeyField" value="ID">

[Inline: -Database="Contacts.fp5', -Layout="People', -Show]
<select name="Title">
[Option: 'Title"]
</select>
[/Inline]

<p><input type="submit" name="-Add" value="Add Record">
</form>

To display HTML radio buttons with all values from a value list:

The following example shows how to format a set of HTML <input> tags to show all the values from a value list
as radio buttons. The visitor will be able to select one value from the value list. Check boxes can be created
with the same code by changing the type from radio to checkbox.

<form action="response.lasso" method="POST">
<input type="hidden" name="-Add" value="">
<input type="hidden" name="-Database" value="Contacts.fp5">
<input type="hidden" name="-Table" value="People">
<input type="hidden" name="-KeyField" value="ID">

[Inline: -Database="Contacts.fp5', -Layout="People’, -Show]
[Value_List: Title']

<input type="radio" name="Title" value="[Value_Listltem]"> [Value_Listltem]
[/Value_List]
[/Inline]

<p><input type="submit" name="-Add" value="Add Record">
<[form>

To display only selected values from a value list:

The following examples show how to display the selected values from a value list for the current record. The
record for John Doe is found within the database and the selected value for the Title field, Mr. is displayed.

¢ The -Selected keyword in the [Value_Listltem] tag ensures that only selected value list items are shown. The
following example uses a conditional to check whether [Value_Listltem: -Selected] is empty.

[Inline: -Database="Contacts.fp5', -Layout="People', -KeyValue=126, -Search]
[Value_List: Title"
[If: (Value_Listltem: -Selected) != "]

[Value_Listltem: -Selected]
L
[/Value_List]
[/Inline]

=>
Mr.

¢ The [Selected] tag ensures that only selected value list items are shown. The following example uses a
conditional to check whether [Selected] is empty and only shows the [Value_Listltem] if it is not.

[Inline: -Database="Contacts.fp5', -Layout="People’, -KeyValue=126, -Search]
[Value_List: 'Title']
[If: (Selected) !="]

[Value_Listltem]
/]
[/Value_List]
[/Inline]

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 11 — FILEMAKER DATA SOURCES 187

=>
Mr.

¢ The [Field] tag can also be used simply to display the current value for a field without reference to the value
list.

[Field: Title']

=>
Mr.

To display an HTML popup menu in an -Update form with selected value list values:

¢ The following example shows how to format an HTML <select> ... </select> select list to show all the values
from a value list with the selected values highlighted. The [Selected] tag returns Selected if the current value
list item is selected in the database or nothing otherwise. This code will usually be used in an HTML form
that performs an -Update action to allow the visitor to see what values are selected in the database currently
and make different choices for the updated record.

<form action="response.lasso" method="POST">
<input type="hidden" name="-Update" value="">
<input type="hidden" name="-Database" value="Contacts.fp5">
<input type="hidden" name="-Table" value="People">
<input type="hidden" name="-KeyField" value="ID">
<input type="hidden" name="-KeyValue" value="127">

[Inline: -Database="Contacts.fp5', -Layout="People’, -KeyValue=126, -Search]
<select name="Title" multiple size="4">
[Value_List: 'Title']
<option value="[Value_Listltem]" [Selected]>[Value_Listltem]</option>
[/Value_List]
</select>
[/Inline]

<p><input type="submit" name="-Update" value="Update Record">
<[form>

e The [Option] tag automatically inserts Selected parameters as needed to ensure that the proper options are
selected in the HTML select list. The example below generates exactly the same HTML as the example above.

<form action="response.lasso" method="POST">
<input type="hidden" name="-Update" value="">
<input type="hidden" name="-Database" value="Contacts.fp5">
<input type="hidden" name="-Table" value="People">
<input type="hidden" name="-KeyField" value="ID">
<input type="hidden" name="-KeyValue" value="127">

[Inline: -Database="Contacts.fp5', -Layout="People', -KeyValue=126, -Search]
<select name="Title" multiple size="4">
[Option: 'Title']
</select>
[/Inline]

<p><input type="submit" name="-Update" value="Update Record">
<[form>

To display HTML check boxes with selected value list values:

The following example shows how to format a set of HTML <input> tags to show all the values from a value
list as check boxes with the selected check boxes checked. The [Checked] tag returns Checked if the current value
list item is selected in the database or nothing otherwise. Radio buttons can be created with the same code by
changing the type from checkbox to radio.

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 11 — FILEMAKER DATA SOURCES 188

<form action="response.lasso" method="POST">
<input type="hidden" name="-Update" value="">
<input type="hidden" name="-Database" value="Contacts.fp5">
<input type="hidden" name="-Table" value="People">
<input type="hidden" name="-KeyField" value="|D">
<input type="hidden" name="-KeyValue" value="127">

[Inline: -Database="Contacts.fp5', -Layout="People’, -KeyValue=126, -Search]
[Value_List: Title']
<input type="checkbox" name="Title" value="[Value_Listltem]" [Checked]>
[Value_Listltem]
[/Value_List]
[/Inline]

<p><input type="submit" name="-Update" value="Update Record">
<[form>

Container Fields

Lasso Professional 7.1 includes a new tag [Database_FMContainer] that allows the raw contents of a FileMaker
container field to be returned. This tag works with either FileMaker Pro data sources of FileMaker Server data
sources.

Note: The [Database_FMContainer] tag does not rely on Classic Lasso being enabled. This functionality offers a
replacement for the deprecated [Image_URL] and [IMG] tags when Classic Lasso is disabled.

Table 11: Container Field Tags

Tag Description

[Database_FMContainer] Returns the raw data contained in a FileMaker container field. Requires one
parameter which is the name of the field.

The [Database_FMContainer] tag functions differently depending on whether FileMaker Pro or FileMaker Server
data sources are being accessed.

¢ FileMaker Pro - Only image data can be fetched from container fields. An optional -Type parameter can
specify GIF or JPEG along with additional quality arguments the Web Companion supports.

¢ FileMaker Server - Any type of data can be fetched from a container field. The tag automatically handles
any data type that can be stored in FileMaker.

The [Database_FMContainer] tag always returns a byte stream. The results of this tag will be most typically sent to
the current site visitor using [File_Serve].

To retrieve data from a FileMaker container field:

Use the [Database_FMContainer] tag. In the following example the data in the Image container field is retrieved
and stored in a variable ContainerData. See the following example for a demonstration of how to serve this data
as an image to the site visitor.

[Inline: -Database='Contacts’,
-Layout="People’,
'First_Name'="John',
'Last_Name'='Doe’,
-Search]
[Records]
[Variable: 'ContainerData’ = (Database_FMContainer: 'Image’)]

[/Records]
[/Inline]

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 11 — FILEMAKER DATA SOURCES 189

To serve an image from a FileMaker container field:

Pass the value of the [Database_FMContainer] field to the [File_Serve] tag. In the following example a single
image is fetched from a database based on the value of the action parameter ID. The contents of the Image
field is interpreted as a JPEG and passed to [File_Serve]. To the site visitor this file will serve a file named
FileMakerlmage.jpg.

[Inline: -Database="Contacts.fp5',
-Layout="People’,
-KeyValue=(Action_Param: 'ID")
-Search]

[File_Serve:
(Database_FMContainer: 'Image'),
-Type='image/jpeg',
-File="FileMakerimage.jpg']
[/Inline]

Note: The [File_Serve] tag replaces the current output of the page with the image and performs an [Abort]. The
code above represents the complete content of a Lasso page.

The code above could be saved into a Lasso page called Image.Lasso. This page would then be referenced
within an HTML tag as follows.

For example, an image from each record in a database could be displayed as follows:

[Inline: -Database="Contacts’,
-Layout="People',
'First_Name'="John',
'Last_Name'='Doe’,
-Search]
[Records]
<p>[Field: 'First_Name'] [Field: 'Last_Name']

</p>
[/Records]
[/Inling]

The result will be the first and last name of each person in the Contacts database followed by the stored picture
on the next line.

FileMaker Scripts

Lasso includes command tags which allow scripts in FileMaker databases to be executed. Scripts are usually
executed in concert with a database action. They can be performed before the database action, after the
database action but before the results are sorted, or just before the results are returned to Lasso. The command
tags for executing FileMaker scripts are described in FileMaker Scripts Tags.

FileMaker Tip: It is best to limit the use of FileMaker scripts. Most functionality of FileMaker scripts can be
achieved in Lasso with better performance especially on a busy Web server.

Table 12: FileMaker Scripts Tags

Tag Description

-FMScript Specifies a script to be processed after the current database action has been
performed. Requires a single parameter which names a FileMaker script.
Synonym is -FMScriptPost.

-FMScriptPre Specifies a script to be processed before the current database action has been
performed. Requires a single parameter which names a FileMaker script.

-FMScriptPreSort Specifies a script to be processed after the current database action, but before
the results are sorted. Requires a single parameter which names a FileMaker
script.

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 11 — FILEMAKER DATA SOURCES 190

Conditions for executing a FileMaker script:
1 The script must be defined in the database referenced by the action in which the -FMScript... tag is called.

2 The current user must have permission to execute scripts. See the Group section in the Setting Up Security
chapter of the Lasso Professional 8 Setup Guide for more information.

3 The found set should not be empty after performing a FileMaker script. Scripts should always ensure that
they return a non-empty found set after they execute.

4 All database action on the FileMaker machine must wait until the script finishes. Scripts should be as fast
and efficient as possible.

To execute a FileMaker script within [Inline] ... [/Inline] tags:

The following example shows a FileMaker script named Filter_People being called after a -FindAll action is
performed within a FileMaker database Contacts.fp5. The script removes certain records from the found set and
returns the results.

[Inline: -Database="Contacts.fp5',
-Layout='People’,
-FMScript="Filter_People',
-FindAll]

[/Iﬁ'l'ine]

The results of the [Inline] ... [/Inline] tags will be the result of the script Filter_People. The record set and its order
can be completely determined by the script.

To execute a FileMaker script within an HTML form:

The following example shows a FileMaker script named Clean_Up being performed before a -FindAll action is
performed within Contacts.fp5. The script deletes invalid records so that the found set will only contain valid
records after the -FindAll is performed. The script is performed before the database action since it is called with
-FMScriptPre.

<form action="response.lasso" method="POST">
<input type="hidden" name="-FindAll">
<input type="hidden" name="-Database" value="Contacts.fp5">
<input type="hidden" name="-Layout" value="People">
<input type="hidden" name="-FMScriptPre" value="Clean_Up">

<input type="submit" name="-FindAll" value="Find All">
<[form>

The results of the script include all valid records that were not deleted by the Clean_Up script.

To execute a FileMaker script within a URL:

The following example shows a script named Update_Priority which is performed after the -FindAll database
action, but before the results are sorted. The Update_Priority script could update a field Priority, based on the
records from the current found set, which the sort depends on. The script is called using the -FMScriptPreSort
tag.

<a href="response.lasso?-Database=Contacts.fp5&
-Layout=People&
-FMScriptPreSort=Update_Prioirty&
-SortOrder=Descending&
-SortField=Priority&
-FindAll">

Find All and Sort by Priority

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 11 — FILEMAKER DATA SOURCES 191

The results of this URL, when it is selected, will be all records from the databases, sorted in descending order
according to the value of the Priority field after it has been updated by the Update_Priority script.

=»

Note: Additional parameters can be specified within the HTML tag in order to specify the width and height
of the returned image. The image will be scaled to the desired size. See the next section for details.

LAsso 8.5 LANGUAGE GUIDE

192

Chapter 12
JDBC and ODBC Data Sources

This chapter documents tags and behaviors which are specific to the JDBC and ODBC data sources in Lasso.
These data sources provide access to many data sources which don’t have a native connector in Lasso. See the
appropriate chapter for information about other data sources including SQL Data Sources, FileMaker Data
Sources, and Other Data Sources (Spotlight, custom data sources).

e Overview introduces the ODBC and JDBC data sources.

® Feature Matrix includes a table which lists all of the features of each data source and highlights the
differences between them.

e Using JDBC Data Sources describes using JDBC data sources with Lasso Professional 8.

e JDBC Schema Tags describes using Lasso tags to return schema values from JDBC data sources that
support schema ownership.

Overview

Native support for ODBC and JDBC data sources is included in Lasso. If a JDBC driver is available for a
data source, it can be installed in Lasso, allowing instant communication with that data source. This feature
allows Lasso to communicate with hundreds of ODBC and JDBC compliant data sources, including Sybase,
DB2, Frontbase, Openbase, Interbase, and Microsoft SQL Server. For more information on ODBC/JDBC
connectivity and availability for a particular data source, see the data source documentation or contact the
data source manufacturer.

Lasso functions as its own JDBC driver manager, and all JDBC drivers must be installed directly in Lasso’s
JDBC Drivers folder. Instructions on how to set up a JDBC data source for use with Lasso Professional are
documented in the Setting Up Data Sources chapter in the Lasso Setup Guide.

Lasso accesses ODBC drivers which are set up as System DSNs. The ODBC Data Source Administrator utility
or control panel should be used to configure the driver as a System DSN, then the data source name is
entered into Lasso. See the Setting Up Data Sources chapter in the Lasso Setup Guide for additional detals.

Table 1: Data Sources

Data Source Description

JDBC Supports any data source with a compatible JDBC driver installed into the JDBC
Drivers folder. See the JDBC Data Sources section in the Lasso Setup Guide for
details about how to install JDBC drivers.

ODBC Support any data source with a compatible ODBC driver set up as a System
DSN. See the ODBC Data Sources section in the Lasso Setup Guide for details
about how to install ODBC drivers.

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 12 — JDBC AND ODBC DATA SOURCES 193

Tips for Using ODBC and JDBC Data Sources

The following is a list of tips to following when writing Lasso for use with ODBC and JDBC data sources.
These tips illustrate specific concepts and behaviors to keep in mind when coding.

e Always specify a primary key field using the -KeyField command tag in -Search, -Add, and -FindAll actions. This
will ensure that the [KeyField_Value] tag will always return a value.

e Use -KeyField and -KeyValue to reference a particular record for updates, duplicates, or deletes.

e Fields may truncate any data beyond the length they are set up to store. Ensure that all fields in the
accessed databases have sufficiently long fields for the values that need to be stored in them.

e Use -ReturnField command tags to reduce the number of fields which are returned from a -Search action.
Returning only the fields that need to be used for further processing or shown to the site visitor reduces the
amount of data that needs to travel between Lasso Service and the JDBC data source.

e When an -Add or -Update action is performed on a database, the data from the added or updated record is
returned inside the [Inline] ... [/Inline] tags. If the -ReturnField parameter is used, then only those fields specified
should be returned from an -Add or -Update action. Setting -MaxRecords=0 can be used as an indication that
no record should be returned.

¢ The -SQL command tag can be allowed or disallowed at the host level for users in Lasso Administration.
Once the -SQL command tag is allowed for a user, that user may access any database within the allowed
host inside of a SQL statement. For that reason, only trusted users should be allowed to issue SQL queries
using the -SQL command tag. For more information, see the Setting Up Security chapter in the Lasso
Professional 8 Setup Guide.

® SQL statements which are generated using visitor-defined data should be screened carefully for unwanted
commands such as DROP or GRANT. See the Setting Up Data Sources chapter of the Lasso Setup Guide for
more information.

e Always quote any inputs from site visitors that are incorporated into SQL statements. The [Encode_SQL] tag
should be used on any visitor supplied values which are going to be passed to a MySQL data source. The
[Encode_SQL92] tag should be used on any visitor supplies values which will be passed to another SQL-
based data source such as SQLite or JDBC data sources.

Encoding the values ensures that quotes and other reserved characters are properly escaped within the SQL
statement. The tags also help to prevent SQL injection attacks by ensuring that all of the characters within
the string value are treated as part of the value. Values from [Action_Param], [Cookie], [Token_Value], [Field], or
calculations which rely in part on values from any of these tags must be encoded.

For example, the following SQL SELECT statement includes quotes around the [Action_Param] value and uses
[Encode_SQL92] to encode the value. The apostrophe (single quote) within the name is doubled so it will be
embedded within the string rather than ending the string literal.

[Variable: 'SQL_Statement'='"SELECT * FROM Contacts.People WHERE ' +
'‘Company LIKE \" + (Encode_SQL92: (Action_Param: 'Company')) + '\';]

If [Action_Param] returns McDonald's for First_Name then the SQL statement generated by this code would
appear as follows. Notice that the apostrophe in the company name is doubled up.

SELECT * FROM Contacts.People WHERE Company LIKE 'McDonald"s";
e Lasso Professional 8 uses connection pooling when connecting to data sources via JDBC, and the JDBC
connections will remain open during the time that Lasso Professional 8 is running.

e Check for LassoSoft Support Central articles at http://support.lassosoft.com for documented issues and data
source specified set up instructions for specific ODBC or JDBC data sources.

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 12 — JDBC AND ODBC DATA SOURCES 194

Feature Matrix

The following tables detail the features of each data source in this chapter. Since some features are only
available in certain data sources it is important to check these tables when reading the documentation in
order to ensure that each data source supports your solutions required features.

Table 2: JDBC Data Sources

Feature Description

Friendly Name User-specified

Internal Name Uses JDBC driver name

Module Name LJAPL.dII, LJIAPI.dylib, or LJAPI.so and LJAPI.jar

Actions -Add, -Delete, -FindAll, -Search, -Show, -SQL, -Update

Operators -BW, -CN, -EQ, -EW, -GT, -GTE, -LT, -LTE, -NBW, -NCN, -NEW
-OpBegin/-OpEnd with And, Or, Not.

KeyField -KeyField/-KeyValue

Table 3: ODBC Data Sources

Feature Description

Friendly Name Lasso Connector for ODBC

Internal Name odbc

Module Name SQLConnector.dll, SQLConnector.dylib, or SQLConnector.so

Inline Host Attributes The -Name should specify the data source name (System DSN). A -Username
and -Password may also be required.

Actions -Add, -Delete, -FindAll, -Search, -Show, -SQL, -Update

Operators -BW, -CN, -EQ, -EW, -GT, -GTE, -LT, -LTE, -NBW, -NCN, -NEW
-OpBegin/-OpEnd with And, Or, Not.

KeyField -KeyField/-KeyValue

Using JDBC Data Sources

Data source operations outlined in the Database Interaction Fundamentals, Searching and Displaying
Data, and Adding and Updating Records chapters are supported with JDBC data sources. Because JDBC

is a standardized API for connecting to tabular data sources, there are few unique tags in Lasso 8 that are
specific to JDBC data sources or invoke special functions specific to any JDBC data source. The only JDBC-
specific Lasso tags are for JDBC data sources that support schema ownership (e.g. Frontbase, Sybase), and are
described in the JDBC Schema Tags section of this chapter.

Certification Note: LassoSoft Software has tested and certified Microsoft SQL Server 2000 with Microsoft SQL
Server 2000 Driver for JDBC for use with Lasso Professional 8 via JDBC. Other JDBC-compliant data sources
may be used with Lasso Professional 8, but all features cannot be guaranteed to work by LassoSoft Software. See
http://support.lassosoft.com for Support Central articles on connectivity with selected data sources.

JDBC Schema Tags

Lasso 8 includes tags that return the user schemas available in a JDBC data source host for the current Lasso
Service connection. These tags can only be used with data sources that use named schema ownership (e.g.
Frontbase, Sybase), and complement the other Lasso schema and database tags described in the Database
Interaction Fundamentals chapter.

Note: For information on whether or not your JDBC data source supports named schema ownership, refer to the
data source documentation.

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 12 — JDBC AND ODBC DATA SOURCES 195

Table 4: JDBC Schema Tags

Tag Description

-Schema Allows a schema name to be passed as part of an [Inling] ... [/Inline] data source
action. The schema name passed here overrides the default schema set for the
JDBC data source host in Lasso Administration.

[Schema_Name] Returns the name of the current schema in use in an [Inling] ... [/Inline] data
source action.

[Database_SchemaNames] Repeats for every schema name in a JDBC data source host available to Lasso.
Requires the name of a database in the JDBC data source host as a parameter.

[Database_SchemaNameltem] Returns the name of the current schema name when used inside [Database_
SchemaNames] ... [/[Database_SchemaNames] tags.

To reference a schema name in an inline database action:

Use the -Schema command tag to pass the name of the data source schema that should be used for the
database action.

[Inline: -Show, -Schema='SchemaName', -Database="DBName', -Table="TBName’]
[Schema_Name]
[/Inling]

=» SchemaName

To list all schema names in a JDBC data source:

Use the [Database_SchemaNames] ... [/Database_SchemaNames] tags to list all databases available in a JDBC data
source host. The [Database_SchemaNameltem] tag returns the value of each schema name.

[Database_SchemaNames:'DBName'|
[Database_SchemaNameltem]
[/Database_SchemaNames]

=» SchemaName
SchemaName?2

Using ODBC Data Sources

Data source operations outlined in the Database Interaction Fundamentals, Searching and Displaying
Data, and Adding and Updating Records chapters are supported with ODBC data sources. Because ODBC
is a standardized API for connecting to tabular data sources, there are few unique tags in Lasso 8 that are
specific to ODBC data sources or invoke special functions specific to any ODBC data source.

LAsso 8.5 LANGUAGE GUIDE

196

Chapter 13
Other Data Sources

This chapter documents tags and behaviors which are specific to the Spotlight and custom third-party

data sources in Lasso. See the appropriate chapter in this section for information about other data sources

including SQOL Data Sources, FileMaker Data Sources, and JDBC and ODBC Data Sources.

¢ Overview introduces the data sources.

® Feature Matrix includes a table which lists all of the features of each data source and highlights the
differences between them.t

e Spotlight Data Source describes how to access the file system indexing in Mac OS X 10.4/10.5 in order to
search the contents and attributes of files on the local machine.

e Custom Data Sources describes how to access custom third-party data sources through Lasso.

Overview

The Spotlight data source allows the meta information which is generated by the Spotlight indexer on Mac
OS X 10.4/10.5 to be searched by Lasso. This data source provides an effective file system search which is
powerful and efficient.

This chapter also includes information about how to use custom third-party data sources with Lasso. Data
sources can be implemented in LassoScript, C/C++ (LCAPI), or Java (LJAPI). Third-party data sources can
adhere to the conventions created by the internal data sources or can diverge wildly.

Table 1: Data Sources

Data Source Description

Spotlight Supports searching files on Mac OS X 10.4/10.5 systems only.

Custom Lasso allows third parties to create data sources using LassoScript, LCAPI, or
LJAPI.

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 13 — OTHER DATA SOURCE 197

Feature Matrix

The following tables detail the features of each data source in this chapter. Since some features are only
available in certain data sources it is important to check these tables when reading the documentation in
order to ensure that each data source supports your solutions required features.

Table 2: Spotlight Data Source

Feature

Description

Platform
Friendly Name
Internal Name

Mac OS X Only
Lasso Connector for Spotlight
spotlightds.

Module Name SpotlightDS.dylib
Actions -Search, -Show, -SQL (to specify a raw Spotlight search)
Operators -BW, -CN, -EQ, -EW, -GT, -GTE, -LT, -LTE, -NBW, -NCN, -NEW
-OpBegin/-OpEnd with And, Or, Not.
Notes This data source differs significantly from other built-in data sources. Read the full

details in the Spotlight Data Source section..

Table 3: Custom Data Sources

Feature Description

Module Name Third-party data sources can be implemented in a .lasso or .lassoapp file in
LassoStartup, or in a .dll, .dylib, .so, or .jar file in LassoModules.

Data source dependent. Third-party data sources may use the -Name and -Port
fields in @ manner similar to built-in data sources or may use them for custom
configuration data.

Actions Data source dependent. Third-party data sources may implement standard
actions or can implement completely custom actions.

Inline Host Attributes

Spotlight Data Source

The Spotlight data source is used to search the file system on machines with Mac OS X 10.4/10.5. This data
source is not supported on earlier versions of Mac OS X or on Windows or Linux.

The Spotlight data source has one pre-defined host and several databases which represent different metadata
sets that can be searched. The Lasso Site Administrator must enable the metadata sets which they want to
make available for searching.

Apple’s developer information page about Spotlight provides a conceptual background to how Spotlight
works, what types of metadata are indexed, and how to run Spotlight queries from the command line.

http://developer.apple.com/macosx/spotlight.html

Important: The Spotlight data source searches the raw contents of files. When the Web site root is searched the
raw LassoScript contained within Lasso pages will be searched, not the output of those pages.

Requirements

The Spotlight data source requires Mac OS X 10.4/10.5. The Spotlight data source can only be used to search
for files and folders which have been indexed by the Spotlight indexer.

Sites will only be able to return Spotlight search results for files contained within their Web server root unless
the Server Administrator has granted the site permission to access files outside the root and appropriate file
permissions have been granted to the user who is performing the search.

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 13 — OTHER DATA SOURCE 198

Spotlight Metadata Sets (Databases)

Lasso defines four Spotlight metadata sets as databases within Lasso Site Administration. A set will also be
defined for each volume which is mounted on the machine hosting Lasso Service. Each set must be enabled
and appropriate permissions assigned to it before they can be searched by the site user. Some of the sets
also require file permissions to be configured. Each metadata set can be enabled by visiting the Site > Data
Sources > Databases section of Lasso Site Administration.

¢ Spotlight_Site - This set corresponds to the Web site root. Once this “database” is enabled it can be
searched by any Lasso use who has permission to access it. No additional file permissions are required.

¢ Spotlight_User - This set corresponds to the Lasso Professional 8 application folder. The site must be
assigned permission to access files outside of the Web server root and the Lasso user must have permission
to access those files in order to use this set.

¢ Spotlight_Computer - This set corresponds to the root of the machine hosting Lasso Service. The site
must be assigned permission to access files outside of the Web server root and the Lasso user must have
permission to access those files in order to use this set. Note that the search results may contain files which
the Lasso user is not capable of manipulating through the file tags.

¢ Spotlight_Network - This set corresponds to the local area network of the machine hosting Lasso Service.
The site must be assigned permission to access files outside of the Web server root and the Lasso user must
have permission to access those files in order to use this set.

¢ /Volumes/MacintoshHD - Each local hard disk, mounted CD or DVD, mounted disk image, and file
server will appear as a separate “database” with the name /Volumes/ followed by the volume name.

Note: The -Table, -KeyField, -MaxRecords, and -SkipRecords tags are not used with the Spotlight data source.

Spotlight Fields

The fields for Spotlight are defined by the file importers which are active on the system. The following table
lists some of the most common field names. See below the table for code which returns a complete list of
available field names.

Table 4: Common Spotlight Field Names

Field Name Description

Content Created The date/time the contents were created (06/03/20 19:20:58 GMT-08:00)

Content Modified The date/time the contents were modified (06/05/04 09:56:25 GMT-07:00)

Created The date/time the file was created (06/03/20 19:20:58 GMT-08:00)

Display Name The name of the file in the Finder (default.lasso)

File Extension Hidden Is the file extension hidden in the Finder (false)

File Invisible Is the file invisible in the Finder (false)

File Label The ID of the Finder label for the file (0)

File Pathname The path to the file (/Library/WebServer/Documents/85/default.lasso). This is the
only field which is returned by default if no -ReturnField parameter is specified.

Filename The name of the disk file (default.lasso)

Group The ID of the group which owns the file (80)

Last Opened The date/time the file was last opened (06/05/04 09:48:49 GMT-07:00)

Modified The date/time the file was modified (06/05/04 09:56:25 GMT-07:00)

Owner The ID of the user who owns the file (501)

Size The size of the file in bytes (24666)

Text Content The contents of the file. This field can be used for searching, but is not returned
in search results.

Type The type of the file (text file)

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 13 — OTHER DATA SOURCE 199

*

Can be specified as the return field to return all available fields -ReturnField="".
This is not recommended for general use since generating some of the field
values can be performance intensive.

kMDltem... It is also possible to use any of the low-level constants which Apple defines for
Spotlight queries. These look like kMDItemDisplayName and can be used in
place of the friendly field names which Lasso makes available.

To return the complete list of avaiiable fields:

Use an inline with a -Show command as in the following code.

Inline: -Show, -Database="'Spotlight_Site';
Field_Names->Sort & Join('
");
{Inline;

=» Album
Alpha channel
Aperture
Audiences
Audio bit rate
Audio encoding application

Spotlight Queries

Spotlight queries can make use of any of the fields listed in the table above (or returned by the -Show inline
above). Lasso’s search operators function the same as they do for any database queries. By default all searches
of text data are performed as “begins with” searches. For example, the following search would find all disk
files whose name begins with default.

Inline: -Search,
-Database="Spotlight_Site’,
'Display Name' = 'default’;

Records_Array->Join('
');

{Inline;

=» /Library/WebServer/Documents/default.html
ILibrary/WebServer/Documents/default.lasso

The operator can be changed by preceding the search terms with any of Lasso’s built-in operator keywords
-BW, -CN, -EQ, -EW, -NBW, -NCN, -NEQ, or -NEW. (or with -Op="bw' etc.). For example, the following search would
find all disk files which contain the word LassoScript.

Inline: -Search,
-Database="Spotlight_Site',
-CN, 'Text Content' = 'LassoScript';
Records_Array->Join('
');
{Inline;

=» /Library/WebServer/Documents/default.lasso
ILibrary/WebServer/Documents/include.lasso

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 13 — OTHER DATA SOURCE 200
The -OpLogical and -OpBegin/-OpEnd keywords can be used to create complex nested search. The following code
finds all files whose name ends with .lasso or .html and whose contents contains LassoScript.

Inline: -Search,
-Database="Spotlight_Site’,
-OpLogical='And',

-OpBegin="0r",
-EW, 'Filename' = ".lasso,
-EW, 'Filename' = ".html',
-OpEnd="0r',
-CN, 'Text Content' = 'LassoScript';
Records_Array->Join('
");
{Inline;

=>» /Library/WebServer/Documents/default.lasso

When searching fields whose value is an integer, decimal, or boolean value an “Equals” search is used auto-
matically. The operator can be changed by preceding the search terms with any of Lasso’s built-in operator
keywords -EQ, -GT, -GTE, -LT, -LTE, or -NEQ (or with -Op='gt' etc.). For example, the following search would find
all disk files whose size is greater than 32k.

Inline: -Search,
-Database="Spotlight_Site’,
-GT, 'size' = 32768;

Records_Array->Join('
");

{Inline;

=» /Library/WebServer/Documents/splah.swf

Restricting a Query

A query can be restricted to a sub-folder of the Web site root using a File Pathname term. Most Spotlight
searches should be restricted to a folder that only contains the text, image, audio, video, or PDF files which
are to be searched. If Spotlight is allowed to search the entire Web server root it will find terms within the raw
LassoScript source code of Lasso pages.

The following code searches only within Images folders inside the Web root. Note that any path which
contains /Images/ is searched including an Images folder at the root of the Web server and an Images folder

within a sub-folder.

Inline: -Search,
-Database="Spotlight_Site’,
-GT, 'size' = 32768,
-CN, 'File Pathname' = /Images/';
Records_Array->Join('
");
{Inline;

=>» /Library/WebServer/Documents/Images/logo.gif
ILibrary/WebServer/Documents/Images/welcome.gif
ILibrary/WebServer/Documents/Admin/Images/secure.gif

Spotlight Return Fields

By default the Spotlight data source only returns the File Pathname field. Additional fields can be returned by
listing the desired field names with -ReturnField. Spotlight queries can return any of the fields listed in the
table above (or returned by the -Show inline above). In addition -ReturnField="' can be used as a shortcut to
return every available field.

For example, the following code returns information about an AAC encoded audio file. The -ReturnField
keyword is used to return Album and Title information as well as the standard File Pathname.

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 13 — OTHER DATA SOURCE 201

Inline: -Search,
-Database="Spotlight_Site’,
-EW, 'filename' = '.m4a’,
-ReturnField="Album’,
-ReturnField="Title";
Records;
'Album: ' + (Field: 'Album’) + '
";
'File Pathname: ' + (Field: 'File Pathname') + '
';
Title: ' + (Field: 'Title") + '
';
/Records;
{Inline;

=» Album: Music From The Good, The Bad And The Ugly & A Fistful Of Dollars & For A Few Dollars More
File pathname: /Library/WebServer/Documents/01 The Good, The Bad And The Ugly.m4a
Title: The Good, The Bad And The Ugly

If -ReturnField="" is used instead then a wealth of information about the file is returned. Note that the code
within the inline uses a conditional to avoid displaying any field which has an empty value. The actual fields
which are displayed will depend on what indexers are available.

Inline: -Search,
-Database="Spotlight_Site',
-EW, 'filename' = '.m4a’,
-ReturnField=""
Records;
lterate: Field_Names->Sort &, (Var: 'field");
(Field: $field) 1="? $field + . ' + (Field: $field) + '
";
[lterate;
'<hr>"
[/Records;
{Inline;

=>» Album: Music From The Good, The Bad And The Ugly & A Fistful Of Dollars & For A Few Dollars More
Audio bit rate: 124.852
Audio encoding application: iTunes v4.0.1, QuickTime 6.4
Channel count: 2
Display name: 01 The Good, The Bad And The Ugly.m4a
Duration: 166.997
File pathname: /Library/WebServer/Documents/01 The Good, The Bad And The Ugly.m4a
Filename: 01 The Good, The Bad And The Ugly.m4a
Modified: 04/02/18 07:56:52 GMT-08:00
Musical genre: Soundtrack
Size: 2722974
Streamable: false
Title: The Good, The Bad And The Ugly
Total bit rate: 124.852
Track number: 1
Type: MPEG-4 Audio File

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 13 — OTHER DATA SOURCE 202

Raw Queries

The Spotlight data source supports the -SQL action as a method of specifying raw data source queries. The
[Action_Statement] tag can be used to view the raw query generated by any Spotlight inline. If -StatementOnly is
specified then the raw query will be generated and not actually performed. For example, the following inline
generates the raw query which corresponds to the specified search.

Inline: -Search,
-Database="Spotlight_Site',
-GT, 'size' = 32768,
-StatementOnly;

Action_Statement;

/Inline;

= ((kMDItemFSSize > 32768))

That raw query can then be executed by feeding it into the Spotlight data source through the -SQL action.

Inline: -Search,
-Database="Spotlight_Site',
-SQL='((kMDltemFSSize > 32768))";

Records_Array->Join('
");

/Inline;

=» splah.swf

Custom Data Sources

Third-party custom data sources can be implemented in LassoScript, C/C++ (LCAPI), or Java (LJAPI). Third-
party data sources can adhere to the conventions created by the internal data sources or can diverge wildly.
Consult the documentation of the third-party data source for full details about how it operates.

See the Custom Data Sources, LCAPI Data Sources, or LJAPI Data Sources chapters in this manual for
more information about third-party data sources. The following Tip of the Week contains the source code of a
data source which is written in LassoScript.

Custom Inline Data Source
http://www.lassosoft.com/TotW.1768.8931.lasso

LAsso 8.5 LANGUAGE GUIDE

SECTION IIl — PROGRAMMING 203

Section il
Programming

This section documents the symbols, tags, expressions, and data types which allow programming logic to be
specified within Lasso pages. This section contains the following chapters.

¢ Chapter 14: Programming Fundamentals introduces basic concepts of Lasso programming such as how to
output results, how to store and retrieve variables, and how to interact with HTML forms and URLs.

® Chapter 15: Variables introduces concept of variables including global variables, local variables, and page
variables.

¢ Chapter 16: Conditional Logic introduces the [If], [Loop], and [While] tags and demonstrates how they can be
used for flow control.

® Chapter 17: Encoding explains how strings are encoded in Lasso for output to many different languages
and the tags and keywords that can be used to control that output.

¢ Chapter 18: Sessions explains how to create server-side variables that maintain their value from page to
page while a visitor traverses a Web site.

® Chapter 19: Error Control introduces Lasso’s error reporting mechanism and explains how custom error
tags can be created and what tags can be used to handle errors which occur while processing a Lasso page.

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 14 — PROGRAMMING FUNDAMENTALS 204

Chapter 14
Programming
Fundamentals

This chapter introduces the basic concepts of programming using Lasso. It is important to understand these
concepts before reading the chapters that follow.

® Overview explains how to use pages written in Lasso and how to deal with errors.

e Logic vs. Presentation describes strategies for coding blocks of programming logic code.
® Data Output describes strategies for outputting calculation results in HTML or XML.

¢ Variables explains the theory behind variables and how to store and retrieve values.

¢ Includes describes how to use the [Include] and [Library] tags.

® Data Types explains how to recognize different data types, how to cast between data types, and casting
rules.

e Symbols is an introduction to symbols and expressions including rules for grouping, precedence, and auto
casting.

® Member Tags explains how to call member tags and how they differ from process and substitution tags.

e Forms and URLs explains how to pass data between pages using HTML forms and URLs and introduces
form parameters and tokens.

e Custom Tags explains how to create reusable functions or subroutines in Lasso.

Overview

LassoScript is a tag-based scripting language that has all the features of an advanced programming language.
LassoScript has support for data types, object-oriented member tags, mathematical symbols, string symbols,
complex nested expressions, logical flow control, threads, and custom tags which can extend Lasso’s built-in
functions and procedures.

Using Lasso Pages

Lasso pages which contain LassoScript must be processed by Lasso in order for the embedded tags to be
interpreted. The Open... command in a Web browser should not be used to view Lasso pages. Instead, Lasso
pages should be uploaded to a Web server and loaded with an appropriate URL. For example, a file named
default.lasso in the root of the Web serving folder might be loaded using the following URL.

http://www.example.com/default.lasso

Simple sequences of tags and LassoScripts can be placed in a text file and then called through the Web
browser in order to test LassoScript programming concepts without the overhead of HTML formatting tags.

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 14 — PROGRAMMING FUNDAMENTALS 205

Reporting Errors

If there are any Lasso syntax errors in a Lasso page which is processed by Lasso, then all processing will stop
and an error message will be displayed. Depending on the current error reporting level, the error message
will provide the location of the error and a description of what syntax caused the error. All errors must be
corrected before the page can be fully processed.

It is recommended that the error reporting level for the server be set to Minimal or None and adjusted to High on
a per-page basis using the [Lasso_ErrorReporting] tag when a site is being actively developed. See the Error
Controls chapter for details about setting the error reporting level and customizing the built-in error page.

Figure 1: Error Page

An error occurred while processing your request.

[Error Information

Error Message: The file include.inc was not found.
Error Code: -9984

Note: All valid Lasso code above the syntax error will be processed each time the page is loaded. If database
actions are being performed, they may be performed each time a page is loaded as long as they are above the
point in the page where the error occurs.

Logic vs. Presentation

Lasso code can be structured in many ways in order to adapt itself to different coding styles. Some methods
involve the tight integration of programming logic (LassoScript) with page presentation (HTML, XML, and
graphics). Other methods involve abstracting the programming logic from the page presentation. Lasso offers
maximum flexibility for you to determine how you want to structure your pages.

It is often desirable to separate programming logic from page presentation so that different people can work
on different aspects of a Web site. For example, a Lasso developer can concentrate on creating LassoScripts
and blocks of Lasso code which define the programming logic of a site. Meanwhile, a Web designer can
concentrate on the visual aspects of the Web site with only minimal knowledge of how to integrate Lasso into
the page presentation so that data is inserted and formatted correctly.

It is also at times desirable for all of your programming to fit tightly within the page presentation. Because
LassoScript is an HTML-like tag language, it is easy to embed LassoScript within HTML, in effect enhancing
static HTML to become dynamic HTML.

The following examples show how to use LassoScript within HTML as well as how to use LassoScript
abstracted from HTML.

Examples of LassoScript embedded in HTML:

e Lasso tags can be used within HTML markup to insert data from databases, the results of calculations, or
Lasso commands into otherwise static HTML. The following example inserts the [Field] tag into an HTML
 tag in order to extract a URL for an image stored in a database.

e Container tags can be used to hide or show portions of a page. The following example hides an HTML <h2>
header unless the variable ShowTitle equals True.

[If: (Variable: 'ShowTitle') == True]
<h2>Page Title</h2>
[/

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 14 — PROGRAMMING FUNDAMENTALS 206

e Container tags can be used to repeat a portion of a page to present data from many database records or to
construct complex HTML tables. The following example shows the fields First_Name and Last_Name from a
database search each in their own row of a constructed table. See the Database Interaction Fundamentals
chapter for more information about [Inline] ... [/Inline] tags.

[Inline: -Database='Contacts', -Table="People’, -KeyField='ID', -FindAll]
<table>
[Records]
<tr>
<td>[Field: 'First_Name'] [Field:'Last_Name']</td>
</ftr>
[/Records]
</table>
[/Inline]

e Custom tags can be used to execute a portion of code multiple times. The following custom tag creates an
HTML link with the specified URL and anchor. It is then called multiple times.

[Define_Tag: 'MyLink', -Required="URL', -Required='Anchor"]
[Local: 'Output' = '' + #Anchor + '']
[Return: @#Output]

[/Define_Tag]

You can visit [MyLink: 'http://www.lassosoft.com', 'LassoSoft] for more information about Lasso
or [MyLink: 'http://www.tagswap.net', 'TagSwap'] to see tags created by other developers.

=» You can visit LassoSoft for more information about Lasso
or TagSwap to see tags created by other developers.

Examples of LassoScript abstracted from HTML:

e LassoScripts can be used to collect programming logic into a block at the top of a Lasso page. Code in the
LassoScript can be formatted and commented separate from the HTML in a Lasso page. Separating the
programming logic from the page presentation tags allows for easier debugging and customization of Lasso
pages. The following example shows an [Inline] specified in a LassoScript with an -InlineName keyword set so
the results can be retrieved in the presentation portion of the Lasso page. See the Lasso Syntax chapter for
more information.

<?LassoScript
/I This inline finds all records in Contacts.
Il The results are fetched using [Records: -InlineName='Results] ... [/Records]
Inline: -InlineName='"Resullts', -Database="Contacts',-Table='People',-FindAll;

/Inline;
»>

¢ The [Include] tag can be used to include Lasso pages that contain portions of the final output. In the
following example, the Lasso page shown consists of the standard HTML tags with a pair of [Include] tags
that insert all of the programming logic from a file named Librarylasso and the data presentation code from
a file named Presentation.lasso. See the Files and Logging chapter for more information about using [Include]
tags.

<html>
<head>
<title>Lasso FormatFile</title>
[Include: 'Library.lasso']
</head>
<body>
[Include: 'Presentation.lasso’]
</body>
</html>

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 14 — PROGRAMMING FUNDAMENTALS 207

Data Output

The final output of most Lasso pages is an HTML page, XML page, or WML page which will be viewed by a
Web site visitor in a client browser. This section describes how the results of expressions can be output and
how the output of substitution tags can be controlled.

See also the Encoding chapter for more information about using encoding keywords.

Table 1: Output Tags

Tag Description

[Output] Outputs the result of a calculation or sub-tag using default encoding
[Output_None] ... [/Ouput_None] Hides a portion of page from being output, but processes the Lasso tags within.
[HTML_Comment] ... [[HTML_Comment] Surrounds a portion of a page with HTML comment markers, but processes the

Lasso tags within.

Outputting Values

Substitution tags and member tags output values to the Lasso page which is currently being processed in
place. Their values are output whether they are contained within LassoScripts or appear intermixed with
HTML tags.

The [Output] tag is a substitution tag which can be used to apply the default encoding to the value of any Lasso
expression, member tag, or sub-tag.

Example of using the [Output] tag:

The [Output] tag allows encoding keywords to be used on the results of string expressions. The following
LassoScript shows the use of the [Outpuf] tag to return the result of a string expression with the encoding
keyword -EncodeNone applied so the HTML tags are displayed properly on the page.

<?LassoScript
Output: '' + 'Bold Text' + '', -EncodeNone;
»>

=» Bold Text

Suppressing Output

Sometimes it is desirable to have Lasso tags processed in a Lasso page, but not to show the results in the page
which is returned to the Web site visitor. The [Output_None] ... [/Output_None] tag can be used to accomplish

this purpose. Any Lasso tags contained within the container tag will be processed, but the results will not be
returned to the Web site visitor.

The following examples use page specific variables in a block of code that will not be output to the user.

[Output_None]
This text will not be returned to the site visitor.
However, the following tags will be processed.
[Variable: 'Page Title'="Lasso Page']
[Variable: 'Page Error'="None']
[/Output_None]

This same example could be written as a LassoScript as follows. The LassoScript will return no value to the
page on which it is placed, but any tags within the LassoScript will be processed.

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 14 — PROGRAMMING FUNDAMENTALS 208

<?LassoScript
Output_None;
/I This LassoScript will return no value.
Il However, the following tags will be processed.
Variable: 'Page Title'='Lasso Page’;
Variable: 'Page Error'='None';

/Output_None;
>

Another way to suppress output is to surround a portion of a page in [HTML_Comment] ... [[HTML_Comment]
tags. These tags will become an HTML comment container <?-- ... --> when the page is processed. Any results
of the tags inside the container tags will not be shown to the Web site visitor, but will be available if they
view the source of the page. This can be useful for providing debugging information which won't affect the
overall layout of a Web page. In the following example, the values of several variables are shown in an HTML
comment.

[HTML_Comment]
This text will be available in the source of the completed Web page.
Page Title: [Variable: 'Page Title']
Page Error: [Variable: 'Page Error

[/[HTML_Comment]

-»> <I--
This text will be available in the source of the completed Web page.
Page Title: Lasso Page
Page Error: None
-->

Variables

Variables are named locations where values can be stored and later retrieved. The concepts of setting and
retrieving variables and performing calculations on variables are essential to understanding how to work with
Lasso’s data types and tags.

A variable is created and set using the [Variable] tag. The following tag sets a variable named VariableName to the
literal string value VariableValue.

[Variable: 'VariableName'='VariableValue']

A variable is also retrieved using the [Variable] tag. This time, the tag is simply passed the name of the variable
to be retrieved. The following tag retrieves the variable named VariableName returning the literal string value
VariableValue.

[Variable: 'VariableName'] =» VariableValue

The following LassoScript sets a variable and then retrieves the value. The result of the LassoScript is the value
VariableValue.

<?LassoScript
Variable: 'VariableName'='VariableValue';

Variable: 'VariableName',
>

=» VariableValue

Creating Variables

There is only one way to create a variable, using the [Variable] tag with a name/value parameter. All variables
should be created and set to a default value before they are used.

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 14 — PROGRAMMING FUNDAMENTALS 209

Examples of creating variables:
® An empty variable can be created by setting the variable to ".
[Variable: 'VariableName'="]
¢ A variable can be created and set to the value of a string literal.
[Variable: 'VariableName'='String Literal’]
e A variable can be created and set to the value of an integer or decimal literal.
[Variable: 'VariableName'=123.456]
¢ A variable can be created and set to the value of any substitution tag such as a field value.
[Variable: 'VariableName'=(Field: 'Field_Name')]

Multiple variables can be created in a single [Variable] tag by listing the name/value parameters defining the
variables separated by commas. The following tag defines three variables named x, y, and z.

[Variable: 'x'=100, 'y'=324, 'z'=1098]
Variable names can be any string literal and case is unimportant. For best results, variables names should
start with an alphabetic character, should not contain any punctuation except for underscores and should not
contain any white space except for spaces (no returns or tabs). Variable names should be descriptive of what
value the variable is expected to contain.

Note: Variables cannot have their value retrieved in the same [Variable] tag they are defined.
[Variable: 'X'=10, 'y'=(variable:X)] is not valid.

Returning Variable Values

The most recent value of a variable can be returned using the [Variable] tag. For example, the following
LassoScript creates a variable named VariableName, then retrieves the value of the variable using
the [Variable] tag. The result is Variable Value.

<?LassoScript
Variable: 'VariableName'='Variable Value'
Variable: 'VariableName',

>

=» Variable Value

Variable values can also be retrieved using the $ symbol. The following LassoScript creates a variable named
VariableName, then retrieves the value of the variable using the § symbol. The result is Variable Value.

<?LassoScript
Variable: 'VariableName'='Variable Value';
$VariableName;

>

=» Variable Value

Setting Variables

Once a variable has been created, it can be set to different values as many times as is needed. The easiest way
to set a variable is to use the [Variable] tag again just as it was used when the variable was created.

[Variable: 'VariableName'="New Value']

Variables can also be set using the expression $VariableName='NewValue'. This expression should only be used
within LassoScripts so that it is not confused with a name/value parameter. This expression can be used to set
a variable, but cannot be used to create a variable.

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 14 — PROGRAMMING FUNDAMENTALS 210

The following LassoScript creates a variable named VariableName, sets it to a value New Value using an
expression, then retrieves the value of the variable. The result is New Value.

<?LassoScript
Variable: 'VariableName'=";
$VariableName="New Value';

$VariableName;
>

=» New Value

Includes

Lasso allows Lasso pages to be included within the current Lasso page. This can be very useful for setting up

site-wide navigation elements (e.g. page headers and footers), separating the graphical elements of a site from

the programming elements, and for organizing a project into reusable code components. There are three

types of files that can be included with the various include tags depending on how the Lasso code and other

data in the included file needs to be treated.

¢ Lasso Pages can be included using the [Include] tag. The Lasso code within the included Lasso page
executes at the location of the [Include] tag as if it were part of the current file. Any HTML code or text within
the Lasso page is inserted into the current Lasso page.

[Include: 'Page.lasso’]

The [Include_Once] tag functions identically to [Include] the first time it is called, but subsequent calls to
[Include_Once] with the same file name are ignored. This allows the same utility file to be included from
within both a Lasso page and a file included by that Lasso page without danger of the code within being
executed twice.

[Include_Once: 'Page.lasso’]

e Text or Binary Data can be included using the [Include_Raw] tag. No Lasso code in the included file is
processed and no encoding is performed on the included data.

[Include_Raw: 'Picture.gif]

e Lasso code can be included using the [Library] tag. No output is returned from the [Library] tag, but any
Lasso code within the file is executed.

[Library: 'Library.lasso']

The [Library_Once] tag functions similarly to [Include_Once]. Only the first call to [Library_Once] with a given file
name is executed. Subsequent calls with the same file name are ignored.

[Library_Once: 'Library.lasso']

* Variables can be set to the contents of a file using the [Include] and [Include_Raw] tags. The [Include] tag inserts
the results of processing any Lasso code within the file into the variable. The [Include_Raw] tag inserts the
raw text or binary data within the file into the variable.

[Variable: 'File_Data' = (Include: 'Page.lasso')]
[Variable: 'File_Data' = (Include_Raw: 'Picture.gif")]

See the Images and Multimedia chapter for tips about how to use [Include_...] tags to serve images and
multimedia files from Lasso.

Library Files

Library files are Lasso pages which are used to modify Lasso’s programming environment by defining new
tags and data types, setting up global constants, or performing initialization code. Libraries can be included
within a Lasso page using the [Library] or [Library_Once] tag or can be added to the global environment by
placing the library file within the LassoStartup folder and then restarting Lasso Service.

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 14 — PROGRAMMING FUNDAMENTALS 211

Specifying Paths

All included files reference paths relative to the Lasso page which contains the include tag. The path specified
to the file is usually the same as the relative or absolute path which would be specified within an HTML
anchor tag to reference the same file.

Files in the same folder as the current Lasso page can be included by specifying the name of the file directly.
The following tag includes a file named Page.lasso in the same folder as the file this tag is specified within.

[Include: 'Page.lasso']

Files in sub-folders within the same folder as the current Lasso page can be included by specifying the relative
path to the file which is to be included. The following tag includes a library file named Librarylasso within a
folder named Includes that is in the same folder as the file this tag is specified within.

[Library: 'IncludesiLibrary.lasso']

Files in other folders within the Web serving folder should be specified using absolute paths from the root

of the Web serving folder. The ../ construct can be used to navigate up through the hierarchy of folders. The
following tag includes an image file called Picture.gif from the Images folder contained in the root of the Web
serving folder.

[Include_Raw: /Images/Picture.gif]

The [Include_Once] and [Library_Once] tags use the full path name to the included files to determine whether the
same file has already been included.

File Suffixes

Any file which is included by Lasso including Lasso pages, library files, and response files must have an
authorized file suffix within Lasso Administration. See the Setting Site Preferences chapter of the Lasso
Professional 8 Setup Guide for more information about how to authorize file suffixes.

By default the following suffixes are authorized within Lasso Administration. Any of these files suffixes can

be used for included files. The .inc file suffix is often used to make clear the role of Lasso pages which are
intended to be included.

.htm .html
.inc .incl
las .Lasso
.LassoApp text

Ixt

Error Controls

Includes suppress many errors from propagating out to the including page. If a syntax error occurs in an
included file then the [Include] tag will return the reported error to the site visitor. If a logical error occurs
in an included file then the [Include] tag will return the contents of the error page with the error reported.
Techniques for debugging included files are listed on the following pages.

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 14 — PROGRAMMING FUNDAMENTALS

Table 2: Include Tags

Tag

Description

[Include]

[Include_Once]

[Include_Raw]

[Library]

[Library_Once]

Inserts the specified Lasso page into the current Lasso page. Any Lasso code in
the included Lasso page is executed. Accepts a single parameter, the path and
name of the Lasso page to be included.

Functions the same as [Include] on the first call. Subsequent calls which refer to
the same include file are ignored.

Inserts the specified file into the current Lasso page. No processing or encoding
is performed on the included file. Accepts a single parameter, the path and name
of the file to be included.

Executes any Lasso code in the specified Lasso page, but, inserts no result into

the current Lasso page. Accepts a single parameter, the path and name of the
Lasso page to be executed.

Functions the same as [Include] on the first call. Subsequent calls which refer to
the same include file are ignored.

Note: See the HTTP/HTML Content and Controls chapter for documentation of the [Inlude_URL] tag.

To include a Lasso page:

Use the [Include] tag with the path to the Lasso page which is to be included. The included Lasso page will be
processed and the results will be inserted into the current Lasso page as if the code had been specified within
the current file at the location of the [Include] tag. The following example shows how to include a file named
Page.lasso which is contained in the same folder as the current Lasso page.

[Include: 'Page.lasso']

To include a library file:

Library files which contain custom tag definitions or Lasso code that does not return any output can be
included using the [Library] tag. The Lasso code within the library file will be executed, but no result will
be returned to the current Lasso page. The following example shows how to include a library file named
Librarylasso which is contained in the same folder as the current Lasso page.

[Library: 'Library.lasso']

To include a utility file which is required by several files:

Use the [Include_Once] or [Library_Once] tag in each file that requires the tags or code defined in the utility

file. The first tag which Lasso encounters will trigger processing of the include file. Subsequent tags which
reference the same file will be ignored.

For example, a utility file Tags.Lasso might define some custom tags for a site. This tag is used in the main
Default.Lasso page and also in an included library file LibraryLasso. The top of Default.Lasso has this code,
including both Tags.Lasso and Library.Lasso.

[Library_Once: 'Tags.lasso']
[Library: 'Librarylasso]
... Remainder of Default.Lasso...

The top of Library.Lasso has this code which simply includes Tags.Lasso

[Library_Once: 'Tags.lasso']
... Remainder of Default.Lasso...

When Default.Lasso is processed the [Library_Once] tag for Tags.Lasso is encountered first. This file is processed
and the tags within are defined. Next, LibraryLasso is processed. When the [Library_Once] tag for Tags.Lasso is
encountered within that file it is ignored since the file Tags.Lasso has already been processed.

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 14 — PROGRAMMING FUNDAMENTALS 213

To debug an included file:

The include tags do return errors that occur in the included file, but it can be difficult to debug problems in
included files. The errors from an included file can sometimes be more easily seen by loading the file directly
within a Web browser. This will reveal any syntax errors within the included file and ensure that all the code
in the included file performs properly. The following URL references a Lasso page named Page.lasso inside an
Includes folder.

http://www.example.com/Includes/Page.lasso

Note: Some include files rely on variables from the Lasso page that includes them to operate properly. These
include files cannot be debugged by simply loading them in a Web browser.

To debug an included library file:
Since library files do not ordinarily return any output to the current Lasso page they can be difficult to debug.

To debug an included library file, insert debugging messages within the code of the library file. Ordinarily,
these messages will never be seen since the [Library] tag does not return any output. The following example
shows how to report the current error.

[(Error_CurrentError: -ErrorCode) + ": ' + (Error_CurrentError)]

If the [Library] tag which includes the code library is changed to an [Include] tag then the output of error
message will be inserted into the current Lasso page. This allows the debugging messages to be seen. Once the
file is working successfully, the [Include] can be changed back to a [Library] tag to hide the debugging messages.

To prevent included files from being served directly:

Included files can be named with any file suffix which is authorized within Lasso Administration. If a file
suffix is authorized within Lasso Administration, but is set to not be served by the Web server application
then files with that file suffix can only be used as include files and can never be served directly. For example,
to authorize the .inc file suffix the following steps must be taken.

1 Authorize .inc in Lasso Administration Setup > Settings > File Extensions.

2 Using the file suffix controls of your Web server applications, deny the suffix .inc so that files with that
suffix cannot be served. This can usually be accomplished with specific file suffix controls or with a Web
server realm. Consult the Web server documentation for more information.

Note: If Lasso code is placed in an include file that is authorized for processing by Lasso (step 1 above), but is
not set in the Web server preferences to always be processed by Lasso or never to be served (step 2 above),
then it may be possible for site visitors to view the unprocessed Lasso code by loading the include file directly.

Advanced Methodology

Includes and library files allow Lasso pages to be structured in order to create reusable components, separate
programming logic from data presentation, and in general to make Web sites easier to maintain. There are
many different methods of creating structured Web sites which are beyond the scope of this manual. Please
consult the third party resources at the LassoSoft Web site for more information.

Data Types

Every value in Lasso is defined as belonging to a specific data type. Every value stored in a variable belongs to
a specific data type. The data type determines what symbols and member tags are available for use with the
value.

Table 3: Data Type Tags

Tag Description
[Null->Type] Returns the data type of a value.
[String] Casts a value to data type string.

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 14 — PROGRAMMING FUNDAMENTALS 214

[Integer] Casts a value to data type integer.
[Decimal] Casts a value to data type decimal.
[Boolean] Casts a value to data type boolean.
[Date] Casts a value to data type date.
[Duration] Casts a value to data type duration.
[Array] Creates an array data type.

[Map] Creates a map data type.

[Pair] Creates a pair data type.

[Bytes] Creates a bytes data type.

Note: Lasso has many more data types than those listed. See the Data Types section in this manual or the Lasso
Reference. for complete documentation of all the available data types.

Several data types have already been introduced:

e Strings are sequences of alphanumeric characters. String literals are delimited by single quotes as in
'String Literal'.
e Integers are whole numbers. Integer literals are specified without quotes as in 123 or -987.

e Decimals are numbers which contain a decimal point. Decimal literals are specified without quotes as in
3.1415926 or 24.99.

e Dates are alphanumeric strings that represent a date and/or time. A date must always be cast using the [Date]
tag in a recognized format to be used as a date data type (e.g. [Date:'9/29/20021).

¢ Durations are alphanumeric strings that represent a length time (not a 24-hour clock time). A duration
must always be cast using the [Duration] tag in a recognized format to be used as a duration data type (e.g.
[Duration:'168:00:007).

Variables which are set to literal values of a specific data type are themselves said to be of that data type.
Variables containing strings are string variables. Any symbols which operate on literal strings will also operate
on string variables.

It is important to keep track of what type of value is stored in each variable so that the values of expressions
and member tags can be safely predicted.

Returning the Type of a Variable

The [Null->Type] member tag can be used to return the type of a variable or other value. [Null->Type] is a member
tag of the data type null which is a precursor to all other data types. The [Null->...] member tags can be used
with values of any data type.

The following example shows the value of [Null->Type] for literals of different data types.
'String Value'->Type =¥ string

123->Type =» integer
9.999->Type =¥ decimal

The following example shows the value of [Null->Type] when it is used on a variable which has been set to a
string literal.

<?LassoScript
Variable: 'Value' = 'String Value';
$Value->Type;

o

=» string

The [Null->Type] member tag also works on the compound data types: array, map, and pair. The following
example shows the value of [Null->Type] when it is used on a variable which has been set to an array literal.

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 14 — PROGRAMMING FUNDAMENTALS 215

<?LassoScript
Variable: 'Value' = (Array: 'One', Two', 'Three', 'Four');
$Value->Type;

>

=> array

Casting a Value to a Data Type

Values can be cast from one data type to another in order to ensure that the proper member tags will be
available and symbols will work as expected. Each data type defines a tag which has the same name as the
data type that can be used to cast a value to that data type.

To cast a value to the string data type:

e Integer and decimal values can be cast to type string using the [String] tag. The value of the string is the same
as the value of the integer or decimal value when it is output using the [Variable] tag.

[String: 999.999] =¥ '999.999'
® Boolean values can be cast to type string using the [String] tag. The value will always either be True or False.
[String: True] =¥ True'

¢ Arrays, maps, and pairs should not be cast to type string. The value which results is intended for debugging
purposes. More information can be found in the Arrays and Maps chapter.

To cast a value to the integer data type:

e Decimal values can be cast to type integer using the [Integer] tag. The value of the decimal number will be
truncated at the decimal point. For example, casting 999.999 to type integer results in 999 not 1000.

[Integer: 999.999] =» 999

e String values can be cast to type integer using the [Integer] tag. The string must start with a numeric value.
For example casting 2String1 to an integer results in 2.

[Integer: '2001: A Space Odyssey'] =» 2001
[Integer: '2String1'] =¥ 2

¢ Boolean values can be cast to type integer using the [Integer] tag. The value of the result will be 1 if the
boolean was True or 0 if the boolean was False.

[Integer: True] =» 1
[Integer: False] =» 0

e Arrays, maps, and pairs should not be cast to type integer. The value which results will always be 0.

To cast a value to the decimal data type:

e Integer values can be cast to type decimal using the [Decimal] tag. The value of the integer number will
simply have a decimal point added. For example, casting 123 to type integer results in 123.000000.

[Decimal: 123] =» 123.000000

e String values can be cast to type decimal using the [Decimal] tag. The string must start with a numeric value.
For example casting 2.5String1 to a decimal results in 2.500000. The 1 at the end of the string is ignored.

[Decimal: '2001: A Space Odyssey'] =» 2001.000000
[Decimal: '2.5String1'] = 2.500000

® Boolean values can be cast to type decimal using the [Decimal] tag. The value of the result will be 1.000000 if
the boolean was True or 0.000000 if the boolean was False.

[Decimal: True] =» 1.000000
[Decimal: False] =» 0.000000

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 14 — PROGRAMMING FUNDAMENTALS 216

® Arrays, maps, and pairs should not be cast to type integer. The value which results will always be 0.000000.

To cast a value to the boolean data type:

e Integer and decimal values can be cast to type boolean using the [Boolean] tag. The value of the boolean will
be False if the number is zero or True if the number is non-zero.

[Boolean: 123] =¥ True
[Boolean: 0.0] =» False

e String values can be cast to type boolean using the [Boolean] tag. The value of the boolean will be False if the
string contains just the word false or is empty and True otherwise.

[Boolean: 'false] =» False
[Boolean: "] =» False
[Boolean: 'true]l =» True
[Boolean: 'value'] = True

e Arrays, maps, and pairs should not be cast to type boolean. The value which results will always be False.

To cast a value to the date data type:

e Specially formatted strings may be cast as date data types using the [Date] tag. For a list of date string
formats that are automatically recognized as dates, see the Date and Time Operations chapter.

[Date: '9/29/2002'] =» 9/29/2002 00:00:00
[Date: '9/29/2002 12:30:00] =» 9/29/2002 12:30:00
[Date: '2002-09-29 12:30:00 =» 2002-09-29 12:30:00

e Unrecognized date strings can be cast as date data types using the [Date] tag with the -Format parameter. All
eligible date strings must contain numbers, punctuation, and/or allowed words (e.g. February, GMT) in a
format that represents a valid date. For a description of how to format a date string, see the Date and Time
Operations chapter.

[Date: '9.29.2002', -Format="%m.%d.%Y"] =» 9.29.2002
[Date: '20020929', -Format="%Y%m%d'] =» 20020929
[Date: 'September 29, 2002, -Format='%B %d, %Y'] =» September 29, 2002

To cast a value to the duration data type:

e Specially formatted strings as either hours:minutes:seconds or just seconds may be cast as duration data types
using the [Duration] tag. The [Duration] tag always returns values in hours:minutes:seconds format. For more
information, see the Date and Time Operations chapter.

[Duration: '169:00:00' =» 169:00:00
[Duration: '00:30:007 =» 00:30:00
[Duration: ‘3007 =» 00:05:00

To cast a value to type array, map, or pair:

Values cannot be cast to type array, map, or pair. However, an array, map, or pair can be constructed with the
simple data type as its initial value. See the Arrays and Maps chapter for more information about how to
construct these complex data types.

To cast a value to the bytes data type:

For discussion on the bytes data type, see the Advanced Programming Topics chapter.

Automatic Casting

Lasso will cast values to a specific data type automatically when they are used in expressions or as parameters
for tags which require a particular type of value. Values will be automatically cast in the following situations:

e Values of every data type are cast to string values when they are output to the Web browser.

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 14 — PROGRAMMING FUNDAMENTALS 217

¢ Integer values are cast to decimal values when they are used as parameters in expressions with one integer
parameter and one decimal parameter.

e Integer and decimal values are cast to string values when they are used as parameters in expressions with
one integer or decimal parameter and one string parameter.

e Values of every data type are cast to boolean values when they are used in logical expressions.
e The [Math_...] tags will automatically cast all parameters to integer or decimal values.

e The [String_...] tags will automatically cast all parameters to string values.

Symbols

Symbols allow for powerful calculations to be performed within Lasso tags. The symbols which can be used
in expressions are discussed in full detail in the chapter devoted to each data type. String expressions and
symbols are discussed in the String Operations chapter and decimal and integer expressions and symbols are
discussed in the Math Operations chapter.

Using Symbols

Since symbols only function on values of a specific data type, values need to be cast to that data type
explicitly or they will be automatically cast. For best results, explicit casting should be performed so the
meaning of the symbols will be clear. Note that spaces should always be specified between a symbol and its
parameters.

As explained in the Automatic Casting section above, values used as a parameter in an expression will be
automatically cast to a string value if any parameter in the expression is a string value. Integer values will be
automatically cast to decimal values. Any value used in a logical expression will be automatically cast to a
boolean value.

¢ The following expression returns 1212 since the integer 12 is automatically cast to a string because one
parameter is a string.

[12' +12] = 1212

¢ Similarly, the following expression returns 1212 since the integer 12 is automatically cast to a string because
one parameter is a string.

[12 +'127 =» 1212
¢ The following expression returns 24 since the string 12 is explicitly cast to an integer.
[(Integer: '12') + 12] =» 24

¢ The following expression returns 24.000000 since the integer 12 is automatically cast to a decimal value
because one parameter is a decimal value.
[12 +12.0] =» 24.000000
¢ The following expression returns True since the integer 12 is automatically cast to a boolean value
True because it is used in a logical expression.
[12 && 12] =» True
When in doubt, the [String], [Integer], and [Decimal] tags should be used to explicitly cast values so that the
proper symbols are used.

Note: Always place spaces between a symbol and its parameters. The - symbol can be mistaken for the start of a
command tag, keyword, or keyword/value parameter if it is placed adjacent to the parameter that follows.

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 14 — PROGRAMMING FUNDAMENTALS 218

Assignment Symbols

Variables can be set to the result of an expression, storing that result for later use. For example, the following
variable is set to the result of a simple math expression.

[Variable: 'MathResult'=(1 + 2)]

Variables can also be set using assignment symbols within LassoScripts. The equal sign = is the simplest
assignment symbol. Other assignment symbols can be formed by combining a decimal, integer, or string
symbol with the equal sign. For example, += is the additive assignment symbol.

The following LassoScript creates a variable named MathResult, performs a mathematical operation (adding 4)
on it using the additive assignment symbol, and returns the final value.

<?LassoScript
Variable: 'MathResult'=0;
$MathResult += 4;

$MathResult;
>

>4

The assignment symbol replaces the value of the variable and does not return any output. The assignment
expression $MathResult += 4; is equivalent to the expression $MathResult = $MathResult + 4;. Since assignment
expressions do not return a value they should only be used within LassoScripts to modify variables.

LassoScripts can use variable results to build very complex operations. For example, the following LassoScript
uses several variables to perform a math expression.

<?LassoScript
Variable: 'x'=100, 'y'=4;
$x = $x/ $y;
$y = $x + §y;
X='+ §x+'y="+§y;
ol

=» x=25y=29

Note: If a negative number is used as the right-hand parameter of an assignment symbol it should be
surrounded by parentheses.

Member Tags

Member tags are associated with a particular data type and can be used on any value of that data type. The
data type of a member tag is represented in the documentation in the member tag name before the member
tag symbol ->. For example, the tag [String->Length] can be used with values of data type string, and the tag
[Decimal->SetFormat] can be used with values of data type decimal.

Member tags are available for string, decimal, integer, date, array, map, and pair data types, and are discussed
in detail in the String Operations, Math Operations, Date and Time Operations, and Arrays and Maps
chapters.

Using Member Tags

Since member tags only function on values of a specific data type, values need to be cast to that data type
explicitly. Member tags will not automatically cast values.

For example, the member tag [String->Length] can be used to return the length of a string value. If [String->Length]
is used on a number as in [123->Length] then an error will result:

"Length" was not a member of type "integer"

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 14 — PROGRAMMING FUNDAMENTALS 219

Instead, the integer must be cast to a string value explicitly before the member tag can be used. The following
example returns the length of the string representing the integer correctly.

[(String: 123)->Length] =¥ 3

When in doubt, the [String], [Integer], [Decimal], and [Date] tags should be used to explicitly cast values so that the
proper member tags are available.

Member Tag Types

Member tags can function like either substitution tags which return a value or like process tags which modify
the value which the member tag is called on, but do not return a value.

For example, the member tag [String->Length] functions like a substitution tag and returns the length of the
string on which it is called. The following LassoScript stores a string in a variable StringVariable then retrieves its
length. The string stored in the variable is left unchanged.

<?LassoScript
Variable: 'StringVariable' = 'A string value';
$StringVariable->Length;

>

- 14

In contrast, the member tag [Decimal->SetFormat] functions like a process tag, altering the way that a decimal
variable will be output when it is cast to a string. The following LassoScript shows the normal decimal value
output of a variable.

<?LassoScript
Variable: 'DecimalVariable' = 123.456;
$DecimalVariable;

>

=> 123.456000

The following LassoScript shows how the output of the decimal value changes when a [Decimal->SetFormat] tag
is used on the variable DecimalVariable to truncate its output to two significant digits.

<?LassoScript
Variable: 'DecimalVariable' = 123.456;
$DecimalVariable->(SetFormat: -Precision=2);

$DecimalVariable;
>

=> 12345

The value stored in the variable DecimalVariable is not changed, but the value which is output is formatted
according to the rules set in the
[Decimal->SetFormat] tag.

Forms and URLs

This section discusses how to pass information from Lasso page to Lasso page through HTML forms and
URLs. Data can also be passed from Lasso page to Lasso page using database actions or sessions. Please see
the Database Interaction Fundamentals and Sessions chapters for more information.

Form Parameters

HTML forms can be used to pass values to a Lasso page. The values are retrieved in the Lasso page using the
[Action_Param] tag. Any <input>, <select>, or <textarea> values can be retrieved by name using the [Action_Param] tag
except for those which contain Lasso command tags.

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 14 — PROGRAMMING FUNDAMENTALS 220

For example, the following form has two inputs for First_ Name and Last_Name and a button that submits the
form.

<form action="response.lasso" method="POST">
<p>First Name: <input type="test" name="First_Name" value="">
<p>Last Name: <input type="test" name="Last_Name" value="">
<p><input type="submit" name="Submit" value="Submit Value">
</form>

In the Lasso page response.lasso—which is loaded when this form is submitted—the following Lasso tags will
retrieve the values submitted by the site visitor in the form.

First Name: [Action_Param: 'First_Name']
Last Name: [Action_Param: 'Last_Name']

Even the value of the submit button can be fetched. This can help distinguish between multiple buttons that
each have the same name displayed in the Web browser.

Button Value: [Action_Param: 'Submit']

URL Parameters

URLs can be used to pass values to a Lasso page. The values are retrieved in the Lasso page using the
[Action_Param] tag. Any values which are passed as URL parameters can be retrieved by name using the
[Action_Param] tag except for those which contain Lasso command tags.

For example, the URL in the following anchor tag has two parameters for First Name and Last_Name.
John Doe

In the Lasso page response.lasso—which is loaded when this form is submitted—the following Lasso tags will
retrieve the values submitted by the site visitor on the form.

First Name: [Action_Param; 'First_Name']
Last Name: [Action_Param: 'Last_Name']

Custom Tags

What are commonly called functions, procedures, or sub-routines in other languages are referred to as tags

in Lasso. Custom tags are tags which are defined in LassoScript. A custom tag allows some LassoScript which
performs a specific task to be re-used multiple times with different parameters. By encapsulating the code as a
custom tag it is possible to debug it once and use it on many sites very easily.

Custom tags are introduced in this section, but are discussed in detail in the Custom Tags chapter of the
LassoScript section of this Language Guide. That section also discusses how to create custom data types and
even custom data source modules entirely in LassoScript. It is also possible to define tags, types, and data
sources in C++ or Java. Lasso ships with a combination of native tags, tags defined in C++ modules or Java
modules, and tags defined in LassoStartup as custom tags.

The simplest custom tag is one which returns a calculated value. For example, a site may display the date in
a particular format, and it grows tiring to use the [Date_Format] tag every time. By encapsulating that tag in a
custom tag you can change all the date formats on your site just by changing the custom tag. The [Return] tag
is used within the custom tag to return a value for the tag to the caller.

[Define_Tag: 'MyDateFormat]
[Return: (Date_Format: Date, -Format="%_d of %B %Y around %_h OV'clock')]
[/Define_Tag]

Now the custom tag is called using the name that it was given as if it were a built-in tag.

[MyDateFormat] =» 12 of April 2006 around 1 O'clock

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 14 — PROGRAMMING FUNDAMENTALS 221

That tag might be more useful if it could be used with a date passed in as a parameter rather than merely
formatting the current date and time. A required parameter for the tag is created by adding -Required with the
parameter name to the opening [Define_Tag]. That parameter is then created as a local variable within the tag.
The value for the local variable can be returned with the [Local] tag. Local variables function much like the
page variables that were introduced earlier, but they only have a value for the duration of the custom tag.
The same variable names can be used in multiple custom tag definitions without worrying about them over-
writing each other.

[Define_Tag: 'MyDateFormat', -Required="Input']
[Return: (Date_Format: (Local: 'Input'), -Format='%_d of %B %Y around %_h O\'clock’)]
[/Define_Tag]

Now the custom tag is called with a date/time parameter and returns the expected output.

[MyDateFormat: '12/25/2006 3:00:007 =» 25 of December 2006 around 3 O'clock

Notice that the parameter name was not specified. Any parameters given to the tag are automatically assigned
to required parameters. The tag could be called like this with the same effect.

[MyDateFormat: -Input="12/25/2006 3:00:00'] =» 25 of December 2006 around 3 O'clock

In addition to required parameters, custom tags support optional parameters. For example, if the parameter
is made optional in the tag defined above then the tag could return the current date/time if called with no
parameter or the specified date/time if called with a parameter. Optional parameters are created by adding
-Optional with the parameter name in the opening [Define_Tag]. The [Local_Defined] tag is used to check to see if
the optional parameter was specified or not.

[Define_Tag: 'MyDateFormat', -Optional="Input']
[If: (Local_Defined: 'Input')]
[Return: (Date_Format: (Local: 'Input'), -Format='%_d of %B %Y around %_h O\'clock’)]
[Else]
[Return: (Date_Format: Date, -Format="%_d of %B %Y around %_h O\'clock')]
[/i]
[/Define_Tag]

The custom tag can now be called without a parameter to return the current date/time or with a parameter to
return that date/time properly formatted.

[MyDateFormat] =» 12 of April 2006 around 1 O’clock
[MyDateFormat: '12/25/2006 3:00:00'] =» 25 of December 2006 around 3 O’clock

This introduction only scratches the surface of what is possible with custom tags. See the chapter on Custom
Tags in the LassoScript section for full details about this programming concept.

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 15 - VARIABLES 222

Chapter 15
Variables

This chapter introduces the basic concepts of variables in Lasso including page variables, global variables,
page variables, special variables, and references. It is important to understand these concepts before reading
the chapters that follow.

e Overview explains how variables work in Lasso and how the different variable scopes interact.
e Page Variables describes tags and symbols that can be used to manipulate page variables.

® Global Variables describes tags and symbols that can be used to manipulate global variables which are
accessible from any page on a server.

¢ Local Variables describes tags and symbols that can be used to manipulate local variables within compound
expressions or custom tags or data types.

e References describes how multiple variables (or compound data type members) can reference the same
data.

Overview

A variable is a named location for storing a value. Variables in Lasso are used extensively to store temporary
values so they can be manipulated using tags, member tags, or symbols. A variable can store any type of value
within Lasso.

Lasso maintains a stack of environments as it processes Lasso code. The first environment is created when
Lasso starts up and includes global, server-wide variables. Each page has its own environment created when

it is parsed which includes normal, page-wide variables. Finally, each custom tag and data type has its own
environment that includes local variables. At any point, tags can be used to examine and modify values in the
environment above the current environment.

Variable Scope

Each variable in Lasso exists within a certain scope. When the scope in which a variable was created becomes
invalid then all the variables within that scope are deleted. The three possible scopes are as follows:

Page Scope - The most common scope is the page scope which exists from when Lasso starts processing
a Lasso page until it finishes and returns the results to the client. Most variables are created within the page
scope and exist for the duration of the Lasso page process.

Global Scope - Lasso maintains a global scope which contains variables that can be accessed by any page
that is processed by Lasso. Global variables allow values to be shared between multiple independent page
loads. They are used to store some of Lasso’s preferences and for cache storage.

Local Scope - Each compound expression and custom tag creates a local scope that exists for the duration
of the expression or tag processing. Local variables are only available within that expression or tag call. Note
that as additional custom tags are called each one creates its own independent local scope so there may be
many local scopes active at one time.

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 15 - VARIABLES 223

Session Variables - Session variables exist within the page scope, but can be thought of as being defined
within a special session scope that is reloaded each time the [Session_Start] tag is called.

Instance Variables - Custom data types can store instance variables. These variables can be thought of as
being defined within an instance scope which exists for as long as the data type instance is defined. However,
the data type instance itself exists within either the page, global, or local scope.

Non-Variable Values

Lasso also allows many values that are not stored in variables to be manipulated. These values include:

Literals - A literal value is one that is specified directly within a Lasso page. Examples include string literals
'My String Value', integers 10, decimal values 35.6, or even arrays (Array: 1, 2, 3) or maps (Map: 'one'=1, 'two'=2).

Tag Values - Many tags return values that can be stored in a variable or otherwise manipulated. Examples
include [Date], [Server_IP], [Response_FilePath], and hundreds more.

Field Values - Values from a database are returned using the [Field] or [Record_Arrays] tags.

Action Params - Values from the current HTML form action or URL are returned using the [Action_Param]|
tag.

Other Values - Other values from the current HTTP request can be returned using [Cookie_Value], [Token_Value],
etc.

Page Variables

Page variables are the most common type of variable in Lasso They only exist while the current Lasso page
is executing. Page variables are used to store temporary values in long calculations or to manipulate values
for output. The values stored in all page variables are lost at the end of the page unless they are stored in a
session.

This section includes an introduction to the tags and symbols that can be used to manipulate page variables.
This is followed by sections about creating variables, retrieving variable values, setting variables, checking to
see if a variable has been created, and removing a variable.

Table 1: Page Variable Tags

Tag Description

[Variable] Creates or sets named variables or returns their values.
[Variable_Defined] Returns True if a variable is defined.

[Variables] Returns a map of all page variables.

[Var] Abbreviation of [Variable].

[Var_Defined] Abbreviation of [Variable_Defined].

[Var_Remove] Deletes the named variable.

[Var_Reset] Resets the specified variable to a new value, detaching any references.
[Vars] Abbreviation of [Variables].

Table 2: Page Variable Symbols

Symbol

Description

Returns the value of a variable.
Assigns a value to a variable: $Variable="NewValue'.
Assigns a value to a variable and returns the value.

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 15 - VARIABLES 224

Creating Variables

Variables are created using the [Variable] tag with a name/value parameter. All variables should be created
and set to a default value before they are used. Variables can also be created implicitly if they are referenced
within the [Variable] tag. Implicitly created variables are set to Null.

Examples of creating variables:

* An empty variable can be created by setting the variable to ".
[Variable: 'VariableName'="]
e A variable can be created and set to the value of a string literal.
[Variable: 'VariableName'='String Literal’]
e A variable can be created and set to the value of an integer or decimal literal.
[Variable: 'VariableName'=123.456]
e A variable can be created and set to the value of any substitution tag such as a field value.

[Variable: 'VariableName'=(Field: 'Field_Name")]

Multiple variables can be created in a single [Variable] tag by listing the name/value parameters defining the
variables separated by commas. The following tag defines three variables named x, y, and z.

[Variable: 'x'=100, 'y'=324, 'z'=1098]

Variable names can be any string literal and case is unimportant. For best results, variables names should
start with an alphabetic character, should not contain any punctuation except for underscores and should not
contain any white space except for spaces (no returns or tabs). Variable names should be descriptive of what
value the variable is expected to contain.

Note: Variables cannot have their value retrieved in the same [Variable] tag they are defined.
[Variable: 'X'=10, 'y'=(variable:'X')] is not valid.

Returning Variable Values

The most recent value of a variable can be returned using the [Variable] tag. For example, the following
LassoScript creates a variable named VariableName, then retrieves the value of the variable using
the [Variable] tag. The result is Variable Value.

<?LassoScript
Variable: 'VariableName'='Variable Value'
Variable: 'VariableName';

>

=» Variable Value

Variable values can also be retrieved using the $ symbol. The following LassoScript creates a variable named
VariableName, then retrieves the value of the variable using the $ symbol. The result is Variable Value.

<?LassoScript
Variable: 'VariableName'='Variable Value';

Encode_HTML: $VariableName;
>

=» Variable Value

If a variable value is retrieved using the [Variable] tag before it has been defined then the variable is implicitly
created with a value of Null. The § symbol will not implicitly create a variable. Referencing a variable name
with § that has not already been defined will result in a syntax error.

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 15 - VARIABLES 225

Setting Variables

Once a variable has been created, it can be set to different values as many times as is needed. The easiest way
to set a variable is to use the [Variable] tag again just as it was used when the variable was created.

[Variable: 'VariableName'='"New Value']

Variables can also be set using the expression $VariableName='NewValue'. This expression should only be used
within LassoScripts so that it is not confused with a name/value parameter. This expression can be used to set
a variable, but cannot be used to create a variable.

The following LassoScript creates a variable named VariableName, sets it to a value New Value using an
expression, then retrieves the value of the variable. The result is New Value.

<?LassoScript
Variable: 'VariableName'=";
$VariableName='New Value";

$VariableName;
>

=» New Value

The = symbol does not return a value. The variable is set to the new value, but the expression does not return
a value. In order to set a variable to a new value and return the value that it was set to (for output or further
processing) the := symbol can be used.

The following example is equivalent to the one above, but since the := symbol is used it is not necessary to
output the variable value after it has been set.

<?LassoScript
Variable: 'VariableName'=";

$VariableName := 'New Value';
>

=» New Value

Resetting Variables

Multiple variables can point to the same underlying value in Lasso through the use of references (which are
described more fully at the end of this chapter). When two variables point by reference to the same value,
changing one variable changes the value of the other variable as well. A variable can be detached from any
references and set to a new value using the [Var_Reset] tag.

<?LassoScript
Var_Reset: 'VariableName'='New Value';

$VariableName;
>

=» New Value

Checking to See if a Variable has been Created

The [Variable_Defined] tag can be used to check if a variable has been created and used in the current Lasso
page. The following example will return false the first time [Variable_Defined] is called, then set the variable
using [Variable] and return True the second time [Variable_Defined] is called.

<?LassoScript
Variable_Defined: 'VariableName';
Variable: 'VariableName'='VariableValue',

Variable_Defined: 'VariableName';
el

=» False True

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 15 - VARIABLES 226

The [Variable_Defined] tag will return True even if a variable is set to the empty string " (two single quotes with
no space) or to Null.

Deleting a Variable

Once a variable has been created it will exist until the end of the page even if its value is never retrieved. All
variables are automatically deleted once the current Lasso page is finished processing. However, it is also
possible to delete a variable explicitly using the [Var_Remove] tag. This is not generally necessary, but can be
useful in certain specific circumstances.

The following code creates a variable, checks to see if it is defined, then deletes the variable, and checks again.
The result is first True then False.

<?LassoScript
Var('MyVariable' = "Testing");
Var_Defined('MyVariable');
Var_Remove('MyVariable');
Var_Defined('MyVariable');
o

=» True False

Global Variables

The globals tags allow direct access to global variables from any environment. These are the preferred way
of setting and retrieving global values. Globals can also be accessed implicitly from the page and local
environments following the rules described in the sections below.

Note: Many global variables are used to set preferences for internal Lasso processes such as the email queue,
the session handler, and the scheduler. Global variables which start with an underscore should never be modified.

Table 3: Global Tags

Tag Description

[Global] If called with a string parameter, retrieves the value of a global variable. If called
with a name/value pair sets the value of a global variable.

[Global_Defined] Accepts a single string parameter. Returns True if the global variable has been
defined or False otherwise.

[Global_Remove] Removes the specifies variable from the globals.

[Global_Reset] Resets the specified variable to a new value, detaching any references.

[Globals] Returns a map of all global variables that are currently defined.

Startup Environment

When code is executed in LassoStartup it is executed in the startup or global environment. Any variables which
are set using the [Variable] tag at this level will end up as global variables when pages are executed. Similarly,
any tags which are defined at this level will be made available to all pages that are executed on the server.

To set a global variable at startup:

At startup, global variables can be set either using the [Global] tag or using the [Variable] tag. All variables set at

this level are implicitly global.

e Use the [Global] tag to set the value of a global variable. The global variable will be available to any page
subsequently executed by Lasso. In the following example a variable Administrator_Email is created and set
with the value of the administrator’s email address.

[Global: 'Administrator_Email' = ‘administrator@example.com’]

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 15 - VARIABLES 227

e Use the [Variable] tag to set the values of global variables from code which is executed in the
LassoStarup folder. In the following example a variable Administrator_Email is created and set with the value of
the administrator’s email address.

[Variable: 'Administrator_Email' = 'administrator@example.com’]

Page Environment

From the page level the values of global variables can be retrieved using the [Global] tag. The $ symbol will
return a global variable if no page variable of the same name has been created. Global variables should be set
using the [Global] tag. The [Variable] tag cannot be used to set a global variable.

Note: See the section below on Asynchronous Access for important tips about how to control concurrent
accesses to global variables.

To retrieve the value of a global variable:
¢ Use the [Global] tag. In the following example the global variable Administrator_Email which is set above is

retrieved.

[Global: ‘Administrator_Email]

=>» administrator@example.com

e If the desired variable has not been overridden by a page variable of the same name then use the
[Variable] tag to retrieve the value of the global variable. In the following example the global variable
Administrator_Email which is set above is retrieved.

[Variable: '‘Administrator_Email']

=» administrator@example.com

To set the value of a global variable:

Either of the two following techniques can be used to set the value of a global variable from a Lasso page. The

first method is preferred.

e Use the [Global] tag to set the value of a global variable. The global variable will be immediately available on
any page executing by Lasso through the [Global] or [Globals] tags.

[Global: 'Administrator_Email' = 'new_administrator@example.com’]

Global: [Global: 'Administrator_Email]

=»
Global: new_administrator@example.com

e Set the value of a global variable by reference. In the following example, the variable Administrator_Email has
not been overridden on the current page. Using the $ and = symbols the global variable can be changed.

$Administrator_Email = 'new_administrator@example.com’]

Global: [Global: 'Administrator_Email']

=»
Global: new_administrator@example.com

To override the value of a global variable:

Use the [Variable] tag to set a variable of the same name. The global variable will not be modified, but
subsequent uses of the [Variable] tag will return the page variable’s value. The [Global] tag can still be used to
retrieve the value of the global variable.

In the following example the global variable Administrator_Email is overridden by a page variable of the same
name. The values of both the page variable and the global variable are displayed.

[Variable: 'Administrator_Email' = 'page_administrator@example.com']

Page: [Variable: 'Administrator_Email']

Global: [Global: 'Administrator_Email']

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 15 - VARIABLES 228

=»
Page: page_administrator@example.com

Global: administrator@example.com

Local Environment

When a custom tag is executing, variables from the global scope can be accessed using the [Global] tag and
variables from the page scope can be accessed using the [Variable] tag. The $ symbol will reference a global
variable only if a page variable with the same name has not been defined.

Asynchronous Access

Global variables are often used to communicate shared values between different page executions or to store
the state of asynchronous processes. Since globals may be accessed concurrently by multiple processes it is
necessary to use defensive coding techniques in order to ensure that the one global variables is not modified
by one process in a fashion which is incompatible with the other processes that are accessing it.

A simple global such as a string, integer, or decimal value can generally be accessed by multiple threads
without any difficulty (although it may still be desirable to control concurrent access to the global to ensure
proper program logic). Certain operations on arrays or other compound data types should not be performed
without protecting the global from concurrent access for the duration of the operation. These include the
[Array->Sort] tag, [Array->RemoveAll] tag, iterating through an array, and other operations.

The [Thread_Atomic] ... [/[Thread_Atomic] tags can be used to control concurrent access to a global variable. If

a global can be called from multiple page loads or processes then the latter page loads or processes will
block automatically until the first instance has released control of the global. The opening [Thread_Atomic] tag
requires a single parameter which designates a global variable that will be used to control when the contents
of the container tag can execute.

For example, a global array might be created which contains a list of elements to be processed. These could
be records which need to be updated, POP accounts which need to be checked etc.

[Global: 'Global_Array' = (Array)]

An asynchronous process runs through the global array processing each element and removing it from the
array. The [Thread_Atomic] ... [[Thread_Atomic] tags ensure that no elements are added to the array while it is
being processed.

[Thread_Atomic: (Global: 'Global_Array')]
[Loop: -From=(Global: 'Global_Array')->Size, -To=1, -By=-1]
... Process Current Element ...
[(Global: 'Global_Array')->(Remove: Loop_Count)]
[/Loop]
[/Thread_Atomic]

The code to add an element to the global array also uses [Thread_Atomic] ... [/Thread_Atomic| tags. The code
inside these tags will block until the asynchronous process which is emptying the array is finished.

[Thread_Atomic: (Global: 'Global_Array')]

[(Global: 'Global_Array")->(Insert: 1003)]
[/Thread_Atomic]

The Threads chapter contains more information about controlling concurrent access to globals using the
atomic tags and other thread tools.

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 15 - VARIABLES 229

Local Variables

Each custom tag and compound expression can create and manipulate its own set of local variables. These
variables are separate from the page variables and are deleted when the custom tag returns. Using local
variables ensures that the custom tag or compound expression does not alter any variables which other
custom tags or the page developer is relying on having a certain value.

Table 4: Local Tags

Tag Description

[Local] If called with a string parameter, retrieves the value of a local variable. If called
with a name/value pair sets the value of a local variable.

[Local_Defined] Accepts a single string parameter. Returns True if the local variable has been
defined or False otherwise.

[Local_Remove] Removes the specifies variable from the locals.

[Local_Reset] Resets the specified variable to a new value, detaching any references.

[Locals] Returns a map of all local variables that are currently defined.

Table 5: Local Variable Symbols

Symbol Description
Returns the value of a local variable.

= Assigns a value to a variable: $Variable="NewValue'.
= Assigns a value to a variable and returns the value.

For example, many developers will use the variable Temp to store temporary values. If a page developer is
using the variable Temp and then calls a custom tag which also sets the variable Temp, then the value of the
variable will be different than expected.

The solution is for the custom tag author to use a local variable named Temp. The local variable does not
interfere with the page variable of the same name and is automatically deleted when the custom tag returns.
In the following example, a custom tag returns the sum of its parameters, storing the calculated value in Temp.

<?LassoScript
Define_Tag: 'Ex_Sum’;
Local: "Temp'=0;
Loop: (Params)->Size;
Local: 'Temp'=(Local: 'Temp') + (Params)->(Get: Loop_Count);
ILoop;
Return: #Temp;
IDefine_Tag;
»>

The final reference to the local variable temp is as #Temp. The # symbol works like the $ symbol for page
variables, allowing the variable value to be returned using shorthand syntax.

When this tag is called, it does not interfere with the page variable named Temp.

[Variable: 'Temp' = 'Important value:']
[Variable: 'Sum' = (Ex_Sum: 1, 2, 3, 4, 5)]
[
'+ $Temp + "' + $Sum +

=»
Important value: 15.

Local Variables and Compound Expressions

A compound expression can be used to temporarily create a local scope. This allows local variables to be used
without modifying any page values. Once the compound expression completes all the local variables will be
deleted. This technique can also be used to avoid creating global variables within code ran at startup.

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 15 - VARIABLES 230

The following example shows a compound expression with a local variable named SecretTemp. The value of
SecretTemp will only be available within the compound expression.

<?LassoScript
Local: 'SecretTemp' = 'MyValue';

}>Run;
>

References

References in Lasso Professional 8 allow multiple variables to point to the same value or object. When the
shared value or object is changed, all variables that reference that value or object change. A reference can be

created using the [Reference] tag or the @ reference symbol.

An example will serve to illustrate how references can be used in Lasso. The following Lasso code creates two
variables and sets them to default values, then outputs those values. Each variable is independent. Changing
the value of the one variable will not change the value of the other variable.

[Variable: 'Alpha'= 1]
[Variable: 'Beta'= 2]

Alpha: [Variable: 'Alpha']

Beta: [Variable: 'Beta’]

=»
Alpha: 1

Beta: 2

However, if we instead define the second variable to be a reference to the first variable then the two variables
will share a single value. In the following example the variable Alpha is set to 3 and the variable Beta is set to
be a reference to the variable Alpha. When output, both variables return 3.

[Variable: 'Alpha'= 3]
[Variable: 'Beta'= (Reference: $Alpha)]

Alpha: [Variable: 'Alpha']

Beta: [Variable: 'Beta’]

=»
Alpha: 3

Beta: 3

Now that the two variables are linked, changing either variable will effect a change in both. For example,
setting Alpha to 4 will also result in a change to Beta.

[Variable: 'Alpha'= 4]

Alpha: [Variable: 'Alpha']

Beta: [Variable: 'Beta]

=»
Alpha: 4

Beta: 4

Similarly, setting Beta to 5 will also result in a change to Alpha.

[Variable: 'Beta' = 5]

Alpha: [Variable: 'Alpha']

Beta: [Variable: 'Beta’]

=»
Alpha: 5

Beta: 5

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 15 - VARIABLES 231

A variable can be set to a new value without modifying any of the other variables that might refer to the same
value by reference using the [Var_Reset] tag. This tag sets the variable to a new value and detaches it from any
references. Here the value of Beta is reset to 10, detaching it from Alpha which still has a value of 5.

[Var_Reset: 'Beta' = 10]

Alpha: [Variable: ‘Alpha’]

Beta: [Variable: 'Beta']

=»
Alpha: 5

Beta: 10

This simple example serves to illustrate the basic principle behind Lasso’s references. The remainder of this
section will provide demonstrations of how references can be used to reduce the amount of memory that
Lasso needs to process complex pages and to increase page processing speed.

It is impossible to have a reference to a reference. Lasso always resolves references back to the original object
so if one variable is set as a reference to a second variable, then a third variable is set as reference to the first
variable, all three variables end up pointing to the same object. A change to any of the three variables results
in the values of all three variables being changed.

References can be detached using the [Null->DetachReference] tag. If a variable is defined as a reference to a value
then calling [Null->DetachReference] will set the variable’s value to Null and detach it from the referenced object.
The variable can then be safely re-assigned without affecting the referenced object.

Types of References

References can be used to refer to any of the following objects within Lasso.

e Variables - A reference to a variable allows the same underlying data to be accessed through two different
names. Changing the value of either of the linked variables will result in the values of both variables being
changed. The data referenced by both variables is only stored once.

[Variable: 'Ref_Variable' = @$First_Variable]

¢ Local Variables - A reference to a page variable can be made within a custom tag. Rather than copying the
page variable into a local variable, the page variable can be referenced. This prevents duplicating data and
allows any changes made to the local variable to be automatically applied to the page variable.

[Local: 'Local_Variable' = @$First_Variable]
¢ Array Elements - A reference can be made to an array element. This allows one or more array elements

to be referenced as variables separate from the array. Any changes made to the variables will be reflected in
the array. The [Array->Gef] tag is used to identify the array element.

[Variable: 'Ref_Variable' = @($Array_Variable->(Get: 1)]

¢ Map Elements - A reference can be made to the value of a map element. This allows the values of one or
more map elements to be referenced as variables separate from the map. Any changes made to the variables
will be reflected in the map. The [Map->Find] tag is used to identify the map element.

[Variable: 'Ref_Variable' = @($Map_Variable->(Find: 'Key')]

e Tag Parameters - In a custom tag a reference can be made to a tag parameter rather than copying the
parameter into a local variable. This allows a referenced parameter to be modified in place.

[Local: 'Local_Variable' = @(Params->(Get: 1))]

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 15 - VARIABLES 232

Table 6: Reference Tags and Symbols

Tag / Symbol Description

@ Creates a reference to an object rather than copying the object. Usually used in a
[Variable] tag to assign a variable as a link to an object.

[Reference] Creates a reference to an object rather than copying the object. Equivalent to the
@ symbol.

[Null->DetachReference] Can be called on a variable of any data type to detach the variable from the
linked object. The variable ends up with a value of Null.

[Null->RefCount] Returns the number of references that refer to a value.

To create a custom tag that works on an array directly:

The following example creates a custom tag that works on the elements of an array in place. Using this
principle can greatly speed up the execution speed of Lasso code since Lasso does not have to copy each
element of the array multiple times.

References are used twice in this tag. The first parameter to the tag (which is expected to be an array) is
referenced by a local variable theArray. This prevents the values of the array from being copied into the local
variable. Within the [Loop] ...[/Loop] tags. The variable theltem is set to a reference to each element of the tag in
turn.

[Define_Tag: 'Ex_Square']
[Local: 'theArray' = @(Params->(Get: 1))]
[Loop: #theArray->Size]
[Local: 'theltem' = @(#theArray->(Get: Loop_Count))]
[#theltem *= #theltem]
[/Loop]
[/Define_Tag]

This tag is used as follows to modify the items in an array in place. Note that the tag does not have a [Return]
tag so it does not return any value.

[Variable: 'myArray' = (Array: 1, 2, 3)]
[Ex_Square: $myArray]
[Variable: 'myArray']

=> (Array: 1,4, 9)

Lasso automatically uses references when referencing -Required or -Optional tag parameters and when using the
[lterate]... [/lterate] tags. It is possible to rewrite the [Ex_Square] tag using these implicit references as follows. This
tag will function identically to the previous example.

[Define_Tag: 'Ex_Square', -Required="theArray]
[Iterate: #theArray, (Local: 'theltem’)]
[#theltem *= #theltem]
[/lterate]
[/Define_Tag]

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 16 — CONDITIONAL LOGIC 233

Chapter 16
Conditional Logic

Conditional tags allow programming logic to be embedded into Lasso pages. Portions of a page can be
hidden or repeated multiple times. Code can be executed in every repetition of a loop or every several
repetitions. Complex decision trees can be created which execute code only under very specific conditions.

e If Else Conditionals explains how to use the [If] ... [/If] tags and [Else] tag to conditionally determine the
results of a page or to execute Lasso code.

¢ If Else Symbol describes the ? | trinary symbol that allows a conditional to be embedded within an
expression.

e Select Statements explains how to use [Select] ... [Case] ... [/Select] tags to choose what code to execute based
on the value of a variable.

e Conditional Tags describes tags that can be used as a parameter to another tag performing a conditional
within an expression.

® Loops explains how to use the [Loop] ... [/Loop] tags to repeat a portion of the page and documents the
[Loop_Abort] and [Loop_Count] tags used in any repeating container tag.

e [terations explains how to use the [lterate] ... [/lterate] tags to perform an action using the value of each
element of a compound data type in turn.

¢ While Loops explains how to use the [While] ... [/While] tags to repeat a portion of a page while a condition is
True.

e Abort Tag explains how to use the [Abort] tag to halt execution of a Lasso page.

¢ Boolean Data Type describes the [Boolean] tag and boolean symbols which can be used to create complex
conditional expressions.

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 16 — CONDITIONAL LOGIC 234

If Else Conditionals

Code can be conditionally executed and page elements can be conditionally shown by placing them within
[If] ... [If] container tags. The code or other page elements will only be processed if the expression in the
opening [If] tag evaluates to True.

[If: (Variable: 'Test') == True]
This text will be shown if the variable Test equals True.

[/

The [Else] tag allows for either/or logic to be programmed. If the condition in the [If] tag is True then the
code between the [If] tag and the [Else] tag is processed, otherwise the code between the [Else] tag and the
closing [/If] tag is processed.

[If: (Variable: 'Test') == True]
This text will be shown if the variable Test equals True.
[Else]
This text will be shown if the variable Test does not equal True.

[/

A series of tests can be made and code associated with the first test that returns True can be shown by
specifying expressions within the [Else] tags. The code between the [Else] tag with a conditional expression
and the next [Else] tag will only be shown if the expression returns True. As many [Else] tags as needed can be
specified within a single set of [If] ... [/If] container tags.

Note: The [Select] ... [Case] ... [[Select] tags can be used to perform a similar operation. These tags are discussed in
the next section.

[If: (Variable: 'Test') == (-1)]

This text will be shown if the variable Test equals -1.
[Else: (Variable: Test) == 2]

This text will be shown if the variable Test equals 2.
[Else: (Variable: Test) == 3]

This text will be shown if the variable Test equals 3.

[/

A final [Else] tag without a conditional expression can be included. The code between the [Else] tag and the
closing [/If] tag will only be processed if the expression in the opening [If] tag returns False and the expressions
in all subsequent [Else] tags return False as well.

[If: (Variable: 'Test') == 1]
This text will be shown if the variable Test equals 1.
[Else: (Variable: 'Test) == 2]
This text will be shown if the variable Test equals 2.
[Else: (Variable: 'Test) == 3]
This text will be shown if the variable Test equals 3.
[Else]
This text will be shown if the variable Test is not equal to 1, 2, or 3.

[/

Table 1: If Else Tags

Tag Description

(17 ... [Executes the contents of the container only if the expression in the [If] tag
returns True.

[Else] Valid only within [If] ... [/If] container tags. Executes the remainder of the
container tag only if the expression in the [Else] tag returns True or no expression
is specified.

The rules for specifying expressions in the [If] and [Else] tags are presented in full in the following section
entitled Boolean Data Type.

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 16 — CONDITIONAL LOGIC 235

Note: The [If] and [Else] tags will simply output the result of the specified conditional expression parameter if they
are called individually on a page, i.e. not as part of a valid [if] ... [Else] ... [/lf] container tag.

To conditionally execute code within a LassoScript:

Use the [If] tag with an appropriate conditional expression. In the following example, the expression will only
be processed if the current username returned by the [Client_Username] tag is Anonymous.

<?LassoScript
If: ((Client_Username) == 'Anonymous’);
*You are an anonymous user’,

/If;
>

To show a different portion of a page if an error occurs:

Errors are reported in Lasso using the [Error_CurrentError] tag. This tag can be compared with many specific
error type tags to check to see if a particular error occurred. In the following example, the current error is
compared to [Error_SecurityError] in order to display an appropriate message.

[If: (Error_CurrentError) == (Error_SecurityError))]
You don't have permission to access that resource.

[/

Note: See the Error Control chapter for more information about the [Error_...] tags.

Complex Conditionals

There are two methods for creating complex conditionals. Each of these methods can be used interchangeably
depending on what conditions need to be checked and the preference of the Lasso developer.

Examples of complex conditionals

e The conditional expression within the opening [If] tag can be used to check several different conditions. The
conditions are appended using the and && symbol which returns True if both parameters return True or the
or || symbol which returns True if either parameter returns True.

In the following example, two fields from a database are checked to determine what title to put on a
salutation. The Sex field is checked to see if the visitor is Male or Female and the Married field is checked
to see if the visitor is Married or Single. Compound conditional expressions are created to check for the
combination of gender and marriage status for each title.

[If: ((Field: 'Sex') == 'Male")]
Dear Mr. [Field: 'First_Name'] [Field: 'Last_Name'],

[Else: ((Field: 'Sex') == 'Female') && ((Field: 'Marriage') == 'Married')]
Dear Mrs. [Field: 'First_Name'] [Field: 'Last_Name]],

[Else: ((Field: 'Sex) == 'Female') && ((Field: ‘Marriage’) == 'Single")]
Dear Ms. [Field: 'First_Name'] [Field: 'Last_Name],

[Else]
To whom it may concern,

/1]
e Nested [If] ... [/If] tags can be used to check several conditions in turn. The conditional expression in each
[If] tag is simple, but the nesting establishes that the innermost [If] ... [/If] tags are only executed if the
outermost [If] ... [/If] tags evaluate their conditional expression to True.

In the following example the [If] ... [/If] tags cause the Marriage field to be evaluated if the conditional
expression in the outermost [Else] tag finds that the Sex field contains Female.

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 16 — CONDITIONAL LOGIC 236

[If: ((Field: 'Sex’) == 'Male')]
Dear Mr. [Field: 'First_Name'] [Field: 'Last_Name'],
[Else: ((Field: 'Sex') == 'Female')]
[If: ((Field: 'Marriage') == 'Married")]
Dear Mrs. [Field: 'First_Name'] [Field: 'Last_Name],
[Else: ((Field: 'Marriage') == 'Single")]
Dear Ms. [Field: 'First_Name'] [Field: 'Last_Name'],
(/1]
(/]

If Else Symbol

Lasso includes an expression that allows a conditional to be executed without using the [If] ... [/If] tags. The ?
| symbol allows a conditional to be executed within an expression. The symbol uses the following format:

(Conditional ? True Result | False Result)

If the conditional evaluates to True then the true result is evaluated otherwise the false result is evaluated.
Since only one of the results is evaluated it is possible to use this tag for conditional evaluation of parts of an
expression.

If the | portion of the tag and the false result are omitted and the condition returns false then Null is returned.

Table 2: If Else Symbol

Symbol Description

2] If the test before ? evaluates to true then the value after the ? is returned,
otherwise the value after | is returned.
For example (Conditional ? True Result | False Result)

Some examples will make the use of the symbol more clear.

e A variable can be set to one of two values based on a conditional using the ? | symbol. In this example the
variable myValue is set to True if the $Test is True or False otherwise.

[Var: 'myValue' = ($Test == True ? 'True' | 'False)]

® An alternate value can be returned for an empty field using the ? | symbol. In this example if the field
First_Name is empty then N/A is returned.

[Encode_HTML: (Field: 'First_Name') == " ? 'N/A' | (Field: 'First_Name')]

¢ The value passed into an inline can be decided using the ? | symbol. In this example if a value is equal to
null then an empty string is inserted instead.

[Inline: -Add,
;6p='eq', 'Field_Name'=($Field_Name === null ? " | $field_name),
][./.Inline]
¢ A tag can be conditionally executed using just the ? symbol. In this example [Loop_Abort] is executed if

[Loop_Count] is greater than 1000.
[(Loop_Count > 1000 ? Loop_Abort]

® A tag can be conditionally executed using the ? | symbol. In this example one or the other URL is included
based on the conditional value, but not both.

[$Conditional ?
(Include_URL: 'http://www.lassosoft.com’) |
(Include_URL: 'http://www.apple.com')]]

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 16 — CONDITIONAL LOGIC 237

Select Statements

Select statements can be used when a variable can take multiple values and a different block of code should
be executed depending on the current value. The variable to be checked is specified in the opening [Selecf]
tag. A series of [Case] tags follow, each specified with a possible value of the variable. If one of the [Case] tags
matches the value of the variable then the code until the next [Case] tag or the closing [/Select] tag will be
executed.

For example, to return different text depending on value a variable named Test current has the following
[Select] ... [/Select] statement could be used.

[Select: (Variable: Test')]
[Case (-1)]
This text will be shown if the variable Test equals -1.
[Case: 2]
This text will be shown if the variable Test equals 2.
[Case: 3]
This text will be shown if the variable Test equals 3.
[/Select]

A [Case] tag without any value is used as the default value for the [Select] ... [/Select] statement in the event that
no [Case] statement matches the value of the parameter of the opening [Select] tag. The first [Case] tag without
any value is returned as the default value.

[Select: (Variable: Test')]
[Case (-1)]
This text will be shown if the variable Test equals -1.
[Case: 2]
This text will be shown if the variable Test equals 2.
[Case: 3]
This text will be shown if the variable Test equals 3.
[Case]
This text is shown if the variable does not equal any of the values.
[/Select]

Table 3: Select Tags

Tag Description

[Select] ... [/Select] Takes a single parameter which is used to decide which enclosed [Case] tag to
select. Requires one or more [Case] tags to be specified. Returns the value of
the code between the selected [Case] statement and the next [Case] statement
or the closing [/Select] tag.

[Case] Accepts a single parameter which is checked against the parameter of the
enclosing [Select] tag. If no parameter is specified then the tag defines the
default case.

To return a different value based on the type of a variable:

Use the [Select] ... [Case] ... [/Select] tags to return a different value depending on the type of a variable. The
following code outputs the value of a variable named MyVariable that could be of any type. If the variable is
not of any built-in type then the default output is to cast it to string.

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 16 — CONDITIONAL LOGIC 238

[Select: (Variable: 'MyVariable')->Type]
[Case: 'Integer]

Integer value [Variable: 'MyVariable'].
[Case: 'Decimal’]

Decimal value [Variable: 'MyVariable'].
[Case: 'String]

String value [Variable: 'MyVariable'].
[Case: 'Boolean]

Boolean value [Variable: 'MyVariable].
[Case: 'Array']

Array value [Variable: 'MyVariable'].
[Case: 'Map]

Map value [Variable: 'MyVariable'].
[Case: 'Pair]

Pair value [Variable: 'MyVariable'].
[Case]

Unknown type value [String: (Variable: 'MyVariable')].
[/Select]

Conditional Tags

Lasso offers a collection of tags that can be used to specify a conditional as a parameter to another tag.

Note: The if else symbol ? | documented earlier in this chapter has several advantages over these tags. Most
notably, it allows conditional execution of either the true or false result of the symbol, while these tags always
evaluate both results before checking the conditional.

Table 4: Conditional Tags

Tag Description

[If_True] The first parameter is a conditional statement. If the first parameter is True then
the second parameter is returned. Otherwise the third parameter is returned.

[If_False] The first parameter is a conditional statement. If the first parameter is False then
the second parameter is returned. Otherwise the third parameter is returned.

[If_Empty] The first parameter should be a value. If it's size is greater than 0 it is returned.
Otherwise, the second parameter is returned.

[If_Null] The first parameter should be a value. If it is not equal to Null it is returned.

Otherwise, the second parameter is returned.

[If_True] and [If_False] each accept three parameters. The first parameter is a conditional expression that selects
whether the second or third parameter should be returned.

In the following example the variable MyResult is set to the appropriate value depending on whether the
Condition variable is true or false.

[Var: 'MyResult' = (If_True: $Condition, 'Condition is True', 'Condition is False")]

[If_Empty] and [If_Null] each accept two parameters. If the first parameter is non-empty or not equal to Null then
it is returned. Otherwise, the second parameter is returned.

In the following example, a default value is used if the [Cookie_List] tag returns an empty array.

[Var: 'MyCookies' = (If_Empty: Cookie_List, 'No Cookies!")]

Loops

A portion of a page can be repeated a number of times using the [Loop] ... [/Loop] tags. The parameters to the
opening [Loop] tag define how many times the portion of the page should be repeated. For example, a message
in a Web page could be repeated five times using the following [Loop] tag.

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 16 — CONDITIONAL LOGIC 239

[Loop: 5]

This is repeated five times.
[/Loop]

=»
This is repeated five times.

This is repeated five times.

This is repeated five times.

This is repeated five times.

This is repeated five times.

The basic form of the [Loop] ... [/lLoop] tags simply repeats the contents of the tags as many times as is specified
by the parameter. The opening [Loop] tag can also accept a number of keyword/value parameters to create
more complex repetitions.

Table 5: [Loop] Tag Parameters

Keyword Description

-From Specifies the starting repetition for the [Loop] tag. Can also be specified as -
LoopFrom.

-To Specifies the ending repetition for the [Loop] tag. Can also be specified as -
LoopTo.

-By Specifies how many repetitions should be skipped on each actual repetition of

the contents of the
[Loop] ... [/Loop] tag. Can also be specified as -LoopIncrement.

The following example shows a loop that runs backward for five repetitions by setting -From to 5, -To to 1 and
-By to -1. The [Loop_Count] tag shows the number of the current repetition.

[Loop: -From=5, -To=1, -By=-1]

This is repetition number [Loop_Count].
[/Loop]

=»
This is repetition number 5.

This is repetition number 4.

This is repetition number 3.

This is repetition number 2.

This is repetition number 1.

Note: The [Loop_Count] tag can be used in any looping container tag within Lasso to return the number of the
current repetition. This includes the [Records] ... [/[Records] tags.

The [Loop_Abort] tag can be used to halt a [Loop] before it reaches the specified number of repetitions. In the
following example, the [Loop] tag is stopped after the third repetition by checking to see if [Loop_Count] is equal
to 3.

[Loop: 5]

This is repeated five times.
[If: (Loop_Count) == 3]
[Loop_Abort]
[/
[/Loop]

=»
This is repeated five times.

This is repeated five times.

This is repeated five times.

Note: The [Loop_Abort] tag can be used in any looping container tag within Lasso to abort the loop. This includes
the [Records] ... [/[Records] tags.

The modulus symbol % can be used in an [If] ... [/Iff conditional to perform a task on every other repetition (or
every nth repetition). The conditional expression (Loop_Count % 2)==0 returns True for every other repetition of
the loop.

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 16 — CONDITIONAL LOGIC 240

[Loop: 5]
[If: (Loop_Count % 2) == 0]

This is an Even loop.
[Else]

This is an Odd loop.
/]
[/Loop]

=>»
This is an odd loop.

This is an even loop.

This is an odd loop.

This is an even loop.

This is an odd loop.

The modulus symbol can be used in any looping container tag within Lasso to show elements in alternate
rows. This includes the [Records] ...
[/Records] tags.

Note: The [Repetition] tag from earlier versions of Lasso has been deprecated. It's use is not recommended. Any

code using the [Repetition] tag should be changed to the modulus operator for dramatically better speed and
future compatibility.

Table 6: Loop Tags

Tag Description

[Loop] ... [/Loop] Repeats the contents of the container tag a specified number of times.

[Loop_Count] Returns the number of the current repetition.

[Loop_Abort] Aborts the [Loop] ... [/Loop] tag, jumping immediately to the closing tag.

[Loop_Continug] Aborts the current repeition of the looping tag, jumping immediately to the next
repetition.

To list all the field names for a table:

An [Inling] ... [/Inline] with a -Show command tag can be used to get a list of all the field names in a table. The
[Field_Name] tag accepts a -Count parameter that returns how many fields are in the current table or an integer
parameter that returns the name of one of the fields. The following example uses the [Loop] ... [/Loop] tags to
display a list of all the field names in a table.

[Inline: -Database="Contacts', -Table="People’, -Show]
[Loop: (Field_Name: -Count)]

[Field_Name: (Loop_Count)]
[/Loop]
[/Inling]

= D
First_Name
Last_Name

To loop through the elements of an array:

The elements of an array can be displayed to a site visitor or otherwise manipulated by looping through the
array using the [Loop] ... [/Loop] tags. The [Array->Size] tag returns the number of elements in an array and the
[Array->Get] tag returns a specific element by index. The following example shows how to store the names of
the days of the week in an array and then list those elements using [Loop] ... [/Loop] tags.

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 16 — CONDITIONAL LOGIC 241

<?LassoScript
Encode_Set: -EncodeNone;

Variable: 'DaysOfWeek' = (Array: 'Sunday', 'Monday', 'Tuesday’,
'Wednesday', 'Thursday', 'Friday', 'Saturday');

Loop: ($DaysOfWeek->Size);
'
' + $DaysOfWeek->(Get: (Loop_Count));
ILoop;

/Encode_Set;
>

=»
Sunday

Monday

Tuesday

Wednesday

Thursday

Friday

Saturday

Note: See the Arrays and Maps chapter for more information about the array member tags.

To format a found set in two columns:

The modulus symbol % can be used to format a found set in two columns. In the following example, an
HTML <table> is constructed with one cell for each person found by an [Inline] ... [/Inline] based -FindAll action.
The modulus symbol % is used to insert the row tags every other record.

[Inline: -Database="Contacts', -Table="People', -FindAll]
<table>
<tr>
[Records]
<td>[Field: 'First_Name'] [Field: 'Last_Name']</td>
[If: (Loop_Count % 2) == 0]
<ftr><tr>
(/]
[/Records]
</tr>
</table>
[/Inline]

=» <table>
<tr>
<td>Jane Person</td>
<td>John Person</td>
<ftr><tr>
<td>Joe Surname</td>
<[tr>
</table>

Ilterations

The [lterate] ... [/Iterate] tags loop through each element of a complex data type such as an array or a map. A
variable is set to the value of each element of the complex data type in turn. This allows the same operation
to be performed on each element.

Note: The [lterate] ... [/lterate] tags can be used with built-in array, map, pair, and string data types. It can also be
used with any custom data type that supports the [Type->Size] and [Type->Get] member tags.

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 16 — CONDITIONAL LOGIC 242

For example, to print out each element of an array stored in a variable myArray the following tags could be
used. The opening [lterate] tag contains the name of the variable storing the array and a definition for the
variable that should be set to each element of the array in turn. In this case a new variable myltem will be
created. The value for myltem is then output within the [lterate] ... [/lterate] tags.

[Variable: 'myArray' = (Array: 'Winter', 'Spring', 'Summer’, '‘Autumn')]
[Iterate: (Variable: 'myArray’), (Variable: 'myltem’)]

The season is: [Variable: 'myltem’].
[/lterate]

=»
The season is: Winter.

The season is: Spring.

The season is: Summer.

The season is: Autumn.

The [lterate] ... [/Iterate] tags are equivalent to using [Loop] ... [/Loop] tags to cycle through each element of a
complex data type, but are significantly easier to use and provide faster operation.

Table 7: Iteration Tags

Tag Description

[lterate] ... [/lterate] Cycles through each element of a compound data type in turn. The opening
tag accepts two parameters. The first is the compound data type to be iterated
through. The second is a reference to a variable which should be set to the value
of each element of the first parameter in turn.

Note: The second parameter to the opening [lterate] tag should either be of the form (Variable: 'NewVariableName') or
should reference an existing variable using $ExistingVariable. The $ symbol cannot be used to create a new variable.

To print out each character of a string:

Use the [lterate] ... [/lterate] tags to cycle through each character of the string in turn. The following code prints
out each character of a string on a separate line.

[Variable: 'myString'='blue’]

[Iterate: $myString, (Variable: 'myCharacter’)]

[Variable: 'myCharacter]

[/lterate]

=>
b

|

u

e

While Loops

[While] ... [/While] tags allow a portion of a page to repeat while a specified conditional expression returns
True. The expression specified in the opening [While] tag is checked on each pass through the loop and if the
expression returns True then the contents are displayed again.

In the following example, a variable ConditionVariable is set to True. Once the [Loop_Count] is greater than 3 the
variable is set to False, ending the [While] ... [/While] loop.

[Variable: 'ConditionVariable' = True]
[While: ($ConditionVariable == True)]

This is repetition [Loop_Count]
[If: (Loop_Count) >= 3]
[Variable: 'ConditionVariable' = False]
(/]
[/While]

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 16 — CONDITIONAL LOGIC 243
=»
This is repetition 1.

This is repetition 2.

This is repetition 3.

Table 8: While Tags

Tag Description

[While] ... [/While] Repeats the contents of the container tag until the condition specified in the
opening tag returns False.

[Loop_Count] Returns the number of the current repetition.

[Loop_Abort] Aborts the [While] ... [/While] tag, jumping immediately to the closing tag.

Abort Tag

The [Abort] tag can be used to abort the execution of the current Lasso page. This can be useful in a situation
where an error has occurred that prevents the rest of the file from executing. An [Abort] could be used after
rewriting the header to perform a redirect so Lasso does not need to process the rest of the page before
sending the redirect to the client. Finally, an [Aborf] can be used in a custom error page in order to prevent the
standard error message from being shown at the bottom of the page.

Table 9: Abort Tag

Tag Description

[Abort] Aborts the current Lasso page, returning all of the content which has been
created so far to the client.

To speed up a redirect:
Use the [Abort] tag immediately after rewriting the header to perform a redirect. All Lasso code after the [Abort]
tag will be ignored so the modification to the HITP response will be sent to the client immediately.

[Var: 'url' = 'http://www.example.com/otherpage.lasso']
[Content_Header = 'HTTP/1.0 301 REDIRECT\n\nLocation: ' $url "\AnURI: ' $url]
[Abort]

Note: The built-in [Redirect_URL] tag performs an automatic [Abort].

Boolean Type

The boolean data type simply represents True or False. All comparison symbols and boolean symbols in Lasso
return a value of the boolean data type.

The following values are equivalent to each of the boolean values both when automatically cast and when
explicitly cast using the [Boolean] tag. However, it is recommended that you use True and False whenever
possible to avoid confusion.

¢ True is equivalent to any positive integer or decimal such as 1, 45, or 100.15, any non-empty string such as
'String’, or any non-null data type such as an array, map, or pair.

e False is equivalent to integer 0 or decimal 0.0, the empty string ", or Null.

Note: The string True' happens to be equivalent to True, but the string 'False' is not equivalent to False. Always type
the boolean values True and False without quotation marks.

Table 10: Boolean Tag

Tag Description

[Boolean] Casts a value to a boolean value.

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 16 — CONDITIONAL LOGIC 244

The boolean data type is most commonly associated with conditional expressions such as those specified in
the opening [If] or [While] tags. Any conditional expression which uses a conditional symbol such as ==, I=, <,
<=, >, >=, or >> will return a boolean value. Multiple conditional expressions can be combined using any of
the boolean symbols detailed in the following table.

Table 11: Boolean Symbols

Symbol Description
&& And. Returns True if both parameters are True.

I Or. Returns True if either parameter is True.

! Not. Returns False if the parameter following is True.
== Equality. Returns True if both parameters are equal.

1= Inequality. Returns True if both parameters are different.

Note: Single parameter expressions must be surrounded by parentheses if they are used on the right hand side
of a boolean symbol.

To check for two conditions in an [If] tag:

e In order to return True if both conditions are True use the && symbol.

[If: ($Condition1 == True) && ($Condition2 == True)]
Both conditions are True.

[/
e In order to return True if either of the conditions is True use the || symbol.

[If: ($Condition1 == True) || ($Condition2 == True)]
One of the conditions is True.

[/
e In order to return True if a condition is False use the ! symbol.

[If: /($Condition1 == True)]
The condition is False.

[/
e In order to return True if the two conditions are equal (both True or both False) use the == symbol.

[If: ($Condition1 == True) == ($Condition2 == True)]
Both conditions are True or both conditions are False.

[/

e In order to return True if the two conditions are not equal (one is True and the other is False) use the !=
symbol.

[If: ($Condition1 == True) != ($Condition2 == True)]
One condition is True and the other is False.

[/

To use single parameter symbols in a comparison:

If expressions using the single-parameter symbols !, -, and + are going to be used as the second parameter to a
comparison symbol, they should be surrounded by parentheses.
¢ To compare a variable to -1 use parentheses around -1 on the right-hand side of the comparison operator.
[If: ($Variable == (-1))]
The variable is equal to -1.
[Else: ($Variable > (-1))]
The variable is greater than -1.
[Else: ($Variable < (-1))]
The variable is less than -1.

[/

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 16 — CONDITIONAL LOGIC 245

e To compare a variable to the negation of an expression, use parentheses around the entire right-hand side
of the comparison operator.

[If: ($Variable == (!True))]
The variable is not equal to False.

[/

Note: These expressions can usually be rewritten with the opposite comparison symbol or by using the
negation symbol around the entire conditional expression.

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 17 - ENCODING 246

Chapter 17
Encoding

Lasso can be used to publish data in many different formats. Encoding ensures that only legal characters are
used for the desired output format.

e Overview describes the different formats which Lasso encoding supports.
e Encoding Keywords describes how to use encoding keywords to modify the output of substitution tags.

¢ Encoding Controls describes how to use the [Encode_Sef] ... [[Encode_Set] tags to modify the default
encoding for substitution tags.

¢ Encoding Tags describes the individual substitution tags which can be used to encode values.

Overview

Encoding controls in Lasso allow the developer to specify the format in which data output from substitution
tags should be rendered. Encoding controls ensure that reserved or illegal characters are changed to entities so
that they will display properly in the desired output format. Encoding controls allow for data to be output in
any of the ways described in the Encoding Formats section below.

Encoding Rules

Encoding controls apply to the data output from tags differently depending on how the tags are used.
Substitution tags have default HTML encoding if they output a value to a page. The value output from a
nested substitution tag is not encoded. Substitution tags which contribute to the output of a LassoScript have
default HTML encoding.

¢ Substitution Tags which output a value to the site visitor have a default encoding of -EncodeHTML. These
tags are usually enclosed in square brackets and do not include nested tags which return values.

The default encoding ensures that any reserved or illegal characters in HTML are converted to HTML
entities so they display properly. The default encoding can be overridden by explicitly including an
encoding keyword in the substitution tag or using the [Encode_Sef] ... [[Encode_Set] tags described below.

In the following example, some HTML code is output using the [String] substitution tag. By default the
angle brackets in the code are converted to HTML entities so they will display as angle brackets within a
Web browser. If the -EncodeNone keyword is specified in the [String] substitution tag then the angle brackets
remain as text angle brackets and the HTML code will render as Bold Text within the Web browser.

[String: 'Bold Text" =» Bold Text

[String: 'Bold Text', -EncodeNone] =» Bold Text

Nested Substitution Tags are not encoded by default. This ensures that string calculations can be
performed without having to specify any encoding keywords. However, the encoding of a nested
substitution tag can be changed by explicitly including an encoding keyword. Care should be taken so that
values are not encoded multiple times.

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 17 - ENCODING 247

In the following example a string is stored in a variable using explicit HTML encoding. When the variable is
output using the -EncodeNone tag, the value is output to the page with HTML encoding intact.

[Variable: 'HTML_Text' = (Output: 'Bold Text", -EncodeHTML)]

[Variable: 'HTML_Text', -EncodeNone] =» Bold Text

e Tags within LassoScripts are encoded using the same rules for substitution tags. Tags which add to the
output of the LassoScript are HTML encoded by default unless an explicit encoding keyword is specified or
the [Encode_Set] ... [[Encode_Sef] tags are used. Tags which are nested are not encoded by default unless an
explicit encoding keyword is specified.

The following example shows a value output from a LassoScript first with the default HTML encoding, then
with an explicit -EncodeNone keyword specified.

<?LassoScript
Output: 'Bold Text";
»

=>» Bold Text

<?LassoScript
Output: 'Bold Text', -EncodeNone;
»>

=» Bold Text

¢ Square Bracketed Expressions other than tags are not encoded by default. The use of the [String] tag
or one of the [Encode_...] tags is recommended to ensure that encoding is properly applied to string
expressions. In the following example a string expression is output directly.

[' + 'Bold Text' + '']

=>» Bold Text

Encoding Formats

The encoding controls in Lasso can be used to output data in any of the following formats.

e HTML Encoding is the default output format. Reserved characters in HTML including < >" & are encoded
into HTML entities. Extended-ASCII and foreign language characters are encoded into a numerical HTML
entity for the character &#nnn;. Use the -EncodeHTML keyword or the [Encode_HTML] substitution tag.

Smart HTML Encoding encodes only extended-ASCII and foreign language characters. The reserved
characters in HTML are not encoded. This allows HTML code to be displayed with the HTML markup intact
and any unsafe characters encoded using HTML entities. Use the -EncodeSmart keyword or the [Encode_Smart]
substitution tag.

Break Encoding encodes carriage returns and line feeds within the text to HTML
 tags. The remainder
of the text is HTML encoded. Text can be formatted using the -EncodeBreak keyword or the [Encode_Break]
substitution tag.

¢ XML Encoding encodes reserved characters such as &' " <> which are used to create the markup of XML

into XML entities. This ensures that text used in XML tag names or attributes does not contain any reserved
characters. Use the -EncodeXML keyword or the [Encode_XML] substitution tag.

Simple URL Encoding only encodes illegal characters such as<>#%{}'" "|*~[]©® into URL entities
specified as %nn. Simple URL encoding can be used to encode an entire URL without disturbing the basic
structure of the URL. Use the -EncodeURL keyword or the [Encode_URL] substitution tag. The following
example shows a URL encoded with the [Encode_URL] tag.

[Encode_URL: 'http://www.example.com/Action.Lasso?The Name=A Value']

=> http://www.example.com/Action.Lasso?The%20Name=A%20Value

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 17 - ENCODING 248

e Strict URL Encoding encodes both the illegal characters shown above and the reserved characters in URLs
including ; / ?: @ = &. Strict URL encoding should only be used on the names or values included as name/
value parameters. Use the -EncodeStrictURL keyword or the [Encode_StrictURL] substitution tag. The following
example shows only the name/value parameter of a URL encoded with the [Encode_StrictURL] tag.

http://www.example.com/Action.Lasso?
[Encode_StrictURL: 'The Name']=[Encode_StrictURL: 'A Valuge']

=» http://www.example.com/Action.Lasso?The%20Name=A%20Value

¢ SQL Encoding changes any illegal characters in SQL string values into their escaped equivalents. Quote
marks and backslashes are escaped so they don’t interfere with the structure of the SQL statement.

[Encode_SQL: 'A "String" is born.']

=» A\"String\" is born.

¢ Base 64 Encoding changes any string value into a string of ASCII characters which can be safely
transmitted through URLs or email. This algorithm is sometimes used to obscure data so it is difficult to
read by a casual passerby without providing any actual security. Base64 is also used to transmit passwords
(essentially as plain-text) to some Web servers.

Deactivate encoding for a substitution tag using the -EncodeNone keyword. By default, nested substitution tags
will not have encoding applied so the -EncodeNone keyword is not required within nested substitution tags.

Encoding Keywords

Encoding keywords can be used within any substitution tag to modify the encoding of the output value
of that tag. Substitution tags which output values to the page default to -EncodeHTML so this keyword does
not need to be specified if HTML encoding is desired. Nested substitution tags are not encoded by default,
specifying -EncodeNone in nested substitution tag is unnecessary.

Only one encoding keyword can be used in a tag. If multiple encodings are desired the [Encode_...] tags
should be used.

Table 1: Encoding Keywords

Keyword Description

-EncodeBreak Encodes carriage returns and new line characters into HTML
 breaks. The
remainder of the text is HTML encoded.

-EncodeHTML Encodes HTML reserved and illegal characters into HTML entities for highest
fidelity display.

-EncodeNone Performs no encoding.

-EncodeSmart Encodes HTML illegal characters into HTML entities. Useful for encoding strings
that contain HTML markup.

-EncodeStrictURL Encodes all URL reserved and illegal characters into URL entities for highest
fidelity data transmission.

-EncodeURL Encodes URL illegal characters into URL entities. Useful for encoding entire
URLs.

-EncodeXML Encodes XML reserved and illegal characters into XML entities for highest fidelity

data transmission.

Please consult the previous section Encoding Formats for information about what characters each encoding
keyword modifies.

Using the encoding keywords:

The following example shows how text is output from the [String] tag using first the default -EncodeHTML
encoding and then an explicit -EncodeNone encoding.

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 17 — ENCODING 249
[String: 'Bold Text"] =» Bold Text

[String: 'Bold Text', -EncodeNone] =» Bold Text

Encoding Controls

The default encoding keyword for substitution tags which output values to the Web page being
constructed can be modified using the [Encode_Set] ... [[Encode_Sef] tags. All square bracketed substitution
tags or tags within a LassoScript that output a value will use the encoding specified in surrounding
[Encode_Set] ... [[Encode_Set] tags rather than the default HTML encoding.

The [Encode_Set] tag accepts a single parameter, an encoding keyword. Any of the valid encoding keywords
from Table 1: Encoding Keywords can be used. All substitution tags which output values will behave as if
this encoding keyword were specified within the tag.

Nested substitution tags (sub-tags) will not be affected by the [Encode_Sef] ... [[Encode_Sef] tags. Values from
nested substitution tags are not encoded unless an encoding keyword is specified explicitly within each tag.

Table 2: Encoding Controls

Keyword Description
[Encode_Set] ... [[Encode_Set] Sets the default encoding for all substitution tags which output values within the
container tag.

To change the default encoding for a LassoScript:

Start and end the LassoScript with [Encode_Set] ... [[Encode_Sef] tags. In the following LassoScript HTML code is
output using [String] tags. The default encoding for all tags is set to -EncodeNone so that the HTML is rendered
properly in the output.

<?LassoScript
Encode_Set: -EncodeNone;
String: 'HTML Text';
/Encode_Set;
>

=» Bold Text

Encoding Tags

The encoding substitution tags can be used to explicitly encode any string value. The output of these tags
is the same as the output which would be produced by using the appropriate encoding keyword on a
substitution tag that returned the same value.

Note: The encoding tags do not accept encoding keywords. Use nested encoding tags to perform multiple
encodings.

Table 3: Encoding Tags

Keyword Description

[Decode_Base64] Decodes a string which has been encoded using the base 64 algorithm. Accepts
one parameter, a string to be decoded.

[Decode_BHeader] Decodes a MIME header which was encoded using the B (binhex) encoding
method.

[Decode_Hex] Decodes a binhex encoded string to a byte stream.

[Decode_HTML] Decodes HTML by changing HTML entities back into extended ASCII characters.

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 17 - ENCODING

[Decode_QHeader]

[Decode_QuotedPrintable]

[Decode_URL]
[Encode_Base64]
[Encode_Break]
[Encode_CRC32]

[Encode_Hex]
[Encode_HTML]

[Encode_HTMIToXML]

[Encode_QHeader]

[Encode_QuotedPrintable]

[Encode_Smart]

[Encode_SQL]

[Encode_SQL92]

[Encode_StrictURL]
[Encode_URL]

[Encode_XML]

250

Decodes a MIME header which was encoded using the Q (quoted printable)
encoding method.

Decodes text using the quoted printable algorithm. Accepts two parameters:
the text to be decoded and an optional character set it should be decoded from
(defaults to UTF-8).

Decodes a URL by changing URL entities back into extended ASCII characters.
Returns a byte stream.

Encodes a string using the base 64 algorithm. Accepts one parameter, a string to
be encoded.

Encodes carriage returns and new line characters into HTML
 breaks. The
remainder of the text is HTML encoded.

Calculates a 32-bit Cyclic Redundancy Checksum for a string. Accepts one
parameter, a string to be encoded.

Encodes a byte stream into a binhex encoded string.

Encodes HTML reserved and illegal characters into HTML entities for highest
fidelity display.

Converts the encoding of a string from HTML encoding to XML encoding. This
tag can be used on a string which is already HTML encoded but needs to be
used within an XML document that does not allow the HTML-specific entities
such as

Encodes a MIME header which using the Q (quoted printable) encoding method.
Requires a -Name and -Value parameter. Also accepts an optional -CharSet
parameter (defaults to UTF-8).

Encodes text using the quoted printable algorithm. Accepts two parameters:
the text to be encoded and an optional character set it should be encoded as
(defaults to UTF-8).

Encodes HTML illegal characters into HTML entities. Useful for encoding strings
that contain HTML markup.

Encodes illegal characters in MySQL string literals by escaping them with

a backslash. Helps to prevent SQL injection attacks and ensures that SQL
statements only contain valid characters. This tag must be used to encode visitor-
supplied values within SQL statements for MySQL data sources.

Encodes illegal characters in SQL string literals by escaping them with a
backslash. Helps to prevent SQL injection attacks and ensures that SQL
statements only contain valid characters. This tag can be used to encode values
for JDBC and most other SQL-compliant data sources.

Encodes all URL reserved and illegal characters into URL entities for highest
fidelity data transmission.

Encodes URL illegal characters into URL entities. Useful for encoding entire
URLs.

Encodes XML reserved and illegal characters into XML entities for highest fidelity
data transmission.

Using the encoding tags:

The following example shows how text is output from the [Encode_HTML] tag with all HTML reserved
characters encoded. The same text is then output from an [String] tag with an encoding keyword of -EncodeNone
specified.

[Encode_HTML: 'Bold Text'] =¥ Bold Text

[String: 'Bold Text', -EncodeNone] =» Bold Text

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 18 - SESSIONS 251

Chapter 18
Sessions

This chapter documents sessions and server-side variables.
e Overview describes how sessions operate and how sessions can be used.
e Session Tags describes the tags which can be used to create, manipulate, and delete sessions.

e Session Example describes how to use sessions to store site preferences.

Overview

Sessions allow variables to be created which are persistent from page to page within a Web site. Rather than
passing data from page to page using HTML forms or URLs, data can be stored in ordinary Lasso variables
which are automatically stored and retrieved by Lasso on each page a visitor loads.

Sessions are very easy to use, but the intricacies can be rather difficult to explain. The Session Examples
section later in this chapter presents three examples for how to use sessions to perform common tasks. These
examples should be consulted first to see real world examples of sessions in action before reading through
the tag reference sections.

Ways in which sessions can be used:

e Current State - Sessions can store the current state of a Web site for a given visitor. They can determine
what the last search they performed was, how the data on a results page was sorted, or in what format the
data should be presented.

¢ Store References to Database Records - Key field values can be stored in a session for quick access
to records associated with a site visitor. These might include records in a user database or shopping cart
database.

¢ Store Authentication Information - After a visitor has authenticated themselves using a username and
password, that authentication information can be stored in a session and then checked on each page to
ensure that the same visitor is accessing data from page to page.

¢ Store Data Without Using a Database - Complex data types such as arrays and maps can be stored in
session variables. In a Web site with multiple forms the data from each form can be stored in a session and
only placed in the database once the final form is submitted. Or, a shopping cart can be stored in a session
and only placed in an orders database on checkout.

How Sessions Work

A session has three characteristics: a name, a list of variables that should be stored, and an ID string that

identifies a particular site visitor.

* Name - The session name is defined when the session is created by the [Session_Start] tag. The same session
name must be used on each page in the site which wants to load the session. The name usually represents
what type of data is being stored in the session, e.g. Shopping_Cart or Site_Preferences.

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 18 - SESSIONS 252

® Variables - Each session maintains a list of variables which are being stored. Variables can be added to the
session using [Session_AddVariable]. The values for all variables in the session are remembered at the bottom
of each page which loads the session. The last value for each variable is restored when the session is next
loaded.

¢ |ID - Lasso automatically creates an ID string for each site visitor when a session is created. The ID string is
either stored in a cookie or passed from page to page using the -Session command tag. When a session is
loaded the ID of the current visitor is combined with the name of the session to load the particular set of
variables for the current visitor.

Sessions are created and loaded using the [Session_Start] tag. This tag should be used on the top of each page

which needs access to the shared variables. The [Session_Start] either creates a new session or loads an existing
session depending on what session name is specified and the ID for the current visitor.

Sessions can be set to expire after a specified amount of idle time. The default is 15 minutes. If the visitor has
not loaded a page which starts the session within the idle time then the session will be deleted automatically.
Note that the idle timeout restarts every time a page is loaded which starts the session.

Once a variable has been added to a session using the [Session_AddVariable] tag it will be set to its stored value
each time the [Session_Start] tag is called. The variable does not need to be added to the session on each page.
A variable can be removed from a session using the [Session_RemoveVariable] tag. This tag does not alter the
variable’s value on the current page, but prevents the value of the variable from being stored in the session at
the end of the current page.

Session Tags

Each of the session tags is described in Table 1: Session Tags. The parameters for [Session_Start] are described
in more detail in Table 2: [Session_Start] Parameters.

Table 1: Session Tags

Tag Description

[Session_Start] Starts a new session or loads an existing session. Accepts four parameters:
-Name is the name of the session to be started. Additional parameters are
described in Table 2: [Session_Start] Parameters.

[Session_ID] Returns the current session ID. Accepts a single parameter: -Name is the name
of the session for which the session ID should be returned.

[Session_AddVariable] Adds a variable to a specified session. Accepts two parameters: -Name is the
name of the session and a second unnamed parameter is the name of the
variable.

[Session_RemoveVariable] Removes a variable from a specified session. Accepts two parameters: -Name is
the name of the session and a second unnamed parameter is the name of the
variable.

[Session_End] Deletes the stored information about a named session for the current visitor.
Accepts a single parameter: -Name is the name of the session to be deleted.

[Session_Abort] Prevents the session from being stored at the end of the current page. This
allows graceful recovery from an error that would otherwise corrupt data stored in
the session.

[Session_Resulf] When called immediately after the [Session_Start] tag, returns "new", "load", or
"expire" depending on whether a new session was created, an existing session
loaded, or an expired session forced a new session to be created.

[Session_DeleteExpired] This tag is used internally by the session manager and does not normally need to
be called directly. It trigers a cleanup routine which deletes expired sessions from
the current session table.

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 18 - SESSIONS 253

Table 2: [Session_Start] Parameters

Keyword Description

-Name The name of the session.

-Expires The idle expiration time for the session in minutes.

-ID The D for the current visitor. If no ID is specified then the cookie and link
parameters will be inspected for valid visitor IDs.

-UseCookie If specified then site visitors will be tracked by cookie. -UseCookie is the default
unless -UseLink, -UseAuto, or -UseNone is specified.

-UseLink If specified then site visitors will be tracked by modifying all the absolute and
relative links in the current Lasso page.

-UseNone No links on the current page will be modified and a cookie will not be set. -
UseNone allows custom session tracking to be used.

-UseAuto This option automatically uses -UseCookie if cookies are available on the visitor's
browser or -UseLink otherwise.

-CookieExpires Optionally sets the expiration in minutes for the session cookie.

-Domain Optionally sets the domain for the session cookie.

-Path Optionally sets the path for the session cookie.

-Secure If set the session cookie will only be sent back to the Web server on requests for

HTTPS secure Web pages. [Session_End] should also be specified with -Secure
if this option is used.

Note: -UseCookie is the default for [Session_Start] unless -UseLink is or -UseNone is specified. Use -UseLink to track a
session using only links. Use both -UseLink and -UseCookie to track a session using both links and a cookie.

Starting a Session

The [Session_Start] tag is used to start a new session or to load an existing session. When the [Session_Start] tag
is called with a given -Name parameter it first checks to see whether an ID is defined for the current visitor.
The ID is searched for in the following three locations:

e |ID - If the [Session_Start] tag has an -ID parameter then it is used as the ID for the current visitor.

e Cookie - If a session tracker cookie is found for the name of the session then the ID stored in the cookie is
used.

e -Session - If a -Session command tag for the name of the session was specified in the link that loaded the
current page then the parameter of that tag is used as the session ID.

The name of the session and the ID are used to check whether a session has already been created for the
current visitor. If it has then the variables in the session are loaded replacing the values for any variables of
the same name that are defined on the current page.

If no ID can be found, the specified ID is invalid, or if the session identified by the name and ID has expired
then a new session is created.

After the [Session_Start] tag has been called the [Session_ID] tag can be used to retrieve the ID of the current
session. It is guaranteed that either a valid session will be loaded or a new session will be created by the
[Session_Start] tag.

Note: The [Session_Start] tag must be used on each page you want to access session variables.

Session Tracking

The session ID for the current visitor can be tracked using two different methods or a custom tracking system
can be devised. The tracking system depends on what parameters are specified for the [Session_Start] tag.

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 18 - SESSIONS 254

¢ Cookie - The default session tracking method is using a cookie. If no other method is specified when
creating a session then the -UseCookie method is used by default. The cookie will be inspected automatically
when the visitor loads another page in the site which includes a [Session_Start] tag. No additional
programming is required.
The session tracking cookie is of the following form. The name of the cookie includes the words
_Session_Tracker_ followed by the name given to the session in [Session_Start]. The value for the cookie is the
session ID as returned by [Session_ID].

_SessionTracker_SessionName=1234567890abcdefg

Links - If the -UseLink parameter is specified in the [Session_Start] tag then Lasso will automatically modify
links contained on the current page. The preferences for which links will be modified by Lasso can be
adjusted in the Setup > Global Settings > Sessions section of Lasso Administration. See the Lasso
Professional 8 Setup Guide for more information. No additional programming beyond specifying the
-UseLink parameter is required.

By default, links contained in the href parameter of ... and in the action parameter of
<form action="..."> ... </form> tags will be modified.

Links are only modified if they reference a file on the same machine as the current Web site. Any links
which start with any of the following strings are not modified.

file:// ftp:/l http:// https://
javascript: mailto: telnet:// #

Links are modified by adding a -Session command tag to the end of the link parameters. The value of the
command tag is the session name followed by a colon and the session ID as returned by [Session_ID]. For
example, an anchor tag referencing the current file would appear as follows after the -Session tag was added.

 ...

e Auto - If the -UseAuto parameter is specified in the [Session_Start] tag then Lasso will check for a cookie
with an appropriate name for the current session. If the cookie is found then -UseCookie will be used to
propagate the session. If the cookie cannot be found then -UseLink will be used to propagate the session.
This allows a site to preferentially use cookies to propagate the session, but to fall back on links if cookies
are disabled in the visitor’s browser.

® None - If the -UseNone parameter is specified in the [Session_Start] tag then Lasso will not attempt to
propagate the session. The techniques described later in this chapter for manually propagating the session
must be used.

To start a session:

A session can be started using the [Session_Start] tag. The optional -Expires parameter specifies how long in
minutes the session should be maintained after the last access by the site visitor. The default is 15 minutes.
The optional -UseLink keyword specifies that absolute and relative links in the current Lasso page should be
modified to contain a reference to the session. The optional -UseCookie keyword specifies that a cookie should
be set in the visitor's Web browser so that the session can be retrieved in subsequent pages.

The following example starts a session named Site_Preferences with an idle expiration of 24 hours
(1440 minutes). The session will be tracked using both cookies and links.

[Session_Start: -Name="Site_Preferences', -Expires="1440", -UseLink, -UseCookie]

When the [Session_Start] tag is called it restores all stored variables. If a variable by the same name has already
been created on the page then that variable value will be overwritten by the stored variable value.

To add variables to a session:

Use the [Session_AddVariable] tag to add a variable to a session. Once a variable has been added to a session its

value will be remembered at the end of each Lasso page in which the variable is used. Variables included in a
session will be automatically defined when the [Session_Start] tag is called. In the following example a variable
RealName is added to a session named Site_Preferences.

[Session_AddVariable: -Name="Site_Preferences', 'Real_Name']

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 18 - SESSIONS 255

Variables will not be created by the [Session_AddVariable] tag. Each [Session_AddVariable] should be accompanied
by a [Variable] tag that defines the starting value for the variable.

To remove variables from a session:

Use the [Session_RemoveVariable] tag to remove a variable from a session. The variable will no longer be stored
with the session and its value will not be restored in subsequent pages. The value of the variable in the
current page will not be affected. In the following example a variable RealName is removed from a session
named Site_Preferences.

[Session_RemoveVariable: -Name="Site_Preferences', '‘Real_Name']

To delete a session:

A session can be deleted using the [Session_End] tag with the name of the session. The session will be ended
immediately. None of the variables in the session will be affected in the current page, but their values will not
be restored in subsequent pages. Sessions can also end automatically if the timeout specified by the -Expires
keyword is reached. In the following example the session Site_Preferences is ended.

[Session_End: -Name="Site_Preferences']

To pass a session in an HTML form:

Sessions can be added to URLs automatically using the -UseLink keyword in the [Session_Start] tag. In order to
pass a session using a form a hidden input must be added explicitly. The hidden input should have the name
-Session and the value Session_Name:Session_ID. In the following example, the ID for a session Site_Preferences is
returned using [Session_ID] and passed explicitly in an HTML form.

<form action="repsonse.lasso" method="POST">
<input type="hidden" name="-Session"
value="Site_Preferences:[Session_ID: -Name="Site_Preferences">

<input type="submit" name="-Nothing" value="Submit Form">
<[form>

To track a session using links only if cookies are disabled:

The following example shows how to start a session using links if cookies are disabled. The -UseAuto
parameter will first try setting a cookie and decorate the links on the current page. On subesequent page
loads if the session cookie is found then it will be used and the links on the page will not be decorated. If the
cookie cannot be found then links will be used to propagate the session.

[Session_Start: -Name=$Session_Name, --UseAuto|

Session Example

This example demonstrates how to use sessions to store site preferences which are persistent from page to
page.

Web sites can be customized for individual visitors using sessions. In this example a site visitor is allowed
to enter certain information about themselves in various forms throughout the Web site. When subsequent
forms are encountered, the Web site should be able to pre-fill any elements that the visitor has already
specified.

Sessions will be used to track the visitors RealName, EmailAddress, and FavoriteColor in three variables.

To create the session:

The following code will be specified at the top of every Web page in the Web site. The session must be started
in every Web page which requires access to or which might modify the stored variables.

1 The [Session_Start] tag is used to start a session named Site_Preferences. The expiration of the session is set to
24 hours (1440 minutes). The session will be tracked by both links and cookies.

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 18 - SESSIONS 256

[Session_Start: -Name="Site_Preferences', -Expires='1440", -UseLink, -UseCookie]

2 The three variables RealName, EmailAddress, and FavoriteColor are added to the session using
[Session_AddVariable].

[Session_AddVariable: -Name="Site_Preferences', 'RealName’]
[Session_AddVariable: -Name='Site_Preferences', 'EmailAddress']
[Session_AddVariable: -Name="Site_Preferences', 'FavoriteColor']

3 Finally, default values are established for all three variables. RealName and EmailAddress are set to the
empty string if they are not defined. FavoriteColor is set to blue #0000cc if it has not been defined. These
default values will only be set the first time the session is started. In subsequent pages, the variables will
automatically be set to the value stored in the session.

[If: (Variable_Defined: 'RealName') == False]
[Variable: 'RealName' = "]

[/

[If: (Variable_Defined: 'EmailAddress') == False]
[Variable: 'EmailAddress' = "]

/]

[If: (Variable_Defined: 'FavoriteColor') == False]
[Variable: 'FavoriteColor' = '#0000cc]

[/

To use the session variables:

The session variables are used in each page as normal variables. Whatever value they are set to at the end of
the Web page will be the value the variable has the next time the session is started.

¢ The FavoriteColor variable can be used to set the color of text by using it in an HTML tag. In the
following example, the visitors RealName will be shown in the specified color.

 Welcome [Variable: 'RealName']

¢ The visitor's RealName and EmailAddress can be shown in a form by placing the variables in the HTML <input>
tags. The following form allows the visitor to enter their name and email address and to select a favorite
color from a pop-up menu.

<form action="response.lasso" method="POST">

Your Name:
<input type="text" name="RealName" value="[Variable: 'RealName']">

Your Email Address:
<input type="text" name="EmailAddress" value="[Variable: 'EmailAddress">

Your Favorite Color:
<select name="FavoriteColor">
<option value="#0000cc"> Blue </option>
<option value="#cc0000"> Red </option>
<option value="#009900"> Green </option>
</select>

<input type="submit" name="-Nothing" value="Submit">
<[form>

In the response page response.lasso, the form inputs can be retrieved using the [Action_Param] tag and stored
into variables. These new values will now be stored with the session.

[Variable: 'RealName' = (Action_Param: 'RealName')]
[Variable: 'EmailAddress' = (Action_Param: 'EmailAddress')]
[Variable: 'FavoriteColor' = (Action_Param: 'FavoriteColor')]

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 19 — ERROR CONTROL 257

Chapter 19
Error Control

This chapter documents the methods Lasso uses to report errors and the tags available in Lasso to capture and
respond to errors.

e Overview provides definitions of the types of errors Lasso reports and the methods which can be used to
capture and respond to them.

® Error Reporting documents the built-in error messages in Lasso and how to customize the amount of
information provided to site visitors.

e Custom Error Page explains how to override the built-in error messages for the entire server or a single site
with a custom error page.

e Error Pages documents how to create action specific error pages.

® Error Tags documents the [Error_...] process and substitution tags that can be used to report custom or
standard errors and for basic error handling within a Lasso page.

e Error Handling documents the [Protect], [Fail], and [Handle] tags for advanced error handling within a Lasso
page.

Overview

Responding to errors gracefully is the hallmark of good programming. Errors in Lasso run the gamut from
expected errors such as a database search that returns no records to syntax errors that require fixing before
a page will even process. Lasso provides tools to manage errors at several different levels which can act
redundantly to ensure that no errors will be missed.

The following lists the types of errors that can occur in or are reported by Lasso. This chapter includes
instructions for how to handle each of these types of errors.

Error Types

e Web Server Errors include file not found errors and access violations in realms. These will be reported
with standard HTTP response codes, e.g. 404 for File Not Found.

e Syntax Errors include misspellings of tag names, missing delimiters, and mismatched data types. Lasso
will return an error message rather than the processed Lasso page if it encounters a syntax error.

e Action Errors include misspellings of database names, table names, or field names and other problems
specifying database actions. The database action cannot be performed until the errors are corrected.

e Action Results can be reported as errors by Lasso. For example if no records were found after performing a
search.

e Database Errors are generated by the data source application and include data type mismatches, missing
required field values, and others. Lasso will report the error which was returned from the data source
application without modification.

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 19 — ERROR CONTROL 258

¢ Logical Errors are problems that cause a page to process unexpectedly even though the syntax of the code
is correct. These include infinite loops, missing cases, and assumptions about the size or composition of a
found set.

e Security Violations are not strictly errors, but are attempts to perform database actions or file accesses
which are not allowed by the permissions set for the current user. These include permissions to perform
database actions, privileges to add users to groups, permissions to use specific tags, and specific
permissions to use the file tags.

¢ Installation Problems can also result in error messages if a Lasso Web server connector is improperly
configured or Lasso Service is unavailable.

¢ Operating System Errors can also be reported by Lasso if they occur. Lasso will report the error without
modification.

Some errors are more serious than others. Pages will not be processed at all if they contain syntax errors or if

there are installation problems which prevent Lasso Service from being accessed. Other errors are commonly

encountered in the normal use of a Web site. Most database errors and security violations are handled by

simple means such as showing a No Records Found message or displaying a security dialog box to prompt the

user for a username and password.

There are five mechanisms for handling errors which are detailed in this chapter. These mechanisms can be
used singly or in concert to provide comprehensive error handling.

Error Control Types

¢ Automatic Error Reporting is performed by Lasso in response to unhandled errors. The amount of detail
provided in these error messages can be customized by setting the error reporting level or by creating a
custom server-wide errorlasso file.

® A Custom Error Page allows the automatic error page to be replaced by a custom page. Custom error
pages are usually created for each site on a server.

¢ Error Tags allow action and logical errors and security violations to be handled within a Lasso page.

¢ Error Handling tags allow advanced error handling to be built into Lasso pages. These techniques allow
error handling routines to be built into a page without disrupting the normal processing of a page if no
eITOrS OCCUl.

Error Reporting

For errors that occur while processing a page, Lasso displays error messages differently based on the current
error reporting level. This allows detailed error messages to be displayed while developing a Web site and
then for minimal or generic error messages to be displayed once a site has been deployed.

The default global error reporting level can be set in Lasso Administration in the
Setup > Global > Settings section. The error reporting level can be set to None, Minimal, or Full. Each of these levels
is described in more detail below.

The error reporting level for a particular page can be modified using the [Lasso_ErrorReporting] tag with a
value of None, Minimal, or Full. This will modify the error reporting level only for the current Lasso page and
its includes without affecting the global default. See the section on the [Lasso_ErrorReporting] tag below for
additional details.

No matter what level of error reporting has been specified, the standard built-in error message will be
replaced by a custom error page if one is defined. See the following section Custom Error Page for more
details.

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 19 — ERROR CONTROL 259

Error Levels

This section describes how error messages are formatted at each of the three error reporting levels:

* None - This level provides only a generic error message with no specific information or error code. This
level can be used on a deployment server when it is desirable to provide no specific information to the site
visitor. When the error page is displayed the full error code is logged as a detail error message.

Figure 1: Built-In None Error Message

An error occurred while processing your request.

¢ Minimal - This level is the default. It provides a minimal error message and error code. No context about
where the error occurred is provided. This level can be used on a deployment server in order to make
troubleshooting problems easier. When the error page is displayed the full error code is logged as a detail
error message.

Figure 2: Built-In Minimal Error Message

An error occurred while processing your request.

[Error Information

Error Message: The file include.inc was not found.
Error Code: -9984

e Full - This level provides detailed error messages for debugging and troubleshooting. The path to the
current Lasso page is provided along with information about what files have been included and what
parameters have been passed to them. If a database or action error is reported, the built-in error message
provides information about what database action was performed when the error occurred.

Figure 3: Built-In Full Error Message

An error occurred while processing your request.

[Error Information

Error Message: The file include.inc was not found.
at: include with params: 'include.inc'
at: /Library/WebServer/Documents/default.lasso on line: 1 at position: 1

Error Code: -9984
Action: nothing
Database: --
Table/Layout:

Response: /default.lasso

Client Address: 127.0.0.1

Client IP: 127.0.0.1

Client Type: Mozilla/5.0 (Macintosh; U; PPC Mac OS X; en)
Server Date: Monday, February 23, 2004

Server Time: 03:43:56 PM

Setting the Error Level

The error reporting level can be set for an individual Lasso page by specifying the [Lasso_ErrorReporting] tag
with the desired error level at the top of the page. If the -Local keyword is used within the tag then the error
level will only be changed within the current included file, custom tag, or processed code.

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 19 — ERROR CONTROL 260

Table 1: Error Level Tag

Tag Description

[Lasso_ErrorReporting] Sets the error reporting level for the current page to 'None', 'Minimal', or 'Full'.
Defaults to the value set in Lasso Administration. An optional -Local keyword
modifies the error level for only the current context.

To set the error reporting level within a Lasso page:

Use the [Lasso_ErrorReporting] tag with the desired error reporting level. For example, the following code sets
the error reporting level to Full so the current Lasso page can be more easily debugged.

[Lasso_ErrorReporting: 'Full']

To set the error reporting level within a local context:

Use the [Lasso_ErrorReporting] tag with the -Local keyword and the desired error reporting level. For example, the
following code sets the error reporting level to None so no errors are reported from the current include. This
error reporting level will only be in effect until the end of the current include, custom tag, or process tag.

[Lasso_ErrorReporting: ‘None', -Local]

Other Errors

The simple error message in Figure 2: Lasso Service Error Message is displayed when Lasso Service cannot
be contacted by a Lasso Web server connector. No processing can happen without Lasso Service. This message
will be displayed if Lasso Service is quit or restarted while the Web server application is still running.

Figure 4: Lasso Service Error Message

Lasso Error

I acen Cannectar conld nat cammumicate with T acen Qervice

Security violations result in an appropriate HTTP response being sent to the Web client to ask the site visitor
for authentication information. An authentication dialog like that shown in Figure 3: Authentication Dialog
is presented to the visitor. If they enter a valid username and password then processing proceeds as normal.
If they enter an invalid username and password then the standard built-in error message will be shown with
details about the security violation.

Figure 5: Authentication Dialog

Connect to “satellite.blueworld.com” as:

User ID: |administl'atur |

Passwnrd:l I

Realm: Lasso Security

[0 Remember Password -

Custom Error Page

A custom error page can be defined which will be displayed to the site visitor rather than the built-in error
message described in the previous section. The error message displayed on a custom error page will depend
on the error reporting level which is set in Lasso Administration and on the current page. However, the rest of
the information on the custom error page is determined by the LassoScript used to code the page.

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 19 — ERROR CONTROL 261

There are three ways to define a custom error page.:

e Host - The custom error page for a particular host can be modified by creating a file named errorlasso and
placing it in the root of the Web serving folder. Each virtual host which has a distinct Web serving folder
can have a custom error page.

e Site - The site-wide error page is named errorlasso and is located in the Lasso Professional 8 site folder.
Modifying this page will alter the error page for all hosts that map to the site. By modifying this page it is
possible to add logging or even email notification when errors occur on a hosted site.

e Server - The server-wide error page is named errorlasso and is located in the Admin folder in the Lasso
Professional 8 application folder. Modifying this page will alter the error page for all sites that are hosted
on their server. The server-wide error page will only be used for sites that do not have a site-specific error
page defined.

Figure 6: Custom Error Page

Error: No error
Code: 0

Response: /error.lasso
Path: /
Local: ///Library/WebServer/Documents/error.lasso
Realm:

Referrer:

Date: Tuesday, February 5, 2002
Time: 11:30:37 AM

Version: Mac OS X 5.0.0b15
array: (pair: (-nothing)=()), (pair: (-operatorlogical)=(and)), (pair: (-maxrecords)=(50)), (pair: (-skiprecords)=
o)
Accept: */*
Accept-Language: en
Authorizat Basic YXRvejouz3JlzHau
Connection: Keep-Alive
Ext : Securi
Host: localhost
UA-CPU: PEC
UA-0S: MacOS
gent: Mozilla/4.0 (tible; MSIE 5.12; Mac_PowerPC)

Apple Stock: 25.75

To define a custom server-wide error page.

Modify the file errorlasso which is located in the Admin folder of the Lasso Professional 8 application folder.
This file should be kept simple and be thoroughly debugged before it is used on a production server.

To define a custom error page:
1 Create a file named errorlasso which includes the default error message to be displayed to site visitors.

2 All image links and URLs within the custom error page should be specified as absolute paths from the
root of the Web serving folder. The following tag contains a reference to picture.gif contained in the
images folder.

3 Place the errorlasso file in the root of the Web serving folder for the Web site which is being customized.
The file should be accessible by loading the following URL.

http://www.example.com/error.lasso

Note: The built-in error page will not be displayed if a custom error page is defined. The values of
[Error_CurrentError] and [Error_CurrentError: -Errorcode] should be reported in some way by the custom error page.

To test a custom error page:
A properly placed errorlasso file can be tested by loading it with each of the following URLs.
e The first URL loads the page directly. This confirms that the errorlasso file is located in the right folder.

http://www.example.com/errorlasso

® The second URL will cause an error in Lasso that should return the custom error page. A page not found
error will be returned since the file fakepage.lasso is not present on the Web server.

http://www.example.com/Action.Lasso?-response=fakepage.lasso

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 19 — ERROR CONTROL 262

Error Pages

A custom error page can be specified in any HTML form or URL based Lasso action using the
-ResponseAnyError command tag. The -ResponseRequiredFieldMissingError tag can be used to trap for missing values
which are flagged with the -Required command tag. The -ResponseSecurityError can be used to trap for security
permissions violations.

If an error occurs and no -Response... tag is specified then the default error message or a custom error page is
returned as documented in the previous section Custom Error Page. The details of the Lasso action can be
retrieved in the error page and the specific error message which triggered the error page can be returned using
[Error_CurrentError].

Neither of the response command tags function within [Inline] ... [/Inline] based Lasso actions. Instead, errors
should be handled directly within the [Inline] ... [/Inline] tags using the techniques outlined in the Error Tags
and Error Handling sections that follow.

Table 2: Error Response Tags

Tag Description

-ResponseAnyError Specifies the page to return if any error occurs and no specific error page for that
error is specified.

-ResponseReqFieldMissingError Specifies the page to return if a name/value pair preceded by a -Required

command tag does not have a value. Synonyms include -ResponseRequiredField
MissingError, -ResponseReqColumnMissingError, and -ResponseRequiredColum
nMissingError.

-ResponseSecurityError Specifies the page to return if the current user does not have permission to
perform the requested action.

Error Tags

The [Error_...] tags in Lasso allow custom errors to be reported and provide access to the most recent error that
was reported by the code executing in the current Lasso page. This allows the developer to check for specific
errors and respond if necessary with an error message or code to correct the error.

Lasso maintains a single error code and error message that is set by any tag which reports an error. The error
code and error message should be checked immediately after a tag that may report an error. If any intervening
tags report errors then the error code and error message will be lost.

Custom errors can be created using the [Error_SetErrorMessage] and [Error_SetErrorCode] tags. Once set, the
[Error_CurrentError] tag or [Error_Code] and [Error_Msg] tags will return the custom error code and message. A
developer can utilize these tags to incorporate both built-in and custom error codes into the error recovery
mechanisms for a site.

Table 3: Error Tags

Tag Description

[Error_CurrentError] Returns the current error message. Optional -ErrorCode parameter returns the
current error code.

[Error_Code] Returns the current error code.

[Error_Msg] Returns the current error message.

[Error_Push] Pushes the current error condition onto a stack and resets the current error code
and error message.

[Error_Pop] Restores the last error condition stored using [Error_Push].

[Error_Reset] Resets the current error code and error message.

[Error_SetErrorCode] Sets the current error code to a custom value.

[Error_SetErrorMessage] Sets the current error message to a custom value.

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 19 — ERROR CONTROL 263

To display the current error in a Lasso page:

e Use the [Error_Msg] tag and the [Error_Code] tag. The following code will display a short error message.
The current error is [Error_Code]: [Error_Msg].

If the code on the page is executing normally and there is no current error to report then the code will
return.

=» The current error is 0: No Error.

e Use the [Error_CurrentError] tag with the optional -ErrorCode keyword. The following code will display a short
eITor message.

The current error is [Error_CurrentError: -ErrorCode]: [Error_CurrentError].

If the code on the page is executing normally and there is no current error to report then the code will
return.

=» The current error is 0: No Error.

To set the current error in a Lasso page:

¢ The current error code and message can be set using the [Error_SetErrorCode] and [Error_SetErrorMessage] tags.
These tags will not affect the execution of the current Lasso page, but will simply set the current error so it
will be returned by the [Error_CurrentError] tag or [Error_Code] and [Error_Msg] tags.

In the following example, the error message is set to A custom error occurred and the error code is set to -1.

[Error_SetErrorMessage: 'A custom error occurred’]
[Error_SetErrorCode: -1]

The [Error_CurrentError] tag now reports this custom error when it is called later in the page, unless any inter-
vening code changed the error message again.

The current error is [Error_CurrentError: -ErrorCode]: [Error_CurrentError].

=>» The current error is -1: A custom error occurred.
¢ The current error code and message can also be set using the [Error_Code] and [Error_Msg] tags.

[Error_Msg ="A custom error occurred']
[Error_Code = -1]

¢ The built-in error message for an error code can be set by clearing out the error message and setting the
error code to one of the built-in error type tags (listed in the table on the next page). The following code
would set the error code and message to report an “Add Error”.

[Error_SetErrorMessage: "]
[Error_SetErrorCode: -9959]

Or:

[Error_Msg ="]
[Error_Code = -9959]

To reset the current error in a Lasso page:

Use the [Error_Reset] tag. This resets the error message to blank and the error code to 0.

[Error_Reset]

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 19 — ERROR CONTROL 264

To store and restore the current error in a Lasso page:

e Use the [Error_Push] and [Error_Pop] tags. The following code stores the current error code and message before
the [Protect] ... [/Protect] block is executed. This allows the protect block to execute without any previous error
on the page bleeding into it and mistakenly triggering the [Handle_Error] ... [[Handle_Error] block. Then the
error code and message are restored at the end of the block.

[Error_Push]
[Protect]
... Code which might generate an error...
[Handle_Error]
... Only handle an error generated within the protect block ...
[/Handle_Error]
[/Protect]
[Error_Pop]

e The [Error_Push] and [Error_Pop] tags can also be used to prevent a custom tag from modifying the current
error condition, while still using error handling code within the tag.. The following code stores the current
error code and message at the beginning of the custom tag definition. The error code and message are
restored just before the custom tag returns a value.

[Define_Tag: 'myCustomTag]
[Error_Push]
... Code which might generate an error ...
[Error_Pop]
[Return: 'myValue']
[/Define_Tag]

The remainder of the [Error_...] tags provide shortcuts for reporting standard errors or checking what error is
being reported by Lasso so appropriate steps can be taken. The [Error_...] tags available in Lasso are described
in Table 3: Error Type Tag. An example of how to respond to a particular error message follows.

These tags can be used with the [Error_SetErrorCode] and [Error_SetErrorMessage] tags to generate standard
errors. If a page has code which deals with an “Add Error” for example, that code can be triggered by
an [Inline] that reports an “Add Error” or by setting the current error to an “Add Error” explicitly using
the [Error_SetErrrorCode] and [Error_SetErrorMessage] tags as shown in the following code.

[Error_SetErrorCode: (Error_AddError: -ErrorCode)]
[Error_SetErrorMessage: (Error_AddError)]

Table 4: Error Type Tags

Tag Description

[Error_AddError] An error occurred during an -Add action.

[Error_DatabaseConnectionUnavailable] A connection to the specified Lasso data source connector for the current
database cannot be established.

[Error_DatabaseTimeout] The connection to the Lasso data source connector timed out.

[Error_DeleteError] An error occurred during a -Delete action such as if an invalid -KeyField or -
KeyValue was specified.

[Error_FieldRestriction] An error reported by the Lasso data source connector that a field cannot be
modified. Synonym is [Error_ColumnRestriction].

[Error_FileNotFound] The specified file in an [Include] tag or -Response... tag cannot be found.

[Error_InvalidDatabase] The specified database is not configured within Lasso Administration.

[Error_InvalidPassword] The password for the specified username is invalid.

[Error_InvalidUsername] The specified username cannot be found in the users database within Lasso
security.

[Error_NoError] The code has been executed successfully. This error code represents the lack of
an error.

[Error_NoPermission] The current user does not have permission to perform the requested database
action.

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 19 — ERROR CONTROL 265

[Error_OutOfMemory] Lasso encountered an internal out of memory error that prevents the current
page from processing.

[Error_RequiredFieldMissing] A value was not specified for an HTML form or URL parameter preceded by a
-Required command tag. Also [Error_RequiredColumnMissing].

[Error_UpdateError] An error occurred during an -Update action such as if an invalid -KeyField or -

KeyValue was specified.

Note: In prior versions of Lasso an [Error_NoRecordsFound] tag was defined. This tag has been deprecated in favor
of checking whether the [Found_Count] is equal to zero to check if no records were found.

To check for a specific error within [Inline] ... [/Inline] tags:

Use a conditional expression in [If] ... [/If] tags to compare [Error_CurrentError] with the specific error type tag
you want to check. In the following example, a different message is displayed if no records were found after
a -FindAll action or if the requested database was not found.

[Inline: -Database="Contacts', -Table="People', -FindAll]
[If: (Error_CurrentError) == (Error_InvalidDatabase)]
The database Contacts is not valid.
[Else: (Error_CurrentError) == (Error_NoPermission)]
You don't have permission to search Contacts.
[Else: (Found_Count) == 0]
No records were found in Contacts.
[Else]
... Display Found Set Here ...
(]

[/Inline]

Error Handling

Lasso includes powerful error handling tags that allow areas of a page to be protected. Error-specific handlers
are called if any errors occur in a protected area of a page. These tags allow comprehensive error handling to
be built into a page without disturbing the code of the page with many conditionals and special cases.

Table 5: Error Handling Tags

Tag Description

[Fail] Halts execution of the current page or [Protect] ... [/Protect] block. Takes two
parameters: an integer error code and a string error message.

[Fail_If] Conditionally halts execution of the current page or [Protect] ... [/Protect] block.

Takes three parameters: a conditional expression, an integer error code, and a
string error message.

[Handle] ... [/Handle] Conditionally executes after the code in the current container tag or Lasso
page is completed or a [Fail] tag is called. Takes a conditional expression as a
parameter.

[Handle_Error] ... [/Handle_Error] Functions the same as [Handle] ... [/[Handle] except that the contents are
executed only if an error was reported in the surrounding [Protect] ... [/Protect]
tags.

[Protect] ... [/Protect] Container tag that protects a portion of a page. If code inside the container
throws an error or a [Fail] tag is executed inside the container then the error is
not allowed to propagate outside the protected block.

Note: Especially when the [Handle_Error] ... [[Handle_Error] tags are used it may be necessary to use [Error_Push] and
[Error_Pop] around a [Protect] ... [[Protecf] block in order to prevent a preexisting error condition from bleeding into
the protect block and mistakenly triggering the code within the error handler. See the example in the documen-
tation of [Error_Push] and [Error_Pop] earlier in this chapter.

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 19 — ERROR CONTROL 266

Handle Tags

The [Handle] ... [/Handle] tags are used to surround a block of code that will be executed after the current code
segment is completed. The opening [Handle] tag takes a single parameter which is a conditional expression. If
the conditional expression returns True then the code in the [Handle] ... [[Handle] tags is executed. Every [Handle]
tag is given a chance to execute in the order they were specified so multiple [Handle] ... [[Handle] tags can be
executed.

[Handle] ... [[Handle] tags will not be executed if a syntax error occurs while Lasso is parsing a page. When Lasso
encounters a syntax error it returns an error page instead of processing the code on a page.

[Handle] ... [/Handle] tags will be executed if a logical error occurs while Lasso is processing a page. However,

the result of the page will be an error message rather than the output of the page. Code within the

[Handle] ... [/Handle] tags can redirect the user to another page using [Redirect_URL] or can replace the contents of
the page being served.

There are two ways to use [Handle] ... [[Handle] tags within a Lasso page:

e When used on their own in a Lasso page, the code inside the [Handle] ... [/Handle] tags will be conditionally
executed after all the rest of the code in the Lasso page has completed. [Handle] ... [[Handle] tags can be used
to provide post-processing code for a Lasso page.

* When used within any Lasso container tag, the code inside the [Handle] ... [[Handle] tags will be conditionally
executed after the closing container tag. [Handle] ... [[Handle] tags will most commonly be used within
[Protect] ... [/Protect] tags to provide error handling.

To specify code to execute if a Lasso page reports an error:

Place [Handle] ... [[Handle] tags with a check for [Error_CurrentError] anywhere in a page, but not inside any other
container tags. In the following example, the opening [Handle] tag checks if [Error_CurrentError] is not equal to
[Error_NoError]. The contents of the page which is being returned to the visitor is replaced by a custom error
message if an error has occurred.

[Handle: (Error_CurrentError) != (Error_NoError)]
[Content_Body = '<hr>' +
'An error occurred while processing this page:' +
(Error_CurrentError: -ErrorCode) + " ' + (Error_CurrentError) + ']
[/Handle]

To output debugging messages at the end of a Lasso page:

Place [Handle] ... [/Handle] tags throughout a page that check to see if a variable named Debug equals True. The
contents of the [Handle] ... [[Handle] tags will only be executed if it does. Note that the [Handle] ... [/Handle] tags
can only contain static messages because they do not execute within the flow of the page.

[Var: 'Debug'=True]

[Handle: (Variable: 'Debug') == True]
<p>Debugging Message
[/Handle]

Note: If a syntax or logical error occurs while processing the page then this handle code will execute, but the
results may not be visible since the default error page will be returned in place of the processed page contents.

To specify code to post-process a Lasso page:
Place [Handle] ... [/Handle] tags with a condition of True anywhere in the Lasso page, but not within any other
container tags. The contents of the [Handle] ... [[Handle] will execute after the rest of the Lasso page has executed.

In the following example, the text of the page which will be sent to the site visitor [Content_Body] is modified
using [String_ReplaceRegExp] so that all occurrences of the words LassoSoft are wrapped with tags that
make them blue.

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 19 — ERROR CONTROL 267

<?LassoScript
/I This LassoScript implements a post-processor that makes all occurrences
I of the words LassoSoft within the current Lasso page blue.
Handle: True;
Il Unconditionally execute handler.
Content_Body = (String_ReplaceRegExp: Content_Body,
-Find='([LI]Jasso[Ss]oft)',
-Replace='\1');

[Handle;
>

Fail Tags

The [Fail] tag allows an error to be triggered from within Lasso code. The two parameters of the tag are the
integer error code and string error message of the error to be reported. Use of the [Fail] tag immediately halts
execution of the current page and starts execution of any [Handle] ... [[Handle] tags contained within.

The [Fail] tag can be used in the following ways:

¢ To report an unrecoverable error. Just as Lasso automatically halts execution of a Lasso page when a syntax
error or internal error is encountered, Lasso code can use the [Fail] tag to report an error which cannot be

recovered from.
[Fail: -1, 'An unrecoverable error occurred’]

¢ To trigger immediate execution of the page’s [Handle] ... [[Handle] tags. If an error is handled by one of the
[Handle] ... [/Handle] tags specified in the Lasso page (outside of any other container tags) then the code
within the [Handle] ... [/Handle] tags will be executed.

e To trigger immediate execution of a [Protect] ... [[Protect] block’s [Handle] ... [[Handle] tags. See the next section
Protect Tags for details.

To report a standard Lasso error:

Use the appropriate [Error_...] tag to return the error code and error message for any of Lasso’s standard errors.
In the following example a No Records Found error is triggered.

[Fail: (Error_NoRecordsFound: -ErrorCode), (Error_NoRecordsFound)]

To conditionally execute a [Fail] tag:

[Fail_If] allows conditional execution of a [Fail] without using a full [If] ... [/If] tag. The first parameter to [Fail_If] is
a conditional expression. The last two parameters are the same integer error code and string error message as
in the [Fail] tag. In the following example the [Fail_If] tag is only executed if the [Found_Count] is 0.

[Fail_If: (Found_Count == 0),
(Error_NoRecordsFound: -ErrorCode), (Error_NoRecordsFound)]

Protect Tags

The [Protect] ... [/Protect] tags are used to catch any errors that occur within the code surrounded by the
container tags. They create a protected environment from which errors cannot propagate to the page itself.
Even if an internal error is reported by Lasso it will be caught by the [Protect] ... [/Protect] tags allowing the rest
of the page to execute successfully.

Any [Fail] or [Fail_If] tags called within [Protect] ... [/Protect] tags will halt execution only if the code is contained
within the [Protect] ... [/Protect] tags. Any [Handle] ... [[Handle] tags contained within the [Protect] ... [/Protect] tags will
be conditionally executed. The Lasso page will continue executing normally after the closing [/Protect] tag.

The [Protect] ... [/Protect] tags can be used for the following purposes:

e To protect a portion of a page so that any errors that would normally result in an error message being
displayed to the user are instead handled in the internal [Handle] ... [[Handle] tags.

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 19 — ERROR CONTROL 268

e To provide advanced flow control in a page. Code within the [Protect] ... [/Protect] tags is executed normally
until a [Fail] tag is encountered. The code then jumps immediately to the internal [Handle] ... [[Handle] tags.

To protect a portion of a page from logical errors:

Wrap the portion of the page that needs to be protected in [Protect] ... [/Protect] tags. Any internal errors that
Lasso reports will be caught by the [Protect] ... [/Protect] tags and not reported to the end user. [Handle] ... [[Handle]
should be included to handle the error if necessary.

In the following LassoScript an attempt is made to set the global map [Tags] to Null. This would have the effect
of removing all tags from Lasso so their operation is not allowed. Instead, Lasso reports a logical error. Since
this code is executed within [Protect] ... [/Protect] tags no error is reported, but the [Protect] ... [/Protect] tags exit
silently and the Lasso page resumes executing after the end of the LassoScript.

<?LassoScript
Protect;
$Tags = Null;
[Protect;
>

To use the [Protect] ... [/Protect] tags with custom errors:

The following example shows [Protect] ... [/Protect] tags which surround code that contains several [Fail_If]
statements with custom error codes -1 and -2. A pair of [Handle] ... [[Handle] tags inside the [Protect] ... [/Protect]
tags are set to intercept either of these custom error codes. These [Handle] ... [[Handle] tags will only execute if
one of the [Fail_If] tags executes successfully.

[Protect]
[Fail_If: ($ConditionOne == True), -1, 'Custom error -1']
[Fail_If: ($ConditionTwo == True), -2, 'Custom error -2']

[Handle: ((Error_CurrentError: -ErrorCode) == -1)]
... Handle custom error -1 ...
[/Handle]
[Handle: (Error_CurrentError: -ErrorCode) == -2)]
... Handle custom error -2 ...
[/Handle]
[/Protect]

LAsso 8.5 LANGUAGE GUIDE

269

Section IV
Upgrading

This section contains detailed instructions for developers who are upgrading solutions developed using a
previous version of Lasso to Lasso.

¢ Chapter 20: Upgrading From Lasso Professional 8 includes instructions for upgrading solutions that were
built using Lasso Professional 8 or 8.1. This section also includes changes notes for incremental updates to
Lasso Professional 8.5.

* Chapter 21: Upgrading From Lasso Professional 7 includes instructions for upgrading solutions that were
built using any version of Lasso Professional 7. This chapter should be read in concert with the previous
chapter for a complete list of changes between Lasso Professional 8.5 and Lasso Professional 7.

¢ Chapter 22: Upgrading From Lasso Professional 6 includes instructions for upgrading solutions that were
built using Lasso Professional 6 for compatibility with Lasso Professional .58. This chapter should be read
in concert with the previous chapters for a complete list of changes between Lasso Professional 8.5 and
Lasso Professional 6.

* Chapter 23: Upgrading From Lasso Professional 5 includes instructions for upgrading solutions that were
built using Lasso Professional 5. This chapter should be read in concert with the previous chapters for a
complete lists of changes between Lasso Professional 8.5 and Lasso Professional 5.

¢ Chapter 24: Upgrading From Lasso WDE 3.x includes instructions for upgrading solutions that were built
using Lasso Web Data Engine 3.x. This chapter should be read in concert with the previous chapters for a
complete list of changes between Lasso Professional 8.5 and Lasso Web Data Engine 3.x

This section should be read in concert the upgrading instructions in the Lasso Setup Guide.

LAsso 8.5 LANGUAGE GUIDE

270

Chapter 20

Upgrading From Lasso Professional 8

This chapter contains important information for users of Lasso Professional 8 who are upgrading to the latest
version of Lasso Professional 8.5.

If upgrading from an earlier version of Lasso, this chapter should be read in conjunction with the subsequent
chapters on upgrading from Lasso Professional 7, Lasso Professional 6, Lasso Professional 5, or Lasso Web
Data Engine 3.x or earlier.

Topics in this chapter include:
® Introduction includes general information about what has changed in Lasso Professional 8.
® New Data Sources contains information about the compatibility of existing code with new data sources.

¢ Syntax Changes contains information about what Lasso syntax constructs have changed since Lasso
Professional 8.

e Security Enhancements describes updates to file extensions, Classic Lasso, and file permissions security in
Lasso Professional Server 8.0.1.

e Lasso Professional 8.0.x includes information about incremental changes in the Lasso Professional 8
product updates.

Introduction

All Lasso Professional 8 solutions which were written using preferred syntax should run without
modifications in Lasso Professional 8.5 except for the issues mentioned in this chapter.

Significant effort has been expended to ensure that existing solutions will continue to run in Lasso
Professional 8.5 with few if any modifications required. However, please read through this chapter to learn
about changes that may require modifications to your solutions.

Lasso Studio and Lasso Updater

Lasso Studio includes an Lasso Updater that can be used on code from earlier versions of Lasso to bring
it into compliance with the latest version of Lasso. See the documentation for Lasso Studio for more
information.

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 20 - UPGRADING FROM LASSO PROFESSIONAL 8 271

New Data Sources

Lasso 8.5 introduces many new data sources for Oracle, PostgreSQL, Microsoft SQL Server, and more. These
data sources were previously accessible through JDBC drivers. If a Web site already makes use of one of these
data sources through JDBC it is not recommend to switch to the new built-in connector.

Inlines which make use of Lasso’s database abstraction layer should be cross-compatible from JDBC to the
native connector. That is, inlines which make use of the -Search, -Add, -Update, and -Delete actions. However,
inlines which issue raw -SQL actions may need to be rewritten to use the native SQL implementation of the
data source rather than the JDBC SQL implementation. Careful testing should be performed before switching
the back-end data source of a Web site.

The [Field] tag will return data in Lasso’s native data types when it is used with the new data sources. For
example, a DATE column will return a Lasso [Date] type or numeric columns will return Lasso [Integer] or
[Decimal] types.

Syntax Changes

Lasso Professional 8.5 introduces changes to existing tags from earlier versions of Lasso. Some of these
changes may require you to rewrite portions of your existing Lasso-based solutions for full compatibility with
the latest version. This section describes each change, why it was made and how to update existing Lasso

pages.

Table 1: Syntax Changes

Syntax Change Description

Lasso 8.5.5 Tags Lasso 8.5.5 includes several tags including [Image->ColorSpace],
[Image->SetColorSpace], and [MIME_Type]. New comparators include
[Compare_LessThanOrEquals], [Compare_GreaterThanOrEquals], [Compare_
NotBeginsWith], [Compare_NotEndsWith], [Compare_RegExp], and [Compare_
NotRegeExp]. The [Email_Parse->Body] and [Match_Comparator] tags have new
behavior.

FileMaker 9 Complex Queries FileMaker 9 data sources support generating complex queries using the -Or and
-Not keywords.

SOAP Post Processing Lasso 8.5.4 includes several new SOAP post-processing options including
[Proc_Lasso], [Proc_Find], [Proc_ForEach], [Proc_Join], [Proc_First],
[Proc_Last].

[Email_Send] Date The -Date parameter will set when the email message will be sent. This allows
messages to be queued for sending in the future. This parameter was added in
Lasso 8.5.3.

[Integer: Date] [Integer: Date] no long returns a UNIX timestamp. However [Date: Integer] will
still cast a UNIX timestamp to a valid Lasso date object. This change was made
in Lasso 8.5.2.

Lasso 8.5.2 Tags Lasso 8.5.2 includes a number of new tags including [ChartFX->Data],
[ChartFX_Serve], [ChartFX_Records], [Error_Reset], [Error_Pop] and [Error_
Push], [LJAX_Start], [LJAX_End], and [LJAX_HasTarget]. In addition, LJAX will
now automatically interpret the code included in <script> ... <./script> blocks
within dynamic updates, the [NoProcess] ... [/[NoProcess] tags can be used in
LassoScript with some limitations, the [Redirect_URL] tag allows for 301 MOVED
redirects in addition to standard 302 FOUND redirects, and a new -RecordID
parameter allows the record ID for related records in FileMaker to be returned.

[Encrypt_HMAC] The [Encrypt_CramMD5] tag has been deprecated in favor of the new
[Encrypt_HMAC] tag. This new tag allows alternate digests such as SHA1 to be
used and has more flexible byte stream based input and output. This tag was
added in Lasso 8.5.1.

[Encode_URL] Encoding The [Encode_URL] tag now encodes strings using the current page encoding
character set. Previous versions of Lasso always encoded URLs using UTF-8.

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 20 - UPGRADING FROM LASSO PROFESSIONAL 8 272

[String] Encoding The [String] tag now accepts a second parameter when called with a byte stream.
The second parameter specifies what character set should be used to interpret
the byte stream when converting it to a Unicode string.

% and _ Encoding in Database Searches The % and _ symbols are now automatically encoded in SQLite and MySQL
searches. This should result in more accurate searches, but could cause
problems if these symbols were being used explicitly to modify searches.

[Found_Count] and -UseLimit -Search inlines now use a MySQL method which returns an accurate [Found_
Count] even when a LIMIT is specified.

[File->SetEncoding] and [File->Write] The [File->SetEncoding] tag affects how strings are written into files using [File-
>Write], but byte streams are unaffected.

[Net->SetEncoding] and [Net->Write] The [Net->SetEncoding tag affects how strings are written to network hosts using
[Net->Write], but byte streams are unaffected.

[Header] ... [[Header] Deprecated The use of these tags is deprecated in favor of the [Content_Header] tag.

[Set] Positions Do Not Wrap Around The positions passed to the [Set->Get], [TreeMap->Get], and other member tags

no longer wrap around from the start of the data type if they are greater than the
size of the data type. This aligns the set and treemap types with the array and
map compound data types.

Inline 'op'='eq' No Longer Supported The synonym 'op'='eq' for -Op='eq' is no longer supported. This syntax is a
holdover from Lasso 3.x which has been supported in each version of Lasso prior
to 8.5.

Lasso 8.5.5 Tags

Lasso 8.5.5 includes a number of new and enhanced tags. These tags are noted herre. See the appropriate
chapter for each tag for complete information.

e New [Image->ColorSpace] and [Image->SetColorSpace] tags allow the color space of an image to be inspected or
changed. [Image->ColorSpace] will return the current color space of an image. The response should be RGB,
CMYK, or GRAY. [Image->SetColorSpace] will set the color space of an image. The tag takes one parameter
which should be -RGB, -CMYK, or -GRAY.

* A new tag [MIME_Type] will return the MIME type for a file extension. The tag accepts a file name or a file
extension. For example [MIME_Type: ‘myfile.gif] will return image.gif. The MIME types are adapated from the
Apache mime.types file Based on data from the Internet media type registry at:

http://www.iana.org/assignments/media-types/

HTML images embedded in a message using the -HTMLImages parameter will now use the proper MIME type
for their file extension. The [File_Serve] tag will now use the proper MIME type for most files based on their
file extension. The [MIME_Type] tag is used to look up the MIME type.

[Match_Comparator] now accepts any of the standard inline search operators as an abbreviation for the built-
in comparators. For example, [Array->(Find: (Match_Comparator: -bw, ‘J’))] will find all array elements which begin
with the letter J. The built-in comparators include -CN, -NCN, -EQ, -NEQ, -LT, -LTE, -GT, -GTE, -BW, -NBW, -EW,
-NEW, -RX, and -NRX.

e New comparators include [Compare_LessThanOrEquals], [Compare_GreaterThanOrEquals], [Compare_NotBeginsWith],
[Compare_NotEndsWith], [Compare_RegExp], and [Compare_NotRegeExp].

¢ [Email_Parse->Body] will now return an array of all applicable body parts when the -Array parameter is speci-
fied. For example, [Email_Parse->(Body: -Array, -Type="text/html')] will return all HTML body parts.

FileMaker 9 Complex Queries

The Lasso Connector for FileMaker Server now supports two logical operators when working with FileMaker
Server 9. By default, one logical query is created which finds records that meet all of the criteria specified. If
-Or is specified then a new query is started and any records in the first query or the second query are found. If
-Not is specified then a new query is started and any records in the first query, but not in the second query are
found. As many -Or and -Not keywords can be used as necessary.

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 20 - UPGRADING FROM LASSO PROFESSIONAL 8 273

SOAP Post-Processing

Several new SOAP post-processing options have been added including [Proc_Lasso], [Proc_Find], [Proc_ForEach],
[Proc_Join], [Proc_First], [Proc_Last]. See the SOAP chapter for details about these procedures. The procedures
[Proc_Null], [Proc_XML], and [Proc_Convert] can now be specified directly rather than requiring a tag escape (e.g.
\Proc_Null). In addition, [SOAP_DefineTag] now accepts an optional -Username and -Password. If specified these are
used for HTTP authentication on the remote SOAP server.

[Email_Send] Date

If a -Date parameter is specified it will determine both the value for the Date: header in the email message and
the actual date/time when the message will be sent. If a -Date parameter specifies a date/time in the past then
the email message will be sent as soon as possible. If the -Date parameter specifies a date/time in the future
then the email message will be held in the queue until that date/time. Note that the -Date parameter must be
passed an actual date object.

[Integer: Date]

Lasso represents dates internally using an integer. Basically, each date is stored as the number of seconds until
a specific date called the epoch. In versions of Lasso earlier than 8.5.2 the epoch was set to January 1, 1970
and the internal representation of the date corresponded to the standard UNIX timestamp.

In Lasso 8.5.2 the internal library used for the date tags was modified. The new epoch is January 1, 3940. The
tag [Integer: Date] will now return a large negative value representing the number of seconds between the date
and this date far in the future.

The UNIX timestamp for a date can be returned using the following code.
[(Date: “1970-1-1 00:00:00 GMT’)->(Difference: Date, -SecondsBetween)] =» 1171055428
A UNIX timestamp can be converted into a valid date using the following code:

[Date: 1171055428] =» 200-020-09 13:10:28

Lasso 8.5.2 Tags

Lasso 8.5.2 includes a number of new and enhanced tags. These tags are noted herre. See the appropriate
chapter for each tag for complete information.

e New [LJAX_Start] and [LJAX_End] tags which allow the dynamic portion of a page to be identified in a less
obtrusive manner than using [LJAX_Target] ... [[LJAX_Target]. The [LJAX_Start] and [LJAX_End] tags allow you
to mark off what portion of a page should be returned as part of dynamic LJAX updates. Any Lasso code
on your page before [LIAX_Start] or after [LJAX_End] will be processed, but the output of those tags willbe
suppressed.

New [LJAX_HasTarget] tag makes it easy to test whether a page is being loaded through a dynamic LJAX
update within existing page logic. [LJAX_HasTarget] accepts the same parameters as the opening [LJAX_Target]
tag and returns True if the current page is being loaded through LJAX and the specified target has been
requested.

<script> blocks within dynamic updates are now executed immediately after the new elements are merged
into the current page. This makes it possible to embed JavaScript into your dynamic updates.

A new tag [ChartFX->Data] is included which outputs the binary data of a generated chart directly rather than
rendering it into a temporary location. This allows generated charts to be served using [File_Serve] or stored
in a database.

A new tag [ChartFX_Records] returns a records array which is formatted in the proper format to be passed to
the [ChartFX->SetLassoData] tag. Specifically, the field names are included as the first row of the records array.
If one or more -ReturnField parameters are specified then only those fields will be included in the records
array. If one more -ExcludeField parameters are specified then those fields not be included in the records

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 20 - UPGRADING FROM LASSO PROFESSIONAL 8 274

array. -Fields=(Array) can be used to specify an array of alternate field names to use. Finally, if -Inverse is speci-
fied then the arrays are inverted to a format useful for making pie charts.

A new tag [ChartFX_Serve] accepts a [ChartFX] chart as a parameter and serves the generated PNG file in place
of the current page. Optional parameters include -File to specify the name of the downloaded file and -Type
which defaults to image/png. If -Inline is specified then the image will be served inline in the current respond
rather than as an attachment. See the [File_Serve] tags for more details about these parameters.

The [Redirect_URL] tag will now generate a 301 MOVED redirect if either -Type="301" or -Type="Moved' is speci-
fied. Previously, the [Redirect_URL] tag would always generate a 302 FOUND redirect. The 301 MOVED redirect
informs the site visitor that the page has been permanently moved to a new location. Some Web browsers
may update their bookmarks based on this information and some Web crawlers will permanently update
their indexes.

[Redirect_URL: 'http://www.lassosoft.com/", -Type="Moved']

A new [Error_Reset] tag has been added which simply resets the error code to 0 and the error message to
empty.

® A new pair of tags [Error_Push] and [Error_Pop] can be used to store the current error code temporarily and
then restore it later. These tags can be used around a block of code which might change the error code and
message.

The [NoProcess] ... [[NoProcess] tag can now be used in LassoScript. However, no output will be generated
from this container within LassoScript. Instead, the tags will work essentially the same as the multi-line
comment characters /* ... */. The code within these tags will be parsed so must be free from syntax errors.
Note that if you want to output JavaScript from LassoScript it should be output as quoted strings.

<?LassoScript
NoProcess;
... This code will not be processed ...
/NoProcess;

... This code will be processed ...
»>

The [XML->Transform] tag now accepts, as a second parameter, an optional array of name/value pairs which
are made available to the transformation as parameters.

The [Field] tag now accepts an optional -RecordID parameter which allows the record ID for a related
FileMaker record to be returned within Lasso. For example, if the tag [Field: 'Calls::Duration’] returned the value
for the Duration field from a related Calls database then the tag [Field: 'Calls::Duration', -RecordID] would return
the record ID for the related record on which that field resides. The record ID can be useful for updating
related records through a portal with a single database request. See the FileMaker chapter for more infor-
mation.

[Encrypt_HMAC]

The new [Encrypt_HMAC] tag in Lasso 8.5.1 is a replacement for the [Encrypt_CramMD5] tag which was available
in prior versions of Lasso. [Encrypt_CramMD5] has been deprecated and should no longer be used. The advan-
tages of [Encrypt_HMAC] are that it supports digests other than MD5 such as SHA1, it supports byte stream input,
and it provides its output either as a byte stream, Base64 encoded value, or as hexadecimal string in several
different formats.

The [Encrypt_HMAC] tag generates a keyed hash message authentication code for a given input and password.
The tag requires a -Password parameter which specifies the key for the hash and a -Token parameter which
specifies the text message which is to be hashed. These parameters should be specified as a string or as a byte
stream.

The digest algorithm used for the hash can be specified using an optional -Digest parameter. The digest algo-
rithm defaults to MD5. SHA1 is another common option. However, any of the digest algorithms returned by
[Cipher_List: -Digest] can be used.

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 20 - UPGRADING FROM LASSO PROFESSIONAL 8 275

The output is a byte stream by default. -Base64 specifies the output should be a Base64 encoded string. -Hex
specifies the output should be a hex format string like 0x0123456789abcdef. -Cram specifies the output should be
in a cram hex format like 0123456789ABCDEF.

Existing calls to [Encrypt_CramMD5] can be updated to use [Encrypt_HMAC] by specifying that the -Digest be MD5
and using the optional -Cram output parameter. The following two calls should return identical results.

[Encrypt_CramMD5: -Password="key', -Token="message text]

[Encrypt_HMAC: -Password="key', -Token='message text', -Digest="md5', -Cram)]

[Encode_URL] Encoding

The [Encode_URL] tag now encodes strings using the current page encoding character set. Previous versions of
Lasso always encoded URLs using UTF-8. The encoding of byte streams has not been modified. Except in rare
circumstances, this change should not require any modifications to existing solutions.

The current character set can be output using [Content_Encoding]. The character set can be modified using the
[Content_Type] tag. The following code outputs the current encoding character set and the word émigré encoded
using UTF-8.

[Content_Encoding]
[Encode_URL: 'émigré']

- UTF-8
%C3%AIMIgrsC3%A

The following code modifies the character set of the page to be ISO-8859-1 and then outputs the current
encoding character set and the word émigré encoded using 1SO-8859-1. Note that the accented é’s in émigré are
now encoded using single byte rather than double byte entities.

[Content_Type: 'text/html; charset=iso-8859-1']
[Content_Encoding]
[Encode_URL: 'émigré']

- UTF-8
%E9Imigr%E9

If a site was relying on all [Encode_URL] tags outputting UTF-8 encoded strings even while the [Content_Type]
specified an alternate character set for the page as a whole then either of the following two strategies can be
used to restore the original behavior.

e Multiple [Content_Type] tags can be used to temporarily modify the page’s character set to be UTF-8 and then
back to the desired character set of the page as a whole. For example, the following code sets the character
set to UTF-8 before the [Encode_URL] tag and then back to 1SO-8859-1 after.

[Content_Type: 'text/html; charset=utf-8']
[Encode_URL: 'émigré', 'utf-8']
[Content_Type: 'text/html; charset=iso-8859-1']

=> %C3%A9migr%C3%A9

e The [Bytes] tag can be used to modify each individual [Encode_URL] tag to use the proper character set. For
example, the following tag would always output the parameter string using UTF-8 encoding even though
the page as a whole uses ISO-8859-1 encoding.

[Content_Type: 'text/html; charset=iso-8859-1']
[Encode_URL: (Bytes: 'émigré’, 'utf-8')]

= %C3%AIMigr%C3%A9

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 20 - UPGRADING FROM LASSO PROFESSIONAL 8 276

[String] Encoding

The [String] tag now accepts a second parameter when it is called with a byte stream. The second parameter
specifies what character set should be used to interpret the byte stream when converting it to a Unicode
string. This change should not require any modification to existing solutions.

For example, the following [String] tag will convert the passed byte stream assuming it was encoded with the
ISO-8859-1 character set.

[String: $myByteStream, ‘is0-8859-1']

This conversion is identical that that which would be performed by [Bytes->ExportString] with the same char-
acter set parameter. Note that [String] and [Bytes] can now be used symmetrically to convert a byte stream from
one character set to another. The following code should read in input.txt in the ISO-8859-1 character set and
write its contents into output.txt in the Macintosh character set.

File_Create: ‘output.txt’;
File_Write: ‘output.txt’, (Bytes: (String: (File_Read: ‘input.txt’), ‘is0-8859-1), ‘mac’);

% and _ Encoding in Database Searches

The percent % and underscore _ symbols are now automatically encoded when performing searches in the
SQLite or MySQL data sources. This should result in more accurate searches, but may cause problem if these
symbols were being used explicitly to modify searches.

For example, a search for tags in the Lasso Reference whose name began with [String_ in Lasso 8.1 would
return both [String_Replace] and [String->Replace] (among others) since the underscore _ symbol was interpreted
as a single character wildcard matching either an actual underscore _ or any other character including a
hyphen -. In Lasso 8.5 that search will only return [String_Replace] and the other string substitution tags.

This change can cause issues if the % sign was being used explicitly to modify searches. For example, the
following inline would perform the equivalent of a begins with search in Lasso 8.1. In Lasso 8.5 this code
will only return records where the first name actually starts with J% (the letter J and a percent %).

[Inline: -Search, -Database="Contacts', -Table="People’, -Op='eq’, 'First_Name'='J%] ... [/Inline]

The fix is to modify the inline to explicitly use the desired search operator. The following code will work iden-
tically in Lasso 8.5 and earlier versions of Lasso (and with data sources that do not use the same wild card
characters).

[Inline: -Search, -Database="Contacts', -Table="People', -Op="bw', 'First_Name'="J"] ... [/Inline]

[Found_Count] and -UseLimit

The MySQL data source connector now uses a more efficient method of returning the found count from
-Search inlines. The MySQL command SQL_CALC_FOUND_ROWS is used to ask MySQL to return the proper
found count while only returning data for a limited number of records. The result should be identical to that
provided by prior versions of Lasso. However, the actual SQL statement generated has changed.

For example, this inline performs a search for all records within the specified database, returning the first ten
records.

[Inline: -FindAll, -Database="Contacts', -Table="People', -MaxRecords=10]
[Action_Statement]
[/Inling]

In prior versions of Lasso this would have generated the following SQL statement. Internal MySQL API tools
were used to limit the number of records returned to Lasso.

SELECT * FROM Contacts.People

In Lasso 8.5 the following SQL statement is generated. The LIMIT is specified explicitly and
SQL_CALC_FOUND_ROWS is used so that actual [Found_Count] can be reported.

SELECT SQL_CALC_FOUND_ROWS * FROM Contacts.People LIMIT 0,50

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 20 - UPGRADING FROM LASSO PROFESSIONAL 8 277

If -UseLimit is specified then the SQL statement will be generated with a LIMIT the same as it was in prior
versions of Lasso. Also, if Lasso detects that it is connecting to a version of MySQL earlier than 4.0 it will
default to the older MySQL 3.x compatible behavior.

[File->SetEncoding] and [File->Write]

The [File->SetEncoding] tag can now be used to set the character set for a file which is being accessed through
Lasso. When [File->SetEncoding] is used then the new [File->ReadString] tag can be used to read data from the
file in the specified character set. The data is returned as a standard Lasso string rather than as a byte stream.
[File->Read] can still be used to return a byte stream if necessary.

The [File->Write] tag behaves the same in Lasso 8.5 as in prior version of Lasso when it is passed a byte stream
value. However, if [File->SetEncoding] is used and a string value is passed to [File->Write] then that string will be
automatically converted to the specified character set before it is written to the file.

This change should not require any modifications to existing code since the behavior in the absence of the
[File->SetEncoding] tag is exactly the same across all versions of Lasso 8.x. However, care should be taken when
adding a [File->SetEncoding] tag to existing code to ensure that writes are still occurring in the desired character
set.

[Net->SetEncoding] and [Net->Write]

The changes to [Net->SetEncoding] and [Net->Write] are analogous to the changes to [File->SetEncoding] and
[File->Write] described above.

[Header] ... [/Header] Deprecated

The use of the [Header] ... [[Header] tags to modify the HTTP header which will be returned by Lasso has been
deprecated. Instead, the new [Content_Header] tag should be used to replace the current header or append
header lines to the current header.

For example, the following [Header] ... [[Header] tags perform an automatic redirect.

[Header]

HTTP/1.0 302 FOUND

Location: http://www.example.com/default.lasso
URI: http://www.example.com/default.lasso
Server: Lasso Professional 8

[/Header]

In Lasso 8.5 the same code can be written using the [Content_Header] tag as follows.

[Conten_Header = 'HTTP/1.0 302 FOUND\r\n' +
'Location: http://www.example.com/default.lasso\r\n’ +
'URI: http://www.example.com/default.lasso\r\n
'Server: Lasso Professional 8\r\n']

[Set] and [TreeMap] Positions Do Not Wrap Around

The positions passed to the [Set->Get], and other member tags no longer wrap around from the start of the
data type if they are greater than the size of the data type. Positions less than 0 will now return an error rather
than counting from the end of the elements. This aligns the set and treemap types with the array and map
data types.

For example, the following code would work in earlier versions of Lasso 8.x, but each line would return an
error in Lasso 8.5.

[Var: ‘myWeek' = (Set: ‘Sunday’, ‘Monday’, ‘Tuesday’, ‘Wednesday’, ‘Thursday’, ‘Friday’, ‘Saturday’)]

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 20 - UPGRADING FROM LASSO PROFESSIONAL 8 278

[$myWeek->(Get: 8)] =» Error
[$myWeek->(Get: 30)] =» Error
[$myWeek->(Get: -1)] =» Error

Code must perform bounds checking or use [Protect] ... [/Protect] tags and rely on a failure in order to halt oper-
ation. The solution is to always use proper bounds checking before performing compound data type opera-
tions. The following code shows three different methods of doing bounds checking.
[if: $myWeek->Size >= 7]
[Var: 'myDay' = $myWeek->(Get: 7)]
(il

[Var: 'myDay' = ($myWeek->Size >= 7 ? $myWeek->(Get: 7) ? 'Error')]

[Protect]
[Fail_If: $myWeek->Size < 7, -1, 'The $myWeek array is too small]

[/ Igr.otect]

Inline 'op'='eq' No Longer Supported

The synonym 'op'='eq' for -Op="eq' is no longer supported. This syntax is a holdover from Lasso 3.x which has
been supported in each version of Lasso prior to 8.5. This could cause a backward compatibility issue for old
Web sites which are still making use of the old syntax style.

The following inline uses the old style syntax.

[Inline: -Search, -Database="Contacts', -Table="People’, 'op'='cn’, 'City'="Port', -MaxRecords="all']
[/Inling]
It can be rewritten as follows in order to be compliant with Lasso 8.5.

[Inline: -Search, -Database="Contacts', -Table="People’, -Op='cn’, 'City'='Port', -MaxRecords="all

[/I.n'lline]

Security Enhancements

Lasso Professional 8.0.1 introduced a number of security enhancements that are described here.

® Lasso Page Extensions - The allowed extensions have been split into two sets. Lasso Page Extensions now
controls what files Lasso will execute through URLs and the [Include] and [Library] tags. File Tags Extensions
controls what files Lasso can manipulate through the file tags, image tags, PDF tags, and [Include_Raw].
Both sets of extensions can be controlled through the Setup > Site > File Extensions section of Site
Administration.

By default the Lasso page extensions are .lasso .lassoapp .las .htm .html .inc .incl. By default the file tags
extensions are .bmp .cmyk .gif .jpg .pdf .png .psd .rgb .text .tif .txt .uld .wsdl .xml .xsd. For best security these two sets
of extensions should remain mutually exclusive. Adding .* to either set will allow all file extensions for that
set.

Upgraded servers will start with the default set of Lasso page extensions. The file tag extensions will be set
to the complete list of Lasso page extensions that were already set. For best results the file tag extensions
should be reset using Reset Extensions in Site Admin.

This update may require some changes to your Lasso pages if you allow third parties to upload .lasso or
.html files or if you use -Response to return image, PDE or XML files. The best solution is to change your
code so that users only upload files in the file tags extensions (and aren’t allowed to upload any files
through Lasso which can be executed by Lasso). Any URL that uses -Response to reference an image, PDE
or XML file can be rewritten to use a straight URL referencing the appropriate file.

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 20 - UPGRADING FROM LASSO PROFESSIONAL 8 279

¢ Classic Lasso - Classic Lasso now has three options to determine whether it is enabled or not. Enabled
means that all Classic Lasso URL parameters can be used including database actions. Minimal means that
database actions are disabled, but -Response and -Error parameters can still be used in URLs. Disabled means
that no Classic Lasso URL parameters can be used and that even -Response and the -Error tags are disabled.
The new options can be controlled through the Setup > Site > Settings section of Site Administration.

¢ File Permissions - File Permissions now has an option to allow users in a group to access files with any
file extension. This permission must be turned on explicitly and will not be automatically set on upgrades.
This permission does not allow access to files outside of root, but only to files that are contained within
the specified File Root (which can be set to /// or e.g. C:// to allow access to all files on a server). The new

Lasso Professional 8.0.x

This section summarizes the changes that have been made to Lasso in each product update for Lasso
Professional 8. Summaries are provided for each version followed by detailed descriptions and upgrade
advice for many of the features.

Lasso Professional 8.1.0

The following changes were introduced in Lasso Professional 8.1.0:

e MySQL 4.1 Character Sets - A new setting instructs the MySQL data source connector to use the
character set established at the table level when connecting to MySQL 4.1 data sources. This setting can be
changed in Lasso Site Administration on the Setup > Data Sources > Hosts section. The setting is set to
No for existing MySQL hosts and Yes for new MySQL hosts.

When the Use MySQL 4.1 Character Sets setting is set to Yes data stored in a MySQL 4.1 database can be
retrieved through other MySQL clients in the proper character set. For best results the character set of each
table (set using the new batch change option or in the Setup > Data Sources > Tables section) should be
set to UTF-8. A -Table parameter should be used in each inline with a -SQL action so that this character set is
used.

In prior versions of Lasso Professional 8 all communication with MySQL data sources was performed using
the 1S0O-8859-1 character set. Lasso could store and retrieve data in other character sets like UTF-8, but this
data would not be retrievable through other MySQL clients.

If a table has already been filled with data using an older version of Lasso it may be necessary to correct the
encoding of the data within the database before switching this setting. This upgrade procedure would only
be required on data sources that store characters in a character set other than 1SO-8859-1.

Table Batch Change - Lasso Site Administration now has a table batch change option in the Setup >
Data Sources > Hosts and Databases sections which allows the encoding of all tables in the current host
or database to be set to the same value. This batch change does not affect the encoding of additional tables
which are added to the host or database after the change is made so it may be necessary to adjust the
encoding of new tables individually or to perform anotherr batch change after adding new tables.

Sessions - A number of changes have been introduced to improve the speed of sessions:

The built-in SQLite session driver now uses memory for immediate storage of session data and periodically
writes those sessions to the SQLite sessions table.

Several session tuning parameters are available from the Setup > Site > Sessions section of Lasso Site
Administration. These include options to control when automatic deletion of expired sessions occur, and a
setting for the maximum expiration time for new sessions.

Session data is stored in a new format in Lasso 8.1. This format is not compatible with earlier versions of
Lasso 8 or with Lasso 7. If a shared MySQL table is used for session storage then it can be set to the use the
new Lasso 8.1 session storage format (for best performance) or the older Lasso 7/8 session storage format
(for best compatibility).

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 20 - UPGRADING FROM LASSO PROFESSIONAL 8 280

A new tag [Session_DeleteExpired] triggers the deletion of any sessions that have expired but are still stored
within the sessions table. This tag is normally called automatically based on the sechedule determined by
the session tuning parameters. Use of this tag allows a custom schedule to be determined if necessary.

Email Tags - A number of changes have been introduced to improve the speed and compatibility of the
email tags:

The [Email_POP] tags no longer keep track of server commands and responses. This reduces the amount of
memory the tags require and improves their performance. The [Email_POP->Errors] and [Email_POP->Results]
tags will only return the last error and server response. The original behavior can be restored by specifying
-Debug in the [Email_POP] tag.

The [Email_Parse] tag now considers any text before the first boundary in multi-part messages to be outside
of the content of the message. Formerly this preamble was returned as the first part of the multi-part
message. Now it can be returned only using [Email_Parse->(Body: -Preamble)].

The body of parsed messages will no longer have white-space trimmed from the beginning and end, but
the body of soft-wrapped messages will have embedded return characters removed automatically.

A new [Email_Parse->Recipients] tag returns an array of recipients for the email. The [Email_Parse->To/CC/BCC]
tags now accept -Comment, -Extract, and -SafeEmail parameters which function identically to those for the
[Email_Parse->Header] tag. These tags automatically join their output, but will return an array instead if
-Join=Null is specified.

[Include_URL] SSL Certificates - The [Include_URL] tag can be used with custom SSL certificates.
See the HTTP/HTML Content and Controls chapter for details about the new -SSLCert, -SSLCertType,
-SSLKey, SSLKeyType, and -SSLKeyPasswd parameters.

[Include_URL] Timeouts - The [Include_URL] tag now supports custom timeouts for data transfer and initial
connection. The -Timeout parameter specifies a custom timeout value for all data transfer operations in
seconds. A -ConnectTimeout parameter specifies a custom timeout value for the initial connection only. See
the HTTP/HTML Content and Controls chapter for details.

New Cache Tags - New [Cache_Delete] tag works like [Cache_Empty] but completely deletes the specified
cache as if it had never been set. New [Cache_Exists] tag accepts the same parameters as the opening [Cache]
tag and returns True if the cached contents would be returned or False if new content would be generated.

PDF Tags - A set of new members tags for [PDF_Read] allow existing PDF files to be manipulated. The
[PDF_Doc] tag accepts parameters which allow the PDF to be created with encryption. The [PDF_Doc->Rect],
[PDF_Doc->Arc], and [PDF_Doc->Circle] tags accept an optional -Fill parameter that draws the shape filled with
the current fill color. See the Portable Document Format chapter for more information.

* New Tags - In addition to the new tags listed above, a new tag [Encode_CRC32] has been added which
calculates the 32-bit CRC checksum for a value.

e Administration Tags Authentication - It is now possible to authenticate many [Admin_...] tags using an
optional -Username and -Password parameter. See the full description below for a list of tags this applies to.

¢ -Response=Field:fieldname - This ability to use a field as the response to a Classic Lasso database action
is no longer supported in Lasso Professional 8. This functionality was deprecated with Classic Lasso syntax
in a prior version of Lasso and has never been supported with the Inline method. This functionality will no
longer work even if Classic Lasso support is turned on in Lasso Site Administration.

Lasso Professional 8.0.4

The following changes were introduced in Lasso Professional 8.0.4:

® Memory Session Driver - Sessions can now be stored entirely in memory rather than in a database table.
In-memory sessions are very fast, but do not persist between server restarts. Each site in Lasso Professional
8 can choose one session driver so one site could use in-memory sessions and another could use SQLite or
MySQL sessions.

¢ Email Tags - New [Email_Resul] and [Email_Status] tags allow the status of an email message to be checked
programmatically. The [Email_Send] tag accepts a new parameter -Immediate which instructs it to bypass the
email queue and send the email directly to the SMTP server.

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 20 - UPGRADING FROM LASSO PROFESSIONAL 8 281

* New Tags - Several new tags have been added to Lasso. These include: [String_FindBlocks] which can be used
to extract multiple text blocks from a string. [Decode_BHeader] which accepts a MIME header encoded using
binhex and decodes it into a Lasso string. [PDF_Doc->GetVerticalPosition] which returns the current vertical
position where text will next be inserted on the page.

¢ -FormContentType in Forms - If a hidden input is named -FormContentType in an HTML form then all of
the parameters in the form will be imported into Lasso encoded using the specified characters set. See the
section below for code examples. See also the addition of the -ContentType parameter below.

Lasso Professional 8.0.2

The following changes were introduced in Lasso Professional 8.0.2:

* File Security - The security model for the [File] tags has been modified. The paths available to each site
administrator are now determined by the server administrator. The site administrator can assign permission
to the site’s groups for only the paths that have been assigned to the site. All users now have read
permission for files in the Web server root.

[Bytes] Tag - The [Bytes] tag now accepts an optional second parameter which specifies in what character
set the string should be imported. See the section below for code examples.

Accept-Charset Header - Lasso will now obey the Accept-Charset header which is sent by most browsers.
Lasso will use this header and any included quality parameters to determine the ideal character set for the
current page.

Content-Type Header in Forms - Lasso will now obey the charset parameter in the Content-Type header
of a form submission if specifed. Most browsers do not currently send this header, but Lasso will obey it
if it is present. In the future this will help to guarantee that Lasso reads incoming form data in the proper
character set.

-ContentType in Forms - If a hidden input is named -ContentType in an HTML form then the subsequent
parameter will be imported into Lasso encoded using the specified characters set. See the section below for
code examples.

Storing Bytes in SQLite - Lasso now allows byte streams to be stored in the internal SQLite data source.
See the note that follows for full details about to format a -SQL statement to store bytes. The [Encode_Hex]
and [Decode_Hex] tags were added to facilitate this ability.

Email Tags - [Email_Parse->RawHeaders] will return the raw headers from an email message. [Email_Parse]
now returns a simple version of the email message when cast to string. [Decode_QuotedPrintable] and
[Decode_QHeader] tags have been added. [Email_Extract] and [Email_SafeEmail] tags have been added to extract
the data or comment from email headers and to return obscured email addresses.

Lasso Professional 8.0.1

The following changes were introduced in Lasso Professional 8.0.1:

¢ Quoted Inline Parameters - The -ReturnField , -SortField, and -KeyField inline parameters are now added to
the generated SQL statement using quotes. In addition, field names that contain certain characters such as
--, #, or " will be quoted. This makes SQL injection attacks more difficult, but also prevents the specification
of SQL functions as return values without using a -SQL parameter.

¢ File Extensions - Lasso's file extensions settings have been split into two sets. One set controls which files
Lasso will execute as Lasso pages. The second set controls which files can be accessed through Lasso’s file
tags.

¢ Classic Lasso - Lasso now has an option to completely disable Classic Lasso syntax including the -
Response and -Error pages. A new minimal setting allows a minimal set of non-database related Classic
Lasso tags to be used.

¢ File Permissions - Lasso now has a permissions to allow files with any file extensions to be manipulated
using the file extensions. This permissions can be assigned on a per-group basis within a given file root.

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 20 - UPGRADING FROM LASSO PROFESSIONAL 8 282

Administration Tags Authentication

The following tags now accept an optional -Username and -Password parameter for authentication. Previously
these tags could only be called on a page that was authenticated using one of the [Auth_...] tags. This change
allows them to be called on any page provided that the username and password of a group administrator (or
the site or server administrator) is specified within the tag itself.

[Admin_CreateUser] [Admin_GroupRemoveUser]
[Admin_GroupAssignUser] [Admin_ListGroups]
[Admin-GroupListUsers] [Admin_UserListGroups]

These tags cannot be used within [Inline] ... [/Inline] tags that authenticate as an administrator.

Memory Session Driver

Lasso’s built-in session manager uses a session driver to determine how session data is stored. Previous
versions of Lasso could store sessions in either the internal SQLite data source or in an external MySQL data
source. Lasso Professional 8.0.4 adds the option to store sessions entirely in memory.

Storing session data in memory is very fast, however sessions will only persist until the current site is
restarted. The memory session driver is suitable for sites that do not need long term tracking of visitors and
require high performance from the session implementation.

The memory session driver can be selected on a per-site basis from the Setup > Site > Sessions section of Lasso
Site Administration. More information can be found in the Setting Site Preferences chapter of the Lasso
Professional 8 Setup Guide.

File Security

Several changes have been made to the file security model for Lasso Professional 8.0.2. These changes were
made in order to restrict the access that site administrators and users had to files outside of their own Web
server root.

¢ Server administration has been modified with a new Setup > Sites > File Paths section that allows file
paths to be assigned to a site. The site administrator will only be able to modify files contained in a path
assigned to the site.

e New sites will have the Web server root / and the file uploads path assigned by default. This allows site
administrators to access and assign permissions for only the files within their Web server root and for them
to access uploaded files. Additional paths can be assigned to the site if necessary.

e Existing Lasso Professional 8/8.0.1 sites which are upgraded to 8.0.2 will have permission to the file system
root assigned to them. This will allow existing code to run on upgraded sites even if it accessed paths
outside of the Web server root. If access to files outside of the Web server root is not desired then the paths
should be modified in the Setup > Sites > File Paths section of server administration after upgrading.

e Site administrators formerly had access to any files in the file system. After upgrading to Lasso Professional
8.0.2 each site administrator will only have access to files within the file paths assigned to them in servera
dministration. Site administrators will still have access to files with any (or no) file extensions.

e The Setup > Security > Files section of site administration has been modified to only allow those paths that
have been assigned to the site to be modifed. Permissions can be assigned for a group to the existing file
paths, but new file paths cannot be designated.

¢ Default permission has been granted to all users to read or inspect files within the Web server root. Since
files were already accessible through the [Include_Raw] tag it did not make sense to disallow the use of the
[File] tags to read the same files.

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 20 - UPGRADING FROM LASSO PROFESSIONAL 8 283

[Bytes] Tag

The [Bytes] tag now accepts an optional second parameter which specifies in what character set the string
should be imported. For example, the following tag will result in a byte stream that contains the example
string encoded in the is0-8859-1 character set.

[Bytes: 'testing emigré’, 'is0-8859-11]

This can be useful for using different encoding styles with the [Encode_URL] tag. The following tag outputs a
Unicode representation of the example string. Notice that the é character ends up as a two byte sequence.
(The space is encoded using a single space since it is part of the base ASCII set common to most Western
character sets).

Encode_URL: 'testing emigré'] =¥ testing%20emigr%C3%A9
[_ g emigre'] g g

However, if the [Bytes] tag is used the URL can be encoded using iso-8859-1 single byte encoding instead. Now
the é character is represented by a single byte sequence. This can be useful for communicating with servers
that have not been updated to recognize Unicode encoding.

[Encode_URL: (Bytes: 'testing emigré', 'is0-8859-1')] =» testing%20emigr%E9

Prior to Lasso Professional 8.0.2 the following code can be used to import a string into a byte stream
similarly. For example this code results in the same output as the example immediatly above.

[Var: ‘Bytes' = (Bytes)]

[$Bytes->(ImportString: 'testing emigré', 'is0-8859-1")]

[Encode_URL: $Bytes]

Accept-Charset Header

Lasso will now obey the Accept-Charset header which is sent by most browsers with HTTP Web requests. An
example of this header is shown below. This header specifies that UTF-8 encoding is preferred, followed by
ISO-8859-1 encoding, or any encoding.

Accept-Encoding: utf-8;9=1.0, is0-8859-1;=0.5, *;q=0

Lasso processes all of its pages in Unicode internally and decides what character set to translate a page to just
before it is served. Lasso will now send the page using the highest quality requested character set which it
supports.

If a [Content_Type] tag is included in a page it will override the browsers Accept-Charset header field. Otherwise,
the default if no character set is preferred (which is the case in the vast majority of Web requests) is to use the
character set specified in Lasso Site Administration. Lasso defaults to UTF-8 encoding if no other character set
has been specified.

Note: Lasso will not encode pages using gzip or deflate encoding even if those encodings are listed as preferred in
the Accept-Encoding header.

Accept-Encoding: gzip, deflate;q=1.0, *;q=0

Content-Type Headers in Forms

Lasso will now interpret incoming form data according to an included Content-Type header with a charset
parameter. Lasso translates all incoming form data to Unicode for internal processing. This header will allow
Lasso to use the proper character set even if it differs from Lasso’s default.

In the absence of a Content-Type header Lasso will interpret all incoming form data according to the default
character set which is set in Lasso Site Administration. This character set is set to UTF-8 by default so incoming
form data will generally be interpreted as UTF-8 if the setting has not been changed.

See also the -ContentType parameter described in the next section that can be specified explicitly to over-ride
the character set for individual form element.

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 20 - UPGRADING FROM LASSO PROFESSIONAL 8 284

Note: Most browsers do not currently set the Content-Type header so most incoming forms will be interpreted
using the default character set.

-FormContentType and -ContentType in Forms

Lasso reads data which is posted in forms according to the default character set that is set in Lasso
Administration (or in the character set included in the Content-Type header). However, Web browsers usually
send forms using the same encoding with which the enclosing page was sent. If these character sets are not
matched (for example if the [Content_Type] tag is used to override the default encoding for a particular page)
then Lasso can misinterpret the data being posted by a Web client.

Lasso Professional 8.0.2 introduces a new hidden input named -ContentType. If a hidden input is named
-ContentType in an HTML form then the subsequent parameter will be imported into Lasso encoded using the
specified characters set.

Lasso Professional 8.0.4 introduces a new hidden input named -FormContentType. If a hidden input is named
-FormContentType in an HTML form then all of the parameters in the form will be imported into Lasso encoded
using the specified characters set (unless a specific -ContentType parameter override the character set for a
specific input).

The value for -ContentType should be specified as charset=is0-8859-1 (or any other valid character set) as shown
in the example below. The charset= part is required. It is not sufficient to just put the character set in as the
value.

<input type="hidden" name="-FormContentType" value="charset=utf-8" />
<input type="hidden" name="-ContentType" value="charset=iso-8859-1" />
<input type="hidden" name="Field Name" value="testing emigré" />

This will result in the Field Name input being imported into Lasso using the is0-8859-1 character set. All other
inputs in the form will use the UTF-8 character set.

Note: The value from [Action_Param] and [Action_Params] will be returned using the proper character set. However,
the values from [Client_GetParams] and [Client_GetParams] (and the args equivalents) will use the default character set.

Storing Bytes in SQLite

The internal SQLite data source allows binary data to be stored in any field using the following syntax. This
syntax can only be specified within a SQL statement. The data is expected to be encoded in hexadecimal
using the [Encode_Hex] tag.

INSERT INTO table (field) VALUES (x" ... HEX DATA ...");
When Lasso retrieves data from the field it will be automatically decoded into a byte stream. It is not
necessary to use [Decode_Hex] on the return value from the [Field] tag.

For example, the following [Inline] would insert a byte stream into a SQLite table.

[Var: 'bytes' = (Bytes: ' ... Byte Stream ... ")]
[Inline: -Database="Example’, -Table="Example’,

-SQL='INSERT INTO example (field) VALUES (x" + (Encode_Hex: $bytes) + ");]
[/Inling]

Then the following code can be used to retrieve the value from the database. The result in the variable $bytes
will be a byte stream that exactly matches the value that was stored.

[Inline: -Database="Example’, -Table="Example’, -FindAll]
[Var: 'bytes' = (Field: 'field')]
[/Inling]

[Var: 'bytes'] =¥ ... Byte Stream ...

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 20 - UPGRADING FROM LASSO PROFESSIONAL 8 285

Email Tags

A number of new tags have been added to facilitate parsing and displaying email messages.

e New [Email_Result] and [Email_Status] tags allow the status of an email message to be checked
programmatically. The [Email_Result] tag can be called immediately after [Email_Send] to fetch the unique ID
of the email message that was just queued. The [Email_Status] tag can then be passed the unique ID and will
return the status of the message: sent, queued, or error.

® The [Email_Send] tag accepts a new parameter -Immediate which instructs it to bypass the email queue and
send the email directly to the SMTP server. This parameter is not recommended for general use since the
email queue is very efficient and is the most reliable way to ensure that messages are sent.

e [Email_Parse] is not a new tag, but now returns a simple version of the email message when cast to string.
This makes it easier to display downloaded email messages in a simple format. Email messages are
formatted with the headers shown in the following example followed by the default body. Any headers that
are empty are not included. The To, Cc, and From headers are displayed using the [Email_SafeEmail] tag.

Date: 3/11/2005 12:34:56

From: example

To: example

Cc: example

Subject: This is an example email message
Content-Type: multipart/alternative
Content-Transfer-Encoding: 8bit
Content-Disposition: Attachment

Parts: 4

+ [Email_Parse->RawHeaders] will return the raw headers from an email message. This allows the unparsed
headers to be fetched without manually parsing the raw source of the email message.

+ [Decode_QuotedPrintable] is a new tag that decodes data which is encoded in quoted-printable format. This
tag is used internally by the [Email_Parse] type to decode the bodies of messages.

+ [Decode_QHeader] is a new tag that decodes email headers which are encoded in Q (quoted-printable)
format. This tag is used internally by the [Email_parse] tag to decode the headers of messages.

* [Email_Extract] is a new tag which allows the different parts of email headers to be extracted. Email headers
which contain email addresses are often formatted in one of the three formats below.

john@example.com
"John Doe" <john@example.com>
john@example.com (John Doe)

In all three of these cases the [Email_Extract] tag will return john@example.com. The angle brackets in the
second example identify the email address as the important part of the header. The parentheses in the third
example identify that portion of the header as a comment.

If [Email_Extract] is called with the optional -Comment parameter then it will return john@example.com for the
first example and John Doe for the two following examples.

Note: The [Email_Parse->Header] tag accepts a -Extract parameter to return just the email address portion of a
header or a -Comment parameter to return the comment portion of a header.

* [Email_SafeEmail] is a new tag which returns an obscured email address. This tag can be used to safely display
email headers on the Web without attracting email address harvesters.

If the input contains a comment then it is returned. Otherwise, the full header is returned. In either case, if
the output contains an @ symbol then only the portion of the address before the symbol is returned. This
would result in the following output for the example headers above.
=> john

John Doe

John Doe

Note: The [Email_Parse->Header] tag accepts a -SafeEmail parameter that automatically applies the
[Email_SafeEmail] tag to the returned header.

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 20 - UPGRADING FROM LASSO PROFESSIONAL 8 286

Quoted Inline Parameters

To enhance security, column names are now automatically quoted in all non-SQL [Inling] ... [/inline] operations
to MySQL datasources. In addition, column names containing --, #, or * will end at those strings. This
change affects the following inline parameters: -KeyField, -ReturnField, and -SortField, as well as their synonyms.
Additionally, column names specified in the inline, for adding, updating and searching will be affected.

Note: This change was introduced in Lasso Professional 8.0.1.

File Extensions

The allowed extensions have been split into two sets. Lasso Page Extensions now controls what files Lasso
will execute through URLs and the [Include] and [Library] tags. File Tags Extensions controls what files Lasso can
manipulate through the file tags, image tags, PDF tags, and [Include_Raw]. Both sets of extensions can be
controlled through the Setup > Site > File Extensions section of Site Administration.

By default the Lasso page extensions are (.lasso .lassoapp .las .htm .html .inc .incl). By default the file tags
extensions are (.bmp .cmyk .gif .jpg .pdf .png .psd .rgb .text .tif .txt .uld .wsdl .xml .xsd). For best security these two sets
of extensions should remain mutually exclusive. Adding .* to either set will allow all file extensions for that
set.

Upgraded servers will start with the default set of Lasso page extensions. The file tag extensions will be set to
the complete list of Lasso page extensions that were already set. For best results the file tag extensions should
be reset using Reset Extensions in Site Admin.

This update may require some changes to your Lasso pages if you allow third parties to upload .lasso or .html
files or if you use -Response to return image, PDFE, or XML files. The best solution is to change your code so
that users only upload files in the file tags extensions (and aren’t allowed to upload any files through Lasso
which can be executed by Lasso). Any URL that uses -Response to reference an image, PDE, or XML file can be
rewritten to use a straight URL referencing the appropriate file.

Classic Lasso

Classic Lasso now has three options to determine whether it is enabled or not.

¢ Enabled means that all Classic Lasso URL parameters can be used including database actions. This setting
can be used for compatibility with earlier versions of Lasso, but is not recommended for new code.

¢ Minimal means that database actions are disabled, but -Response and -Error parameters can still be used in
URLs. This setting is the equivalent of “disabling” Classic Lasso in earlier versions of Lasso.

¢ Disabled means that no Classic Lasso URL parameters can be used and that even -Response and the -Error
tags are disabled. This is the preferred setting for new Lasso installations.

The new options can be controlled through the Setup > Site > Settings section of Site Administration.

File Permissions

File Permissions now has an option to allow users in a group to access files with any file extension. This
permission must be turned on explicitly and will not be automatically set on upgrades. This permission
does not allow access to files outside of root, but only to files that are contained within the specified File
Root (which can be set to /// or e.g. C:// to allow access to all files on a server). The new permission can be
controlled through the Setup > Security > Files section of Site Administration.

LAsso 8.5 LANGUAGE GUIDE

287

Chapter 21

Upgrading From Lasso Professional 7

This chapter contains important information for users of Lasso Professional 7 who are upgrading to the latest
version of Lasso Professional 8.5.

If upgrading from an earlier version of Lasso, this chapter should be read in conjunction with the subsequent
chapters on upgrading from Lasso Professional 6, Lasso Professional 5, or Lasso Web Data Engine 3.x or
earlier.

Topics in this chapter include:

® Introduction includes general information about what has changed in Lasso Professional 8.
e SQLite introduces the built-in SQLite data source.

e Multi-Site introduces the new multi-site features.

¢ Digest Authentication introduces the new digest authentication for Web browsers.

¢ On-Demand LassoApps explains how the files from the Lasso folder in the Web server root are now served
on-demand instead.

e Syntax Changes contains information about what Lasso syntax constructs have changed since Lasso
Professional 7.

e Tag Name Changes details the tag names which have been changed in Lasso 8 since Lasso 7.

Introduction

All Lasso Professional 7 solutions which were written using preferred syntax should run without
modifications in Lasso Professional 8 except for the issues mentioned in this chapter.

Significant effort has been expended to ensure that existing solutions will continue to run in Lasso
Professional 8 with few if any modifications required. However, please read through this chapter to learn
about changes that may require modifications to your solutions.

Lasso Studio and Lasso Updater

Lasso Studio includes an Lasso Updater that can be used on code from earlier versions of Lasso to bring
it into compliance with the latest version of Lasso. See the documentation for Lasso Studio for more
information.

SQlLite

The internal data source in Lasso Professional 8 has been changed from Lasso MySQL to SQLite. This change
has several ramifications for developers who are upgrading to Lasso Professional 8.

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 21 - UPGRADING FROM LASSO PROFESSIONAL 7 288

¢ Solution Databases - Any solution databases which were hosted by Lasso MySQL should be moved to an
external installation of MySQL. This is the best way to ensure that the solutions continue to run without
any modifications. It is nor recommended that any solution databases be converted to SQLite.

Internal Databases - All of the internal databases of Lasso have been converted to SQLite including
Lasso_lInternal, Lasso_Site_1 (also known as Site), Lasso_Admin, and LDML8_Reference. Any solutions which
reference these databases to modify Lasso’s internal settings may need to be updated for compatibility
with SQLite. Non-SQL inlines will require few modifications, but -SQL inlines will need to use SQLite
compatible statements.

The names and schema of some of the internal tables have changed. The _errors table from Lasso
Professional 7 is now named errors. The SMTP queue table has been completely modified for the new SMTP
sending implementation.

All of the internal functionality which makes use of the internal data source including Lasso security, the
email queue, scheduled events, sessions, etc. have been rewritten to use SQLite. No modification to any code
that makes use of these features should be required.

Multi-Site

Lasso Professional 8 has an entirely new multi-site architecture. All solution code is run within a site that is
automatically spawned by Lasso Service. Each site has its own site level folder that contains duplicates of the
folders at the master level.

Lasso Professional 8 is installed with a single default site. The easiest transition from Lasso Professional 7
is to use this default site for all of the Web hosts on the server. Once the Lasso Professional 8 transition has
been made additional sites can be added if needed.

The structure of the Lasso Professional 8 application folder appears below in abbreviated form. When Lasso is
loading or needs a resource it checks both the site level and the master level. In general, the folders at the site
level are checked first and if the resource is not found then the master level is checked.

Lasso Professional 8/
LassoAdmin/
LassoModules/
LassoStartup/
SQLiteDBs

LassoSites/
default-1/
LassoAdmin/
LassoModules/
LassoStartup/
SQLiteDBs

Note: The appropriate installation chapter of the Lasso Professional Server 8 Setup Guide has a more complete
listing of all installed files.

¢ LassoAdmin - Items stored by Site Administration can be found in the site level LassoAdmin folder. This
includes backups, exports, built LassoApps, etc. This folder was called Admin in prior versions of Lasso.

¢ LassoModules - Modules are loaded from both the site and master levels when LassoService starts up. The
same rule applies for JDBCDrivers and JavaLibraries.

e LassoStartup - All Lasso pages and LassoApps in both the site and master level LassoStartup folders are
loaded when Lasso starts up. However, only one copy of Startup.LassoApp is loaded (from the site level if it
exists or the master level otherwise).

¢ SQLiteDBs - Each site uses its own set of site level SQLite databases. Individual sites do not have access to
the master level SQLite databases.

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 21 - UPGRADING FROM LASSO PROFESSIONAL 7 289

* [Admin_LassoServicePath] - This tag reports the location of the site level folder rather than the location
of the Lasso Professional 8 folder. For example:

IlApplications/Lasso Professional 8/LassoSites/default-1/

When upgrading a server from Lasso Professional 7, any third-party modules or JDBC drivers can be moved
into the master level. They will be available to the default site and to any sites that are defined on the server.

Namespaces

Lasso Professional 8’s namespace support should be transparent to most users of Lasso. However, there are a
couple situations where updates may be needed.

¢ Replacing Built-In Tags - When replacing a built-in tag in Lasso Professional 8 using
[Define_Tag] ... [/Define_Tag] and -Priority='Replace’ the tag definition must reference the proper namespace using
the -Namespace parameter. Any existing code which attempts to replace built-in tags will need to be updated
with the proper -Namespace parameter.

Note: Custom tag definitions which are not redefining built-in tags do not require any modifications to work with
Lasso Professional 8.

¢ On-Demand Libraries - Many built-in tags have been moved to on-demand loading from the LassoLibraries
folder. This should not require any code modifications.

¢ Custom Tag Names - No changes are required to custom tags in Lasso Professional 8. Custom tag
definitions will work fine without the -Namespace parameter and all the same rules for tag naming apply as
for previous versions of Lasso.

[Define_Tag: 'Ex_MyTag_TagName'] ... [/Define_Tag]

However, if the -Namespace parameter is added to custom tag definitions then the new rules for tag naming
must be followed. The tag name itself must not contain any underscores. The portion of the original tag
name before the last underscore should be used as the namespace for the tag. The namespace must not
contain a double underscore.

[Define_Tag: 'TagName', -Namespace="Ex_MyTag_" ... [/Define_Tag]

Digest Authentication

Lasso Professional 8 supports digest authentication as a Web browser authentication method. Digest
authentication is more secure than the basic authentication supported by earlier versions of Lasso since
passwords are only sent after they have been encrypted using a one-way hash algorithm.

Digest authentication is supported by all modern Web browsers. Lasso can send both digest and basic
authentication challenges. An older browser that does not recognize digest authentication should fall back on
basic authentications. Digest authentication can be turned on and off in the Setup > Site > Syntax section of
Site Administration.

One important advantage of digest authentication is that the realm name is significant. A site visitor can

be authenticated against several different realm names with different usernames and passwords for each.
However, this can present a problem is a site uses many different realm names that were previously ignored.
The best solution is to modify all the realm names to be the same or to use Lasso’s default realm name of
Lasso Security.

In order to support digest authentication Lasso must have the password for each user in the security_user table
stored in plain text. In prior versions of Lasso all passwords were stored as MD5 hashes. Digest authentication
will only work for users created or modified with Lasso Professional 8 so the plaintext password is stored
properly. Lasso will fall back on basic authentication for users who do not have a plaintext password.

The [Client_Authorization] tag can be used to see what type of authentication is being used for the current site
visitor.

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 21 - UPGRADING FROM LASSO PROFESSIONAL 7 290

On-Demand LassoApps

All of Lasso’s built-in LassoApps are now provided as on-demand LassoApps which load from the LassoApps
folder in the Lasso Professional 8 application folder. The /Lasso/ folder is no longer required in the Web server
root. This means that the traditional URLs to load Lasso Administration will not necessarily work any more.
Instead, the following URLs should be used.

Server Administration — http://www.example.com/ServerAdmin.LassoApp
Site Administration — http://www.example.com/SiteAdmin.LassoApp
Database Browser — http://www.example.com/DatabaseBrowser.LassoApp
Group Administration — http://www.example.com/GroupAdmin.LassoApp
Lasso 8 Reference - http://www.example.com/LDMLReference.LassoApp
XML-RPC / SOAP - http://www.example.com/RPC.LassoApp

Lasso Studio — http://www.example.com/LassoStudio.LassoApp

If the Web server requires it (e.g. Apache on Mac OS X) a /Lasso/ folder can be created in the Web server root
so that the URLs from prior versions of Lasso will work. Simply creating an empty folder will allow Lasso to
load its on-demand LassoApps from the Lasso Professional 8 application folder.

Syntax Changes

None of the syntax changes in Lasso Professional 8 should require modifications to existing sites. All of these
changes are fully backward compatible.

¢ Parentheses Syntax - Parentheses syntax in Lasso Professional 8 is backward compatible with Lasso
Professional 7. Sites written using parentheses syntax in Lasso Professional 8 should run fine in Lasso
Professional 7 (but not in earlier versions of Lasso).

¢ BlowFish Encryption - Lasso now includes a BlowFish2 encryption algorithm which should be
compatible with most third-party implementations of BlowFish.

Parentheses Syntax

Lasso now supports parentheses syntax in which a tag name is followed by parentheses that include the
parameters of the tag.

Tag_Name(-Param, -Name=Value);

The syntax of prior versions of Lasso is called colon syntax and is also fully supported in Lasso Professional 8.
There are no plans to deprecate colon syntax.

Tag_Name: -Param, -Name=Value;

The two syntax methods can be used interchangeably, even in the same expression. No modification of
existing sites should be required.

Note: Partial support for parentheses syntax was provided in Lasso Professional 7. Some sites written using
parentheses syntax will run fine in Lasso Professional 7 or Lasso Professional 8. However, the use of parentheses
syntax in Lasso Professional 7 is not fully supported.

BlowFish Encryption

Earlier versions of Lasso included a BlowFish implementation that was not compatible with most third-party
BlowFish implementations. This could make it difficult to transmit data to other Web application servers, Java
applets, etc. using a secure BlowFish channel.

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 21 - UPGRADING FROM LASSO PROFESSIONAL 7 291

A new BlowFish2 algorithm is now provided which uses an industry standard implementation. The
[Encrypt_BlowFish2] and [Decrypt_BlowFish2] tags are the preferred tags to use when performing BlowFish
encryption and should always be used when communicating with another software product using BlowFish.

However, the original [Encrypt_BlowFish] and [Decrypt_BlowFish] tags are still provided for backward
compatibility. These tags are safe to use for existing solutions and are recommended for a solution that needs
to be able to share data with older versions of Lasso or for communication with older versions of Lasso.

Tag Name Changes

The table below summarizes the names of all the tags that have changed since Lasso Professional 7. The old
tag name is still supported in Lasso Professional 8, but future development should use the new tag name.

Table 1: Tag Name Changes

Old Name New Name
[Array->FindIndex] [Array->FindPosition]
[Lasso_SitelD] [Site_ID]
[Lasso_SiteName] [Site_Name]
[Lasso_SiteRestart] [Site_Restart]
[Lasso_SitelsRunning] [Server_SitelsRunning]
[Lasso_SiteStart] [Server_SiteStart]
[Lasso_SiteStop] [Server_SiteStop]

Lasso uses positions to reference elements within compound data types. Positions run from 1 to the size
of the compound data type. The [Array->FindIndex] tag has been renamed [Array->FindPosition] to reflect this
terminology.

The [Lasso_Site...] tags were renamed in Lasso Professional 8.1.0 in order to separate them into tags which
could be called from within each site and tags which could only be called within Server Administration.

LAsso 8.5 LANGUAGE GUIDE

292

Chapter 22
Upgrading From
Lasso Professional 6

This chapter contains important information for users of Lasso Professional 6 who are upgrading to Lasso

Professional 8. Please read through this chapter before attempting to run solutions in Lasso Professional 8

that were originally developed for an earlier version of Lasso.

The upgrading chapters are cumulative so this chapter should also be read by users of Lasso Professional 5 or

earlier who are upgrading to Lasso Professional 8.

Topics in this chapter include:

e Introduction includes general information about what has changed in Lasso Professional 8.

® Error Reporting describes the new error reporting customization features.

® Unicode Support describes how Lasso uses Unicode internally and how Lasso translated to and from other
character encodings automatically.

® Bytes Type describes the bytes type, lists the tags that return data in the bytes type, and compares the bytes
type to the string type.

e Syntax Changes contains information about what Lasso syntax constructs have changed since Lasso
Professional 6.

e Tag Name Changes details the tag names which have been changed since Lasso 6.

Introduction

This chapter includes the upgrading instructions from Lasso Professional 6 to Lasso Professional 7. Lasso
Professional implements all of the features of Lasso Professional 7. If a site is being upgraded from Lasso
Professional 6 the items in this chapter should be applied first, then the items in the prior chapter about
upgrading from Lasso Professional 7.

In general, most sites that are written using preferred Lasso Professional 6 syntax should run with few
modifications in Lasso Professional 8.

Lasso Studio and Lasso Updater

Lasso Studio includes an Lasso Updater that can be used on code from earlier versions of Lasso to bring
it into compliance with the latest version of Lasso. See the documentation for Lasso Studio for more

information.

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 22 - UPGRADING FROM LASSO PROFESSIONAL 6 293

Error Reporting

Lasso Professional 7.0.2 introduces some important enhancements to how syntax errors and logical errors are

reported by Lasso. Each of these enhancements is discussed in this section and additional details are provided

within the Error Controls chapter.

® The error reporting level can now be adjusted in Lasso Administration and overridden on individual pages.
The error reporting level controls whether the built-in error page provides full troubleshooting details,
minimal error messages, or no error details at all.

¢ The built-in error page can now be modified in order to provide a custom server-wide error page for all
sites hosted on a server. This page can work in concert with the site-specific custom error pages to provide
an appropriate amount of information to every site visitor.

Error Reporting Level

For errors that occur while processing a page, Lasso displays error messages differently based on the current
error reporting level. This allows detailed error messages to be displayed while developing a Web site and
then for minimal or generic error messages to be displayed once a site has been deployed.

The default global error reporting level can be set in Lasso Administration in the
Setup > Global > Settings section. The error reporting level can be set to None, Minimal, or Full. The default is
Minimal. Each of these levels is described in more detail below.

The error reporting level for a particular page can be modified using the [Lasso_ErrorReporting] tag. This will
modify the error reporting level only for the current Lasso page and its includes without affecting the global
default. See the section on the [Lasso_ErrorReporting] tag in the Error Controls chapter for additional details.

* None - This level provides only a generic error message with no specific details or error code. This level
can be used on a deployment server when it is desirable to provide no specific information to site visitors.

e Minimal - This level is the default. It provides a minimal error message and error code. No context about
where the error occurred is provided. This level can be used on a deployment server in order to make
troubleshooting problems easier.

e Full - This level provides detailed error messages for debugging and troubleshooting. The path to the
current Lasso page is provided along with information about what files have been included and what
parameters have been passed to them. If a database or action error is reported the built-in error message
provides information about what database action was performed when the error occurred.

It is recommended that the global error reporting level on a production Web server be set to the default of
Minimal or to None. This will ensure that site visitors are not given detailed error messages intended for the
developer of the Web site. On a page by page basis the [Lasso_ErrorReporting] tag can then be used to set the
error level to Full in order to make debugging a site in development easier.

The [Lasso_ErrorReporting] tag can also be used with the -Local keyword to set the error reporting level to

None within sensitive custom tags or include files in order to suppress error messages from select portions of a
site.

Custom Server-Wide Error Page

The server-wide error page is now stored in the file errorlasso within the Admin folder in the Lasso Professional
8 application folder. By customizing this file the default error page for all sites hosted on the server can be
modified.

This file can be customized for any of the following purposes:

e To customize the appearance of the error page. For example, a professional hosting service could provide
an error page that provides information for their clients about how to handle the error.

¢ To provide an appropriate amount of information to site visitors. The built-in page provides different
information depending on the current error reporting level. The same levels can be used to provide either
more or less information depending on level.

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 22 - UPGRADING FROM LASSO PROFESSIONAL 6 294

e To provide logging or notification. Logging tags can be added to the error page in order to keep track of
what errors have occurred. Email notification could be used to alert the site administrator that an error has
occurred.

The customized errorlasso page should be thoroughly debugged prior to being made active, especially on a
production Web server. It can be very difficult to troubleshoot problems which are occurring on a server if
there is a problem with the error reporting page.

The server-wide errorlasso page will only be displayed if no site-specific errorlasso file is present or if there is an
error within a site-specific errorlasso file.

Unicode Support

Lasso Professional 8 introduces Unicode support throughout Lasso Service, the database connectors, and
LassoScript. This is a significant architectural change that alters how all string and binary data is processed by
Lasso.

The Unicode standard defines a universal character set which includes characters for just about every language
on the planet. The transition to a full Unicode workflow should make it easier to transfer data that contains
characters which formerly required special-purpose encodings between different applications.

Unicode is rapidly achieving dominance as the standard encoding for data on the Internet, in leading
operating systems, and in database products. Recently, Mac OS X and Windows have both implemented
native support for Unicode. All current leading Web browsers support Unicode data. Many text editors have
recently introduced native support for Unicode. And, current database offerings from MySQL and other
database vendors offer full support for Unicode encoding.

Every effort has been made to make the change to Unicode transparent to the Lasso developer. However,
these architectural changes may require modification of some Lasso Professional 6 sites and may require
some additional planning and coding in order to work with Web browsers and databases that do not yet
support Unicode.

The following list includes details about how Unicode is supported in Lasso Professional 8 and also includes
details about backwards compatibility.

Note: Please also read the following section on the new Bytes Type for details about how binary and string data
is handled using Lasso tags.

¢ Lasso Pages - If a Lasso page contains a valid byte-order mark it is read using the UTF-8 character
encoding. If no byte-order mark is read then the Lasso page is assumed to be encoded in the Macintosh
(or Mac-Roman) character set on Mac OS X or the Latin-1 character set (also known as ISO 8859-1) on
Windows or Linux.

Popular text editors can encode text files using UTF-8 and will insert the proper byte-order mark that Lasso
needs to identify the character set of the Lasso page. Consult the documentation for the text editor for
more information.

All existing Lasso pages will be read using the Macintosh or Latin-1 (ISO 8859-1) character sets which
Lasso Professional 6 used. New Lasso pages which need to take advantage of the extended character set that
Unicode offers should be encoded as UTF-8 and include a proper byte-order mark.

Note: Lasso does not support Lasso pages encoded using the UTF-16 or UTF-32 character sets.

Web Browser - By default all files sent to the Web browser by Lasso Professional 8 will be encoded
using UTF-8. The default page encoding option in the Settings > Global > Syntax section of Lasso
Administration can be used to change the default encoding to the Lasso 6 (pre-Unicode) standard Latin-1
character set (also known as ISO 8859-1).

If encoding different from the default is needed for a given Lasso page the [Content_Type] tag can be used
to instruct Lasso to encode the returned page using a different character set. For example the following tag
instructs Lasso to use the Latin-1 (ISO 8859-1) character set.

[Content_Type: 'text/html;charset=iso-8859-1"]

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 22 - UPGRADING FROM LASSO PROFESSIONAL 6 295

The [Content_Type] tag sets the page variable __encoding__ to the desired character set. Modifying this variable
will also change the character set that will be used to return the page to the client’s Web browser.

Forms - Most Web browsers return data from HTML forms using the same encoding that was used to
transmit the Web page to them. Lasso assumes that all incoming form data is going to use the default page
encoding which is set in Lasso Administration in the Settings > Global > Syntax section. This means that
all incoming form data must use either UTF-8 or Latin-1 (ISO 8859-1) encoding.

It is recommended to use UTF-8 as the default page encoding since this is the emerging Internet standard.
However, if forms are being submitted to Lasso from Web pages that do not use UTF-8 (or from pre-
Unicode browsers) it may be necessary to change the default page encoding so data in the forms will be
interpreted properly.

Database Connector - Lasso communicates with each database using the character set specified in the
table settings in Lasso Administration. The character set for MySQL databases can be set to either UTF-8 or
Latin-1 (ISO 8859-1).

By default, the Lasso Connectors for MySQL communicate with existing databases using the Latin-1 (ISO
8859-1) character set. If desired, the character set for each table can be changed to UTF-8 in the Setup >
Data Sources > Tables section of Lasso Administration.

SQL statements sent using the -SQL parameter are encoded similarly. If the -Table parameter is specified then
the character set for that table will be used. If no -Table parameter is specified then the SQL statement will
be encoded using the Latin-1 (ISO 8859-1) character set.

The Lasso Connector for FileMaker Pro uses Latin-1 (ISO 8859-1) encoding by default on Windows and
Linux. Macintosh (or Mac-Roman) encoding is used by default on Mac OS X. If required, the character
set for each database can be changed in the Setup > Data Sources > Databases section of Lasso
Administration.

The Lasso Connector for JDBC always uses UTF-8 on any platform.

Since the default character set encoding for each database connector is the same as that used in Lasso
Professional 6, no changes should be required to existing solutions. However, any database containing
extended characters must continue to use the same character encoding or stored data may not be
interpreted properly when it is retrieved from the database.

¢ Lasso tags — All Lasso tags process string data as double-byte Unicode strings. Character encoding is only
performed when data is imported into Lasso or exported according to the rules specified above. The bytes
type can be used to process binary data and to perform low-level character set translation if required.

See the following section for details of what Lasso tags return data in the bytes type and how it compares
with the string type.

Bytes Type

Since all string data is now processed using double-byte Unicode strings it is necessary to introduce a new
data type that stores single-byte binary data strings. This new data type in Lasso Professional is called the
bytes type and is manipulated using the [Bytes] tag and associated member tags. Data in the bytes type is often
referred to as a byte stream.

The bytes type adds two important abilities to Lasso Professional 8. Binary data can be treated separately
from string data and data can be converted between single-byte character sets directly within Lasso. The bytes
type is fully documented in the Extending Lasso Guide. Please see that manual for additional details about
the bytes type and the member tags that it supports.

The bytes type is used to return any strings in Lasso that will potentially contain binary data. Many
substitution tags always return byte streams or do so under certain circumstances. These tags are listed in the
following Table 1: Tags That Return the Bytes Type.

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 22 - UPGRADING FROM LASSO PROFESSIONAL 6 296

Table 1: Tags That Return the Bytes Type

Tag Description

[Bytes] Used to create a new bytes buffer or to cast a string to the bytes type. Many of
the member tags of the bytes type also return byte streams.

[Decompress] Always returns a byte stream.

[Decrypt_BlowFish]
[Encode_Base64]
[Encrypt_BlowFish]
[Field]

[Field_Read]
[File_ReadLing]
[File->Read]
[Include_Raw]
[Include_URL]
[Net->Read]
[Net->ReadFrom]
[String_ReplaceRegExp]
Other Tags

Always returns a byte stream.

Always returns a byte stream.

Always returns a byte stream.

Returns a byte stream only for MySQL fields of type BLOB.
Always returns a byte stream.

Always returns a byte stream.

Always returns a byte stream.

Always returns a byte stream.

Always returns a byte stream.

Always returns a byte stream.

Always returns a byte stream.

Returns a byte stream if the input is a byte stream, otherwise returns a string.

Many tags in Lasso such as [Array->Get] or [Map->Find] return data in the same
type it was stored. These tags may also return data in the bytes type.

Bytes and Strings

The bytes type and the string type support many of the same member tags. These member tags can be used
on either byte streams or strings without worrying about the underlying data type. The shared member tags
are listed in Table 2: Byte and String Shared Member Tags.

In addition to these tags both the bytes type and the string type support the standard comparison operators
==, I=, >>, I>>, ===, and |==. The bytes type also supports the + and += symbol for appending data to the end of

the stream.

Table 2: Byte and String Shared Member Tags

Tag Description
[Bytes->Append] Appends the specified characters onto the end of the byte stream.
[Bytes->BeginsWith] Returns true if the byte stream begins with the specified characters. Case

[Bytes->Contains]
[Bytes->EndsWith]

[Bytes->Find]

[Bytes->Get]
[Bytes->Length]
[Bytes->RemoveLeading]

[Bytes->RemoveTrailing]
[Bytes->Replace]

[Bytes->Size]
[Bytes->Split]

sensitive.
Returns true if the byte stream contains the specified characters. Case sensitive.

Returns true if the byte stream ends with the specified characters. Case
sensitive.

Returns the position of the specified characters within the byte stream. Case
sensitive.

Returns a specified character from the byte stream.
Returns the length of the byte stream in bytes.

Removes the specified characters from the beginning of the byte stream. Case
sensitive.

Removes the specified characters from the end of the byte stream. Case
sensitive.

Replaces the specified characters in the byte stream with the specified
replacement. Case sensitive.

Returns the length of the byte stream in bytes.
Splits the byte stream on the specified character. Case sensitive.

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 22 - UPGRADING FROM LASSO PROFESSIONAL 6 297

[Bytes->Trim] Trims ASCII white space characters from the start and end of the byte stream.
Removes spaces, tabs, return characters, and newline characters.

The table above includes all of the most commonly used string member tags. These tags help to make the
string and bytes types generally interchangeable. However, there are a significant number of string member
tags that are not supported by the bytes type. These are listed in Table 3: Unsupported String Member Tags.

In order to use any of these member tags on byte streams the data must first be converted to a string.
Information on how to convert data to and from the bytes type and string type is included in the next
section.

Table 3: Unsupported String Member Tags

Tag Description

Character Tags Tags which fetch information about the characters in a string including [String-
>CharDigitValue], [String->CharName], and [String->CharType].

Comparison Tags Tags which compare strings with case sensitivity. [String->Compare] and [String-
>CompareCodePointOrder]

Case Tags Tags which report the case of a string including [String->FoldCase], [String-
>LowerCase], [String->TitleCase], and [String->UpperCase].

Case Modification Tags Tags which change the case of a string including [String->ToLower], [String-
>ToTitle], and [String->ToUpper].

Character Is Tags Tags which report information about the characters within a string including all
tags starting with [String->Is...].

Miscellaneous Tags The following tags are also not supported by the bytes type: [String->Digit],

[String->Merge], [String->PadLeading], [String->PadTrailing], [String->Remove],
[String->Reverse], [String->Substring], and [String->Unescape].

Converting From Bytes to Strings

Data can be converted from byte streams to strings easily, but the method differs depending on what
character set the byte stream is encoded in and how the data is going to be used.

¢ Automatic Casting — When a byte stream is passed to a substitution or process tag that is expecting a
string value it is automatically cast to type string. For example, the [String_...] substitution tags automatically
cast their parameters to strings.

Explicit Casting - The [String] tag can be used to explicitly cast a byte stream to a string. The byte stream
will be converted by assuming it is encoded using the UTF-8 character set. Explicit casting is appropriate for
data read in using the [Include_URL] or [Net->Read] tags since most communication on the Internet is encoded
using this character set.

Converting Character Sets - The [Bytes->ExportString] tag can be used to convert a byte stream that is

encoded using a character set other than UTF-8 into a string. The tag accepts a single parameter which
specifies what character set the byte stream is encoded in and returns a string (encoded in the default

Unicode double-byte encoding that Lasso uses internally for all strings.

For example, a file can be read in the Mac-Roman character set and converted to a string using this code.

[Var: 'myfile' = (File_Read: 'myfile.txt')]
[Var: 'mystring' = $myfile->(ExportString: 'macintosh')]

Similar methods can be used to convert strings into byte streams. Tags that expect a byte stream as a
parameter automatically cast strings to byte streams. These tags include [File_Write], [File_WriteLine], [File->Write],
[Net->Write], etc. The [Bytes] tag explicitly casts strings to a byte stream. The [Bytes-ImportString] tag with a string
parameter and an encoding parameter can be used to import a string into a byte stream converting it to any
desired character encoding.

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 22 - UPGRADING FROM LASSO PROFESSIONAL 6 298

Bytes Member Tags

The bytes type supports a number of additional member tags which are documented in full in the Extending
Lasso Guide. Please see that manual for more information.

Updating Existing Sites
In order to promote backwards compatibility the bytes type supports the core member tags of the string type
and Lasso performs automatic conversions between the two types when necessary.

However, there are a couple situations which will require Lasso Professional 6 sites to be updated in order to

work properly with Lasso Professional 8. These situations are detailed below.

¢ Checking for String Type - Byte streams are of type bytes so explicit checks for type string will fail. For
example, the following code reads a file into a variable and then checks the type of the variable.

[Var: 'myfile' = (File_Read: 'myfile.txt)]
[If: $myfile->type == 'string']

/]
The conditional will fail since the variable myfile is of type bytes rather than type string. The conditional can
be changed to the following to create code that works in either Lasso Professional 6 or 7.

[Var: 'myfile' = (File_Read: 'myfile.txt)]
[If: ($myfile->type == 'string") || ($myfile->type == 'bytes')]

[/
¢ String Member Tags - If any string member tags are used on a byte stream which are not supported

by the bytes type then an error will occur. For example, this code to read in a file and then convert it to
uppercase will fail in Lasso Professional 8 since the tag [String->toUpper] is not implemented for the bytes
type.

[Var: 'myfile' = (File_Read: 'myfile.txt)]

[$myfile->toUpper]
There are two solutions to this issue. The easiest is to cast the output of [File_Read] to a string before storing
it in a variable. This solution can be applied across a site by doing a search for each of the tags that return
byte streams and adding an explicit cast using the [String] tag.

[Var: 'myfile' = (String: (File_Read: 'myfile.txt'))]

[$myfile->toUpper]
Another possibility is to use a substitution tag rather than a member tag to perform the string conversion.
The substitution tag will automatically cast the byte stream to a string and will return a string value.

[Var: 'myfile' = (File_Read: 'myfile.txt')]
[Var: 'myfile' = (String_UpperCase: $myfile)]

Syntax Changes

Lasso Professional 8 introduces changes to some of the core syntax rules of LassoScript. Most of these changes
were made to improve the reliability and error reporting of Lasso Professional 8. Some of these changes

may require you to rewrite portions of your existing Lasso-based solutions for full compatibility with Lasso
Professional 8. This section describes each change, why it was made and how to update existing Lasso pages.

Table 4: Syntax Changes

Syntax Change Description
File Tags The file tags have been modified to provide more consistent behavior. The ../ path
is now supported to move up a directory. Updated in 7.0.2 release.

LAsso 8.5 LANGUAGE GUIDE

Strict Syntax

Recursion Limit

Lasso Page Execution Time Limit

Internal Tags
lterate Enhancement

Custom Tags Enhancement
Miscellaneous Shortcuts

Unicode Support

Classic Lasso

-Email... Command Tags
Decimal Precision

Member Tags and Parentheses
PDF -Top Parameter

Global Variables
[NSLookup]

[Repetition] Tag
[TCP_...] Tags

[Else:If] and [Else_lIf]
[LoopCount] and [LoopAbort]

Container Tags

Custom Tags
XML Tags

[Encode_ISOtoMac]

CHAPTER 22 - UPGRADING FROM LASSO PROFESSIONAL 6 299

Strict syntax is now required: all parameter keywords must be preceded by a
hyphen, all string literals must be surrounded by quote marks, and all tag names
must be defined before being called.

A limit can be configured on the depth of nested [Include] and [Llbrary] tags
allowed. By default the limit is a depth of 50.

A limit can be configured on the maximum amount of time that a Lasso page will
be allowed to execute. By default the limit is 10 minutes.

Many tags are now implemented as part of the Lasso parser in order to prove
better performance.

The [Loop_Count] and [Loop_Abort] tags can now be used within [lterate] ...
[/lterate] tags.

Database results can now be retrieved from within custom tags.

A number of syntax shortcuts have been introduced. See the full description
below for details.

All strings are now processed using double-byte Unicode and output in UTF-8
format by default. See also the discussions of Unicode Support and the Bytes
Type which precede this section.

Classic Lasso support is disabled by default and its use has been deprecated.
Solutions relying on Classic Lasso should be transition to Inline-based
methodology.

The -Email... commands are no longer supported in Lasso 8. The [Email_Send]
tag must be used instead.

Decimal numbers are output using the fewest number of significant digits
possible.

Member tags which have multiple parameters must be surrounded by
parentheses.

The -Top parameter in various PDF tags always measures from the top margin of
a document.

Use the [Global] tag rather than the [Variable] tag to reference global variables.

Due to changes in Mac OS X 10.3 reverse lookups may not work with all DNS
SErvers.

The [Repetition] tag has been deprecated. Rewriting pages to use the modulus
symbol % will result in better performance.

The [TCP_...] tags have been deprecated in favor of the new [Net] type and its
member tags.

These tags are no longer supported. Use [Else] instead.

These tags are no longer supported. Use [Loop_Count] and [Loop_Abort]
instead.

Container tags must be defined within LassoStartup. Container tags cannot be
defined on-the-fly. New keywords allow both looping and simple container tags to
be created.

Parameters and return values are now passed by reference. [PreCondition] and
[PostCondition] are no longer supported. Asynchronous tag update.

The XML tags have been re-implemented. Some modifications to existing sites

may be required.

This tag and [Encode_MacTolSQ] have been deleted. Their functionality can be
replicated using the new [Bytes] type.

File Tags

The behavior of the file tags when moving, copying, or renaming files has been made more consistent. The
following rules will be used.

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 22 - UPGRADING FROM LASSO PROFESSIONAL 6 300

e If a file is being operated on and the destination is a file name then the file will be moved or copied to that
file name. For example, the following code will rename the file example.txt to renamed.txt.

[File_Move: 'example.txt', 'rename.txt’]

e If a file is being operated on and the destination is a directory then the file will be moved or copied into
the directory. For example, the following code will move the file example.txt into the /directory/.

[File_Move: 'example.txt', '/directory/]

e If a directory is being operated on and the destination is a directory then the source directory will replace
the destination directory. For example, the following code will replace the directory /destination/ with the
directory /source/.

[File_Move: '/source/", '/destination/]

In addition, the ../ path can now be used within all file tags and include tags in order to move up one
directory. The effective path will be computed and then the security settings will be checked to confirm that
the current user has permission to access the specified directory.

Strict Syntax

Lasso Professional 6 introduced the option to use strict syntax checking. This option was on by default, but

could be turned off for better backwards compatibility with Lasso Professional 5 and earlier.

In Lasso Professional 8, strict syntax checking is now required. It can no longer be deactivated.

With strict syntax the following rules are enforced:

¢ All keyword parameters to built-in and custom tags must include a hyphen. This helps to find unknown tag
parameters and to catch other common syntax errors.

e All string literals must be surrounded by quotes. This helps to prevent accidental calls to tags, to identify
undefined variables, and to catch other common syntax errors.

o All tag calls must be defined. Unknown tags will no longer simply return the tag value as a string.

With strict syntax any of the errors above will be reported when a page is first loaded. They must be corrected
before the code on the page will be executed. When upgrading to Lasso Professional 8 it is advisable to first
try existing Lasso Professional 6 sites and correct any errors that are reported.

To update existing sites for strict syntax:

If a site is relatively small then the easiest method is to load each Web page and see if any errors are reported.

The following tips can be used for a more methodical search.

® Check that all string literals are surrounded by quotes. Quotes are not necessary around integers or decimal
numbers, hyphenated keyword parameters, tag names, or variable names when used with the & or #
symbols.

¢ Check that all keywords in tag calls are preceded by a hyphen. Keyword and keyword/value parameters
must be preceded by a hyphen, but do not need to be quoted. Name/value parameters should include
quotes around both the name and value (unless they are numbers).

e Check that all command tags used within opening [Inline] tags are preceded by a hyphen. Quotes are not
necessary around command tags, even when they are specified within an array.

e Check that all client-side JavaScript is formatted properly. JavaScript should either be included

in [NoProcess] ... [[NoProcess] tags or HTML comment tags <!-- ... --> which ensure that no Lasso code within is
processed. Or, any square brackets which are required within the JavaScript should be output from a [String]
tag.

[String: "Tarray[4]]]

=> [array[4]]

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 22 - UPGRADING FROM LASSO PROFESSIONAL 6 301

Recursion Limit

Lasso includes a limit on the depth of recursive include files. This limit can help prevent errors or crashes
caused by some common coding mistakes. The limit sets the maximum depth of nested [Include] and [Library]
tags that can be used. If the depth is exceeded then a critical error is returned and logged.

The recursion limit is set to 50 by default and can be modified or turned off in the Setup > Global >
Settings section of Lasso Admin.

Note that the limit does not apply to the number of [Include] and [Library] tags within a single file, but to the
depth reached using an [Include] tag to include a file that itself uses an [Include] tag to include another file and
SO on.

Lasso Page Execution Time Limit

Lasso includes a limit on the length of time that a Lasso page will be allowed to execute. This limit can help
prevent errors or crashes caused by infinite loops or other common coding mistakes. If a Lasso page runs for
longer than the time limit then it is killed and a critical error is returned and logged.

The execution time limit is set to 10 minutes (600 seconds) by default and can be modified or turned off
in the Setup > Global > Settings section of Lasso Admin. The execution time limit cannot be set below 60
seconds.

The limit can be overridden on a case by case basis by including the [Lasso_ExecutionTimeLimit] tag at the top
of a Lasso page. This tag can set the time limit higher or lower for the current page allowing it to exceed the
default time limit. Using [Lasso_ExecutionTimeLimit: 0] will deactivate the time limit for the current Lasso page
altogether.

On servers where the time limit should be strictly enforced, access to the [Lasso_ExecutionTimeLimit] tag can be
restricted in the Setup > Global > Tags and Security > Groups > Tags sections of Lasso Admin.

Asynchronous tags and compound expressions are not affected by the execution time limit. These processes
run in a separate thread from the main Lasso page execution. If a time limit is desired in an asynchronous tag
the [Lasso_ExecutionTimeLimit] tag can be used to set one.

Note: When the execution time limit is exceeded the thread that is processing the current Lasso page will be
killed. If there are any outstanding database requests or network connections open there is a potential for some
memory to be leaked. The offending page should be reprogrammed to run faster or exempted from the time
limit using [Lasso_ExecutionTimeLimit: 0]. Restarting Lasso Service will reclaim any lost memory.

Internal Tags

Many Lasso tags are now implemented directly in the Lasso parser in order to provide better performance.
Since the new versions of these tags implement the same functionality as the old version of these tags no
changes to existing solutions are required. However, the [Lasso_TagExists] tag will report False for all of the
internal tags.
The internal tags include:
[Abort], [Define_Tag] ... [/Define_Tag], [Define_Type] ... [/Define_Type], [Encode_Set] ... [[Encode_Set], [Fail], [Fail_If],
[False], [Handle] ... [[Handle], [Handle_Error] ... [/Handle_Error], [If] ... [Else] ... [/If], [Iterate] ... [/Iterate], [Lasso_Abort],

[Loop] ... [/Loop], [Loop_Abort], [Loop_Count], [NoProcess], [Params], [Protect] ... [/Protect], [Return], [Run_Children],
[Select] ... [Case] ... [/Select], [Self], [True], and [Whilg] ... [[While].

lterate Enhancement

In Lasso Professional 6 the [lterate] ... [/lterate] tags did not support the use of the [Loop_Count] or [Loop_Abort]
tags. These tags have been rewritten in Lasso Professional 8 so that all looping container tags now function
identically.

In the following example the [Loop_Count] is output on each iteration and the iteration is stopped after the
item Beta is seen.

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 22 - UPGRADING FROM LASSO PROFESSIONAL 6 302

[lterate: (Array: 'Alpha’, 'Beta', 'Gamma'), (Var: 'Temp')]

[Loop_Count]: [Var: "Temp]
[If: $Temp == 'Beta]
[Loop_Abort]

[/
[/lterate]

=>»
1: Alpha

2: Beta

For more information about the [lterate] ... [/lterate] tags see the Conditional Logic chapter.

Custom Tags Enhancement

In Lasso Professional 6 it was not possible to get to the results of a database action from within a custom tag.
In Lasso Professional 8 this limitation has been removed. It is now possible to write custom tags which work
directly with [Field] data, the [Found_Count], [Action_Params], or any other values.

As a demonstration of this new ability the [Link_...] tags have all been rewritten as custom tags.
In the following example, a custom tag returns a string describing the results of a database action.
[Define_Tag: 'Ex_Results']

[Return: 'Showing ' + (Shown_Count) + ' records of ' + (Found_Count) + ' found.]
[/Define_Tag]

This tag can be used as follows.

[Inline: -Findall, -Database="Contacts', -Table="People', -MaxRecords=4]
[Ex_Results]
[/Inline]

=» Showing 4 records out of 8 found.

For more information about the [Define_Tag] tag and custom tags see the Custom Tags chapter.

Miscellaneous Shortcuts

A number of shortcuts have been introduced in Lasso Professional 8 which will make coding Web sites even
easier. There is no need to use any of these shortcuts. The equivalent syntax from earlier versions of Lasso will
work fine.

¢ Not Contains Symbol - The negation of the contains symbol >> is now available as !>>. This makes it easy
to check that a substring is not contained in a given string. The following example confirms that Green is
not a part of Blue World.

[('Blue World' I>> 'Green')]

=» True

¢ Equivalence Symbol - The equals symbol == checks that two values are equal by casting them to the same
data type. The new equivalence symbol === checks that two values are equal in both value and data type.
The following example shows four expressions that are True using the equals symbol ==.

'Alpha’ == 'Alpha’)] =» True
'100' == 100)] =» True
3.00 == 3] =» True

[
[
[
[(True == 1)] =» True

P

When the equivalency symbol === is used instead only the first expression is True. The rest of the expressions are
False since the data types of the two operands are different. The second expression compares a string to an integer.
Thethird expression comparesadecimal toaninteger. And, thefourth expression comparesabooleantoaninteger.

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 22 - UPGRADING FROM LASSO PROFESSIONAL 6 303

[(Alpha' === "Alpha')] =» True
[("100" === 100)] =¥ False

[(3.00 === 3] =» False
[(True === 1)] =» False

¢ String Concatenation - Strings are now concatenated together without using the + symbol. In the
following example database results are formatted without using the + symbol.

['Showing ' (Shown_Count) ' records of ' (Found_Count) ' found."]

=» Showing 4 records out of 8 found.

¢ Array Creation - The : symbol can be used for array creation. Basically Array: is equivalent to simply :.

[: 'Alpha’, 'Beta', 'Gammal]
=> (Array: 'Alpha’, 'Beta', 'Gamma')

¢ Tag References - The \ symbol can be used to reference a tag object based on its name. This allows the
descriptions of tags to be fetched or for tags to be called with programmatically defined parameters. The
following example shows what the output might be for the [Field] tag.

[Var: 'myTag' = \Field]

[$myTag->Description]

[$myTag->(Run: -Name="Field', -Params="First_Name')]

=»
A tag that returns a field value.

John

See the Advanced Programming Topics chapter for more information.

Unicode Support

All strings in Lasso Professional 8 are represented internally by double-byte Unicode values. This makes it
efficient to work with extended characters in a platform neutral fashion. All output from Lasso, whether to
the client’'s Web browser or into a database, is formatted in UTF-8 by default.

UTF-8 is a Unicode standard that is backwards compatible with common 8-bit ASCII character sets. Any
extended Unicode characters are encoded using an entity like E26; where 4E26 is a hexadecimal number
representing the Unicode value for the character.

Classic Lasso

Classic Lasso refers to the ability of Lasso to interpret command tags which are included in URLs or HTML
forms and process the action described by those command tags before a Lasso page is loaded.

In prior versions of Lasso this was the sole means of performing database actions. Since Lasso WDE 3 x it has
been possible to perform database operation using the [Inling] ... [/Inline] tags instead. It is preferable to use this
inline methodology for the following reasons.

¢ The database, table, and field names which are being accessed need never be revealed to the client.
e It is impossible for clients to create new URLs or HTML forms that perform unintended actions.

e The amount of data passed in URLs to and from the client can be greatly reduced. This can provide easier
to read and easier to bookmark URLs.

e [Inling] ... [/Inline] tags support a number of advanced features like named inlines and accepting arrays of
parameters which make it easier to separate the logic of a Web site from the presentation.

e Some actions such as issuing SQL statements to Lasso MySQL require using [Inline] ... [/Inline] functionality
already.

Note: It is possible to enable Classic Lasso syntax in the Setup > Global > Syntax section of Lasso
Administration, however since this functionality has been deprecated it will not be supported in a future version
of Lasso. It is recommended that sites be transitioned over to inline methodology when used with Lasso
Professional 8.

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 22 - UPGRADING FROM LASSO PROFESSIONAL 6 304

To update existing sites:

The [Action_Params] tag can be used to pass all parameters from the URL or HTML form that loaded the current
page to an opening [Inline] ... [/Inline] tag.

In the result page, surround the part of the page that references database results with [Inline] ... [/Inline] tags. The
opening [Inline] tag should have a single parameter of [Action_Params]. Often, the [Inline] ... [/Inline] tags can simply
surround the entire page contents.

[Inline: (Action_Params)]
... Page Contents and Database Action Results ...
[/Inling]

The [Inline] ... [/Inline] tags must not be contained within any other [Inline] ... [/Inline] tags. The [Inline] ... [/Inline] tags
must surround all [Records] ... [[Records], [Field], [Found_Count], [Link_...], [Error_CurrentError] and other tags that will
return the database results.

In order to enhance security, command tags such as the -Database, -Table, and action can be added as
parameters to the opening [Inline] tag. These parameters should be placed after the [Action_Params] parameter
and will override any conflicting parameters from the URL or HTML form that loads the result page.

For example, the following [Inline] will always perform a -Search action on the People table of the
Contacts database even if a -FindAll or -Delete action is specified in the URL.

[Inline: (Action_Params),
-Search
-Database='Contacts’,
-Table='People’,
-KeyField="1D]
... Page Contents and Database Action Results ...
[/Inling]

Now that the -Database, -Table, and action are specified in the opening [Inline] tag they can be removed from the
URL or HTML form that loads the response page. Any command tags or name/value parameters which will
be specified by the client should be left in the URL or HTML form, but static command tags can be moved as
parameters into the opening [Inline] tag.

-Email... Command Tags

The -Email... commands are no longer supported in Lasso 8. Enabling Classic Lasso syntax will not enable this
functionality. The only way to send email through Lasso Professional 8 is to use the [Email_Send] tag.

To update existing sites:

e If emails are being sent using the [Inline] ... [/Inline] tags they can be modified to use the [Email_Send] tag as
follows. The following shows the old approach based on -Email... command tags.

[Inline: -Email.Host='mail.example.com’,
-Email. To='"me@example.com’,
-Email.From='me@exmaple.com',
-Email.Subject="An Example Email Message',
-Email.Format="email_format.lasso']

[/Inline]

The syntax for [Email_Send] is very similar. Notice that -Email.Format has been changed to -Body=(Include: ...).
This is the preferred method of including another Lasso page as the body of an email message.

[Email_Send: -Host="mail.example.com’,
-To="me@example.com’,
-From="me@exmaple.com’,
-Subject="An Example Email Message',
-Body=(Include: 'email_format.lasso')]

e If the inline performs a database search in addition to sending an email message the two functions must be
factored out as follows. The following example performs a search and sends a single email message.

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 22 - UPGRADING FROM LASSO PROFESSIONAL 6 305

[Inline: -FindAll,
-Database="Contacts',
-Table='People’,
-Email.Host="mail.example.com’,
-Email. To="me@example.com’,
-Email.From="me@exmaple.com’,
-Email.Subject="An Example Email Message',
-Email.Format="email_format.lasso']

[Records]

[/Récords]
[/Inline]

In the replacement the -Email... tags are removed from the opening [Inline] tag and the [Email_Send] tag is
placed within the [Inline] ... [/Inline] tags, but not within the [Records] ... [[Records] tags. If [Email_Send] is placed
in the [Records] ... [/[Records] tags then one email for each found record will be sent.

[Inline: -FindAll,
-Database="Contacts',
-Table="People"]

[Email_Send: -Host="mail.example.com’,
-To="me@example.com’,
-From="me@exmaple.com’,
-Subject="An Example Email Message',
-Body=(Include: 'email_format.lasso')]

[Records]

[/F.{.e.zcords]
[/Inline]

e If emails are being sent using command tags in a URL they can be modified to use the [Email_Send] tag as
follows.

<a href="default.lasso?-Email. Host=mail.example.com&
-Email. To=me@example.com&-Email.From="me@exmaple.com&
-Email.Subject="An Example Email Message&
-Email.Format=email_format.lasso"> Send Email

The URL should be simplified to contain just the name of the Lasso page.

 Send Email

The file default.lasso then must be augmented with the [Email_Send] tag. Notice that -Email.Format has been

changed to -Body=(Include: ...). This is the preferred method of including another Lasso page as the body of
an email message.

[Email_Send: -Host="mail.example.com’,
-To="me@example.com’,
- From="me@exmaple.com’,
-.Subject="An Example Email Message',
-Body=(Include: 'email_format.lasso')]

The same technique can be used to modify an HTML form. Simply remove the -Email... command tags from
the form and place an [Email_Send] tag on the response file.

Decimal Precision

Decimal numbers are output using the fewest number of significant digits required. In prior versions of Lasso
decimal numbers were always output by default using six significant digits. For example, the following math
calculation outputs only two significant digits.

[2.02 +2.0400] =» 4.06

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 22 - UPGRADING FROM LASSO PROFESSIONAL 6 306

In general the output from Lasso Professional 8 should be more readable than the output from Lasso
Professional 6 so no changes to existing code should be required. In order to modify the number of
significant digits that Lasso outputs the [Decimal->SetFormat] tag should be used.

Member Tags and Parentheses

Member tags which have multiple parameters must be surrounded by parentheses. Earlier versions of Lasso
allowed some non-recommended syntax constructs to work. The new parser in Lasso Professional 8 is more
strict about when parentheses are required around tag calls.

Specifically, the following syntax worked in Lasso Professional 6, but is no longer supported in Lasso
Professional 8.

[(Date: '2003-12-01') -> Difference: (Date), -Hour)]

The code should be changed to the following. The parentheses around the [Date->Difference] tag clarify to
which tag the -Hour parameter belongs.

[(Date: '2003-12-01') -> (Difference: (Date), -Hour))]

For best results any nested tags or member tags which require two or more parameters should be surrounded
by parentheses.

PDF -Top Parameter

The -Top parameter in all PDF tags now always measures from the top margin of a document. In Lasso
Professional 6 some of the PDF tags measured from the bottom of the page. See the Lasso 8 Reference and
the PDF chapter for additional details and a complete list of tags that have changed.

Global Variables

In Lasso Professional 8 global variables should always be manipulated using the [Global] tag rather than the
[Variable] tag. The $ symbol can be used to refer to either global variables or page variables. If both a page
variable and a global variable are defined with the same name then the $ symbol will return the value of the
page variable.

Sites which do not use global variables do not require any modifications. The only sites that will require
updates are those that used the [Variable] tag to refer to previously created global variables. These sites should
be updated to use the [Global] tag instead.

[NSLookup]

Due to changes in Mac OS X 10.3 the [NSLookup] tag may not be able to perform reverse DNS lookups (from
IP address to host name) on all DNS servers. Normal DNS lookups (from host name to IP address) should

continue to work fine. This issue affects both Lasso Professional 6 and Lasso Professional 8 running on Mac
OS§ X 10.3.

[NSLookup: '127.0.0.11

[Repetition] Tag

The [Repetition] tag is deprecated in Lasso Professional 8 and will not be supported in the next version of Lasso.
Converting loops that use the [Repetition] tag to use the modulus symbol % instead will result in faster code
execution.

To update existing sites:

Replace the [Repetition: 2] tag with (Loop_Count % 2 == 0). The second operand of the % symbol should be
whatever number was specified as a parameter to the [Repetition] tag.

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 22 - UPGRADING FROM LASSO PROFESSIONAL 6 307

For example, the following loop which makes use of [Repetition: 5] to display a message every fifth time
through the loop.
[Loop: 100]
[If: (Repetition: 5)]
[Loop_Count] is divisible by 5!

/]
[/Loop]

This loop can be rewritten using the modulus operator % as follows.
[Loop: 100]
[If: (Loop_Count % 5 == 0)]

[Loop_Count] is divisible by 5!

[/
[/Loop]

The second loop will have exactly the same output as the first loop, but will run much faster.

[TCP_...] Tags

The [TCP_...] tags have been deprecated in favor of the new [Nef] type and its member tags. Consult the
Advanced Programming Topics chapter for details about the new tags.

[Else:lf] and [Else_If]

The [Else] tag supports the functionality that was provided by the dedicated [Else:lf] and [Else_lf] tags in prior
versions of Lasso. In order to streamline the language and provide faster code processing only the [Else] tag is
supported in Lasso Professional 8.
For example, in the following code the [Else] tag is used to check several condition. Without a conditional
parameter the [Else] tag is the default value for the [If] ... [/If] tags and always returns its value.
[If: $Condition == 'Alpha’]
... Alpha ...
[Else: $Condition == 'Beta']
... Beta ...
[Else: $Condition == 'Gamma]
... Gamma ...
[Else]
... Default ...

[/

To update existing sites:

Change all [Else:If] and [Else_If] tags to [Else].

[LoopCount] and [LoopAbort]

In order to streamline the language and provide faster code processing the synonyms [LoopCount] for
[Loop_Count] and [LoopAbort] for [Loop_Abort] are no longer supported in Lasso Professional 8.

To update existing sites:

Change all [LoopCount] tags to [Loop_Count] and all [LoopAbort] tags to [Loop_Abort].

Container Tags

In order to provide more efficient code execution it is now necessary for all container tags to be defined in
LassoStartup. Any container tags which are defined within included files or library files will no longer function

properly.

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 22 - UPGRADING FROM LASSO PROFESSIONAL 6 308

The [Define_Tag] tag now accepts two parameters for creating container tags. If the -Container keyword is used
then a simple, non-looping container tag will be created. If the -Looping keyword is used then a looping
container tag will be created. The only difference is that the [Loop_Count] will only be modified in looping
container tags.

See the Custom Tags chapter for more details about defining custom container tags.

Custom Tags

All parameters and return values are now passed to custom tags by reference. Existing custom tags may need
to be updated so that they do not cause any unwanted side effects or cause syntax errors.

The [PreCondition] and [PostCondition] tags are no longer supported. The -Type and -ReturnType parameters should
be used in a custom tag definition in order to restrict the parameter types and return type for a custom tag.

Asynchronous custom tags do not have access to page variables from the page that called the custom tag. The
documentation for Lasso Professional 6 was not clear on this point. Any variables which are required within
the custom tag should be stored as globals or passed into the custom tag as parameters.

A number of other enhancements have been made to custom tags as well. See the Custom Tags chapter for
more details about defining custom tags.

To update existing sites for parameter passed by reference:

Use different names for locals defined within a custom tag and for the parameters of the tag. For example, the
following tag will cause a syntax error since it is not possible to modify the incoming literal changing its type
from an integer into a string.

[Define_Tag: 'Ex_UpperCase', -Required="Value']
[Local: 'Value' = (String_UpperCase: 'Value')]
[Return: #Value]

[/Define_Tag]

[Ex_UpperCase: 1] =» Syntax Error

Instead, use a different name for the local variable within the tag. This code will work fine in Lasso
Professional 8 and in Lasso Professional 6. By prefixing the local variables name with L_ there is no conflict
with the incoming parameter names.

[Define_Tag: 'Ex_UpperCase', -Required="Value']
[Local: 'L_Value' = (String_UpperCase: 'Value")]
[Return: #L_Value]

[/Define_Tag]

[Ex_UpperCase: 1] = 1

To update existing sites to remove pre- and post-conditions:

Use the -Type and -ReturnType parameters to specify the types for each parameter of a custom tag and the
return type for the tag. Additional error checking can be performed with the custom tag itself.

For example, the following custom tag definition uses [PreCondition] and [PostCondition] to check that all of the
tag's parameters and the tag’s return value are strings.

Define_Tag: 'Ex_Concatenate',
-Required="Param1’,
-Required="Param2’;

PreCondition: #Param1->Type == 'string’;
PreCondition: #Param2->Type == 'string’;
PostCondition: Return_Value == "string’;
Return: #Param1 + #Param2;

[Define_Tag;

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 22 - UPGRADING FROM LASSO PROFESSIONAL 6 309

In Lasso Professional 8 this tag can be rewritten as the following. The -Type parameters specify the required
type for the preceding -Required parameter. The -ReturnType parameter specifies the required type for the return
value. If the parameters or return type are not of the proper type then an error will be returned.

Define_Tag: 'Ex_Concatenate',
-Required='"Param1', -Type='string’,
-Required='"Param2', -Type='string’,
-ReturnType='string’;

Return: #Param1 + #Param2;

IDefine_Tag;

XML Tags

The XML tags in Lasso Professional 8 have been re-implemented using native C/C++ libraries for greater
speed and functionality. The behavior of some of the XML tags has changed and some modifications to
existing sites may be required for full compatibility.

e [XML->Children], [XML->Attributes], and [XML->Contents] are now read-only. In Lasso Professional 6 these tags
could be used to inspect or modify the XML data. In Lasso Professional 8 these tags can only be used to
inspect XML data.

o [XML_Extract] — The [XML_Extract] tag will interpret some -XPath parameters differently. In particular, the new
XML libraries interpret the XPath / to refer to the root of the XML data rather than the root tag in that data.
I* can be used to refer to the root tag. The new [XML->Extract] tag is the preferred method of performing
XPaths on XML data and uses the same XPath syntax as [XML_Extract].

e [XML->Children] — The [XML->Children] tag now includes additional text children for many XML tags. These
children represent the text on either side of embedded tags. For example, the following <a> tag has three
children some, the tag, and text.

 Some Embedded Text

Lasso Professional 6 would not provide access to these text children so the behavior of Lasso Professional
8 is preferred. The text children all have a name of text and may be empty if no text is specified between the
various tags.

[Encode_ISOtoMac] and [Encode_MacTolSO]

The [Encode_ISOtoMac] and [Encode_MacTolSO] tags are not compatible with the Unicode strings that Lasso now
uses to store strings. These tags must be modified in order for sites that use them to work properly with Lasso
Professional 8.

To Update Existing Sites:

The output of the [Include_Raw], [File_Read], and other tags that might return data in a native character set have
all been changed to the bytes type. The bytes type preserves the character set of the underlying data.

Note: See the earlier section on the Bytes Type for a full discussion of this new data type.

In Lasso Professional 6 a [File_Read] operation which read a Latin-1 (ISO 8859-1) file may have appeared like
this. This code would translate the file from its native character set to Mac-Roman encoding.

[Variable: 'myFile' = (File_Read: 'myfile.text')]
[Variable: 'myString' = (Encode_ISOtoMac: $myFile)]

In Lasso Professional 8 the following code would be used. This code reads in the file as a byte stream and
then uses [Bytes->ExportString] to convert the Latin-1 (ISO 8859-1) characters to the native Unicode-based
double-byte strings that Lasso Professional 8 uses for character data.

[Variable: 'myFile' = (File_Read: 'myfile.text')]
[Variable: 'myString' = $myFile->(ExportString: 'is08859-1")]

With this change the remainder of the code should not need to be changed since the end result has the same
practical value, a natively encoded string.

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 22 - UPGRADING FROM LASSO PROFESSIONAL 6 310

Tag Name Changes

All tags from Lasso Professional 6 are supported in Lasso Professional 8 except for those listed in the table
below. There are also a number of tag names which have changed or been deprecated in favor of new tags or
methodologies in Lasso Professional 8.

The following table lists tags that are not supported in Lasso Professional 8. These tags must be replaced in
order for sites to work properly in Lasso Professional 8.

Table 5: Unsupported Tags

Lasso 6 Tag Lasso 8 Tag Equivalent
[Encode_MacTolSO] [Bytes->ExportString]
[Encode_ISOtoMac] [Bytes->ExportString]

The following table lists the tag names that have been changed in Lasso Professional 8 since the release of
Lasso Professional 6. The old versions of each tag will continue to work, but their use has been deprecated.
Any new development in Lasso Professional 8 should use the new versions of the tag names.

Table 6: Tag Name Changes

Lasso 6 Tag Lasso 8 Tag Equivalent
[Null->Up] [Null->Parent]
[String->Length] [String->Size]

The following table lists the tags from Lasso Professional 6 which have been deprecated in Lasso Professional
8 and what code equivalent should be used. The deprecated versions of these tags will continue to work,

but any new development in Lasso Professional 8 should use the suggested code equivalent rather than the
deprecated tags.

Table 7: Deprecated Tags

Lasso 6 Tag

Lasso 8 Tag Equivalent

[Date_GetCurrentDate]
[Date_GetDay]
[Date_GetDayOfWeek]
[Date_GetHour]
[Date_GetMinute]
[Date_GetMonth]
[Date_GetSecond]
[Date_GetYear]
[Error_NoRecordsFound]
[PostCondition]
[PreCondition]
[Repetition]
[TCP_Close]
[TCP_Open]
[TCP_Send]

[Date]

[Date->Day]

[Date->DayOfWeek]
[Date->Hour]

[Date->Minute]

[Date->Month]

[Date->Second]

[Date->Year]

Check for whether [Found_Count] is zero.
-ReturnType in [Define_Tag]
-Type or -Criteria in [Define_Tag]
Modulus Symbol %

[Net->Close]

[Net->Connect]

[Net->Read], [Net->Write]

LAsso 8.5 LANGUAGE GUIDE

Chapter 23
Upgrading From
Lasso Professional 5

This chapter contains important information for users of Lasso Professional 5 who are upgrading to Lasso
Professional 8. Please read through this chapter before attempting to run solutions in Lasso Professional 8
that were originally developed for an earlier version of Lasso.

The upgrading chapters are cumulative so this chapter should be read in conjunction with the preceding
chapters for full information about changes to Lasso.

Topics in this chapter include:

e Introduction includes general information about what has changed in Lasso Professional 8.

® Tag Name Changes details the tag names which have been changed.

e Syntax Changes contains information about what Lasso syntax constructs have changed.

e Lasso MySQL contains information about changes made to the Lasso Connector for Lasso MySQL.

Introduction

This chapter includes the upgrading instructions from Lasso Professional 5 to Lasso Professional 8. If a site
is being upgraded from Lasso Professional 5 the items in this chapter should be applied first, followed by
the items in the prior chapter about upgrading from Lasso Professional 6, and then the items in the chapter
about upgrading from Lasso Professional 7.

Lasso Studio and Lasso Updater

Lasso Studio includes a Lasso Updater that can be used on code from earlier versions of Lasso to bring it into
compliance with the latest version of Lasso. See the documentation for Lasso Studio for more information.

Tag Name Changes

All tags from Lasso Professional 5 are supported in Lasso Professional 8 except for those listed in the table
below. There are also a number of tag names which have changed or been deprecated in favor of new tags or
methodologies in Lasso Professional 8.

The following table lists tags that are not supported in Lasso Professional 8. These tags must be replaced in
order for sites to work properly in Lasso Professional 8.

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 23 - UPGRADING FROM LASSO PROFESSIONAL 5 312

Table 1: Unsupported Tags

Lasso 5 Tag Lasso 8 Tag Equivalent
[Encode_MacTolSO] [Bytes->ExportString]
[Encode_ISOtoMac] [Bytes->ExportString]

The following table lists the tag names that have been changed in Lasso Professional 8 since the release of
Lasso Professional 5. The old versions of each tag will continue to work, but their use has been deprecated.
Any new development in Lasso Professional 8 should use the new versions of the tag names.

Table 2: Tag Name Changes

Lasso 5 Tag Lasso 8 Tag Equivalent
[Null->Up] [Null->Parent]
[String->Length] [String->Size]

The following table lists the tags from Lasso Professional 5 which have been deprecated in Lasso Professional
8 and what code equivalent should be used. The deprecated versions of these tags will continue to work,

but any new development in Lasso Professional 8 should use the suggested code equivalent rather than the
deprecated tags.

Table 3: Deprecated Tags

Lasso 5 Tag

Lasso 8 Tag Equivalent

[Date_GetCurrentDate]
[Date_GetDay]
[Date_GetDayOfWeek]
[Date_GetHour]
[Date_GetMinute]
[Date_GetMonth]
[Date_GetSecond]
[Date_GetYear]
[Error_NoRecordsFound]
[PostCondition]
[PreCondition]
[Repetition]
[TCP_Close]
[TCP_Open]
[TCP_Send]

[Date]

[Date->Day]

[Date->DayOfWeek]
[Date->Hour]

[Date->Minute]

[Date->Month]

[Date->Second]

[Date->Year]

Check for whether [Found_Count] is zero.
-ReturnType in [Define_Tag]
-Type or -Criteria in [Define_Tag]
Modulus Symbol %

[Net->Close]

[Net->Connect]

[Net->Read], [Net->Write]

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 23 - UPGRADING FROM LASSO PROFESSIONAL 5 313

Syntax Changes

Lasso Professional 7 introduces changes to some of the core syntax rules of Lasso. Most of these changes
were made to improve the reliability and error reporting of Lasso. Some of these changes may require you to
rewrite portions of your existing Lasso-based solutions for full compatibility with Lasso Professional 8. This
section describes each change, why it was made and how to update existing Lasso pages.

Table 4: Syntax Changes

Syntax Change Description

No Process Tags New [NoProcess] ... [[NoProcess] tags allow a portion of a page to be passed to
the browser without being processed.

Strict Syntax A strict syntax option allows errors such as non-hyphenated parameters, non-
quoted variables, and undefined tags to be reported as syntax errors.

Date Data Type Date operations have been converted to a new date data type. Lasso 5 date tags
have some modifications.

Integer Rounding The [Integer] tag now rounds to the nearest integer instead of truncating.

No Records Found The [Error_NoRecordsFound] tag has been deprecated. Check whether [Found_

Count] equals zero instead.

No Process Tags

Lasso Professional 8 includes a container tag [NoProcess] ... [[NoProcess] that instructs the Lasso parser to
ignore its contents. This allows code from other programming languages to be passed through to the browser
without any processing by Lasso. These new tags do not require any changes to existing Lasso Web sites, but
may make transitioning from older versions of Lasso easier.

The [NoProcess] ... [[NoProcess] tags must be embedded in a page exactly as written with no extra spaces or
parameters within the square brackets. They cannot be used within LassoScript.

To instruct Lasso to ignore a portion of a page:
Use the [NoProcess] ... [/NoProcess] tags. In the following example, the entire contents of a JavaScript code block
is ignored by Lasso. Any array references within the JavaScript will not be interpreted by Lasso as square
bracketed tags.
[NoProcess]
<script language="JavaScript">
... JavaScript Expressions ...
</script>
[/NoProcess]

Strict Syntax

With strict syntax the following rules are enforced:

e All keyword parameters to built-in and custom tags must include a hyphen. This helps to find unknown tag
parameters and to catch other common syntax errors.

o All string literals must be surrounded by quotes. This helps to prevent accidental calls to tags, to identify
undefined variables, and to catch other common syntax errors.

e All tag calls must be defined. Unknown tags will no longer simply return the tag value as a string.

With strict syntax any of the errors above will be reported when a page is first loaded. They must be corrected

before the code on the page will be executed. When upgrading to Lasso Professional 8 it is advisable to first

try existing Lasso Professional 5 sites and correct any errors that are reported.

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 23 - UPGRADING FROM LASSO PROFESSIONAL 5 314

To update existing sites for strict syntax:

If a site is relatively small then the easiest method is to load each Web page and see if any errors are reported.

The following tips can be used for a more methodical search.

¢ Check that all string literals are surrounded by quotes. Quotes are not necessary around integers or decimal
numbers, hyphenated keyword parameters, tag names, or variable names when used with the & or #
symbols.

¢ Check that all keywords in tag calls are preceded by a hyphen. Keyword and keyword/value parameters
must be preceded by a hyphen, but do not need to be quoted. Name/value parameters should include
quotes around both the name and value (unless they are numbers).

¢ Check that all command tags used within opening [Inline] tags are preceded by a hyphen. Quotes are not
necessary around command tags, even when they are specified within an array.

¢ Check that all client-side JavaScript is formatted properly. JavaScript should either be included

in [NoProcess] ... [[NoProcess] tags or HTML comment tags <!-- ... --> which ensure that no Lasso code within
is processed. Or, any square brackets which are required within the JavaScript should be output from an
[String] tag.

[String: "Tarray[4]]]

=» [array[4]]

Date Data Type

The date tags from Lasso 5 have been replaced by new date and duration data types in Lasso 7. This change
should not require any changes to existing code, but many Lasso 5 tags have been deprecated and many other
operations are significantly easier using the new tags. See the Date and Time Operations chapter for full
documentation of the new date and duration data types.

Some highlights of the new date and duration data types include:
¢ The [Date] tag can be used in place of [Date_GetCurrent] date to return the current date and time.
e The [Date] tag now recognizes MySQL date formats natively as well as United States date formats.

¢ The [Date_Get...] tags have been replaced by member tags which perform equivalent functions. [Date->Day]
returns the current day of the month and [Date->Year] returns the current 4-digit year.

e The week number can be output using [Date->Week] and the current day of the year can be output using
[Date->DayOfYear].

¢ The duration between two dates can be output using the subtraction symbol [(Date) - (Date: 3/4/1984")] or a
duration can be added to a date using the addition symbol [(Date) + (Duration: -Hour=1)].

¢ The output format for all date tags on a Lasso page can be set using [Date_SetFormat]. For example,
[Date_SetFormat: '%Q %T'] will set all dates to output in MySQL date format.

¢ Individual dates can be formatted using [Date->Format]. For example [Date->(Format: '%Q %T')] will output the
current date in MySQL date format.

¢ Upon casting a date type, Lasso 7 automatically adjusts invalid dates to be a valid equivalent, where
Lasso 5 returns a null value instead of an invalid date. For example, 9/31/2002 is an invalid date because
there are not 31 days in September. The expression [Date:'9/31/2002] returns 10/1/2002 in Lasso 7, whereas
[Date:'9/31/2002'] returns no value in Lasso 5.

Integer Rounding

The [Integer] tag now rounds decimal values to the nearest integer. In Lasso Professional 5 the [Integer] tag
instead truncated decimal values to the next lowest integer. The new process yields a more accurate result. In
general, no changes to existing sites should be necessary.

To update existing sites:

Use the [Math_Floor] tag to return the next lowest integer rather than using the [Integer] tag.

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 23 - UPGRADING FROM LASSO PROFESSIONAL 5 315

No Records Found

The [Error_NoRecordsFound] tag has been deprecated. This tag will continue to work with the Lasso Connector
for FileMaker Pro, but may not work with MySQL databases or with third party data source connectors.

To update existing sites:
Change any code which uses [Error_NoRecordsFound] to instead check whether [Found_Count] is equal to zero. For
example, the following code from Lasso 5:

[If: (Error_CurrentError) == (Error_NoRecordsFound)]
No records were found!

|
Can be written as follows in Lasso 7:

[If: (Found_Count) == 0]
No records were found!

[/

Lasso MySQL

A number of changes have been made to the Lasso Connector for Lasso MySQL in order to make its behavior
match that of the Lasso Connector for FileMaker Pro. These changes will not in general require any changes
to existing Lasso Professional 5 sites.

Table 5: Lasso MySQL Syntax Changes

Syntax Change Description

-Add and -Update The -Add and -Update actions now return the record which was just added to the
database or updated within the database by default.

Full Text Searching The ft operator allows full text indices to be searched. Lasso Administration
allows full text indices to be created.

Random Sorting The -SortRandom keyword can be used to return MySQL results in random order.

Regular Expression Searching The rx and nrx operators allow regular expression searches to be performed and
all records which match or do not match the results to be returned.

Searching for Distinct Values The -Distinct keyword allows only distinct records from search results to be
returned.

Searching for Null Values The inline tag now recognizes Null as a value distinct from the empty string
allowing Null values in databases to be found.

Using LIMIT Options The -UseLimit keyword instructs Lasso to use LIMIT options to select the found

records to show rather than using native methods. This can result in better
performance on large databases with large found sets.

Value Lists Values lists are now supported for ENUM and SET data types within MySQL
databases.

See the MySQL Data Sources for complete documentation of these changes.

LAsso 8.5 LANGUAGE GUIDE

Chapter 24
Upgrading From
Lasso WDE 3.x

This chapter contains important information for users of Lasso Web Data Engine 3.x who are upgrading
to Lasso Professional 8. Please read through this chapter before attempting to run solutions in Lasso
Professional 8 that were originally developed for an earlier version of Lasso.

The upgrading chapters are cumulative so this chapter should be read in conjunction with the preceding
chapters for full information about changes to Lasso.

Topics in this chapter include:

e Introduction includes general information about what has changed in Lasso Professional 8.

e Syntax Changes contains information about what Lasso syntax constructs have changed since Lasso WDE
3.x and how to update Lasso pages which use those syntax constructs.

e Tag Name Changes details the tag names which have been changed in Lasso 8 since Lasso 3.
¢ Unsupported Tags lists the Lasso 3 tags that are no longer supported in Lasso Professional 8.

e FileMaker Pro contains information about how to update a solution which depended on the Apple Event
based FileMaker Pro data source module to the new Lasso Connector for FileMaker Pro.

This chapter does not attempt to cover every issue that users of versions of Lasso prior to Lasso Web Data
Engine 3.x may encounter.

Introduction

This chapter includes the upgrading instructions from Lasso Web Data Engine 3.x to Lasso Professional 5. If a
site is being upgraded from Lasso Web Data Engine 3.x the items in this chapter should be applied first, then
the items in the preceding upgrading chapters.

Sites that are upgraded from Lasso Web Data Engine 3.x to Lasso Professional 8 will in general require

significant modifications.

Lasso Studio and Lasso Updater

Lasso Studio includes a Lasso Updater that can be used on code from earlier versions of Lasso to bring it into
compliance with the latest version of Lasso. See the documentation for Lasso Studio for more information.

Syntax Changes

Lasso Professional 8 introduces changes to some of the core syntax rules of Lasso. Some of these changes may
require you to rewrite portions of your existing Lasso-based solutions. This section describes each change,
why it was made and how to update existing Lasso pages.

LAsso 8.5 LANGUAGE GUIDE

Table 1: Syntax Changes

CHAPTER 24 - UPGRADING FROM LAsso WDE 3.x 317

Syntax Change

Description

Square Brackets
Commas

Keywords

Encoding Keywords

Else If

Include
Post Inline

SQL Inline
File Tags and Logging

Line Endings
JavaScript

Macros
Numeric Literals

Mathematical Precision

All expressions in square brackets are now interpreted.
Commas are no longer allowed after tag names.
Keyword names now always begin with a hyphen.

The default is to HTML encode outermost substitution tags and apply no
encoding to nested sub-tags.

The [Else:lf] tag is no longer supported. The [Else] tag has been enhanced to
provide the same functionality.

The [Include] tag now returns an error if the specified file does not exist.

The [Post_lInline] tag has been replaced by a new scheduling facility accessed
through the [Event_Schedule] tag.

The [SQL_lInline] tag has been replaced by a new -SQL command tag which can
be used in a normal [Inline] tag.

The new distributed architecture means these tags work only on files accessible
by Lasso Service.

The default line endings on Mac OS X are different from those for Mac OS 9.

Special care must be taken to ensure that array references in JavaScript are not
interpreted by Lasso.

Macros are no longer supported. Much of their functionality can be achieved
through custom tags.

Numeric literals must not be written with quotes. The conversion of strings to
numeric values has changed.

Precision is handled automatically by the new mathematical expressions and

symbols and can be set explicitly using [Decimal->SetFormat] tag.

Double Quotes Single quotes are preferred for designating string literals.
Restrictions Restrictions on maximum values for math operations and looping tags have been
eased.

Square Brackets

In earlier versions of Lasso, only tag names which were recognized by Lasso would be interpreted. In Lasso
Professional 8, all square bracketed expressions are interpreted whether they contain a valid Lasso tag or not.
This allows expressions and member tags to be used within square brackets and allows custom tags to be
used.
For example, the following expressions would all have been ignored in earlier versions of Lasso, but will be
interpreted as indicated by Lasso Professional 8.

[45] =» 45

[1+2]=>3

[blue] =» blue

[aqua' + 'marine'] =» aquamarine

If square brackets are used decoratively on a page, e.g. to surround link names, they will be stripped out by
Lasso Professional 8.

Note: See the section on JavaScript that follows for tips on using square brackets within client-side JavaScript
contained in a Lasso page.

To update existing sites:

There are several options to update existing sites depending on how the square brackets are being used on a

page.

e Use the HTML entities for square brackets. These include [for [and] for]. The following example
would display a link name surrounded by square brackets.

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 24 - UPGRADING FROM LAsso WDE 3.x 318

 [Home]

e Use the Lasso [String] tag to output an expression that includes square brackets. Lasso will not interpret
the output of Lasso tags so square brackets can be safely displayed on a page in this way. The following
example would display a link name surrounded by square brackets.

 [String: 'THome]]

The expression can also be written without the [String] tag.

 [[Home]]

Note: Any string literals which are output in this way should always be surrounded by single quotes,
otherwise there is a danger that they might be interpreted as a tag.

¢ Create a custom tag that outputs text surrounded by square brackets. The following simple [Define_Tag] can
be placed at the top of any page that requires it.

[Define_Tag: 'Bracket']
[Return: (Params->(Get: 1)]
[/Define_Tag]

This tag can then be called to display a link name surrounded by square brackets.

 [Bracket: 'Home']

Commas

In earlier versions of Lasso, commas could optionally be used following the tag name, before any parameters
of the tag. Although this syntax hasn’t been recommended for some time there are still examples of it in the
Lasso Web Data Engine 3.x documentation and in some Lasso-based Web sites. The following example shows
the tag construct with a comma following the tag name.

[Tag_Name, Parameters] (No longer supported)

This syntax was particularly common with tags that took only a single keyword. For example, both of the
following tags were commonly written with a comma following the tag name.

[Server_Date, Short] (No longer supported)
[Error_CurrentError, ErrorCode] (No longer supported)

Using a colon after the tag name is now mandatory in Lasso Professional 8. This change was made in order to
facilitate parsing of more complex expressions. The tag examples above must now be written as follows with
a colon after the tag name. The following example also demonstrates the new method of specifying keyword
names with a leading hyphen.

[Server_Date: -Short]
[Error_CurrentError: -ErrorCode]

To update existing sites:

Use a regular expression to correct Lasso pages that contain the older comma syntax. Most text editors and
Web authoring environments can perform a find/replace using regular expressions.

1 Search for the following regular expression pattern to find tags in square brackets which have a comma
after the tag name:

\[([A-Za-z_J+),("IN]
Use this pattern as the replacement value:
[\M:A2]

2 Search for the following regular expression pattern to find sub-tags in parentheses which have a comma
after the tag name:

\(([A-za-z_]+),("1)Y)

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 24 - UPGRADING FROM LAsso WDE 3.x 319

Use this pattern as the replacement value:
(\1:\2)

What the first regular expression does is search for a square bracket followed by a tag name, a comma, then
any characters up until the closing square bracket. The replacement pattern inserts an opening square bracket,
the tag name, a colon, the contents after the comma, and a final closing square bracket. The second regular
expression performs the same steps with parentheses instead of square brackets.

Keywords

All keywords and keyword/value parameters (formerly named parameters) start with a hyphen in Lasso 8.
This used to be an option for command tags used within the [Inline] tag in Lasso Web Data Engine 3.x, but
is now required for all tags. Most tags which were supported in Lasso Web Data Engine 3.x will continue
to accept keywords without the leading hyphen so Lasso Web Data Engine 3.x solutions do not need to
be rewritten. However, all keyword names without leading hyphens have been deprecated and are not
guaranteed to work in future versions of Lasso.

This change was made so that Lasso keywords can be clearly differentiated from user-defined name/value
parameters and from tag names. This becomes especially important as users start to create custom tags which
might have the same name as the keywords of existing tags.

To update existing sites:

1 Locate all keyword names that do not begin with a hyphen. For example, the following [Server_Date] tag
contains both a tag-specific keyword and an encoding keyword, neither of which has been written with a
hyphen:

[Server_Date: Short, EncodeNone]

The following [Inline] tag contains several command tags or keyword/value parameter that have not been
written with hyphens:

[Inline:
Database="Contacts',
Table='People’,
'State'="'WA',

Search]

2 Change the keywords so their names start with a hyphen. The [Server_Date] tag is changed to the following
with each keyword name beginning with a hyphen:

[Server_Date: -Short, -EncodeNone]

The [Inline] tag is changed to the following with each command tag and keyword/value parameter written
with a hyphen:

[Inline:
-Database='Contacts',
-Table='People’,
'State'="'WA',

-Search]

3 Do not change user-defined name/value parameters. In the preceding example 'State'='WA' is not changed
when updating the tag for compliance with Lasso Professional 8.

Note: The name ‘State’ has quotes around it in the preceding examples. All string literals should be specified
with single quotes. This ensures that they will not be misidentified as a sub-tag or a keyword.

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 24 - UPGRADING FROM LAsso WDE 3.x 320

Encoding Keywords

The use of encoding keywords in substitution tags has been altered in Lasso Professional 8. All substitution
tags which are used as sub-tags now have a default encoding of -EncodeNone. Only the outermost substitution
tag (i.e. a tag in square brackets) has a default encoding of -EncodeHTML. This change was made in order to
make Lasso easier to use for new users and to reduce the length of nested tag expressions.

The following example demonstrates the benefits of the new Lasso Professional 8 syntax. In Lasso 3, the
following [String_Concatenate] tag contains many sub-tag parameters which all have EncodeNone specified.

[String_Concatenate:
(Field: 'First_Name', EncodeNone), ',
(Field: 'Middle_Name', EncodeNone), '',
(Field: 'Last_Name', EncodeNone)]

The preceding tag can be written as follows in Lasso 8. Since the default encoding of each of the sub-tags is
-EncodeNone the encoding keyword can be omitted. The resulting code is considerably shorter and easier to
read.

[String_Concatenate: (Field: 'First Name'), ',
(Field: 'Middle Name'), ', (Field: 'Last Name')]

The default encoding for the outermost tag in Lasso 8 is still -EncodeHTML in order to maintain the security
of sites powered by Lasso Professional 8. If a field is placed on a page without encoding then any JavaScript
or HTML that the code contains will be live on the Web page. Only HTML from trusted sources should be
allowed on your Web site.

Lasso 8 includes additional encoding enhancements. Please see the Encoding chapter for full details of how
[Encode_Set] can be used to change the default encoding of a page and more.

Note: -EncodeHTML is now a valid encoding keyword which performs the same encoding as that which is
performed if no encoding keyword is specified in an outermost substitution tag.

To update existing sites:

Encoding keywords still work as they did in Lasso Web Data Engine 3.x if they are specified in every tag.
Existing code will generally work after an upgrade to Lasso Professional 8. However, the following use of
encoding keywords will need to be rewritten.

1 Locate tags where the outermost tag has an EncodeNone encoding keyword and the sub-tags do not have any
encoding keywords. For example, the following [String_Concatenate] tag has an EncodeNone keyword and the
two [Field] tags do not have any encoding keywords.

[String_Concatenate: EncodeNone, (Field: 'First Name'), ' ', (Field: 'Last Name')]
2 Rewrite the tag by removing the EncodeNone keyword from the outermost tag. In the resulting Lasso 8 code,
no encoding keywords are required.
[String_Concatenate: (Field: 'First Name'), ' ', (Field: 'Last Name')]
Note: In the Lasso 3 code, the [Field] sub-tags were automatically HTML encoded. The EncodeNone keyword in

the outermost [String_Concatenate] tag ensured that double encoding was not applied. Since Lasso 7 does not
encode sub-tags by default, the encoding keyword is no longer needed.

Else If

The [Else:lf] tag has been eliminated as a distinct tag, but the concept is still supported. [Else:If: Condition] is now
syntactically equivalent to [Else: (If: Condition)] and the [Else] and [If] tags have been enhanced so that much of
the old behavior of the [Else:lf] tag is preserved.

The following [Else:lf;] tag will not work as expected in Lasso Professional 8 because the condition will be
misinterpreted:

[Else:If: 'abc' == "abc']

The condition will be interpreted as if the following tag had been written:

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 24 - UPGRADING FROM LAsso WDE 3.x 321
[Else: (If: "abc') == "abc]

The (If: 'abc') expression will return True and this will be compared to 'abc'. Since True is not equal to 'abc’ this
clause in the conditional will not be executed.

Note: If called individually, the [If and [Else] tags will return the value of the specified conditional expressions
parameter rather than returning an error about an unclosed container tag.

To update existing sites:

e Use parentheses around all conditional expressions. The following [Else:lf] tag will work correctly in either
Lasso Professional 8 or Lasso Web Data Engine 3.x:

[Else:If: (‘abc' == "abc')]
e Change the [Else:lf] tag to [Else]. Lasso 7's [Else] tag has been enhanced so that it now works like the old
[Else:lf] tag if a condition is specified, but is still the marker for the default clause of the conditional if no

condition is specified. The following tag will work in Lasso Professional 8, but not in Lasso Web Data
Engine 3.x:

[Else: "abc' == "abc']

Include

The [Include] tag now validates whether the specified file exists and returns an error if an invalid file path is
specified. This means that programmatically constructed [Include] statements need to take a precaution so
errors won't be shown to the site visitor.

To update existing sites:

The [Protect] ... [/Protect] tags can be used to suppress the error that is reported by the [Include] tag. The following
code will not return an error, even though the file fake.lasso does not exist.

[Protect]
[Include: 'fake.lasso']
[/Protect]
Post Inline

The [Post_Inline] tag is no longer supported in Lasso Professional 8. This tag relied on access to files which
Lasso Service might not be able to locate because they could be on a separate machine. The replacement for
[Post_lInling] is called [Event_Schedule] and has the following format:

[Event_Schedule:
-Start=(Date, Defaults to Today),
-End=(Date, Defaults to Never),
-URL=(URL to Execute, Required)
-Repeat=(True/False, Defaults to True if -Delay is set and False otherwise),
-Restart=(True/False, Defaults to True),
-Delay=(Minutes, Required if -Repeat is True),
-Username=(Username for Authentication, Optional),
-Password=(Password for Authentication, Optional)]

This tag schedules the execution of the response URL at a specific start date and time. The URL is fetched

just as if a client had visited it through a Web browser. After the task is performed, it is optionally repeated a
specified number of minutes later until the end date and time is reached. If the restart parameter is set to True
then the repeating task will be rescheduled even after server restarts. Please see the Control Tags chapter for
complete documentation of the syntax of [Event_Schedule].

To update existing sites:

Sites that rely on [Post_Inline] tags will need to be rewritten. The following steps must be taken:

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 24 - UPGRADING FROM LAsso WDE 3.x 322

1 Determine the URL of the post-inline response page you were calling.

2 Change the initial [Post_Inline] tag to the equivalent [Event_Schedule] tag using date calculations if necessary to
determine the start date and time.

3 If the [Post_lInline] tag rescheduled itself in the response page then either the rescheduling call must be
changed to an equivalent [Event_Schedule] tag or the automatic repeat feature of [Event_Schedule] can be used
in its place.

SQL Inline

The [SQL_Inline] tag is no longer supported in Lasso Professional 8. This tag has been replaced by a more
versatile -SQL command tag that can be used as the database action within any [Inline] tag.

[Inline: -SQL="...SQL Statement...]
... Inline Results ...
[/Inling]

The -SQL command tag can be used to issue SQL statements to the included Lasso MySQL data source or to
any MySQL data source accessed through the Lasso Connector for MySQL. The -SQL command tag may also
be supported by third party data source connectors. Please see the MySQL Data Sources chapter for more
information about using this tag.

To update existing sites:
Sites that rely on [SQL_Inline] tags will need to be rewritten. The following steps must be taken:

1 Change the opening and closing [SQL_Inline] ... [[SQL_Inline] tags to [Inline] ... [/Inline] tags. For example,
following is a [SQL_Inline] that searches the People table of the Contacts database.

[SQL_Inline: Datasource="Contacts’,
SQLStatement="SELECT First_Name, Last_Name from People']
[/SQL_Inline]

The first step is to change this to the following [Inline] ... [/Inline] tags, then to perform the remainder of the
steps to complete the transformation.

[Inline: Datasource='Contacts',
SQLStatement="SELECT First_Name, Last_Name from People']
[/Inline]
2 Change the Datasource parameter to a -Database keyword/value parameter. Ensure that the database name is
valid in the current Lasso Professional 8 setup.

[Inline: -Database="Contacts',
SQLStatement="SELECT First_Name, Last_Name from People']

[/Iﬁllline]

Note: The ODBC data source module is not provided with Lasso Professional 8. Data sources must be
available through the included Lasso Connector for MySQL or a third-party data source connector.

3 Change the SQLStatement parameter to a -SQL command tag. Change any table references within the SQL
statement so they reference both the database and table name, not just the table name.

[Inline: -Database="Contacts',
-SQL="SELECT First_Name, Last_Name from Contacts.People']

[nling]

4 1f Lasso tags are used within the SQL statement then they will need to be changed to expressions. In the
following example, the name of the table is stored in a variable named MyTable and referenced using a
square bracketed expression within the SQLStatement. This is no longer valid syntax.

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 24 - UPGRADING FROM LAsso WDE 3.x 323

[Var_Set: 'MyTable'="People’]
[SQL_Inline: Datasource="Contacts',
SQLStatement="SELECT First_Name, Last_Name from [Var: 'MyTable]

[/ééL_InIine]

In Lasso Professional 8, this is changed to the following string expression that concatenates the value of the
variable to the SQL statement explicitly.

[Variable: 'MyTable'="Contacts.Table']
[Inline: -Database="Contacts',
-SQL="SELECT First_Name, Last_Name from ' + (Variable: 'MyTable')]

[/Iﬁllline]

Please see the MySQL Data Sources chapter for more examples of creating SQL statements for use with the
-SQL command tag and for information about how to display the results within the [Inline] ... [/Inline] tags.

File Tags and Logging

Lasso Professional 8 features a distributed architecture where Lasso Service can run on a different machine
from the Web server on which Lasso Connector for IIS or Lasso Connector for Apache is installed. The file
tags and logging tags can only manipulate files on the machine which is hosting Lasso Service. They have no
access to the machine which is hosting a Lasso Web server connector.

If you are running both Lasso Service and your Web serving software on a single machine then no changes
to existing file and logging tags should be necessary when you upgrade to Lasso Professional 8. Otherwise,
please consult the Files and Logging chapter for more information about how to access files in a two
machine system.

Note: In contrast to the file and logging tags, the [Include] tag works exclusively with files from the Web serving
machine. No changes should be necessary to your sites which use the [Include] tag unless you are using it to
access log files or files which have been manipulated by the file tags. Use the [File_Read] tag for these situations.

Line Endings

Files created in Mac OS X, Windows 2000, or versions of the Mac OS 9 and earlier each have a different
standard for line endings. This can cause confusion when moving files from one platform to another or from
an earlier version of the Mac OS to Mac OS X. Table 11: Line Endings summarizes the different standards.

Table 2: Line Endings

Tag Description

Mac OS X Line feed: \n. Each line is ended with a single line feed character.

Mac OS 9 and Earlier Carriage return: \r. Each line is ended with a single carriage return character.
Windows 2000 Line feed and carriage return: \r\n. Each line is ended with both a line feed and a

carriage return character.

Line ending differences are handled automatically by Web servers and Web browsers so are generally only

a concern when reading and writing files using the [File_...] tags. The following tips make working with files

from different platforms easier.

¢ The default line endings used by the [File_LineCount] and [File_ReadLine] tags match the platform default. They
are \n in Mac OS X and \r\n in Windows 2000. The default for Lasso Web Date Engine 3.x’s file tags on Mac
OS 9 and earlier was \r.

e Specify line endings explicitly in the [File_LineCount] and [File_ReadLine] tags. For example, the following tag
could be used to get the line count for a file that was originally created on Mac OS 9.

[File_LineCount: 'FileName.txt', -FileEndOfLine="\r]

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 24 - UPGRADING FROM LAsso WDE 3.x 324

Or, the following tag could be used to get the line count for a file that was originally created on Windows
2000.

[File_LineCount: 'FileName.txt', -FileEndOfLine="\r\n']

® Many FTP clients and Web browsers will automatically translate line endings when uploading or
downloading files. Always check the characters which are actually used to end lines in a file. Don't assume
that they will automatically be set to the standard of either the current platform or the platform from
which they originated.

e A text editor can be used to change the line endings in a file from one standard to another explicitly.

JavaScript

Since Lasso will interpret any expressions contained within square brackets special care must be taken to
ensure that square brackets which are used for array accesses within client-side JavaScripts are not interpreted.

e Use the [NoProcess] ... [[NoProcess] tags to instruct Lasso not to interpret any of the code contained therein.

[NoProcess]
<script language="JavaScript">
... JavaScript Expressions ...
</script>
[/NoProcess]

e Lasso will not interpret any expressions that are contained within HTML comments. The following
common method of surrounding a JavaScript with HTML comments ensures that neither Lasso nor older
Web browsers will interpret the contents of the JavaScript.

<script language="JavaScript">
<l--
... JavaScript Expressions ...

I -->
</script>

The opening <l-- expression is ignored by the JavaScript interpreter. The closing --> expression is formatted
as part of a JavaScript comment by including it on a line starting with the JavaScript comment characters /.

e If Lasso tags need to be used within a client-side JavaScript then the HTML comment can be opened and
closed in order to allow Lasso to process portions of the JavaScript, but not others.

<script language="JavaScript">

<l--
... JavaScript Expressions ...

I/-->

var VariableName='... Lasso Expression ...]’;

<l--
... JavaScript Expressions ...

I/-->

</script>

e The Lasso [String] tag can be used to output short JavaScript segments that need to make use of square
brackets. This technique is useful for JavaScript that is contained within the attributes of HTML tags or for
JavaScripts that contain only a few square brackets.

In the following example, a select statement contains an [String] tag in its onChange handler that returns a
JavaScript expression containing square brackets to report which option was selected.

<select name="Select" multiple size="4"
onChange="[String: ‘alert(this.options[this.selectedIndex])]">
<option value="Value"> Value </option>

</select>

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 24 - UPGRADING FROM LAsso WDE 3.x 325

Macros

Macros are not supported in Lasso Professional 8. See the Extending Lasso Guide for information about
rewriting macros as custom tags using the new [Define_Tag] tag in Lasso 8.

Numeric Literals

In Lasso 8 there is a distinction between number values and string values. This distinction makes advanced
data type specific member tags and expression symbols possible. Strings are always enclosed in single quotes.
Numbers are never enclosed in quotes. If you use quotes around a numeric literal then symbols which are
used to manipulate that literal may assume it is a string.

For example, the following code specifies a mathematical operation, the numerical addition of 1 and 2:
[1+2]-»3

In contrast, the following code specifies a string operation, the string concatenation of the string '1' and the
string '2', because the numbers are contained in quotes:

[1'+27=»12

The legacy math and string tags from Lasso Web Data Engine 3 .x still perform automatic type conversions
on their arguments. This ensures that existing sites will not need to be rewritten. Both of the following tags
return the same result despite the fact that the parameters are specified without quotes in one and with
quotes in the other:

[Math_Add: 1, 2] = 3
[Math_Add: '1', 2] = 3

When a string is converted into an integer or a decimal, only a number at the beginning of the string will be
converted. For example, in the following conversion only the number 800 from the phone number will be
output.

[Integer: '800-555-1212'] =» 800

In earlier versions of Lasso all the numbers would have been extracted from the string yielding 8005551212 as
the value. Existing sites may require modifications if this behavior was being counted on.

Note: Negative literals must be surrounded by parentheses when used on the right-hand side of two-operator
symbols. For example, (1+ (-2)) or (§Variable == (4)).

Mathematical Precision

Mathematical symbols in Lasso 8 do not have the same rounding behavior as math tags in Lasso 3. For
example, the following [Math_Div] tag returns a result with the Lasso 8 standard of six significant digits instead
of the maximum precision of its two parameters which it would have had in Lasso 3.

[Math_Div: 10, 3.000] = 3.333333

In Lasso 8 the mathematical symbols perform an integer operation if both parameters of the expression are
integers. For example, the following division is performed and an integer result is returned:

[10/3]= 3

In Lasso 8 the mathematical symbols perform a decimal operation if either of the parameters of the
expression are a decimal value. Decimal results are always returned with at least six significant digits. For
example, the following expressions return six significant digits of the result since one of the parameters is
specified with a decimal point:

[10.0 / 3] = 3.333333
[10/3.0] = 3.333333

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 24 - UPGRADING FROM LAsso WDE 3.x 326

Existing sites should be modified to use the [Math_Round] tag or the [Decimal->SetFormat] tag to format results
from mathematical expressions if less than six significant digits is desired.
The following example shows how to use [Math_Round] to reduce a division expression to three significant
digits:

[Math_Round: (10.0 / 3.0), 1.000] =» 3.333

The following example shows how to set a variable so it will always display three significant digits using the
[Decimal->SetFormat] tag.
[Variable: 'Result' = (10.0/ 3.0)]

[(Variable: 'Result')->(SetFormat: -Precision=3)]
[Variable: 'Result]

=» 3.333

See the Math Operations chapter for more information.

Double Quotes

Single quotes are preferred when specifying string literals. Double quotes are still supported, but have been
deprecated. Double quotes are not guaranteed to work in the future. No changes to existing sites should be
required, but all future development should use single quotes exclusively.

Restrictions

Some restrictions have been removed in Lasso 8. Your site may need to be rewritten if it relied on one of

these pre-defined restrictions. The following restrictions have been removed in Lasso 8:

¢ Integer math now uses 64-bit values for greater precision. Lasso 8 should support integer values up to
18,446,744,073,709,551,616. Decimal math and date calculation are also performed using 64-bit values.

e The [Loop] tag limit of 1000 iterations has been removed. It is now possible for infinite loops to occur in
Lasso so you may want to place your own upper limit on loop iterations as in the following code:

[Loop: 1000000]
[If: (Loop_Count) > 1000][Loop_Abort][/If]
... Loop Contents ...

[/Loop]

Tag Name Changes

In order to promote consistency in Lasso 8 many tag names from Lasso 3 had to be changed. The following
chart details the tag names which have changed. Please consult the appropriate chapters in this book for
more information about each individual tag name.

For the most part, these tag name changes will not require modifications to existing Lasso Web Data

Engine 3.x sites. The old tag name is still supported in Lasso 8. However, support for these old tag names

is deprecated. They are not guaranteed to be supported in a future version of Lasso. All new development
should take place using the new tag names.

Table 12: Command Tag Name Changes details the command tags which have changed in Lasso 8. Table
9: Substitution, Process, and Container Tag Name Changes details the substitution, process, and container
tags which have changed in Lasso 8.

Table 3: Command Tag Name Changes

Lasso 3 Tag Lasso 8 Tag Equivalent
-AddError -ResponseAddError
-AddResponse -ResponseAdd

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 24 - UPGRADING FROM LAsso WDE 3.x

-AnyError
-AnyResponse
-ClientPassword
-ClientUsername
-DeleteResponse
-DoScript
-DoScript.Post
-DoScript.Pre
-DoScript.PreSort
-DuplicateResponse
-LogicalOperator
-NoResultsError
-RequiredFieldMissingError
-SecurityError
-UpdateError
-UpdateResponse

327

-ResponseAnyError
-ResponseAny

-Password

-Username
-ResponseDelete
-FMScript

-FMScriptPost
-FMScriptPre
-FMScriptPreSort
-ResponseDuplicate
-OperatorLogical
-ResponseNoResultsError
-ResponseRequiredFieldMissingError
-ResponseSecurityError
-ResponseUpdateError
-ResponseUpdate

Table 4: Substitution, Process, and Container Tag Name Changes

Lasso 3 Tag Lasso 8 Tag Equivalent
[Choice_List] [Value_List]
[ChoiceListltem] [Value_Listltem]
[DB_Nameltem] [Database_Nameltem]
[DB_Names] [Database_Names]

[DB_LayoutNameltem]
[DB_LayoutNames]
[Encode_Breaks]
[File_LineCount]

[Database_TableNameltem]
[Database_TableNames]
[Encode_Break]
[File_GetLineCount]

[Lasso_Abort] [Abort]
[Lasso_Comment] [Output_None]
[Lasso_Process] [Process]

[Lasso_SessionID]
[Link_Detail]
[Logical_OperatorValug]
[LoopAbort]

[LoopCount]
[RandomNumber]
[RepeatingValueltem]
[Roman]
[SearchFieldltem]
[SearchOpltem]
[SearchValueltem]
[Shown_NextGroup]
[Shown_NextGroupURL]
[Shown_PrevGroup]
[Shown_PrevGroupURL]
[SortFieldltem]
[SortOrderltem]
[String_ToDecimal]

[Lasso_UniquelD]
[Link_DetailURL]
[Operator_LogicalValug]
[Loop_Abort]
[Loop_Count]
[Math_Random]
[Repeating_Valueltem]
[Math_Roman]
[Search_Fieldltem]
[Search_Opltem]
[Search_Valueltem]
[Link_NextGroup]
[Link_NextGroupURL]
[Link_PrevGroup]
[Link_PrevGroupURL]
[Sort_Fieldltem]
[Sort_Orderltem]
[Decimal]

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 24 - UPGRADING FROM LAsso WDE 3.x 328

[String_TolInteger] [Integer]
[ValueListltem] [Value_Listltem]

Unsupported Tags

The following tags are no longer supported in Lasso 8. If any of these tags are used in a Web site that was
built for Lasso Web Data Engine 3.x they will need to be replaced before that Web site can be served by
Lasso Professional 8. Table 14: Unsupported Tags is a complete list of tags that are not supported in
Lasso 8 including notes on how to update a Web site that relies on those tags for compatibility with Lasso
Professional 8.

Table 5: Unsupported Tags

Lasso 3 Tag Notes

[4D_RefreshCache] The 4D data source module is no longer provided.

[Apple_Event], [AE_...] The Apple Event tags are no longer supported.

-DoScript.....Back The -DoScript tags with a Back argument are no longer supported. Use the
appropriate -FMScript... tag instead.

[Lasso_Datasourcels4D] The 4D data source module is no longer provided.

[Lasso_DatasourcelsODBC] The ODBC data source module is no longer provided.

[Macro_...], -Macro All macro tags are no longer supported. See the Extending Lasso Guide for
information about custom tags.

[Post_Inline] See the Post Inline section in this chapter for more information about how to
convert [Post_Inline] calls to the [Event_Schedule] tag.

[Relation] The [Relation] tag was equivalent to an [Inline] that performed a search in the
related table.

-Scripts This command tag only worked with the Apple Event based FileMaker Pro data
source module. Use any command tag which performs a database action instead
(e.g. -FindAll).

-Timeout This command tag only worked with the Apple Event based FileMaker Pro data

source module.
[Win_Exec] This tag is no longer supported.

CDML Compatibility

Lasso Web Data Engine 3.x supported a number of CDML tags for compatibility with Web sites that were
created for FileMaker Pro’s Web Companion. These tags are no longer supported in Lasso Professional 8.

Early Lasso Compatibility

Lasso Web Data Engine 3.x supported a number of tags from earlier versions of Lasso for compatibility
with sites that were created using the earlier versions of Lasso. These tags are no longer supported in Lasso
Professional 8.

FileMaker Pro

Lasso Professional 8 includes Lasso Connector for FileMaker Pro which is the equivalent of the Lasso Web
Data Engine 3.x FileMaker Pro Remote data source module. The functionality of the Apple Event based
FileMaker Pro data source module is no longer supported since it was Mac specific and reliant upon the use
of Apple Events.

If you were using the FileMaker Pro Remote data source module then no changes to your site should be
required when you move the site over to Lasso Professional 8.

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 24 - UPGRADING FROM LAsso WDE 3.x 329

If you were not previously using the FileMaker Pro Remote data source module, some changes may be
necessary. Lasso Connector for FileMaker Pro does not support the following features of the Apple Event
based FileMaker Pro data source module from Lasso Web Data Engine 3 x.

¢ Field-Level Search Operators are not supported. The -OperatorBegin and -OperatorEnd tags cannot be used
to create complex queries with a FileMaker Pro database.

e Automatic Image Conversion is not supported for PICT images stored in FileMaker Pro container field.
However, GIFs and JPEGs stored in container field can be retrieved. The parameters of the [Image_URL] tag
are ignored and images are served in the format stored in the database.

e Certain Script Command Tags are not supported including -DoScript.Back,
-DoScript.Post.Back, -DoScript.PreSort.Back, -DoScript.Pre.Back. These tags all instruct FileMaker Pro to send itself
to the background after the script is completed. Use the -FMScript commands without the Back argument
instead.

¢ FileMaker Pro 3 is no longer supported since this version does not provide the Web Companion necessary
to make a remote connection to FileMaker Pro.

However, in exchange for the omissions there are some advantages to using Lasso Connector for FileMaker
Pro.

e FileMaker Pro can be accessed via TCP/IP on the same machine or on a different machine.

e Multiple FileMaker Pro applications running on different machines can be accessed from a single
installation of Lasso Professional 8.

e The -ReturnField tag allows you to limit the fields that are returned from a search or other database action.

e GIFs and JPEGs can be stored in FileMaker Pro container fields and served directly without any conversion.

Upgrading FileMaker Pro Based Sites

If a site was created using the FileMaker Remote data source module then no changes should be necessary
when moving the site to Lasso Professional 8. Simply follow the instructions in the Upgrading chapter in
the Lasso Professional 8 Setup Guide in order to configure Lasso Connector for FileMaker Pro to point to the
appropriate FileMaker Pro Web Companion.

If a site was created using the Apple Event based FileMaker Pro data source module or relied on FileMaker
Pro 3 .x then the following changes will need to be made in order to ensure that the site is compatible with
Lasso Professional 8.

To upgrade a FileMaker Pro based site:

1 A site that relies on FileMaker Pro 3 will need to be upgraded to FileMaker Pro 4.x or FileMaker Pro
Unlimited 5.x.

2 Configure FileMaker Pro Web Companion according to the instructions inn the Data Sources chapter of
the Lasso Professional 8 Setup Guide. The Web Companion needs to be activated and all databases that are
to be shared need to have their Sharing... settings established.

3 Modify any database searches that relied on the -OperatorBegin and -OperatorEnd command tags so that they
no longer reference these tags.

4 Modify any calls to -DoScript... to call one of the new -FMScript... equivalents. Any database action that relies
on the -Scripts command tag needs to be rewritten with a database action such as -FindAll.

5 Ensure that the images stored in container fields are either GIFs or JPEGs. These images will be served
directly by the Web Companion.

LAsso 8.5 LANGUAGE GUIDE

330

Section V
Data Types

This section includes an introduction to the fundamental data types of Lasso 8 including strings, byte streams,
integers and decimals, dates, compound data types, files, images, networking, xml, PDE and JavaBeans.

¢ Chapter 25: String Operations includes information about strings including symbols and tags for string
manipulations.

® Chapter 26: Regular Expressions includes information about regular expression search/replace tags in
Lasso.

¢ Chapter 27: Bytes includes information about byte streams.

® Chapter 28: Math Operations includes information about integers and decimals including symbols and
tags for mathematical calculations.

¢ Chapter 29: Date and Time Operations includes information about the date and duration data types for
date and time calculations.

® Chapter 30: Arrays, Maps, and Compound Data Types includes information about arrays, lists, maps,
pairs, priority queues, queues, sets, stacks, and tree maps.

¢ Chapter 31: Files includes information about reading and writing files.

® Chapter 32: Images and Multimedia includes information about manipulating and serving images and
multimedia files.

¢ Chapter 33: Networking includes information about communicating with remote servers using TCP or
UDP protocols.

® Chapter 34: XML includes information about parsing and creating XML files including using XPaths and
XSLT style sheets.

¢ Chapter 35: PDF includes information about creating PDF files using Lasso’s built-in PDF tags.
® Chapter 36: JavaBeans includes information about loading, using, and creating JavaBeans.

¢ Chapter 37: iCalendar includes information about how industry standard iCalendar documents can be
parsed, manipulated, and created using Lasso.

® Chapter 38: Process and Shell Support includes information about how shell scripts and native processes
can be accessed through Lasso.

¢ Chapter 39: LDAP includes information about querying Lightweight Directory Access Protocol (LDAP)
servers.

LAsso 8.5 LANGUAGE GUIDE

331

Chapter 25
String Operations

Text in Lasso is stored and manipulated using the string data type or the [String] tags. This chapter details the
symbols and tags that can be used to manipulate string values.

e Overview provides an introduction to the string data type and how to cast values to and from other data
types.
e String Symbols details the symbols that can be used to create string expressions.

e String Manipulation Tags describe the member and substitution tags that can be used to modify string
values.

e String Conversion Tags describes the member and substitution tags that can be used to convert the case of
string values.

e String Validation Tags describes the member and substitution tags that can be used to compare strings.

e String Information Tags describes the member and substitution tags that can be used to get information
about strings and characters.

e String Casting Tags describes the [String->Split] tag which can be used to cast a string to an array value.

Information about regular expression can be found in the Regular Expressions chapter which follows. The
string type is often used in conjunction with the bytes type to convert binary data between different character
encodings (UTF-8, ISO-8859-1). See the Bytes chapter for more information about the bytes type.

Overview

Many Lasso tags are dedicated to outputting and manipulating text. Lasso is used to format text-based HTML
pages or XML data for output. Lasso is also used to process and manipulate text-based HTML form inputs and
URLs. Text processing is a central function of Lasso.

As a result of this focus on text processing, the string data type is the primary data type in Lasso. When
necessary, all values are cast to string before subsequent tag or symbol processing occurs. All values are cast to
string before they are output into the HTML page or XML data which will be served to the site visitor.

There are three types of operations that can be performed directly on strings.

e Symbols can be used to perform string calculations within Lasso tags or to perform assignment operations
within LassoScripts.

[The' +'" +'String’] =» The String

* Member tags can be used to manipulate string values or to output portions of a string.
[The String'->(Substring: 4, 6)] =» String

e Substitution tags can be used to test the attributes of strings or to modify string values.

[String_LowerCase: 'The String'] =¥ the string

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 25 - STRING OPERATIONS 332

Each of these methods is described in detail in the sections that follow. This guide contains a description of
every symbol and tag and many examples of their use. The Lasso Reference is the primary documentation
source for Lasso symbols and tags. It contains a full description of each symbol and tag including details
about each parameter.

Unicode Characters

Lasso Professional 8 supports the processing of Unicode characters in all string tags. The escape sequence
\u... can be used with 4, or 8 hexadecimal characters to embed a Unicode character in a string. For example
\uO02F reprsents a / character, \u0020 represents a space, and \u0042 represents a capital letter B. The same type
of escape sequence can be used to embed any Unicode character \u4E26 represents the Traditional Chinese
character if.

Lasso also supports common escape sequences including \r for a return character, \n for a new-line character,
\n\n for a Windows return/new-line, \f for a form-feed character, \t for a tab, and \v for a vertical-tab.

Casting Values to Strings

Values can be cast to the string data type automatically in many situations or they can be cast explicitly using
the [String] tag.

Table 1: String Tag

Tag Description

[String] Casts a value to type string. Requires one value which is the data to be cast to
a string. An optional second parameter can be used when casting byte streams
to a string and specified what character set should be used to translate the byte
stream (defaults to UTF-8).

Examples of automatic string casting:

e Integer and decimal values are cast to strings automatically if they are used as a parameter to a string
symbol. If either of the parameters to the symbol is a string then the other parameter is cast to a string
automatically. The following example shows how the integer 123 is automatically cast to a string because
the other parameter of the + symbol is the string String.

['String ' + 123] =¥ String 123
The following example shows how a variable that contains the integer 123 is automatically cast to a string.

[Variable: 'Number' = 123]
[String ' + (Variable: 'Number')] =¥ String 123

¢ Array, map, and pair values are cast to strings automatically when they are output to a Web page. The value
they return is intended for the developer to be able to see the contents of the complex data type and is not
intended to be displayed to site visitors.

[(Array: 'One', "Two', Three')]
= (Array: (One), (Two), (Three))
[(Map: 'Key1'='Value1', 'Key2'='Value2')]
= (Map: (Key1)=(Value1), (Key2)=(Value2))
[(Pair: 'Name'="Value')]
=» (Pair: (Name)=(Value))

More information can be found in the Arrays and Maps chapter.

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 25 - STRING OPERATIONS 333

e The parameters for string substitution tags are automatically cast to strings. The following example shows
how to use the [String_Length] substitution tag on a numeric value from a field.

[Field: 'Age'] =» 21
[String_Length: (Field: 'Age")] =» 2

To explicitly cast a value to the string data type:

e Integer and decimal values can be cast to type string using the [String] tag. The value of the string is the same
as the value of the integer or decimal value when it is output using the [Variable] tag.

The following example shows a math calculation and the integer operation result 579. The next line shows
the same calculation with string parameters and the string symbol result 123456.

[123 + 456] = 579
[(String: 123) + (String: 456)] = 123456

® Boolean values can be cast to type string using the [String] tag. The value will always either be True or False.
The following example shows a conditional result cast to type string.

[(String: (‘'dog' == 'cat'))] =» false

e String member tags can be used on any value by first casting that value to a string using the [String] tag. The
following example shows how to use the [String->Size] member tag on a numeric value from a field by first
casting the field value to type string.

[Field: 'Age'] =» 21
[(String: (Field: 'Age"))->Size] =» 2

® Byte streams can be cast to strings including the character set which should be used to export the data
in the byte stream. By default byte streams are assumed to contain UTF-8 character data. For example,
the following code would translate a byte stream contained in a variable by interpreting it as ISO-8859-1
character data. This is analogous to using the [Bytes->ExportString] tag which is described in more detail in the
following chapter on Bytes.

[String: $myByteStream, 'is0-8859-1']

String Symbols

The easiest way to manipulate values of the string data type is to use the string symbols. Table 2: String
Symbols details all the symbols that can be used with string values.

Table 2: String Symbols

Symbol Description

+ Concatenates two strings. This symbol should always be separated from its
parameters by a space.

- Deletes a substring. The first occurrence of the right parameter is deleted from
the left parameter. This symbol should always be separated from its parameters
by a space.

* Repeats a string. The right parameter should be a number.

= Assigns the right parameter to the variable designated by the left parameter.

+= Concatenates the right parameter to the value of the left parameter and assigns
the result to the variable designated by the left parameter.

-= Deletes the right parameter from the value of the left parameter and assigns the
result to the variable designated by the left parameter.

*= Repeats the value of the left parameter and assigns the result to the variable
designated by the left parameter.

>> Returns True if the left parameter contains the right parameter as a substring.

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 25 - STRING OPERATIONS 334

1>> Returns True if the left parameter does not contain the right parameter as a
substring.

== Returns True if the parameters are equal.
1= Returns True if the parameters are not equal.

< Returns True if the left parameter comes before the right parameter
alphabetically.

<= Returns True if the left parameter comes before the right parameter alphabetically
or if the parameters are equal.

> Returns True if the left parameter comes after the right parameter alphabetically.

>= Returns True if the left parameter comes after the right parameter alphabetically

or if the parameters are equal.

=== Returns True if the parameters are equal and both are of type string. No casting
is performed.

Each of the string symbols takes two parameters. One of the parameters must be a string value in order for
the symbol to perform the designated string operation. Many of the symbols can also be used to perform
integer or decimal operations. If both parameters are integer or decimal values then the mathematical
operation defined by the symbol will be performed rather than the string operation.

As long as one of the parameters of the symbol is a string the other parameter will be auto-cast to a string
value before the operation defined by the symbol is performed. The two exceptions to this are the * and *=
symbols which must have an integer as the right parameter.

Note: Full documentation and examples for each of the string symbols can be found in the Lasso Reference.

Examples of using the string symbols:
e Two strings can be concatenated using the + symbol. Note that the symbol is separated from its parameters
using spaces.
[Alpha ' + '‘Beta'] =» Alpha Beta

® A string and an integer can be concatenated using the + symbol. The integer will be automatically cast to a
string. Note that the symbol is separated from its parameters using spaces.

[Alpha ' + 1000] = Alpha 1000

e A substring can be deleted from a string using the - symbol. The following example shows how to
remove the substrings and from a string of HTML text. Note that the symbol is separated from its
parameters using spaces.

[Bold Text' - '' - '"] =» Bold Text

e A string can be repeated using the * symbol. The following example shows how to repeat the word
Lasso three times.

[Lasso ' * 3] =» Lasso Lasso Lasso

e Strings will be automatically concatenated even if the + symbol is omitted. This makes concatenating long
sets of strings easier.

[Alpha ' 'Beta'] =» Alpha Beta

Examples of using the string assignment symbols:

e A string variable can be assigned a new value using the = symbol. The following example shows how to
define a string symbol and then set it to a new value. The new value is output.

<?LassoScript
Variable: 'StringVariable' = 'The String Value';
$StringVariable = 'New String Value';

$StringVariable;
»>

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 25 - STRING OPERATIONS 335

=>» New String Variable

¢ A string variable can be used as a collector by concatenating new values to it in place using the += symbol.
The following example shows how to define a string symbol and then concatenate several values to it. The
final value is output.

<?LassoScript
Variable: 'StringVariable' = 'The ;
$StringVariable += 'String *;
$StringVariable += 'Variable';
$StringVariable;

»>

=>» The String Variable

Examples of using the string comparison symbols:
¢ Two strings can be compared for equality using the == symbol and != symbol. The result is a boolean True or
False.

[Alpha ' == 'Beta’] =» False
[Alpha ' I="'Beta’] =» True

e Strings can be ordered alphabetically using the <, <=, >, and <= symbols. The result is a boolean True or
False.
[Alpha ' > 'Beta] =» False
[Alpha ' < 'Beta’] =» True
¢ A string can be checked to see if it contains a particular substring using the >> symbol. The result is a
boolean True or False.

[''Bold Text' >> ''] =» True

String Manipulation Tags

The string data type includes many tags that can be used to manipulate string values. The available member
tags are listed in Table 3: String Manipulation Member Tags and the available substitution tags are listed in
Table 4: String Manipulation Tags.

In addition to the tags in this section, the tags in the following section on String Conversion Tags can be

used to modify the case of a string and the tags in the section on Regular Expression Tags can be used for
more powerful string manipulations using regular expressions.

The member tags in this section all modify the base string in place and do not return a value. For example,
the [String->Append] tag works like the += symbol. In order to see the values that were appended to the string,
the variable containing the string must be output.

[Variable: 'myString' = Test]

[$myString->(Append: ' string.")]

[$myString] =» Test string.

In contrast, the substitution tags return the modified string directly.
[String_Concatenate: 'Test', ' string.] = Test string.

The member tags should be used when multiple modifications need to be made to a string that is stored in
a variable. The substitution tags, or string symbols, can be used when the value is required immediately for
output.

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 25 - STRING OPERATIONS

336

Table 3: String Manipulation Member Tags

Tag Description

[String->Append] Casts the parameters to strings and appends them to the string. Modifies the
string and returns no value. Requires one string parameter.

[String->Merge] Inserts a merge string into the string. Requires two parameters, the location at
which to insert the merge string and the string to insert. Optional third and fourth
parameters specify an offset into the merge string and number of characters of
the merge string to insert.

[String->PadLeading] Pads the front of a string to a specified length with a pad character. Modifies the

[String->PadTrailing]

[String->Remove]

[String->RemoveLeading]

[String->RemoveTrailing]

[String->Replace]

[String->Reverse]

[String->Trim]

string and returns no value. Requires a length to pad the string. Optional second
parameter is the padding character (defaults to space).

Pads the end of a string to a specified length with a pad character. Modifies the
string and returns no value. Requires a length to pad the string. Optional second
parameter is the padding character (defaults to space).

Removes a substring from the string. The first parameter is the offset at which to
start removing characters. The second parameter is the number of characters to
remove. Defaults to removing to the end of the string.

Removes all instances of the parameter from the beginning of the string. Modifies
the string and returns no value. Requires a single string parameter.

Removes all instances of the parameter from the end of the string. Modifies the
string and returns no value. Requires a single string parameter.

Replaces every occurence of a substring. Requires two parameters, the substring
to find and the replacement string. Modifies the string and returns no value.
Optional third parameter specifies the maximum number of replacements to
perform.

Reverses the string. Optional parameters specify a character offset and length
for a substring to be reversed. Defaults to reversing the entire string. Modifies the
string and returns no value.

Removes all white space from the start and end of the string. Modifies the string
in place and returns no value.

Note: Full documentation and examples for each of the string member tags can be found in the Lasso

Reference.

To replace a substring:

Use the [String->Replace] tag. The following example replaces every instance of and within the string to or.

[Variable: 'myString' = 'Red and Yellow and Blue']
[$myString->(Replace: 'and','or")]
[$myString]

=» Red or Yellow or Blue

To remove white space from the start and end of a string:

Use the [String->Trim] tag. The following example removes all the white space from the start and end of the
string leaving just the relevant content.

[Variable: 'myString' =" Green and Purple 1

[$myString->(Trim)]

[$myString]

=» Green and Purple

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 25 - STRING OPERATIONS 337

Table 4: String Manipulation Tags

Tag Description
[String_Concatenate] Concatenates all of its parameters into a single string.
[String_Insert] Takes three parameters: a string, a -Text keyword/value parameter which defines

the text to be inserted, and a -Position parameter which defines the offset into
the string at which to insert the text. Returns a new string with the specified text
inserted at the specified location.

[String_Remove] Takes three parameters: a string, a -StartPosition keyword/value parameter, and a
-EndPosition keyword/value parameter. Returns the string with the substring from
-StartPosition to -EndPosition removed.

[String_RemoveLeading] Takes two parameters: a string and a -Pattern keyword/value parameter. Returns
the string with any occurrences of the pattern removed from the start.
[String_RemoveTrailing] Takes two parameters: a string and a -Pattern keyword/value parameter. Returns

the string with any occurrences of the pattern removed from the end.

[String_Replace] Takes three parameters: a string, a -Find keyword/value parameter, and a -
Replace keyword/value parameter. Returns the string with the first instance of the
-Find parameter replaced by the -Replace parameter.

Note: Full documentation and examples for each of the string tags can be found in the Lasso Reference.

Examples of using string manipulation tags:

e The [String_Extract] tag can be used to return a portion of a string. In the following example five characters of
the string A Short String are returned

[String_Extract: 'A Short String', -StartPosition=3, -EndPosition=8] =» Short
e The [String_Remove] tag is similar, but rather than returning a portion of a string, it removes a portion of

the string and returns the remainder. In the following example five characters of the string A Short String are
removed and the remainder is returned.

[String_Remove: 'A Short String', -StartPosition=3, -EndPosition=8] =» A String

e The [String_Removeleading] and [String_RemoveTrailing] tags can be used to remove a repeating character from
the start or end of a string. In the following example asterisks are removed from a string *A Short String*.

[String_Removeleading: -Pattern="",
(String_RemoveTrailing: -Pattern=", "A Short String*]

=» A Short String

e The [String_Replace] tag can be used to replace a portion of a string with new characters. In the following
example the word Short is replaced by the word Long.

[String_Replace: 'A Short String', -Find='Short', -Replace="Long'] =» A Long String

Note: For more powerful string manipulation see the Regular Expressions section below.

String Conversion Tags

The string data type includes many tags that can be used to change the case of string values. The available
member tags are listed in Table 5: String Conversion Member Tags and the available substitution tags are
listed in Table 6: String Conversion Tags.

The member tags in this section all modify the base string in place and do not return a value. In order to see
the converted string, the variable containing the string must be output.

[Variable: 'myString' = 'Test']
[$myString->(UpperCase)]
[$myString] = TEST

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 25 - STRING OPERATIONS 338

In contrast, the substitution tags return the modified string directly.
[String_UpperCase: 'Test'] =» TEST

The member tags should be used when multiple modifications need to be made to a string that is stored in a
variable. The substitution tags can be used when the value is required immediately for output.

Table 5: String Conversion Member Tags

Tag Description

[String->Foldcase] Converts all characters in the string for a case-insensitive comparison. Modifies
the string and returns no value.

[String->Lowercase] Converts all characters in the string to lowercase. Modifies the string in place and
returns no value. Accepts an optional locale/country code for Unicode conversion.

[String->Titlecase] Converts the string to titlecase with the first character of each word capatilized.
Modifies the string in place and returns no value. Accepts an optional locale/
country code for Unicode conversion.

[String->toLower] Converts a character of the string to lowercase. Requires the position of the
character to be modifed. Modifies the string in place and returns no value.

[String->toUpper] Converts a character of the string to uppercase. Requires the position of the
character to be modifed. Modifies the string in place and returns no value.

[String->toTitle] Converts a character of the string to titlecase. Requires the position of the
character to be modifed. Modifies the string in place and returns no value.

[String->Unescape] Converts a string from the hexadecimal URL encoding.

[String->Uppercase] Converts all characters in the string to uppercase. Modifies the string in place and

returns no value. Accepts an optional locale/country code for Unicode conversion.

Note: Full documentation and examples for each of the string member tags can be found in the Lasso
Reference.

Table 6: String Conversion Tags

Tag Description
[String_LowerCase] Returns the concatenation of all of its parameters in lowercase.
[String_UpperCase] Returns the concatenation of all of its parameters in lowercase.

Examples of using string conversion tags:

The [String_UpperCase] and [String_Lowercase] tags can be used to alter the case of a string. The following
example shows the result after using these tags on the string A Short String.

[String_UpperCase: 'A Short String] =» A SHORT STRING
[String_LowerCase: 'A Short String'] =¥ a short string

String Validation Tags

The string data type includes many tags that can be used to compare and validate string values. The available
member tags are listed in Table 7: String Validation Member Tags and the available substitution tags are
listed in Table 8: String Validation Tags.

All of these tags return a boolean value True or False depending on whether the test succeeds or not.

Table 7: String Validation Member Tags

Tag Description

[String->BeginsWith] Returns True if the string begins with the parameter. Comparison is case
insensitive. Requires a single string parameter.

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 25 - STRING OPERATIONS 339

[String->Compare] This tag has three forms. In the first, it returns 0 if the parameter is equal to the
string, 1 if the characters in the string are bitwise greater than the parameter,
and -1 if the characters in the string are bitwise less than the parameter.
Comparison is case insensitive by default. An optional -Case parameter makes
the comparison case sensitive. Requires a single string parameter.

The second form requires three parameters. The first two parameters are
an offset and length into the third string parameter. The comparison is only
performed with this parameter substring.

The third form requires two additional parameters. The fourth and fifth parametres
are an offset and length into the base string. The comparison is only performed
between the base and parameter substrings.

[String->CompareCodePointOrder] accepts the same parameters as [String-
>Compare], but provides accurate comparisons for Unicode characters with code

points U+10000 and above.

[String->Contains] Returns True if the string contains the parameter as a substring. Comparison is
case insensitive. Requires a single string parameter.

[String->EndsWith] Returns True if the string ends with the parameter. Comparison is case

insensitive. Requires a single string parameter.

[String->Equals] Returns True if the parameter of the tag is equal to the string. Comparison is
case insensitive. Equivalent to the == symbol.

Note: Full documentation and examples for each of the string member tags can be found in the Lasso
Reference.

To compare two strings:

Use the string comparison member tags. The following code checks whether a string stored in a variable is
equal to or contains another string.

[Variable: 'testString' = 'A short string']

[$testString->(BeginsWith: 'a')] =» True
[$testString->(BeginsWith: 'A short')] =» True
[$testString->(BeginsWith: 'string')] =¥ False
[$testString->(EndsWith: 'string')] =» True
[$testString->(Contains; 'short)] =» True
[$testString->(Equals: 'a short string')] =» True
[$testString->(Compare: 'a short string', -Case)] =» False
[$testString->(Compare: 3, 5, 'short')] =» True
[$testString->(Compare: 3, 5, 'x short other', 3, 5)] =» True

Table 8: String Validation Tags

Tag Description

[String_EndsWith] Returns boolean True if the string ends with the string specified in the -Find
parameter. Takes two parameters: a string value and a -Find keyword/value
parameter.

Note: Full documentation and examples for each of the string tags can be found in the Lasso Reference.

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 25 - STRING OPERATIONS 340

String Information Tags

The string data type includes many tags that can be used to get information about string and character
values. The available member tags are listed in Table 9: String Information Member Tags and the available
substitution tags are listed in Table 10: String Information Tags. In addition, tags which are specific to
getting information about characters in a string are listed in Table 11: Character Information Member Tags.

These tags return different data types depending on what information is being retrieved about the string.
Those tags that return a character position or require a character position as a parameter all number
characters starting from 1 for the first character in the string.

Table 9: String Information Member Tags

Tag Description
[String->Find] Returns the position at which the first parameter is found within the string or
0 if the first parameter is not found within the string. Requires a single string
parameter.
[String->Get] Returns a specific character from the string. Requires a single integer parameter.
[String->Size] Returns the number of characters in the string.[String->Length] is a synonym.
[String->SubString] Returns a substring. The start of the substring is defined by the first parameter

and the length of the substring is defined by the second parameter. Requires two
integer parameters.

Note: Full documentation and examples for each of the string member tags can be found in the Lasso
Reference.

To return the length of a string:
e The length of a string can be returned using the [String->Size] tag.
[Alpha'->Size] =» 5
e The length of a [Variable] value, [Field] value or any value returned by a Lasso tag can be returned using
the [String->Size] tag.

[$StringVariable + ' ' + $StringVariable->Size] =» Alpha 5
[(Field: 'First_Name') + ' " + (Field: 'First_Name')->Size] =» Joe 3

To return a portion of a string:

e A specific character from a string can be returned using the [String->Get] tag. In the following example, the
third character of Alpha is returned.

[Alpha'->(Get: 3)] =» p
e A specific range of characters from a string can be returned using the [String->Substring] tag. In the following
example, six characters are returned from the string, starting at the third character.
['A String Value'->(Substring: 3, 6)] =¥ String
e The start of a string can be returned using the [String->Substring] tag with the first parameter set to 1.

The second parameter will define how many characters are returned from the start of the string. In the
following example, the first eight characters of the string are returned.

['A String Value'->(Substring: 1, 8)] =» A String

e The end of a string can be returned using the [String->Substring] tag with the second parameter omitted. The
following example returns the portion of the string after the tenth character.

['A String Value'->(Substring: 10)] =» Value

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 25 - STRING OPERATIONS

Table 10: String Information Tags

341

Tag

Description

[String_Extract]

[String_FindBlocks]

[String_FindPosition]
[String_IsAlpha]
[String_IsAlphaNumeric]
[String_IsDigit]
[String_IsHexDigit]
[String_IsLower]

[String_IsNumeric]
[String_IsPunctuation]
[String_IsSpace]
[String_IsUpper]

[String_Length]

Takes three parameters: a string, a -StartPosition keyword/value parameter, and a
-EndPosition keyword/value parameter. Returns a substring from -StartPosition to
-EndPosition.

Requires three parameters: the source string, -Begin to specify the start of
the block, and -End to specify the end of the block. The result is an array

of strings contained within the specified delimiters. The optional parameter -
IgnoreComments will allow you to ignore comment lines. The default comment
character # can be changed with -CommentChar.

Takes two parameters: a string value and a -Find keyword/value parameter.
Returns the location of the -Find parameter in the string parameter.

Returns boolean True if the string contains only alphabetic characters (including
a-z as well as foreign characters and characters with accents).

Returns boolean True if the string contains only alphabetic characters or
numerals (including a-z as well as foreign characters and characters with
accents).

Returns boolean True if the string contains only numerals (0-9).

Returns boolean True if the string contains only hexadecimal numerals (0-9 and
a-f).

Returns boolean True if the string contains only lowercase alphabetic characters
(including a-z as well as foreign characters and characters with accents).

Returns boolean True if the string contains only numerals, hyphens, or periods.
Returns boolean True if the string contains only punctuation characters.
Returns boolean True if the string contains only white space.

Returns boolean True if the string contains only uppercase alphabetic characters
(including a-z as well as foreign characters and characters with accents).

Returns the number of characters in the string.

Example of using [String_Length] tag:

The [String_Length] tag can be used to return the number of characters in a string. This tag returns the same
results as the [String->Size] tag except the method of calling the tag is somewhat different.

The following example shows how to return the length of the string A Short String using both the [String_Length]
tag and the [String->Size] tag. The result in both cases is 14.

[String_Length: 'A Short String] =» 14
['A Short String'->Size] =» 14

Examples of using string validation tags:

The characters in a string can be checked to see if they meet certain criteria using the [String_ls...] tags. Each
character in the string is checked to see if it meets the criteria of the tag. If any single character does not meet
the criteria then False is returned.

e In the following example a string word is checked to see which validation strings it passes. The string is in
lowercase and consists entirely of alphabetic characters. It is not in uppercase and does not consist entirely
of numeric characters.

[String_IsAlpha: 'word'] =» True
[String_IsAlphaNumeric: ‘word'] =» True
[String_IsLower: 'word"] =» True
[String_IsNumeric: 'word'] =¥ False
[String_IsUpper: 'word'] =» False

¢ In the following example a string 2468 is checked to see which validation strings it passes. The string
consists entirely of numeric characters. It does not consist entirely of alphabetic characters.

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 25 - STRING OPERATIONS 342

[String_IsAlpha: '2468"] =» False
[String_IsAlphaNumeric: '2468'] =» True
[String_IsNumeric: '2468"] =» True

¢ Some of the validation tags are intended to be used on individual characters. The following example shows
how each of these tags can be used.

[String_IsDigit: '9' =» True
[String_IsHexDigit: 'a'] =» True
[String_IsPunctuation: "] =» True
[String_IsSpace: '] =» True

Table 11: Character Information Member Tags

Tag Description

[String->CharDigitValue] Returns the integer value of a character or -1 if the character is alphabetic.
Requires a single parameter that specifies the location of the character to be
inspected.

[String->CharName] Returns the Unicode name of a character. Requires a single parameter that
specifies the location of the character to be inspected.

[String->CharType] Returns the Unicode type of a character. Requires a single parameter that
specifies the location of the character to be inspected.

[String->Digit] Returns the integer value of a character according to a particular radix. Requires

[String->GetNumericValue]

[String->IsAlnum]
[String->IsAlpha]
[String->IsBase]
[String->IsChnrl]
[String->IsDigit]
[String->IsLower]
[String->IsPrint]
[String->IsSpace]
[String->IsTitle]
[String->IsUpper]
[String->IsWhitespace]
[String->IsUAIphabetic]
[String->IsULowercase]

[String->IsUUppercase]

two parameters. The first specifies the location of the character to be inspected.
The second specifies the radix of the result (e.g. 16 for hexadecimal).

Returns the decimal value of a character or a negative number of the character
is alphabetic. Requires a single parameter that specifies the location of the
character to be inspected.

Returns True if the character is alphanumeric. Requires a single parameter that
specifies the location of the character to be inspected.

Returns True if the character is alphabetic. Requires a single parameter that
specifies the location of the character to be inspected.

Returns True if the character is part of the base characters of Unicode. Requires
a single parameter that specifies the location of the character to be inspected.

Returns True if the character is a control character. Requires a single parameter
that specifies the location of the character to be inspected.

Returns True if the character is numeric. Requires a single parameter that
specifies the location of the character to be inspected.

Returns True if the character is lowercase. Requires a single parameter that
specifies the location of the character to be inspected.

Returns True if the character is printable (i.e. not a control character). Requires a
single parameter that specifies the location of the character to be inspected.

Returns True if the character is a space. Requires a single parameter that
specifies the location of the character to be inspected.

Returns True if the character is titlecase. Requires a single parameter that
specifies the location of the character to be inspected.

Returns True if the character is uppercase. Requires a single parameter that
specifies the location of the character to be inspected.

Returns True if the character is white space. Requires a single parameter that
specifies the location of the character to be inspected.

Returns True if the character has the Unicode alphabetic attribute. Requires a
single parameter that specifies the location of the character to be inspected.

Returns True if the character has the Unicode lowercase attribute. Requires a
single parameter that specifies the location of the character to be inspected.

Returns True if the character has the Unicode uppercase attribute. Requires a
single parameter that specifies the location of the character to be inspected.

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 25 - STRING OPERATIONS 343

[String->IsUWhiteSpace] Returns True if the character has the Unicode white space attribute. Requires a
single parameter that specifies the location of the character to be inspected.

Note: Full documentation and examples for each of the string member tags can be found in the Lasso
Reference.

To inspect the Unicode properties of a string:

Use the character information member tags. The following example shows the information that is provided
for a standard ASCII character b. The character name and type are provided according to the Unicode
standard. The [String->Integer] tag returns the decimal ASCII value for the character. The [String->Digit] tag with a
radix of 16 returns the hexadecimal value for the character.

['b->(CharName: 1)] =» LATIN SMALL LETTER B
['b'->(CharType: 1)] =» LOWERCASE_LETTER
['b'->(IsLower: 1)] =» True

[b'->(IsUpper: 1)] =» False

['b'->(IsWhiteSpace: 1)] =» False

[b'->(Integer: 1)] =» 98
['b'->(Digit: 1, 16)] =» 11

The information tags can be used on any Unicode characters. The following example shows the tags being
used on a Traditional Chinese character ifi that roughly translates to “and”. The character is neither uppercase
nor lowercase and is identified by the Unicode reference 4E26.

['if'->(CharName: 1)] =» CJK UNIFIED IDEOGRAPH-4E26
['df->(CharType: 1)] = OTHER_LETTER

['if'->(IsLower: 1)] =¥ False

['At'->(IsUpper: 1)] =¥ False

['if'->(IsWhiteSpace: 1)] =¥ False

Note: The character iifi can be represented in a string by \u4E26 or in HTML as the entity 並.

Table 12: Unicode Tags

Tag Description
[String_GetUnicodeVersion] Returns the version of the Unicode standard which Lasso supports.
[String_CharFromName] Returns the character corresponding to the specified Unicode character name.

String Casting Tags

The string data type includes many tags which can be used to cast a value to or from the string data
type. These tags are documented in the Casting Values to Strings section earlier in this chapter and in
corresponding sections in the chapters for each data type.

In addition, the [String->Split] tag can be used to cast a string into an array. This tag is described in Table 13:
String Casting Member Tags.

Table 13: String Casting Member Tags

Tag Description

[String->Split] Splits the string into an array of strings based on the delimiter specified in the
first parameter. This tag does not modify the string, but returns the new array.
Requires a single string parameter.

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 25 - STRING OPERATIONS 344

To convert a string into an array:

A string can be converted into an array using the [String->Splif] tag. A single parameter defines what character
should be used to split the string into the multiple elements of the array. The following example splits a
string on the space character, returning an array of words from the string.

[A String Value'->(Split: ')]

=> (Array: (A), (String), (Value))

LAsso 8.5 LANGUAGE GUIDE

345

Chapter 26
Regular Expressions

The regular expression data type in Lasso allows for powerful search and replace operations on strings and

byte streams. This chapter details how the regular expression data type works and other Lasso tags which can

use regular expressions.

e Overview provides an introduction to regular expressions.

® Regular Expression Type documents the [RegExp] type and how it can be used to create reusable regular
expressions.

e String Tags documents a number of string tags which also allow the use of regular expressions.

Overview

A regular expression is a pattern that describes a sequence of characters which you would like to find in a
target (or input) string. Regular expressions consist of letters or numbers which simply match themselves,
wild cards which match any character in a class such as whitespace, and combining symbols which expand
wild cards to match several characters rather than just one.

The remainder of the overview discusses regular expressions in four parts.

e Wild Cards explains how individual characters and wild cards can be used to create simple regular expres-
soins.

e Combining Symbols explains how combining symbols can be used to expand wild cards.

® Groupings explains how more complex sub-patterns can be created and how parts of a pattern can be
designated for replacement.

* Replacements explains how placeholders can be used in replacement expressions.

* Advanced Expressions lists a number of advanced concepts including word boundaries, assertions,
comments, and more.

Note: Full documentation of regular expression methodology is outside the scope of this manual. Consult a
standard reference on regular expressions for more information about how to use this flexible technology.

Wild Cards

The simplest regular expression is just a word containing letters or numbers. The regular expression bird is
said to match the string “bird”. The regular expression 123 matches the string “123”. The regular expression is
matched against an input string by comparing each character in the regular expression to each character in
the input string one after another. Regular expressions are normally case sensitive so the regular expression
John would not match the string “john”.

Unicode characters within a regular expression work the same as any other character. The escape sequence
\u2FB0 with the four-digit hex value for a Unicode character can also be used in place of any actual character
(within regular expressions or any Lasso strings). The escape sequence \u2FBO0 represents a Chinese character.

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 26 — REGULAR EXPRESSIONS 346

Regular expressions can also match part of a string. The regular expression bird is found starting at position 3
in the string “A bird in the hand.”

A regular expression can contain wild cards which match one of a set of characters. [Jj] is a wild card which
matches either an upper case J or a lower case . The regular expression [Jjjohn will match either the string
“John” or the string “john”. The wild card [aeiou] matches any vowel. The wild card [a-z] matches any lower
case roman letter. The wild card [1-9] matches any number. The wild card [a-zA-Z] matches any upper or
lower case roman letter. If a Unicode character is used in a character range then any characters between the
hex value for the two characters are matched. The wild card [\u2FB0-\u2FBF] will match 16 different Chinese
characters.

The period . is a special wild card that matches any single character. The regular expression .. would match

“12", or even “ “. The period will match any ASCII or Unicode
character including punctuation or most white space characters. It will not match return or new-line

u u

any two character string including “be”,

characters.

A number of predefined wild cards are available. The predefined wild cards are all preceded by a double
backslash \\. This differs from some regular expression implementation where the wild cards are preceded
by only a single backslash. The predefined wild cards all come in pairs. The wild card \\s matches any white
space character including tabs, spaces, returns, or new lines. The wild card \\S matches any non-white space
character. The wild card \w matches any alphanumeric character or underscore. The “w” is said to stand for
“word” since these are all characters that may appear within a word. The wild card \W matches non-word
characters. The wild card \\d matches any number and the wild card \D matches any non-number.

For example, the regular expression \W\w\\w would match any three character word such as “cat” or “dog”. The
regular expression \\d\\d\\d-\\d\\d\\d\\d-\\d\d\\d\\d would match a standard United States phone number “360-555-
1212"

The predefined wild cards only work on standard ASCII strings. There is a special pair of wildcards \\p and \\P
which allow different characters in a Unicode string to be matched. The wild card is specified as \\p{Property}.
The full list of properties can be found in the table below. For example the wild card \\p{L} matches any
Unicode letter character, the wild card \\p{N} matches any Unicode number, and the wild card \\p{P} matches
any Unicode punctuation characters. The \\P{Property} wild card is the opposite. \\P{L} matches any Unicode
character which is not a letter.

The standard string entities for returns \r, new-lines \n, tabs \t, and quotes \' or \" all match themselves when
used in a regular expression. These string entities only require a single backslash.

Many characters have special meanings in regular expressions including [](){}.*+?*$|/\. In order to match
one of these character literally it is necessary to use two backslashes in front of it. For example \\[matches a
literal opening square bracket rather than starting a character range.

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 26 — REGULAR EXPRESSIONS 347

Table 1: Regular Expression Wild Cards

Symbol Description

a-zA-Z0-9 Alphanumeric characters (and any other characters not defined as symbols)
match the specified character. Case sensitive.

. Period matches any single character.
[.] Character class. Matches any character contained within the square brackets.

*.] Character exception class. Matches any character which is not contained within
the square brackets.

[a-Z] Lower case character range. Matches any character between the two specified.

[A-Z] Upper case character range.

[a-zA-Z] Combination character range.

[0-9] Numeric character range.

[a-zA-Z0-9_] Complex character range matches any letter, number, or underscore.

\t Matches a tab character.

\r Matches a return character.

\n Matches a new-line character.

\" Matches a double quote.

\' Matches a single quote.

\UHHHHE Matches a single Unicode character. The number signs should be replaced with
the 4-digit hex value for the Unicode character.

\p{...} Matches a single Unicode character with the stated property. The available
properties are listed in the next table.

\\P{...} Matches a single Unicode character which does not have the stated property. The
available properties are listed in the next table.

\\Ww Matches an alphanumeric 'word' character (underscore included). Does not
match Unicode characters.

\W Matches a non-alphanumeric character (whitespace or punctuation).

\\s Matches a blank, whitespace character (space, tab, carriage return, etc.).

\S Matches a non-blank, non-whitespace character.

\\d Matches a digit character (0-9).

\\D Matches a non-digit character.

\\... Escapes the next character. This allows any symbol to be specified as a matching

character including the reserved characters [] () {}.*+?2$|/\.

Note: Other than the built-in escaped characters \n, \r, \t, ", and \' all other escaped characters in regular
expressions should be preceded by two backslashes.

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 26 — REGULAR EXPRESSIONS 348

The following table contains all of the properties which can be used with the \\p and \\P wild cards. The main
symbol, e.g. \\p{L} will match all of the characters that are matched by each of the variations.

Table 2: Unicode Properties

Symbol Description

L Matches a single letter. Variations include: Lu - Uppercase Letter, LI - Lowercase
Letter, Lt - Titlecase Letter, Lm - Modifier Letter, and Lo - Other Letter.

N Matches a single number. Variations include: Nd - Decimal Digit Number,
NI - Letter Number, and No - Other Number.

P Matches a single punctuation character. Variations include: Pc - Connector

Punctuation, Pd - Dash Punctuation, Ps - Open Punctuation, Pe - Close
Punctuation, Pi - Initial Punctuation, Pf - Final Punctuation, and Po - Other

Punctuation.

S Matches a single symbol. Variations include: Sm - Math Symbol, Sc - Currency
Symbol, Sk - Modifier Symbol, and So - Other Symbol.

z Matches a single separator (usually a white space character). Variations include:
Zs - Space Separator, Z| - Line Separator, and Zp - Paragraph Separator.

M Matches a single mark. Variations include: Mn - Non-Spacing Mark,
Mc - Spacing Combining Mark, and Me - Enclosing Mark.

C Matches a single "other" character. Variations include: Cc - Control, Cf - Format,

Cs - Surrogate, Co - Private Use, and Cn - Not Assigned.

Combining Symbols

Combining symbols allow wild cards to be expanded to match entire sub strings rather than individual
characters. For example, the wild card [a-z] matches one lower case letter and needs to be repeated three times
to match a three letter word [a-z][a-Z][a-z]. Instead, the combining symbol {3} can be used to specify that the
preceding wild card should be repeated three times [a-Z]{3}.

The combining symbol + matches one or more repetitions of the preceding wild card. The expression [a-z]+
matches any string of lower case letters. This expression matches the strings “a”, “green”, or “international”. It
does not match “my dog spot” because that string contains characters other than lower case letters (namely
spaces).

The combining symbol + can be used with the . wild card to match any string of one or more characters .t,
with the wild card \w to match any word \\w+, or with the wild card \\s to match one or more whitespace
characters \\s+. The + symbol can also be used with a simple letter to match one or more repetitions of the
letter. The regular expression Me+t matches both the string “Met” and the string “Meet”, not to mention
“Meeeeeet”.

The combining symbol * matches zero or more repetitions of the preceding wild card. The * symbol can

be used with the generic wild card . to match any string of characters .*. The * symbol can be used with the
whitespace wildcard \\Ww to match a string of whitespace characters. For example, the expression \\w*cat\w* will
match the string “cat”, but also the string “ cat .

Braces are used to designate a specific number of repetitions of the preceding wild card. When the braces
contain a single number they designate that the preceding wild card should be matched exactly that number
of times. [a-Z]{3} matches any three lower case letters. When the braces contain two numbers they allow for
any number of repetitions from the lower number to the upper number. [a-Z]{3,5} matches any three to five
lower case letters. If the second number is omitted then the braces function similarly to a +. [a-Z]{3,} matches
any string of lower case letters longer than three.

The symbol ? on its own makes the preceding wild card optional. For example, the expression mee?t will
match either the string “met” or “meet” since the second “e” is optional.

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 26 — REGULAR EXPRESSIONS 349

When used after a +, *, or braces the ? makes the match non-greedy. Normally, a sub-expression will match
as much of the input string as possible. The expression <.*> will match a string which begins and ends with
angle brackets. It will match entire string “Bold Text". With the greedy option the expression <.*?>
will match the shortest string possible. It will now match just the first part of the string “" and a second
application of the expression will match the last part of the string “".

Table 3: Regular Expression Combination Symbols

Symbol Description

+ Plus. Matches 1 or more repetitions of the preceding symbol.

* Asterisk. Matches 0 or more repetitions of the preceding symbol.

? Question Mark. Makes the preceding symbol optional.

{n} Braces. Matches n repetitions of the preceding symbol.

{n} Matches at least n repetitions of the preceding symbol.

{n,m} Matches at least n, but no more than m repetitions of the preceding symbol.

+? Non-greedy variant of the plus sign, matches the shortest string possible.

*? Non-greedy variant of the asterisk, matches the shortest string possible.

{.7 Non-greedy variant of braces, matches the shortest string possible.
Groupings

Groupings are used for two purposes in regular expression. They allow portions of a regular expression to
be designated as groups which can be used in a replacement pattern. And, they allow more complex regular
expressions to be built up from simple regular expressions.

Parentheses are used to designate a portion of a regular expression as a replacement group. Most regular
expressions are used to perform find/replace operations so this is an essential part of designing a pattern.
Note that if parentheses are meant to be a literal part of the pattern then they need to be escaped as \\(and \\).

The regular expression (.*?) matches an HTML bold tag. The contents of the tag are designated as a
group. If this regular expression is applied to the string “Bold Text" then the pattern matches the
entire string and “Bold Text” is designated as the first group.

Similarly, a phone number could be matched by the regular expression \\((\d{3})\\) (\d{3})-(\d{4}) with three
groups. The first group represents the area code (note that the parentheses appear in both escaped form \\(\\)
to match a literal opening parenthesis and normal form () to designated a grouping). The second group
represents the prefix and the third group the subscriber number. When the regular expression is applied to
the string “(360) 555-1212" then the pattern matches the entire string and generates the groups “360”, “555”,
and “1212”

Parentheses can also be used to create a sub-expression which does not generate a replacement group using
(?:). This form can be used to create sub-expressions which function much like very complex wild cards. For
example, the expression (?:blue)+ will match one or more repetitions of the sub-expression blue. It will match
the strings “blue”, “blueblue” or “blueblueblueblue”.

The | symbol can be used to specify alternation. It is most useful when used with sub-expressions. The expres-
sion (?:blue)|(?:red) will match either the word “blue” or the word “red”.

Table 4: Regular Expression Grouping Symbols

Symbol Description

() Grouping for output. Defines a named group for output. Nine groups can be
defined.

(7:) Grouping without output. Can be used to create a logical grouping that should not

be assigned to an output.
| Alternation. Matches either the character before or the character after the symbol.

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 26 — REGULAR EXPRESSIONS 350

Replacement Expressions

When regular expressions are used for find/replace operations the replacement expression can contain place
holders into which the defined groups from the search expression are placed. The place holder \\0 represents
the entire matched string. The place holders \\1 through \\9 represent the first nine groupings as defined by
parentheses in the regular expression.

The regular expression (.*?) from above matches an HTML bold tag with the contents of the tag
designated as a group. The replacement expression \\1 will essentially replace the bold tags with
emphasis tags, without disrupting the contents of the tags. For example the string “Bold Text" would
result in “Bold Text" after a find/replace operation.

The phone number expression \\(\d{3})\\) (\d{3})-(\d{4}) from above matches a phone number and creates three
groups for the parts of the phone number. The replacement expression \\1-\\2-\\3 would rewrite the phone
number to be in a more standard format. For example, the string “(360) 555-1212" would result in “360-555-
1212 after a find/replace operation.

Table 5: Regular Expression Replacement Symbols

Symbol Description

W0 ... \\9 Names a group in the replace string. \\0 represents the entire matched string.
Up to nine groups can be specified using the numerals 1 through 9.

Note: Other than the built-in escaped characters \n, r, \t, ", and \' all other escaped characters in regular
expressions should be preceded by two backslashes.

Note: The [RegExp] type also supports $0 and $1 through $9 as replacement symbols. In order to place a literal $ in
a replacement string it is necessary to escape it as \$.

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 26 — REGULAR EXPRESSIONS 351

Advanced Expressions

Lasso supports a number of more advanced symbols for special purposes. Some of these symbols are listed
in the following table, but a reference on regular expressions should be consulted for full documentation of
these symbols and other advanced concepts.

Table 6: Regular Expression Advanced Symbols

Symbol Description

#) Regular expression comment. The contents are not interpreted as part of the
regular expression.

(7i) Sets the remainder of the regular expression to be case insensitive. Similar to
specifying -IgnoreCase.

(™) Sets the remainder of the regular expression to be case sensitive (the default).

(7i:) The contents of this group will be matched case insensitive and the group will not
be added to the output.

(?i) The contents of this group will be matched case sensitive and the group will not
be added to the output.

(?=) Positive look ahead assertion. The contents are matched following the current
position, but not added to the output pattern.

() Negative look ahead assertion. The same as above, but the content must not
match following the current position.

(7<=) Positive look behind assertion. The contents are matched preceding the current
position, but not added to the output pattern.

(7<) Negative look behind assertion. The same as above, but the contents must not
match preceding the current position.

\\b Matches the boundary between a word and a space. Does not properly interpret

Unicode characters. The transition between any regular ASCII character
(matched by \\w) and a Unicode character is seen as a word boundary.

\\B Matches a boundary not between a word and a space.
A Circumflex matches the beginning of a line.
$ Dollar sign matches the end of a line.

Regular Expression Type

The regular expression type allows a regular expression to be defined once and then re-used many times. It
facilitates simple search operations, splitting strings, and interactive find/replace operations.

The [RegExp] type has some advantages over the string tags which perform regular expression operations.
Performance can be increased by compiling a regular expression once and then reusing it multiple times. The
regular expression type also allows for much more complex find/replace operations.

The regular expression type has a number of member tags which allow access to the stored regular
expressions and input and output strings, perform find/replace operations, or act as components in an
interactive find/replace operation. These are described in the following table and additional tables in the
sections about Simple Find/Replace and Split Operations and Interactive Find/Replace Operations.

Creating a Regular Expression

The [RegExp] tag creates a reusable regular expression. The regular expression type must be initialized with

a -Find pattern. The type will also store a -Replace pattern, and -Input string. These can be overrided when
particular member tags of the type are used. The type also has an -IgnoreCase option which controls whether
regular expressions are applied with case sensitivity or not.

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 26 — REGULAR EXPRESSIONS 352

Table 7: Regular Expression Type

Tag Description

[RegExp] Creates a regular expression. Accepts the following parameters.

-Find The find regular expression. Required.

-Replace Replacement expression. Optional.

-Input Input string. Optional.

-lgnoreCase If specified then regular expressions will be applied without case sensitivity.
Optional.

A regular expression can be created which explicitly specifies the -Find pattern, -Replace pattern, -Input, and
-IgnoreCase option. Using a fully qualified regular expression which is output on the page (rather than being
stored in a variable) is an easy way to perform a quick find/replace operation.

[RegExp: -Find="Taeiou]', -Replace='x', -Input="The quick brown fox jumped over the lazy dog.", -IgnoreCase]
=>» Thx gxxck brxwn fxx jxmpxd xvxr thx Ixzy dxg

However, usually a regular expression will be stored in a variable and then run later against an input string.
The following code stores a regular expression with a find and replace pattern into the variable $MyRegExp.
The following section on Simple Find/Replace and Split Operations will show how this regular expression
can be applied to strings.

[Var: 'MyRegExp' = (RegExp: -Find="Taeiou]', -Replace='x, -IgnoreCase)]

The tags in the followin table allow the stored patterns and input/output strings of a regular expression to be
inspected and modified.

Table 8: Regular Expression Accessors

Tag Description

[RegExp->FindPattern] Returns the find pattern. With a parameter sets a new find pattern and resets the
type.

[RegExp->ReplacePattern] Returns the replacemen pattern. With a parameter sets a new replacement
parameter.

[RegExp->Input] Returns the input string. With a parameter sets a new input string.

[RegExp->IgnoreCase] Returns True or False. With a boolean parameters sets or clears the ignore case
option.

[RegExp->GroupCount] Returns an integer specifying how many groups were found in the find pattern.

[RegExp->Output] Returns the output string.

For example, the regular expression above can be inspected by the following code. The group count is 0 since
the find expression does not contain any parentheses.

FindPattern: [$MyRegExp->FindPattern]
ReplacePattern: [$MyRegExp->ReplacePattern]
IgnoreCase: [$MyRegExp->IgnoreCase]
GroupCount: [$MyRegExp->GroupCount]

=» FindPattern: [aeiou]
ReplacePattern: x
IgnoreCase: True
GroupCount: 0

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 26 — REGULAR EXPRESSIONS 353

Simple Find/Replace and Split Operations

The regular expression type provides two member tags which perform a find/replace on an input string and
one tag which splits an input string into an array. These tags are documented in the following table and
examples of their use follows. These tags are short cuts for longer operations which can be performed using
the interactive tags described in the following section.

Table 9: Regular Expression Convenience Tags

Tag Description

[RegExp->ReplaceAll] Replaces all occurrences of the current find pattern with the current replacement
pattern. The -Input parameter specifies what string should be operated on.
If no input is provided then the input stored in the regular expression object is
used. If desired, new -Find and -Replace patterns can also be specified within
this tag.

[RegExp->ReplaceFirst] Replaces the first occurence of the current find pattern with the current
replacement pattern. Uses the same parameters as [RegExp->ReplaceAll].

[RegExp->Split] Splits the string using the regular expression as a delimiter and returns an array
of substrings. The -Input parameter specifies what string should be operated on.
If no input is provided then the input stored in the regular expression object is
used. If desired, a new -Find pattern can also be specified within this tag.

To use the same regular expression on multiple inputs:

The same regular expression can be used on multiple inputs by first compiling the regular expression using
the [RegExp] tag and then calling [RegExp->ReplaceAll] with a new -Input as many times as necessary. Since
the regular expression is only compiled once this technique can be considerably faster than using the
[String_ReplaceRegExp] tag repeatedly.

[Var: 'MyRegExp' = (RegExp: -Find="Taeiou]', -Replace='x, -IgnoreCase)]

[Encode_HTML: $MyRegExp->(ReplaceAll: -Input="The quick brown fox jumped over the lazy dog.)]

[Encode_HTML: $MyRegExp->(ReplaceAll: -Input="Lasso Professional 8.5')]

=>» Thx gxxck brxwn fxx jxmpxd xvxr thx Ixzy dxg.
Lxssx Prxfxssxxnxl 8.5

The replace pattern can also be changed if necessary. The following code changes both the input and replace
patterns each time the regular expression is used.
[Var: 'MyRegExp' = (RegExp: -Find="aeiou]', -Replace='x, -IgnoreCase))
[Encode_HTML: $MyRegExp->(ReplaceAll: -Input="The quick brown fox jumped over the lazy dog.", -Replace="y')]
[Encode_HTML: $MyRegExp->(ReplaceAll: -Input="Lasso Professional 8.5', -Replace='2)]

=>» Thy qyyck brywn fyy jympyd yvyr thy lyzy dyg.

Lzssz Przfzsszznzl 8.5
The replacement pattern can reference groups from the input using \\1 through \\9. The following example
uses a regular expression to clean up telephone numbers. The regular expression is run on several different
phone numbers.

[Var: 'MyRegExp' = (RegExp: -Find="\((\d{3})\\) (\d{3})-(\\d{4})", -Replace="\\1-\\2-\\3', -IgnoreCase)]

[Encode_HTML: $MyRegExp->(ReplaceAll: -Input='(360) 555-1212")]
[Encode_HTML: $MyRegExp->(ReplaceAll: -Input='(800) 555-1212")]

=» 360-555-1212
800-555-1212

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 26 — REGULAR EXPRESSIONS 354

To split a string using a regular expression:

The [RegExp->Split] tag can be used to split a string using a regular expression as the delimiter. This allows
strings to be split into parts using sophisticated criteria. For example, rather than splitting a string on a
comma, the “and” before the last item can be taken into account. Or, rather than splitting a string on space,
the string can be split into words taking punctuation and other whitespace into account.

The same regular expression from the example above can be used to split a string into sub-strings. In this case
the string will be split on vowels generating an array with elements which contain only consonants or spaces.

[Var: 'MyRegExp' = (RegExp: -Find="Taeiou]', -Replace='x, -IgnoreCase)]
[Encode_HTML: $MyRegExp->(Split: -Input="The quick brown fox jumped over the lazy dog.)]

= array: (Th), (q), (), (ck br), (wn), (x]), (mp), (d), (v), (r th), (1), (zy d), (g.)

The -Find can be modified within the [RegExp->Split] tag to split the string on a different regular expression.
In this example the string is split on any run of one or more non-word characters. This splits the string into
words not including any whitespace or punctuation.

[Encode_HTML: $MyRegExp->(Split: -Find="\W+', -Input="The quick brown fox jumped over the lazy dog.")]

=>» array: (The), (quick), (brown), (fox), (jumped), (over), (the), (lazy), (dog)

If the -Find expression contains groups then they will be returned in the array in between the split elements.
For example, surrounding the -Find pattern above with parentheses will result in an array of alternating word
elements and whitespace/puncuation elements.

[Encode_HTML: $MyRegExp->(Split: -Find="(\W+)', -Input="The quick brown fox jumped over the lazy dog.')]

= array:(The), (), (quick), (), (brown), (), (fox), (), (umped), (), (over), (), (the), (), (lazy), (), (dog), ()

Interactive Find/Replace Operations

The regular expression type provides a collection of member tags which make interactive find/replace opera-
tions possible. Interactive in this case means that Lasso code can intervene in each replacement as it happens.
Rather than performing a simple one shot find/replace like those shown in the last section, it is possible to
programmatically determine the replacement strings using database searches or any LassoScript logic.

The order of operations of an interactive find/replace operation is as follows:

1 The regular expression type is initialized with a -Find pattern and -Input string. In this example the find
pattern will match each word in the input string in turn.

[Var: 'MyRegExp' = (RegExp: -Find="\w+', -Input="The quick brown fox jumped over the lazy dog.', -IgnoreCase)]

2 A [While] ... [/While] loop is used to advance the regular expression match with [RegExp->Find]. Each time
through the loop the pattern is advanced one match forward. If there are no further matches then the loop
is exited automatically.

[While: $MyRegExp->Find]
[/While]
3 Within the [While] ... [[While] loop the [RegExp->MatchString] tag is used to inspect the current match. If

the find pattern had groups then they could be inspected here by passing an integer parameter to
[RegExp->MatchString].

[Var: 'MyMatch' = $MyRegExp->MatchString]

4 The match is manipulated. For this example the match string will be reversed using the [String->Reverse] tag.
This will reverse the word “lazy” to be “yzal”.

[$MyMatch->Reverse]

LAsso 8.5 LANGUAGE GUIDE

CHAPTER 26 — REGULAR EXPRESSIONS 355

5 The modified match string is now appended to the output string using the [RegExp->AppendReplacement] tag.
This tag will automatically append any parts of the input string which weren’t matched (the spaces between
the words).

[$MyRegExp->(AppendReplacement: $MyMatch)]

6 After the [While] ... [/While] loop the [RegExp->AppendTail] tag is used to append the unmatched end of the input
string to the output (the period at the end of the input).

[$MyRegExp->AppendTail]
7 Finally, the output string from the regular expression object is displayed.
[Encode_HTML: $MyRegExp->Output]
=>» ehT kciug nworb xof depmuj revo eht yzal god.

This same basic order of operation is used for any interactive find/replace operation. The power of this meth-
odology comes in the fourth step where the replacement string can be generated using any code necessary,
rather than needing to be a simple replacement pattern.

Table 10: Regular Expression Interactive Tags

Tag Description

[RegExp->Find] Advances the regular expression one match in the input string. Returns True if
the regular expression was able to find another match. Defaults to checking from
the start of the input string (or from the end of the most recent match).Optional
-StartPos parameter sets the position in the input string at which to start the
search.

[RegExp->MatchString] Returns a string containing the last pattern match. Optional -GroupNumber
parameter specifies a group from the find pattern to return (defaults to returning
the entire pattern match).

[RegExp->MatchPosition] Returns a pair containing the start position and length of the last pattern match.