
Lasso 8.5
Language Guide

Trademarks

Lasso, Lasso Professional, Lasso Studio, Lasso Dynamic Markup Language, LDML, Lasso Service, Lasso Connector, Lasso

Web Data Engine, and LassoSoft are trademarks of LassoSoft, LLC. All other products mentioned may be trademarks of

their respective holders. See Appendix C: Copyright Notices in the Lasso Professional 8 Setup Guide for additional

details.

Third Party Links

This guide may contain links to third-party Web sites that are not under the control of LassoSoft. LassoSoft is not respon-

sible for the content of any linked site. If you access a third-party Web site mentioned in this guide, then you do so at your

own risk. LassoSoft provides these links only as a convenience, and the inclusion of the links does not imply that LassoSoft

endorses or accepts any responsibility for the content of those third-party sites.

Copyright

Copyright © 2007 LassoSoft, LLC. This manual may be printed for your personal use. This manual may not be copied,

photocopied, reproduced, translated or converted to any electronic or machine-readable form in whole or in part

without prior written approval of LassoSoft, LLC. See Appendix C: Copyright Notices for additional details.

Date: April 26, 2009

Version: 8.5.6

LassoSoft, LLC
dba OmniPilot Software
P.O. Box 33
Manchester, Washington 98353
U.S.A.

Telephone: (954) 302-3526
Email: info@lassosoft.com
Web Site: http://www.lassosoft.com

Contents

Section I
Lasso Overview . 24

Chapter 1
Introduction . 25

Lasso 8.5 Documentation	 25
Lasso 8.5 Language Guide	 25
Documentation Conventions	 26

Chapter 2
Web Application Fundamentals . 28

Web Browser Overview	 28
Web Server Overview	 33
URL Rewrite	 33
HTML Forms and URL Parameters	 34
HTML, XHTML, and XML	 35
AJAX	 36
Web Application Servers	 36
Web Application Server Languages	 37
Error Reporting	 37

Chapter 3
Lasso Pages . 38

Introduction	 39
Storage Types	 39
Naming Lasso Pages	 40
Character Encoding	 40
Editing Lasso Pages	 40
Functional Types	 40
Action Methods	 41

Table 1: Action Methods	 41
Securing Lasso Pages	 44
Output Formats	 44
File Management	 45
Specifying Paths	 46

L a s s o 8 L a n g u a g e G u i d e

Page Execution Time Limit	 48
Code Compilation and Caching	 48

Chapter 4
Lasso 8.5 Syntax . . 50

Overview	 50
Colon Syntax	 52

Table 1: Colon Syntax Delimiters	 52
Parentheses Syntax	 52

Table 2: Parentheses Syntax Delimiters	 53
Square Brackets	 53

Table 3: Square Bracket Delimiters	 53
LassoScript	 55

Table 4: LassoScript Delimiters	 55
HTML Form Inputs	 58
URLs	 58
Compound Expressions	 58

Table 5: Compound Expression Delimiters	 59

Chapter 5
Lasso 8.5 Tag Language . 61

Introduction	 61
Tag Types	 62

Table 1: Lasso 8 Tag Types	 62
Tag Categories and Naming	 67

Table 2: Lasso 8 Tag Categories	 67
Table 3: Lasso 8 Synonyms	 69
Table 4: Lasso 8 Abbreviations	 69

Parameter Types	 69
Table 5: Parameter Types	 69

Encoding	 71
Table 6: Encoding Keywords	 71

Data Types	 71
Table 7: Primary Lasso 8 Data Types	 72

Expressions and Symbols	 75
Table 8: Types of Lasso 8 Expressions	 76
Table 9: Member Tag Symbol	 77
Table 10: Retarget Symbol	 77
Table 11: String Expression Symbols	 78
Table 12: Math Expression Symbols	 78
Table 13: Conditional Expression Symbols	 80
Table 14: Logical Expression Symbols	 80
Table 15: Logical Expression Symbols	 80

Delimiters	 81
Table 16: Lasso 8 Delimiters	 81
Table 17: HTML/HTTP Delimiters	 82

Illegal Characters	 83
Table 18: Illegal Characters	 83

Chapter 6
Lasso 8.5 Reference . . 84

Overview	 84
Figure 1: Lasso 8.5 Reference	 85

4

L a s s o 8 . 5 L a n g u a g e G u i d e

C o n t e n t s

LassoScript	 85
Figure 2: Tag Detail Page	 86

Utility	 88

Section II
Database Interaction . . 89

Chapter 7
Database Interaction Fundamentals 90

Inlines	 90
Table 1: Inline Tag	 90
Table 2: Inline Database Action Parameters	 92
Table 3: Response Parameters	 96

Action Parameters	 98
Table 4: Action Parameter Tags	 98
Table 5: [Action_Params] Array Schema	 100

Results	 101
Table 6: Results Tags	 101
Table 7: [Records_Map] Parameters	 103

Showing Database Schema	 104
Table 8: -Show Parameter	 104
Table 9: -Show Action Requirements	 105
Table 10: Schema Tags	 105
Table 11: [Field_Name] Parameters	 106
Table 12: [Required_Field] Parameters	 107

Inline Hosts	 107
SQL Statements	 109

Table 14: SQL Inline Parameters	 109
Table 15: -SQL Helper Tags	 110

SQL Transactions	 113
Prepared Statements	 113

Table 16: Prepared Statements	 114

Chapter 8
Searching and Displaying Data . 115

Overview	 115
Table 1: Command Tags	 115
Table 2: Security Command Tags	 117

Searching Records	 118
Table 3: -Search Action Requirements	 118
Table 4: Operator Command Tags	 119
Table 5: Field Operators	 120
Table 6: Results Command Tags	 123

Finding All Records	 125
Table 7: -FindAll Action Requirements	 125

Finding Random Records	 126
Table 8: -Random Action Requirements	 126

Displaying Data	 127
Table 9: Field Display Tags	 127

Linking to Data	 129
Table 10: Link Tags	 130
Table 11: Link Tag Parameters	 131
Table 12: Link URL Tags	 132

5

L a s s o 8 . 5 L a n g u a g e G u i d e

C o n t e n t s

Table 13: Link Container Tags	 133
Table 14: Link Parameter Tags	 134

Chapter 9
Adding and Updating Records . 141

Overview	 141
Table 1: Command Tags	 141
Table 2: Security Command Tags	 143

Adding Records	 143
Table 3: -Add Action Requirements	 143

Updating Records	 146
Table 4: -Update Action Requirements	 146

Deleting Records	 150
Table 5: -Delete Action Requirements	 150

Duplicating Records	 152
Table 6: -Duplicate Action Requirements	 152

Chapter 10
SQL Data Sources . 154

Overview	 154
Table 1: Data Sources	 154

Feature Matrix	 156
Table 2: MySQL Data Source	 156
Table 3: OpenBase Data Source	 156
Table 4: Oracle Data Source	 156
Table 5: PostgreSQL Data Source	 157
Table 6: Microsoft SQL Server Data Source	 157
Table 7: SQLite Data Source	 157

SQL Data Source Tags	 157
Table 8: SQL Data Source Tags	 157

Searching Records	 158
Table 9: MySQL Search Field Operators	 159
Table 10: Search Command Tags 	 160

Adding and Updating Records	 162
Value Lists	 163

Table 11: MySQL Value List Tags	 163

Chapter 11
FileMaker Data Sources . 168

Overview	 168
Table 1: Data Sources	 169

Feature Matrix	 170
Table 2: FileMaker Pro Data Source	 170
Table 3: FileMaker Server Data Source	 170

Performance Tips	 170
Compatibility Tips	 171
FileMaker Queries	 172

Table 4: FileMaker Operators	 172
Table 5: FileMaker Search Symbols	 173
Table 6: FileMaker Server 9 Logical Operators	 174
Table 7: FileMaker Server 9 Additional Commands	 175

FileMaker Tags	 175
Table 8: FileMaker Data Source Tags	 175

6

L a s s o 8 . 5 L a n g u a g e G u i d e

C o n t e n t s

Primary Key Field and Record ID	 176
Sorting Records	 177
Displaying Data	 178

Table 9: FileMaker Data Display Tags	 178
Value Lists	 184

Table 10: FileMaker Value List Tags	 184
Container Fields	 188

Table 11: Container Field Tags	 188
FileMaker Scripts	 189

Table 12: FileMaker Scripts Tags	 189

Chapter 12
JDBC and ODBC Data Sources 192

Overview	 192
Table 1: Data Sources	 192

Feature Matrix	 194
Table 2: JDBC Data Sources	 194
Table 3: ODBC Data Sources	 194

Using JDBC Data Sources	 194
Table 4: JDBC Schema Tags	 195

Using ODBC Data Sources	 195

Chapter 13
Other Data Sources . . 196

Overview	 196
Table 1: Data Sources	 196

Feature Matrix	 197
Table 2: Spotlight Data Source	 197
Table 3: Custom Data Sources	 197

Spotlight Data Source	 197
Table 4: Common Spotlight Field Names	 198

Custom Data Sources	 202

Section III
Programming . 203

Chapter 14
Programming Fundamentals . 204

Overview	 204
Figure 1: Error Page	 205

Logic vs. Presentation	 205
Data Output	 207

Table 1: Output Tags	 207
Variables	 208
Includes	 210

Table 2: Include Tags	 212
Data Types	 213

Table 3: Data Type Tags	 213
Symbols	 217
Member Tags	 218
Forms and URLs	 219
Custom Tags	 220

7

L a s s o 8 . 5 L a n g u a g e G u i d e

C o n t e n t s

Chapter 15
Variables . 222

Overview	 222
Page Variables	 223

Table 1: Page Variable Tags	 223
Table 2: Page Variable Symbols	 223

Global Variables	 226
Table 3: Global Tags	 226

Local Variables	 229
Table 4: Local Tags	 229
Table 5: Local Variable Symbols	 229

References	 230
Table 6: Reference Tags and Symbols	 232

Chapter 16
Conditional Logic . 233

If Else Conditionals	 234
Table 1: If Else Tags	 234

If Else Symbol	 236
Table 2: If Else Symbol	 236

Select Statements	 237
Table 3: Select Tags	 237

Conditional Tags	 238
Table 4: Conditional Tags	 238

Loops	 238
Table 5: [Loop] Tag Parameters	 239
Table 6: Loop Tags	 240

Iterations	 241
Table 7: Iteration Tags	 242

While Loops	 242
Table 8: While Tags	 243

Abort Tag	 243
Table 9: Abort Tag	 243

Boolean Type	 243
Table 10: Boolean Tag	 243
Table 11: Boolean Symbols	 244

Chapter 17
Encoding . 246

Overview	 246
Encoding Keywords	 248

Table 1: Encoding Keywords	 248
Encoding Controls	 249

Table 2: Encoding Controls	 249
Encoding Tags	 249

Table 3: Encoding Tags	 249

Chapter 18
Sessions . 251

Overview	 251
Session Tags	 252

Table 1: Session Tags	 252

8

L a s s o 8 . 5 L a n g u a g e G u i d e

C o n t e n t s

Table 2: [Session_Start] Parameters	 253
Session Example	 255

Chapter 19
Error Control . 257

Overview	 257
Error Reporting	 258

Figure 1: Built-In None Error Message	 259
Figure 2: Built-In Minimal Error Message	 259
Figure 3: Built-In Full Error Message	 259
Table 1: Error Level Tag	 260
Figure 4: Lasso Service Error Message	 260
Figure 5: Authentication Dialog	 260

Custom Error Page	 260
Figure 6: Custom Error Page	 261

Error Pages	 262
Table 2: Error Response Tags	 262

Error Tags	 262
Table 3: Error Tags	 262
Table 4: Error Type Tags	 264

Error Handling	 265
Table 5: Error Handling Tags	 265

Section IV
Upgrading . 269

Chapter 20
Upgrading From Lasso Professional 8 270

Introduction	 270
New Data Sources	 271
Syntax Changes	 271

Table 1: Syntax Changes	 271
Security Enhancements	 278
Lasso Professional 8.0.x	 279

Chapter 21
Upgrading From Lasso Professional 7 287

Introduction	 287
SQLite	 287
Multi-Site	 288
Namespaces	 289
Digest Authentication	 289
On-Demand LassoApps	 290
Syntax Changes	 290
Tag Name Changes	 291

Table 1: Tag Name Changes	 291

Chapter 22
Upgrading From Lasso Professional 6 292

Introduction	 292
Error Reporting	 293
Unicode Support	 294

9

L a s s o 8 . 5 L a n g u a g e G u i d e

C o n t e n t s

Bytes Type	 295
Table 1: Tags That Return the Bytes Type	 296
Table 2: Byte and String Shared Member Tags	 296
Table 3: Unsupported String Member Tags	 297

Syntax Changes	 298
Table 4: Syntax Changes	 298

Tag Name Changes	 310
Table 5: Unsupported Tags	 310
Table 6: Tag Name Changes	 310
Table 7: Deprecated Tags	 310

Chapter 23
Upgrading From Lasso Professional 5 311

Introduction	 311
Tag Name Changes	 311

Table 1: Unsupported Tags	 312
Table 2: Tag Name Changes	 312
Table 3: Deprecated Tags	 312

Syntax Changes	 313
Table 4: Syntax Changes	 313

Lasso MySQL	 315
Table 5: Lasso MySQL Syntax Changes	 315

Chapter 24
Upgrading From Lasso WDE 3.x 316

Introduction	 316
Syntax Changes	 316

Table 1: Syntax Changes	 317
Table 2: Line Endings	 323

Tag Name Changes	 326
Table 3: Command Tag Name Changes	 326
Table 4: Substitution, Process, and Container Tag Name Changes	 327

Unsupported Tags	 328
Table 5: Unsupported Tags	 328

FileMaker Pro	 328

Section V
Data Types . 330

Chapter 25
String Operations . 331

Overview	 331
Table 1: String Tag	 332

String Symbols	 333
Table 2: String Symbols	 333

String Manipulation Tags	 335
Table 3: String Manipulation Member Tags	 336
Table 4: String Manipulation Tags	 337

String Conversion Tags	 337
Table 5: String Conversion Member Tags	 338
Table 6: String Conversion Tags	 338

1 0

L a s s o 8 . 5 L a n g u a g e G u i d e

C o n t e n t s

String Validation Tags	 338
Table 7: String Validation Member Tags	 338
Table 8: String Validation Tags	 339

String Information Tags	 340
Table 9: String Information Member Tags	 340
Table 10: String Information Tags	 341
Table 11: Character Information Member Tags	 342
Table 12: Unicode Tags	 343

String Casting Tags	 343
Table 13: String Casting Member Tags	 343

Chapter 26
Regular Expressions . 345

Overview	 345
Table 1: Regular Expression Wild Cards	 347
Table 2: Unicode Properties	 348
Table 3: Regular Expression Combination Symbols	 349
Table 4: Regular Expression Grouping Symbols	 349
Table 5: Regular Expression Replacement Symbols	 350
Table 6: Regular Expression Advanced Symbols	 351

Regular Expression Type	 351
Table 7: Regular Expression Type	 352
Table 8: Regular Expression Accessors	 352
Table 9: Regular Expression Convenience Tags	 353
Table 10: Regular Expression Interactive Tags	 355

String Tags	 356
Table 11: Regular Expression String Tags	 356

Chapter 27
Bytes . 359

Bytes Type	 359
Table 1: Byte Stream Tag	 359
Table 2: Byte Stream Member Tags	 359

Chapter 28
Math Operations . 363

Overview	 363
Table 1: Integer Tag	 363
Table 2: Decimal Tag	 364

Mathematical Symbols	 365
Table 3: Mathematical Symbols	 365
Table 4: Mathematical Assignment Symbols	 366
Table 5: Mathematical Comparison Symbols	 366

Decimal Member Tags	 367
Table 6: Decimal Member Tag	 367
Table 7: [Decimal->SetFormat] Parameters	 367

Integer Member Tags	 368
Table 8: Integer Member Tags	 368
Table 9: [Integer->SetFormat] Parameters	 369

Math Tags	 370
Table 10: Math Tags	 370
Table 11: [Math_Random] Parameters	 371
Table 12: Trigonmetric and Advanced Math Tags	 372

1 1

L a s s o 8 . 5 L a n g u a g e G u i d e

C o n t e n t s

Locale Formatting	 373
Table 13: Locale Formatting Tags	 373

Chapter 29
Date and Time Operations . 374

Overview	 374
Date Tags	 375

Table 1: Date Substitution Tags	 376
Table 2: Date Format Symbols	 377
Table 3: Date Format Member Tags	 379
Table 4: Date Accessor Tags	 380

Duration Tags	 380
Table 5: Duration Tags	 381

Date and Duration Math	 382
Table 6: Date Math Tags	 382
Table 7: Date and Duration Math Tags	 383
Table 8: Date Math Symbols	 384

Chapter 30
Arrays, Maps, and Compound Data Types 386

Overview	 386
Arrays	 389

Table 1: Array Tag	 390
Table 2: Array Member Tags	 390
Table 3: [Array->Merge] Parameters	 395

Lists	 398
Table 4: List Tag	 398
Table 5: List Member Tags	 399

Maps	 401
Table 6: Map Tag	 401
Table 7: Map Member Tags	 402

Pairs	 404
Table 8: Pair Tag	 404
Table 9: Pair Member Tags	 405

Priority Queues	 405
Table 10: Priority Queue Tag	 406
Table 11: Priority Queue Member Tags	 406

Queues	 408
Table 12: Queue Tag	 409
Table 13: Queue Member Tags	 409

Series	 411
Table 14: Series Tag	 411

Sets	 411
Table 15: Set Tag	 412
Table 16: Set Member Tags	 412

Stacks	 414
Table 17: Stack Tag	 414
Table 18: Stack Member Tags	 414

Tree Maps	 417
Table 19: Tree Map Tag	 417
Table 20: Tree Map Member Tags	 417

Comparators	 420
Table 21: Comparators	 420

Matchers	 421

1 2

L a s s o 8 . 5 L a n g u a g e G u i d e

C o n t e n t s

Table 22: Matchers	 421
Iterators	 423

Table 23: Iterator Tags	 424
Table 24: Iterator and Reverse Iterator Member Tags	 424

Chapter 31
Files . 428

File Tags	 428
Table 1: File Tags	 431
Table 2: Line Endings	 434

File Data Type	 435
Table 3: [File] Tag	 435
Table 4: File Open Modes	 435
Table 5: File Read Modes	 435
Table 6: File Streaming Tags	 436

File Uploads	 438
Table 7: File Upload Tags	 439
Table 8: [File_Uploads] Map Elements	 439

File Serving	 440
Table 9: File Serving Tags	 440

Chapter 32
Images and Multimedia . 442

Overview	 442
Table 1: Tested and Certified Image Formats	 443

Casting Images as Lasso Objects	 444
Table 2: [Image] Tag:	 444
Table 3: [Image] Tag Parameters:	 444

Getting Image Information	 445
Table 4: Image Information Tags	 445

Converting and Saving Images	 446
Table 5: Image Conversion and File Tags	 446

Manipulating Images	 447
Table 6: Image Size and Orientation Tags	 447
Table 7: Image Effects Tags	 448
Table 8: Annotate Image Tag	 450
Table 9: Composite Image Tag	 451
Table 10: Composite Image Tag Operators	 451

Extended ImageMagick Commands	 453
Table 11: ImageMagick Execute Tag	 453

Serving Image and Multimedia Files	 453
Table 12: Image Serving Tag	 454

Chapter 33
Networking . . 457

Network Communication	 457
Table 1: [Net] Tags	 457
Table 2: [Net] Type Member Tags	 458
Table 3: [Net] Type Constants	 458
Table 4: [Net] TCP Non-Blocking Member Tags	 459
Table 5: [Net] Connect Constants	 459
Table 6: [Net] TCP Blocking Member Tags	 460
Table 7: [Net] Wait Constants	 461

1 3

L a s s o 8 . 5 L a n g u a g e G u i d e

C o n t e n t s

Table 8: [Net] TCP Listener Member Tags	 461
UDP Connections	 463

Table 9: [Net] UDP Member Tags	 463

Chapter 34
XML . 465

Overview	 465
XML Glossary	 466
XML Data Type	 466

Table 1: XML Data Type Tag	 466
Table 2: XML Member Tags	 467

XPath Extraction	 469
Table 3: [XML_Extract] Tag	 470
Table 4: Simple XPath Expressions	 471
Table 5: Conditional XPath Expressions	 473

XSLT Style Sheet Transforms	 475
Table 6: [XML_Transform] Tag	 475

XML Stream Data Type	 476
Table 7: XML Stream Data Type Tag	 476
Table 8: XML Stream Node Types	 476
Table 9: XML Stream Navigation Member Tags	 477
Table 10: XML Stream Member Tags	 478

Serving XML	 479
Table 11: [XML_Serve] Serving Tags	 479

Formatting XML	 480
XML Templates	 481

Table 12: FileMaker Pro XML Templates	 482
Table 13: SQL Server XML Templates	 482

Chapter 35
Portable Document Format . 484

Overview	 484
Working With PDF Documents	 485

Table 1: [PDF_Read] Tag and Members	 485
Creating PDF Documents	 487

Table 2: [PDF_Doc] Tag and Parameters	 487
Table 3: [PDF_Doc->Add] Tag and Parameters	 489
Table 4: PDF Page Tags	 489
Table 5: Page Insertion Tag and Parameters	 490
Table 6: PDF Accessor Tags	 491
Table 7: [PDF_Doc->Close] Tag	 492

Creating Text Content	 492
Table 8: PDF Font Tag and Parameters	 492
Table 9: [PDF_Font] Member Tags	 493
Table 10: [PDF_Text] Tag and Parameters	 494
Table 11: [PDF_Doc->DrawText] Tag	 495
Table 12: [PDF_List] Tags and Parameters	 496
Table 13: Special Characters	 497

Creating and Using Forms	 497
Table 14: [PDF_Doc] Form Member Tags	 497
Table 16: Form Placement Parameters	 499

Creating Tables	 502
Table 17: [PDF_Table] Tag and Parameters	 502
Table 18: [PDF_Table] Member Tags	 502

1 4

L a s s o 8 . 5 L a n g u a g e G u i d e

C o n t e n t s

Table 19: Cell Content Tags	 503
Creating Graphics	 505

Table 20: [PDF_Image] Tag and Parameters	 505
Table 21: [PDF_Doc] Drawing Member Tags	 506

Creating Barcodes	 507
Table 22: [PDF_Barcode] Tag and Parameters	 508

Example PDF Files	 509
Serving PDF Files	 512

Table 23: PDF Serving Tags	 513

Chapter 36
JavaBeans . . 514

Overview	 514
Installing JavaBeans	 515
JavaBeans Type	 515

Table 1: JavaBeans Type	 515
Creating JavaBeans	 516

Chapter 37
iCalendar . 518

Introduction	 518
iCalendar Types	 520

Table 1: iCalendar Tags and Types	 520
Table 2: iCalendar Member Tags	 521
Table 3: [iCal_Attribute] Member Tags	 521
Table 4: [iCal_Attribute] Value Data Types	 522
Table 5: RECUR Map Elements	 522

Chapter 38
Process and Shell Support . 524

Overview	 524
Installation	 524
Security	 525
OS Process Type	 526

Table 1: OS Process Type	 526

Chapter 39
LDAP . 531

Overview	 531
LDAP Type	 533

Table 1: LDAP Tags	 533
Table 2: [LDAP->Search] Query Parameters	 533
Table 3: [LDAP->Code] Return Codes	 534

1 5

L a s s o 8 . 5 L a n g u a g e G u i d e

C o n t e n t s

Section VI
Concepts . 536

Chapter 40
Namespaces . 537

Overview	 537
Namespace Tags	 539

Table 1: Namespace Tags	 539

Chapter 41
Logging . 541

Overview	 541
Log Tags	 542

Table 1: Lasso Error Log Tags	 542
Log Files	 543

Table 2: File Log Tags	 543
Log Routing	 543

Table 3: Log Preference Tag	 544
Table 4: Log Message Levels	 544
Table 5: Log Destination Codes	 544

Chapter 42
Encryption . 546

Overview	 546
Encryption Tags	 546

Table 1: Encryption Tags	 547
Cipher Tags	 549

Table 2: Cipher Tags	 549
Table 3: Cipher Algorithms	 549
Table 4: Digest Algorithms	 550

Serialization Tags	 550
Table 5: Serialization Tags	 550

Compression Tags	 551
Table 6: Compression Tags	 551

Chapter 43
Control Tags . . 553

Authentication Tags	 553
Table 1: Authentication Tags	 554

Administration Tags	 555
Table 2: Administration Tags	 555

Scheduling Events	 558
Table 3: Scheduling Tag	 558
Table 4: Scheduling Parameters	 558

Process Tags	 560
Table 5: Process Tags	 560

Null Data Type	 562
Table 6: Null Member Tags	 562

Page Content Tags	 563
Table 7: Page Variable Tags	 563

Configuration Tags	 564

1 6

L a s s o 8 . 5 L a n g u a g e G u i d e

C o n t e n t s

Table 8: Configuration Tags	 564
Page Execution Time Limit	 565

Table 9: Time Limit Tags	 565
Code Compilation and Caching	 566

Table 10: Time Limit Tags	 566
Page Pre- and Post-Processing	 566

Table 11: Pre and Post-Process Tags	 567
Site Tags	 568

Table 12: Site Tags	 568
Table 13: Server Tags	 569

Chapter 44
Threads . 570

Introduction	 570
Atomic Operations	 571

Table 1: Atomic Tags	 571
Thread Tools	 572

Table 2: Thread Tools	 572
Table 3: Thread Priorities	 573

Thread Synchronization	 574
Table 4: Thread Synchronization Tools	 574
Table 5: [Thread_Lock] Member tags:	 574
Table 6: [Thread_Semaphore] Member Tags	 575
Table 7: [Thread_RWLock] Member Tags	 576

Thread Communication	 576
Table 8: Thread Communication Tools	 577
Table 9: [Thread_Event] Member Tags:	 577
Table 10: [Thread_Pipe] Member Tags:	 577

Chapter 45
Tags and Compound Expressions 579

Tag Data Type	 579
Table 1: Tag Data Type Member Tags	 580
Table 2: [Tag->Run] Parameters	 580

Compound Expressions	 582
LassoScript Parsing	 583

Table 3: Lasso Parser Type Tag	 583
Table 4: Lasso Parser Type Member Tags	 584
Table 5: Lasso Parser Token Types	 585

Chapter 46
Miscellaneous Tags . 587

Name Server Lookup	 587
Table 1: Name Server Lookup Tag	 587

Validation Tags	 587
Table 2: Valid Tags	 588

Unique ID Tags	 588
Table 3: Unique ID Tag	 588

Server Tags	 588
Table 4: Server Tags	 588

1 7

L a s s o 8 . 5 L a n g u a g e G u i d e

C o n t e n t s

Section VII
Protocols . . 589

Chapter 47
Sending Email . 590

Overview	 590
Sending Email	 591

Table 1: Email Tag	 591
Table 2: [Email_Send] Parameters	 592
Table 3: HTML Message [Email_Send] Parameters	 593
Table 4: Attachment [Email_Send] Parameters	 595
Table 5: Email Merge [Email_Send] Parameters	 596
Table 6: Email Tokens	 596
Table 7: Advanced [Email_Send] Parameters	 597
Table 8: SMTP Server [Email_Send] Parameters	 598

Email Status	 599
Table 9: Email Composing and Queuing Tags	 599

Composing Email	 599
Table 10: Email Composing and Queuing Tags	 600

SMTP Type	 602
Table 11: SMTP Tags	 602

Chapter 48
POP . 604

Overview	 604
POP Type	 604

Table 1: [Email_POP] type	 605
Email Parsing	 607

Table 2: [Email_Parse] type	 609
Helper Tags	 614

Table 3: Email Helper Tags	 614

Chapter 49
HTTP/HTML Content and Controls 615

Include URLs	 615
Table 1: Include URL Tag	 616
Table 2: [Include_URL] Parameters	 616

Redirect URL	 618
Table 3: Redirect URL Tag	 618

HTTP Tags	 619
Table 4: HTTP Tags	 619

FTP Tags	 619
Table 5: FTP Tags	 620

Cookie Tags	 621
Table 6: Cookie Tags	 621
Table 7: [Cookie_Set] Parameters	 622

Caching Tags	 624
Table 8: [Cache] Tag	 624
Table 9: [Cache] Tag Parameters	 625
Table 11: Cache Control Tags	 627

Server Push	 628
Table 12: Server Push Tag	 628

1 8

L a s s o 8 . 5 L a n g u a g e G u i d e

C o n t e n t s

Header Tags	 629
Table 13: Header Tags	 629

Request Tags	 631
Table 14: Request Tags	 631

Client Tags	 632
Table 15: Client Tags	 632

Server Tags	 632
Table 16: Server Tags	 633

Chapter 50
XML-RPC . 634

Overview	 634
Calling a Remote Procedure	 634

Table 1: [XML_RPCCall] Tag	 634
Table 2: XML-RPC Built-In Methods	 635
Table 3: XML-RPC and Built-In Data Types	 636
Table 4: XML-RPC Data Type	 636
Table 5: [XML_RPC] Call Tag	 636

Creating Procedures	 637
Processing an Incoming Call	 637

Table 6: [XML_RPC] Processing Tags	 638

Chapter 51
SOAP . 639

Overview	 639
Calling SOAP Procedures	 641

Table 1: SOAP Tags	 642
Table 2: [SOAP_DefineTag] Parameters	 642
Table 3: Built-In Processors	 645

Defining SOAP Procedures	 646
Low-Level Details	 647

Chapter 52
Wireless Devices . 652

Overview	 652
Formatting WML	 652
WAP Tags	 654

Table 1: WAP Tags	 655
WML Example	 655

Chapter 53
AJAX and LJAX . 658

Overview	 658
LJAX Methodology	 659
LJAX JavaScript Library	 659

Table 1: LJAX JavaScript Functions	 660
Table 2: Lasso.includeTarget() Options	 660

LJAX Tags	 661
Table 3: LJAX Tags	 661

LJAX Example	 663

1 9

L a s s o 8 . 5 L a n g u a g e G u i d e

C o n t e n t s

Chapter 54
DNS . . 665

Overview	 665
DNS Lookup	 666

Table 1: DNS Lookup Tags	 666
Table 2: [DNS_Lookup] Parameters	 666
Table 3: [DNS_Response] Member Tags	 668

Section VIII
LassoScript . 669

Chapter 55
LassoScript Introduction . 670

Overview	 670
LassoApps	 671
Custom Tags	 671
Custom Types	 671
Custom Data Sources	 671

Chapter 56
LassoApps . 672

Overview	 672
Table 1: LassoApp Tags	 673

Default LassoApps	 673
Administration	 674
Serving LassoApps	 675
Preparing Solutions	 677
Building LassoApps	 679

Table 2: [LassoApp_Create] Tag Parameters	 680
Tips and Techniques	 681

Chapter 57
Custom Tags . 683

Overview	 683
Custom Tags	 685

Table 1: Tags For Creating Custom Tags	 685
Table 2: [Define_Tag] Parameters	 686

Container Tags	 695
Web Services, Remote Procedure Calls, and SOAP	 696
Atomic Tags	 698
Asynchronous Tags	 698
Overloading Tags	 700
Constants	 703

Table 3: [Define_Constant] Tag	 703
Libraries	 703

Chapter 58
Custom Types . 705

Overview	 705

2 0

L a s s o 8 . 5 L a n g u a g e G u i d e

C o n t e n t s

Custom Types	 706
Table 1: Tags for Creating Custom Data Types	 706

Member Tags	 709
Table 2: Built-In Member Tags	 709

Prototypes	 711
Table 3: Prototype Tag	 711

Callback Tags	 711
Table 4: Callback Tags	 712

Symbol Overloading	 715
Table 5: Overloadable Symbols	 715
Table 6: Comparison Callback Tags	 716
Table 7: Symbol Callback Tags	 718
Table 8: Assignment Callback Tags	 719

Inheritance	 721
Libraries	 722

Chapter 59
Custom Data Sources . 723

Overview	 723
Data Source Register	 723

Table 1: Data Source Register	 724
Data Source Type	 724

Table 2: Data Source Member Tags	 724
Table 3: Host Information	 725
Table 4: Result Set Tags	 729

Section IX
Lasso C/C++ API . 731

Chapter 60
LCAPI Introduction . 732

Overview	 732
Requirements	 732
Getting Started	 733
Debugging	 734
Frequently Asked Questions	 735

Chapter 61
LCAPI Tags . 737

Substitution Tag Operation	 737
Substitution Tag Tutorial	 738

Chapter 62
LCAPI Data Types . 742

Data Type Operation	 742
Data Type Tutorial	 743

2 1

L a s s o 8 . 5 L a n g u a g e G u i d e

C o n t e n t s

Chapter 63
LCAPI Data Sources . 747

Data Source Connector Operation	 747
Data Source Connector Tutorial	 748

Chapter 64
Lasso Connector Protocol . 754

Overview	 754
Requirements	 754
Lasso Web Server Connectors	 755
Lasso Connector Operation	 756

Table 1: LPCommandBlock Structure Members	 756
Lasso Connector Protocol Reference	 756

Table 2: Named Parameters	 757

Section X
Lasso Java API . 759

Chapter 65
LJAPI Introduction . . 760

Overview	 760
What’s New	 760
LJAPI vs. LCAPI	 761
Requirements	 762
Getting Started	 762
Debugging	 764

Chapter 66
LJAPI Tags . 766

Substitution Tag Operation	 766
Substitution Tag Tutorial	 767

Chapter 67
LJAPI Data Types . . 771

Data Type Operation	 771
Data Type Tutorial	 771

Table 1: Type initializer and Member Tags	 771
Table 2: Accessors	 772

Chapter 68
LJAPI Data Sources . 781

Data Source Connector Operation	 781
Data Source Connector Tutorial	 782

Chapter 69
LJAPI Reference . . 794

LJAPI Interface Reference	 794
LJAPI Class Reference	 794

2 2

L a s s o 8 . 5 L a n g u a g e G u i d e

C o n t e n t s

Appendix A
Error Codes . 823

Lasso Professional 8 Error Codes	 823
Table 1: Lasso Professional 8 Error Codes	 824

Lasso MySQL Error Codes	 827
Table 2: Lasso MySQL Error Codes	 827

FileMaker Pro Error Codes	 830
Table 3: FileMaker Pro Error Codes	 831

JDBC Error Codes	 833
Table 4: JDBC Error Codes	 833

Appendix B
Copyright Notice . . 834

Appendix C
Index . 835

2 3

L a s s o 8 . 5 L a n g u a g e G u i d e

C o n t e n t s

I
Section I

Lasso Overview

This section includes an introduction to the fundamental concepts and methodology for building and serving
data-driven Web sites powered by Lasso 8. Every new user should read through all the chapters in this section.

	 •	Chapter 1: Introduction includes information about the documentation available for Lasso 8 and about
this book.

	 •	Chapter 2: Web Application Fundamentals includes an introduction to essential concepts and industry
terms related to serving data-driven Web sites.

	 •	Chapter 3: Lasso Pages discusses how to create and work with Lasso 8 Lasso pages.

	 •	Chapter 4: Lasso 8 Syntax introduces the syntax of Lasso including square brackets, LassoScript,
compound expressions, colon syntax, and parentheses syntax.

	 •	Chapter 5: Lasso 8 Tag Language introduces the language of Lasso 8.

	 •	Chapter 6: Lasso 8.5 Reference introduces the reference database which contains complete details about
the syntax of every tag in Lasso 8.

After completing Section 1: Lasso Overview you can proceed to Section II: Database Interaction to learn
how to store and retrieve information from a database and to Section III: Programming to learn how to
program in Lasso.

Users who are upgrading from a previous version of Lasso should read the appropriate chapters in Section IV:
Upgrading.

The remainder of the Language Guide includes reference material for all the many tags that Lasso supports
and information about how to extend Lasso’s functionality by creating custom tags, custom data sources, and
custom data types in Lasso, C/C++, or Java.

2 4

L a s s o 8 . 5 L a n g u a g e G u i d e

1
Chapter 1

Introduction

This chapter provides on overview of the Lasso 8.5 documentation, the section outline, and documentation
conventions for this book.

	 •	Lasso 8.5 Documentation describes the documentation included with Lasso 8 products.

	 •	Lasso 8.5 Language Guide describes the volumes and sections in this book.

	 •	Documentation Conventions includes information about typographic conventions used within the
documentation.

Lasso 8.5 Documentation
The documentation for Lasso 8.5 products is divided into several different manuals and also includes several
online resources. The following manuals and resources are available.

	 •	Lasso 8.5 Setup Guide is the main manual for Lasso 8.5. It includes documentation of the architecture of
Lasso, installation instructions, the administration interface, and Lasso security. After the release notes, this
is the first guide you should read.

	 •	Lasso 8.5 Language Guide includes documentation of the language used to access data sources, specify
programming logic, and much more.

	 •	Lasso 8.5 Reference provides detailed documentation of each tag in Lasso. This is the definitive reference
to the language of Lasso. This reference is provided as a LassoApp and Lasso MySQL database within Lasso
8.5 and also as an online resource from the LassoSoft Web site.

http://reference.lassosoft.com/

Comments, suggestions, or corrections regarding the documentation may be sent to the following email
address.

documentation@lassosoft.com

Lasso 8.5 Language Guide
This is the guide you are reading now. This guide contains information about programming in Lasso and is
organized into the following sections.

Fundamentals
The first four sections of the Language Guide introduce the language of Lasso, explain fundamental database
interaction and programming concepts, and describe how to upgrade existing solutions.

	 •	Section I: Lasso Overview contains important information about using and programming Lasso that all
developers who create custom solutions powered by Lasso will need to know.

2 5

L a s s o 8 . 5 L a n g u a g e G u i d e

	 •	Section II: Database Interaction contains important information about how to create Lasso pages that
perform database actions. Actions can be performed in the internal Lasso MySQL database or in external
MySQL, FileMaker Pro, or other databases.

	 •	Section III: Programming describes how to program dynamic Lasso pages using Lasso. This section covers
topics ranging from simple data display through advanced error handling and alternate programming
syntaxes.

	 •	Section IV: Upgrading includes details about what has changed in Lasso Professional 8 since Lasso
Professional 7, Lasso Professional 6, Lasso Professional 5, and Lasso WDE 3.x and earlier. The appropriate
chapters in this section are essential reading for any developer who is upgrading from an earlier version of
Lasso.

Reference
The next three sections of the Language Guide provide in-depth information about Lasso’s data types,
advanced programming concepts, and support for Internet protocols.

	 •	Section V: Data Types describes the built-in data types in Lasso including strings, bytes, dates, compound
data types, files, images, network communications, XML, PDF, and JavaBeans.

	 •	Section VI: Programming describes programming concepts in Lasso including namespaces, logging,
encryption, control tags, threads, custom tags, and compound expressions.

	 •	Section VII: Protocols describes how to use Lasso to interoperate with other Internet technologies such as
email servers and remote Web servers. It describes how to use Lasso to serve images and multimedia files.
It also describes how to use Lasso to serve pages to various clients including Web browsers, WAP browsers
and more.

Extending Lasso
The final three sections of the Language Guide describe how to extend the functionality of Lasso by
programming new tags, data types, and connectors in Lasso, C/C++, or Java. This volume also includes the
appendices.

	 •	Section VIII: LassoScript API contains information about creating LassoApps, custom tags, custom data
types, and data source connectors in LassoScript.

	 •	Section IX: LCAPI contains information about creating tags, data types, and data source connectors in the
C/C++ programming languages. Also describes how to create new Web server connectors.

	 •	Section X: LJAPI contains information about creating tags, data types, and data source connectors in the
Java programming language.

	 •	Appendices contain a listing of error codes as well as copyright notices and the index for all three volumes.

Documentation Conventions
The documentation uses several conventions in order to make finding information easier.

Definitions are indicated using a bold, sans-serif type face for the defined word. This makes it easy to find
defined terms within a page. Terms are defined the first time they are used.

Cross References are indicated by an italicized sans-serif typeface. For instance, the current section in this
chapter is Documentation Conventions. When necessary, arrows are used to define a path into a chapter
such as Chapter 1: Introduction > Documentation Conventions.

Code is formatted in a narrow, sans-serif font. Code includes HTML tags, Lasso tags, and any text which
should be typed into a Lasso page. Code is represented within the body text (e.g., [Field] or <body>) or is
specified in its own section of text as follows:

[Field: 'Company_Name']

2 6

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a t p e r 1 — I n t r o d u c t i o n

Code Results represent the result after code is processed. They are indicated by a black arrow and will
usually be the value that is sent to the client’s Web browser. The following text could be the result of the code
example above.

�	 LassoSoft

Note: Notes are included to call attention to items that are of particular importance or to include comments
that may be of interest to select readers. Notes may begin with Warning, FileMaker Pro Note, IIS Note, etc. to
specify the importance and audience of the note.

To perform a specific task:

The documentation assumes a task-based approach. The contents following a task heading will provide step-
by-step instructions for the specific task.

2 7

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a t p e r 1 — I n t r o d u c t i o n

2
Chapter 2

Web Application Fundamentals

This chapter presents an overview of fundamental concepts that are essential to understand before you start
creating data-driven Web sites powered by Lasso.

	 •	Web Browser Overview describes how HTML pages and images are fetched and rendered.

	 •	Web Server Overview describes how HTTP requests and URLs are interpreted.

	 •	HTML Forms and URL Parameters describes how GET and POST arguments are sent and interpreted.

	 •	Web Application Servers describes how interactive content is created and served.

	 •	Web Application Server Languages describes how commands can be embedded within a Lasso page,
processed, and served.

	 •	Error Reporting describes how errors are reported by Lasso and how to customize the amount of
information that is provided to site visitors.

Web Browser Overview
The World Wide Web (WWW) is accessed by end-users through a Web browser application. Popular Web
browsers include Microsoft Internet Explorer and Netscape Navigator. The Web browser is used to access
pages served by one or more remote Web servers. Navigation is made possible via hyperlinks or HTML forms.
The simple point-and-click operation of the Web browser masks a complex series of interactions between the
Web browser and Web servers.

URLs
The location of a Web site and a particular page within a site are specified using a Universal Resource Locator
(URL). All URLs follow the same basic format:

http://www.example.com:80/folder/file.html

The URL is comprised of the following components:

	 1	The Protocol is specified first, http in the example above and is followed by a colon. The World Wide
Web has two protocols. HTTP (HyperText Transfer Protocol) which is for standard Web pages and is the
default for most Web browsers and HTTPS (HyperText Transfer Protocol Secure) which is for pages served
encrypted via the Secure Socket Layer (SSL).

	 2	The Host Name is specified next, www.example.com in the example above. The host name can be anything
defined by a domain name registrar. It need not necessarily begin with www, the same server may be
accessible using example.com or by an IP address such as 127.0.0.1.

	 3	The Port Number follows the host name, 80 in the example above. The port number can usually be left off
because a default is assumed based on the protocol. HTTP defaults to port 80 and HTTPS defaults to port
443.

2 8

L a s s o 8 . 5 L a n g u a g e G u i d e

	 4	The File Path follows a forward slash, /folder/file.html in the example above. The Web server uses this path
to locate the desired file relative to the root of the Web serving folder configured for the specified domain
name. The root of the Web serving folder is typically C:\InetPub\wwwroot\ for Windows 2000 servers and
/Library/WebServer/Documents for Mac OS X servers.

HTTP Request
The URL is used by the Web browser to assemble an HTTP request which is actually sent to the Web server.
The HTTP request resembles the header of an email file. It consists of several lines each of which has a label
followed by a colon and a value.

Note: Most current Web browsers and Web servers support the HTTP/1.1 standard. Lasso Professional 8 also
supports this standard. However, the examples in this book are written for the HTTP/1.0 standard in order to
provide maximum compatibility with older Web browser clients.

The URL http://www.example.com/folder/file.html becomes the following HTTP request:

GET /folder/file.html HTTP/1.0
Accept: */*
Host: www.example.com
User-Agent: Web Browser/4.1

The HTTP request is comprised of the following components:

	 1	The first line defines the HTTP request. The action is GET and the path to what should be returned is
specified /folder/file.html. The final piece of information is the protocol and version which should be used to
return the data, HTTP/1.0 in the example above.

	 2	The Accept line specifies the types of data that can be accepted as a return value. */* means that any type of
data will be accepted.

	 3	The Host line specifies the host which was requested in the URL.

	 4	The User-Agent line specifies what type of browser is requesting the information.

HTTP Response
Once an HTTP request has been submitted to a server, an HTTP response is returned. The response consists
of two parts: a response header which has much the same structure as the HTTP request and the actual text or
binary data of the page or image which was requested.

The URL http://www.example.com/folder/file.html might result in the following HTTP response header:

HTTP/1.0 200 OK
Server: Lasso Professional 8.0
MIME-Version: 1.0
Content-type: text/html; charset=iso-8859-1
Content-length: 7713

The HTTP response header is comprised of the following components:

	 1	The first line defines the type of response. The protocol and version are given followed by a response code,
200 OK in the example above.

	 2	The Server line specifies the type of Web server that returned the data. Lasso Professional 8 returns Lasso
Professional 8.0 in the example above.

	 3	The MIME-Version line specifies the version of the MIME standard used to define the remaining lines in
the header.

	 4	The Content-type line defines the type of data returned. text/html means that ASCII text is being returned
in HTML format. This line could also read text/xml for XML data, image/gif for a GIF image or image/jpeg for a
JPEG image.

The charset=iso-8859-1 parameter specifies the character set of the page. Lasso returns pages in UTF-8
encoding by default or in the character set specified in the [Content_Type] tag.

2 9

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 2 — W e b A p p l i c a t i o n F u n d a m e n t a l s

	 5	Content-length specifies the length in bytes of the data which is returned along with this HTTP response
header.

The header is followed by the text of the HTML page or binary data of the image which was requested.

Requesting a Web Page
The following are the series of steps which are performed each time a URL is requested from a Web server:

	 1	The Web browser determines the protocol for the URL. If the protocol is not HTTP then it might be passed
off to another application. If the protocol is HTTPS then the Web browser will attempt a secure connection
to the server.

	 2	The Web browser looks up the IP address of the server through a Domain Name Server (DNS).

	 3	The Web browser assembles an HTTP request including the path to the requested page.

	 4	The Web browser parses the HTML returned by the request and renders it for display to the visitor.

	 5	If the HTML contains any references to images or linked style sheets then additional HTTP requests with
appropriate paths are generated and sent to the Web server.

	 6	The images and linked style sheets are used to modify the rendered HTML page.

	 7	Client-side scripting language such as JavaScript are interpreted and may further modify the rendered page.

The Web browser opens a new HTTP request for each HTML page, style sheet, or image file that is requested.
All HTTP requests for a given HTML page can be sent to the same Web server or to different Web servers
depending on how the HTML page is written. For example, many HTML pages reference advertisements
served from a completely different Web server.

Character Sets
All Web pages must be transmitted from server to client using a character set that maps the actual bytes in the
transmission to characters in the fonts used by the client’s Web browser. The Content-Type header in the HTTP
response specifies to the Web browser what character set the contents of the page has been encoded in.

Lasso processes all data internally using double-byte Unicode strings. Since two bytes are used to represent
each character characters from single-byte ASCII are padded with an extra byte. Double-byte strings also allow
for 4-byte or even larger characters using special internally encoded entities.

For transmission to the Web browser Lasso uses another Unicode standard UTF-8 which uses one byte to
represent each character. UTF-8 corresponds roughly to traditional ASCII and the Latin-1 (ISO 8859-1)
character set. Double-byte or 4-byte characters are represented by entities. For example, the entity 並
represents the double byte character .

For older browsers or other Web clients it may be necessary to send data in a specific character set. Some
clients may expect data to be transmitted in the pre-Unicode standard of Latin-1 (ISO 8859-1). Lasso will
honor the [Content_Type] tag in order to decide what character set to use for transmission to the Web browser.
Using the following tag will result in the Latin-1 (ISO 8859-1) character set being used.

[Content_Type: 'text/html; charset=iso-8859-1']

Forms and Character Sets
Lasso reads data which is posted in forms according to the default character set that is set in Lasso
Administration (or in the character set included in the Content-Type header). However, Web browsers usually
send forms using the same encoding with which the enclosing page was sent. If these character sets are not
matched (for example if the [Content_Type] tag is used to override the default encoding for a particular page)
then Lasso can misinterpret the data being posted by a Web client.

3 0

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 2 — W e b A p p l i c a t i o n F u n d a m e n t a l s

The accept-charset parameter can be used in an HTML <form> tag to ask the browser to send the form in a
specific character set. For example, if Lasso’s default character set is UTF-8 then the following code would
ensure that the form is submitted using that encoding, even if the page this form appears on was served using
a different character set.

<form action=”Default.Lasso” method=”POST” accept-charset=”UTF-8”>
	 …
</form>

Lasso Professional 8.0.2 introduces a new hidden input named -ContentType. If a hidden input is named
-ContentType in an HTML form then the subsequent parameter will be imported into Lasso encoded using the
specified characters set.

Lasso Professional 8.0.4 introduces a new hidden input named -FormContentType. If a hidden input is named
-FormContentType in an HTML form then all of the parameters in the form will be imported into Lasso encoded
using the specified characters set (unless a specific -ContentType parameter override the character set for a
specific input).

The value for -ContentType should be specified as charset=iso-8859-1 (or any other valid character set) as shown
in the example below. The charset= part is required. It is not sufficient to just put the character set in as the
value.

<input type="hidden" name="-FormContentType" value="charset=utf-8" />
<input type="hidden" name="-ContentType" value="charset=iso-8859-1" />
<input type="hidden" name="Field Name" value="testing emigré" />

This will result in the Field Name input being imported into Lasso using the iso-8859-1 character set. All other
inputs in the form will use the UTF-8 character set.

Note: UTF-8 is an abbreviation for the 8-bit (single-byte) UCS Transformation Format. UCS is in turn an
abbreviation for Universal Character Set. Since 8-bit Universal Character Set Transformation Format is such a
mouthful it helps to think of UTF-8 simply as the most common Unicode character encoding.

Cookies
Cookies allow small amounts of information to be stored in the Web browser by a Web server. Each time the
Web browser makes a request to a specific Web server, it sends along any cookies which the Web server has
asked to be saved. This allows for the Web server to save the state of a visitor’s session within the Web browser
and then to retrieve that state when the visitor next visits the Web site, even if it is days later.

Cookies are set in the HTTP header for a file that is sent from the Web server. A single HTML file can set
many cookies and cookies can even be set in the headers of image files. Each cookie has a name, expiration
date, value, and the IP address or host name of a Web server. The following line in an HTTP header would set
a cookie named session-id that expired on January 1, 2010. The cookie will be returned in the HTTP request for
any domains that end in example.com.

Set-Cookie: session-id=102-2659358; path=/; domain=.example.com; expires=Wednesday, 1-January-2010 08:00:00 GMT

Each time a request is made to a Web server, any cookies which are labeled with the IP address or host name
of the Web server are sent along with all HTTP requests for HTML files or image files. The Web server is free
to read these cookies or ignore them. The HTTP request for any file on example.com or www.example.com would
include the following line.

Cookie: session-id=102-2659358

Cookies are useful because small items of information can be stored on the client machine. This allows a
customer ID number, shopping cart ID number, or simple site preferences to be stored and retrieved the next
time the user visits the site.

Cookies are dependent upon support from the Web browser. Most Web browsers allow for cookie support
to be turned off or for cookies to be rejected on a case-by-case basis. The maximum size of cookies is Web
browser dependent and may be limited to 32,000 characters or fewer for each cookie or for all cookies
combined.

3 1

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 2 — W e b A p p l i c a t i o n F u n d a m e n t a l s

Cookies can be set to expire after a certain number of minutes or at the end of the current user’s session
(until they quit their Web browser). However, this expiration behavior should not be counted on. Some
Web browsers do not expire any cookies until the Web browser quits. Others do not expire cookies until the
machine hosting the Web browser restarts. Some Web browsers even allow visitors to alter the expiration
dates of stored cookies.

Authentication
Web browsers support authentication of the visitor. A username and password can be sent along with each
HTTP request to the server. This username and password can be read or ignored by the Web server. If the Web
server is expecting a username and password and does not find any or does not find a valid username and
password then the server can send back a challenge which forces the browser to display an authentication
dialog box.

The following lines at the start of an HTTP response header will force most Web browsers to challenge the
visitor for a username and password. The response code 401 Unauthorized informs the Web browser that the
user is not authorized to view the requested file.

HTTP/1.0 401 Unauthorized

A header line in the response informs the client what types of authentication are understood by the server. By
default Lasso prompts for both basic and digest authentication. Clients that can perform digest authentication
will use it. Older clients will use basic authentication.

WWW-Authenticate: Basic realm="Testing"
WWW-Authenticate: Digest realm="Testing",
				 nonce="1234567890", uri="http://www.example.com/", algorithm="md5"

A basic authentication response includes a line like the following. The username and password are
concatenated together and encoded using Base64, but are not encrypted.

Authorization: Basic dXNlcm5hbWU6cGFzc3dvcmQ=

A digest authentication response includes a line like the following. The realm and nonce are passed back
along with the URL of the requested page. The response portion is made up of an MD5 hashed value which
includes the nonce and the user’s password.

Authorization: Digest username="test", realm="Testing",
				 nonce="1234567890", uri="http://www.example.com/"
				 response="9c384179f883e2e9c1eed63ca752560a"

The advantages of digest authentication are numerous. The user’s password is never sent in plain text (or
simply encoded). The realm is remembered so a user can maintain different privileges in different parts of a
Web site. The nonce can also be expired in order to force a user to re-authenticate.

Using either basic or digest authentication, the same username and password will continue to be transmitted
to the Web server until the user re-authenticates or quits the Web browser application.

Site visitors can also specify usernames and passwords within the URL directly. This method allows a
username and password to be sent before an authorization challenge is issued.

http://username:password@www.example.com/folder/default.lasso

Note: This method is no longer supported by all Web servers due to its potential use as a Web site spoofing
technique.

Lasso-based Web sites also support specifying a username and password using -Username and -Password URL
parameters.

http://www.example.com/default.lasso?-username=username&-password=password

Note: See the section on Authentication Tags in the Lasso Control Tags chapter for information about Lasso
tags that automatically prompt for authentication information.

3 2

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 2 — W e b A p p l i c a t i o n F u n d a m e n t a l s

Web Server Overview
The World Wide Web is served to end-users by Web server applications. Popular Web servers include Apache,
WebSTAR, and Microsoft Internet Information Services (IIS). The Web server handles incoming HTTP requests
for URLs from Web browsers. The interaction described in the previous section from the Web browser’s point
of view looks a little different from the Web server’s point of view.

The following are the series of steps which are performed each time a URL is requested from a Web server:

	 1	The HTTP request is received on one of the ports which is being listened to by the Web server. Most Web
servers listen on port 80 for HTTP requests and on port 443 for secure HTTPS requests.

	 2	The HTTP request is parsed and split into its components: protocol, host name, file path.

	 3	The host name is used to decide what virtual host to serve a Web page from. Most Web servers operate
from a single IP address, but serve pages for several different domain names. These may be as simple as
www.example.com and example.com.

	 4	The path to the page request is added to the server root for the specified virtual host. The virtual hosts may
all start in a different folder on the hard drive.

	 5	The security settings of the server are checked to see if the user needs to be authenticated to receive the page
they are requesting. If an appropriate username and password are not specified in the HTTP request then a
challenge is sent in the HTTP response instead of the request page.

	 6	Server-side plug-ins or modules are called upon to process the request page. For example, requests for
HTML pages that have a file name with the suffix .lasso will be sent to Lasso Service for processing. The
processed page is returned to the Web server and may even be sent through multiple server-side plug-ins or
modules before being served.

	 7	The requested HTML page or image is returned to the user with an appropriate HTTP response header.

URL Rewrite
URLs can reference any resource which can be served by a Web server, but in practice they are most often used
to reference specific files. URL rewrite functionality makes it possible to use URLs for their original purpose
and to sever the one-to-one correspondence between URLs and files.

For example, the following two URLs would traditionally reference a pair of files rocket.html and station.html
which are located in the Web server root.

http://www.example.com/rocket.html
http://www.example.com/station.html

However, in a database driven Web site each of these pages may depend primarily on content which is stored
in a database. The files on disk might just be templates into which dynamic content is placed for the files
are served to the site visitor. In this case, it makes sense to create a single template.lasso file which is used as
the template for both files. The particular content which is to be served is passed in a URL parameter. The
following two URLs might serve the same content as the URLs above.

http://www.example.com/template.lasso?page=rocket
http://www.example.com/template.lasso?page=station

URL rewrite can be used to map the original URLs into these dynamic URLs. This allows the site visitor to
bookmark the simple URL and for Lasso to serve the page effectively using the URL referencing the template
and selecting the particular page using a URL parameter.

/rocket.html � /template.lasso?page=rocket

Lasso includes built-in URL rewrite functionality which is documented in the Lasso 8.5 Setup Guide. Most
Web servers also have built-in URL rewrite tools which can be used with Lasso.

3 3

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 2 — W e b A p p l i c a t i o n F u n d a m e n t a l s

HTML Forms and URL Parameters
HTML forms and URLs allow for significant amounts of data to be transmitted along with the simple HTTP
requests defined in the previous sections. The data to be transmitted can either be included in the URL or
passed in the HTTP request itself.

URL Parameters
A URL can include a series of name/value parameters following the file path. The name/value parameters are
specified following a question mark ?. The name and value are separated by an equal sign = and multiple
name/value parameters are attached to a single URL with ampersands &. The following URL has two name/
value parameters: name1=value1 and name2=value2.

http://www.example.com/folder/file.lasso?name1=value1&name2=value2

The URL parameters are simply added to the file path which is specified in the HTTP request. The URL above
might generate the following HTTP request. Since the parameters follow the word GET they are often referred
to as GET parameters.

GET /folder/file.lasso?name1=value1&name2=value2 HTTP/1.0
Accept: */*
Host: www.example.com
User-Agent: Web Browser/4.1

Since the characters : / ? & = @ # % are used to define the structure of a URL, the file path and URL parameters
cannot include these characters without modifying them so that the structure of the URL is not disturbed. The
characters are modified by encoding them into %nnn entities where nnn is the hexadecimal ASCII code for the
character being replaced. / is encoded as %2f for example.

HTML Forms
HTML forms provide user interface elements in the Web browser so that a visitor can customize the
parameters which will be transmitted to the Web server along with an HTTP request. HTML forms can be
used to modify the GET parameters of a URL or can be used to send POST parameters.

Note: A full discussion of the HTML tags possible within an HTML form is beyond the scope of this section.
Please see an HTML reference for a full listing of HTML form elements.

Example of an HTML form with a GET method:

The following HTML form has an action which specifies the URL that will be returned when this form is
submitted. In this case the URL is http://www.example.com/folder/file.lasso. The method of the form is defined to be
GET. This ensures that the parameters specified by the HTML form inputs will be added to the URL as GET
parameters.

<form action="http://www.example.com/folder/file.Lasso" method="GET">
	 <input type="text" name="value1" value="value1">
	 <input type="submit" name="value2" value="value2">
</form>

This form generates the following HTTP request. It is exactly the same as the HTTP request created by the URL
http://www.example.com/folder/file.lasso?name1=value1&name2=value2.

GET /folder/file.lasso?name1=value1&name2=value2 HTTP/1.0
Accept: */*
Host: www.example.com
User-Agent: Web Browser/4.1

3 4

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 2 — W e b A p p l i c a t i o n F u n d a m e n t a l s

Example of an HTML form with a POST method:

The following HTML form has an action which specifies the URL that will be returned when this form is
submitted. In this case the URL is http://www.example.com/folder/file.lasso. The method of the form is defined to be
POST. This ensures that the parameters specified by the HTML form inputs will be added to the HTTP request
as POST parameters and that the URL will be left unmodified.

<form action="http://www.example.com/folder/file.Lasso" method="POST">
	 <input type="text" name="value1" value="value1">
	 <input type="submit" name="value2" value="value2">
</form>

This form generates the following HTTP request. The request file is simply that which was specified in the
action, but the method is now POST. The HTML form parameters are specified as the content of the HTTP
request. They are still URL encoded, but now appear at the end of the HTTP request, rather than as part of the
URL.

POST /folder/file.lasso HTTP/1.0
Accept: */*
Host: www.example.com
User-Agent: Web Browser/4.1
Content-type: application/x-www-form-urlencoded
Content-length: 27
value1=value1&name2=value2

HTML Forms and URL Responses
The GET and POST parameters passed in HTML forms or URLs are most often used by server-side plug-ins or
modules to provide interactive or data-driven Web pages. The GET and POST parameters are how values are
passed to Lasso in order to specify database actions, search parameters, or for any purpose a Lasso developer
wants.

HTML, XHTML, and XML
HTML stands for HyperText Markup Language and is the standard for the low-level representation of Web
pages. HTML can be crafted by hand using code-level tools such as a text editor or the Eclipse IDE. There are
also many visual design tools such as Dreamweaver and GoLive which can be used to create HTML automati-
cally.

XML (eXtensible Markup Language) resembles HTML, but is more abstract. XML shares the same basic
opening/closing tag structure as HTML, but does not specify a set of predefined tags. Instead, an XML schema
can be created to represent any type of data in XML using a solution-specific tag set.

	 •	All XML tags must have both an opening and a closing tag.

	 •	Tags with no content can be abbreviated as e.g.
 which combines the opening and closing tag into
one. Note that there is a space before the slash.

	 •	All tag attributes must have a value and all tag attribute values must be quoted. Double quotes are allowed,
but single quotes are preferred.

	 •	The characters < > and & are reserved for use in specifying the XML tags of a document. These characters
must be escaped as < > and & whenever they are used in tag content or tag attributes.

XHTML is the reformulation of HTML using the strict rules of XML combined with the familiar tags of HTML.
XHTML is an important milestone for HTML since it is the first version of HTML which is easy to parse and
whose specification ensures the creation of valid code.

	 •	HTML tags which are normally specified without closing tags must be written using the abbreviated format.
For example
 is written
 and <hr> is witten <hr />. It is not recommended to write these tags using
the longer format (
</br>) since some older browsers will interpret this as two instances of the tag.

3 5

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 2 — W e b A p p l i c a t i o n F u n d a m e n t a l s

	 •	All tag names and attribute names are specified in lower case. This includes JavaScript handlers like onselect,
onload, onmouseover, etc.

	 •	Since all attributes must have values, single word attributes like nowrap, checked, and selected must be
doubled up as nowrap="nowrap", checked="checked", and selected="selected".

	 •	Since ampersands must be escaped, every ampersand included in a URL must be written as &.

 …

XHTML represents the future of the HTML standard and is an important key to ensuring the predictable
rendering of a Web site across all standards compliant Web browsers. XHTML compliance also makes it easier
to use emerging technologies such as AJAX. It is recommended that all new Web projects make use of XHTML
when possible.

AJAX
AJAX stands for Asynchronous JavaScript and XML, but has come to represent set of techniques for making
Web sites more dynamic. AJAX is sometimes referred to as Web 2.0 and many of the techniques were
previously bundled under the DHTML moniker.

AJAX uses a combination of JavaScript and its ability to modify the Document Object Model (DOM) and
Cascading Stylesheets (CSS) of a page to dynamically update the contents of a We page without performing a
refresh of the entire page. The XMLHttpRequest JavaScript object (or AcrtiveX control) is used to asynchronously
fetch new content for the Web page and then that new content is merged into the page.

Lasso includes a library of LJAX tags which make creating AJAX sites with Lasso easy. The tags and JavaScript
functions which lasso provides are documented in the LJAX chapter in this manual.

Web Application Servers
A Web Application Server is a program that works in conjunction with a Web server and provides
programmatically generated HTML pages or images to Web visitors. Web application servers include programs
that adhere to the Common Gateway Interface (CGI), programs which have built-in Web servers, plug-
ins or modules for Web server applications, and services or dæmons that communicate with Web server
applications.

Lasso Professional 8 is a Web application server which runs as a background service and communicates with
the Web server Apache via a module called Lasso Connector for Apache, the Web server WebSTAR V via a
plug-in called Lasso Connector for WebSTAR, or IIS via an ISAPI filter called Lasso Connector for IIS.

Web application servers are triggered in different ways depending on the Web server being used. Many Web
application servers are triggered based on file suffix. For example, all file names ending in .lasso are processed
by Lasso Service. Any file suffix can be configured to trigger processing by Lasso Service including .html so all
HTML pages will be processed before being served. Web application servers can usually also be set to process
all pages that are served by a Web server.

Most Web application servers function by interpreting a programming or scripting language. Commands in
the appropriate language are embedded in Lasso pages and then executed when an appropriate HTML form
or URL is selected by a Web site visitor. The Web application server accepts the GET and POST parameters in
the HTML form or URL, interprets the commands contained within the referenced Lasso page, and returns a
rendered HTML page to the Web site visitor.

Developers can choose to develop complete Web sites using the scripting language provided by a Web
application server or they can purchase solutions which are written using the scripting language of a
particular Web application server.

Lasso Professional 8 is a scriptable Web application server with a powerful tag-based language called
LassoScript. Custom solutions can be created by following the instructions contained in this Lasso 8
Language guide. Links to pre-packaged, third party solutions can be found on the LassoSoft Web site.

http://www.lassosoft.com/

3 6

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 2 — W e b A p p l i c a t i o n F u n d a m e n t a l s

Web Application Server Languages
There are two main types of languages provided by Web application servers.

	 •	Scripting Languages are used to specify programming logic and are generally close in function to
traditional programming languages. Scripting languages can be used to assemble HTML pages and output
them to the Web visitor. Server-Side JavaScript is an example of a scripting language.

	 •	Tag-Based Languages are used to specify data formatting and programming logic within pre-formatted
HTML or XML Lasso pages. The tags embedded in the Lasso page are interpreted and the output is
modified before the page is served to the Web visitor. Server Side Includes (SSI) is an example of a tag-
based language.

Lasso Professional 8 provides one language, LassoScript, which functions as both a scripting language and
a tag-based language. Lasso tags can be used in LassoScripts as a scripting language to define programming
logic. LassoScripts can be used to render individual HTML tags or to render complete HTML documents
programmatically. Lasso tags can also be used as a tag-based language inside square brackets within HTML or
XML code.

Error Reporting
When syntax or logical errors occur while processing a Lasso page, Lasso will display an error page. The
amount of information which is provided on the error page can be customized in a number of ways.

	 •	The error reporting level can be adjusted in Site Administration to control how much information is
provided on the default error page. A reporting level of None provides only a statement that an error
occurred with no details. A level of Minimal provides only the error code and a brief error message. A level of
Full provides detailed troubleshooting information.

	 •	 The error reporting level can be adjusted for a single Lasso page using the [Lasso_ErrorReporting] tag. For
example, the global error reporting level could be set to Minimal. While a page is being coded it can use
[Lasso_ErrorReporting] to set the level for that page only to Full.

	 •	Using the -Local keyword, the [Lasso_ErrorReporting] tag can be used to limit the error information from
sensitive custom tags or include files. With this keyword the tag adjusts the error level only for the
immediate context.

	 •	A custom error.lasso page can be created for each Web host. This custom error page can provide an
appropriate level of detail to Web site visitors and can be presented in the same appearance as the rest of
the Web site. In addition, the custom error page can log or even email errors to the site administrator.

	 •	A custom site-wide error.lasso page can be created which will override the built-in error page entirely. This
custom page can be created on a shared site to provide appropriate error information to all users of the
site.

	 •	A custom server-wide error.lasso page can be created which will override the built-in error page for all sites.
This custom page can be created on a shared server to provide appropriate error information to all users of
the server.

More information about each of these options can be found in the Error Control chapter. Consult that
chapter for full details about how to use the [Lasso_ErrorReporting] tag and how to create custom error pages.

3 7

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 2 — W e b A p p l i c a t i o n F u n d a m e n t a l s

3
Chapter 3

Lasso Pages

This chapter introduces the concept of Lasso pages that contain Lasso tags and LassoScripts. All new users of
Lasso 8 should read this chapter.

	 •	Introduction includes basic information about how Lasso pages are created and used in Lasso 8.

	 •	Storage Types introduces the different methods of storing and retrieving Lasso pages.

	 •	Naming Lasso Pages describes the rules for naming Lasso pages.

	 •	Character Encoding describes how Lasso uses the Unicode byte order mark to determine whether to read a
file using the UTF-8 or Latin-1 (also known as ISO 8859-1) character set.

	 •	Editing Lasso Pages explains the options which are available for editing Lasso pages.

	 •	Functional Types describes the various ways in which Lasso pages are used and introduces functional
names for different types of Lasso pages.

	 •	Action Methods introduces the concept of actions and describes how Lasso pages and Lasso interact to
create an action.

	 •	Securing Lasso Pages explains the importance of maintaining security for your Lasso pages.

	 •	Output Formats shows how to use a Lasso page to create output of various types.

	 •	File Management explains how the architecture of Lasso 8 influences where files are stored and how they
can be manipulated.

	 •	Specifying Paths shows how URLs, HTML forms, and paths can be used to refer to Lasso pages.

	 •	Page Execution Time Limit describes the built-in limit on the length of time that Lasso pages will be
allowed to execute.

	 •	Code Compilation and Caching describes Lasso’s built-in compiler and page cache.

3 8

L a s s o 8 . 5 L a n g u a g e G u i d e

Introduction
Lasso pages are text files that contain embedded Lasso 8 code. When a Lasso page is processed by Lasso
Service, the embedded Lasso tags are interpreted, executed, and the results are substituted in place of the
tags. The resulting document is then returned to the client. Web sites powered by Lasso 8 are programmed by
creating Lasso pages which include user interface elements, database actions, and display logic.

This chapter describes the different methods of storing, naming, and editing Lasso pages. It also discusses
how multiple Lasso pages and Lasso work together to create actions. The chapter finishes with discussions of
how to output different types of data with Lasso pages and how to reference Lasso pages from within Lasso
tags, URLs, and HTML forms.

Note: Many of the terms used in this chapter are defined in Appendix A: Glossary of the Lasso Professional 8
Setup Guide. Please consult this glossary if you are unsure how any words are being used in this language guide.

Storage Types
The term Lasso Page is used to describe any text file that contains embedded Lasso 8 code. Lasso pages are
usually stored on the local disk of the machine which hosts a Lasso Web server connector, but can also be
stored on a remote machine, the machine which hosts Lasso Service, or even in a database field.

Lasso pages are always text-based, but the structure of the text is not important to Lasso. Lasso will find the
embedded Lasso 8 tags, process them, and replace them with the results. Lasso will not disturb the text that
surrounds the Lasso tags, but may modify text which is contained within Lasso container tags. The most
common types of Lasso pages are described below.

	 •	HTML Lasso Pages contain a mix of Lasso tags and HTML tags. HTML Lasso pages can be edited in
leading visual Web authoring programs with Lasso tags represented as icons or displayed as plain text. The
output is usually HTML suitable for viewing in a Web browser.

	 •	XML Lasso Pages contain a mix of Lasso tags and XML tags. When a developer creates an XML Lasso page
it may not be strictly valid XML code. However, it is constructed in such a way that the output after being
processed by Lasso is valid XML code. XML Lasso pages can be constructed so that their output conforms to
any Document Type Definition (DTD) or XML Schema.

	 •	Text Lasso Pages contain a mix of Lasso tags and ASCII text. Text Lasso pages can be used as the body of
email messages or can be used to output data in any ASCII-compatible form.

	 •	Lasso Pages contain only Lasso tags. Pure Lasso pages usually contain programming logic and include
other content types as needed. A pure Lasso page could be a placeholder that returns the appropriate type
of content to whatever client loads the page.

Lasso pages can be stored in a variety of locations depending on how they are going to be used. Four
locations are listed below, along with brief descriptions of how Lasso pages stored within them are used.

	 •	Web Server – Lasso pages are typically stored as text files on the machine which hosts the Web serving
software with a Lasso Web server connector. The Lasso pages are stored along with the HTML and image
files that comprise the Web site. As the client browses the site, they may visit some pages which are
processed by Lasso Service and others that are served without any processing.

	 •	Lasso Service – Lasso pages can be stored on the machine which hosts Lasso Service. Usually, these Lasso
pages serve a special purpose such as library files in the LassoStartup folder that contain code which is
executed when Lasso Service starts up.

	 •	Database Field – Lasso pages can be stored as text in a database field. When a database action is
performed the contents of the field are returned to the client as if a disk-based text file had been processed
and served. Permission must be granted in Lasso’s administration interface in order to use a database field
in this fashion. See the Setting Up Data Sources chapter in the Lasso Professional 8 Setup Guide for more
information.

	 •	Remote Server – Lasso will not process Lasso code which is stored on remote servers, but it can
incorporate content from remote Web servers into the results served to the client or trigger CGI actions on
remote servers using the [Include_URL] tag. See the Files and Logging chapter for more information.

3 9

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 3 — L a s s o P a g e s

Naming Lasso Pages
The Lasso Professional 8 Installer will automatically configure your Web server to pass files named with
a .lasso suffix to Lasso Service for processing. Once it has finished processing a file, Lasso Service passes the
resulting file back to the Web server, which in turn sends the file to the client’s Web browser. Files with other
extensions, such as .gif or .jpg image files or .html files are served directly by the Web server without being
processed by Lasso Service.

In addition, the Web server can be configured to send Lasso pages with other extensions such as .xml or .wml
to Lasso Service. It is even possible to configure the Web server to send all .html files to Lasso Service for
processing. See the Setting Site Preferences chapter and the configuration chapters in the Lasso Professional
8 Setup Guide for more information.

In order to promote the portability of your Lasso pages between Macintosh, Windows, and UNIX platforms,
it is best to name them in a multi-platform friendly fashion. Never use reserved characters such as
: ? & / \ # % " ' in file names. Avoid spaces, punctuation, stray periods, and extended ASCII characters. The safest
file names contain only letters, numbers, and underscores. Some file systems are case-sensitive. Make sure
that all references to a file are specified using the same case as the actual file name on disk. One option is to
standardize on lowercase characters for all filenames.

Character Encoding
Lasso uses the standard Unicode byte order mark to determine if a Lasso page is encoded in UTF-8. If no
byte order mark is present then the Lasso page will be assumed to be encoded using the Macintosh (or Mac-
Roman) character set on Mac OS X or the Latin-1 (or ISO 8859-1) character set on Windows or Linux. Lasso
does not support UTF-16 or UTF-32 Lasso pages.

Standard text editors can save files using UTF-8 encoding with the byte order mark included. Consult the
manual for the text editor to see how to change the encoding of Lasso pages and how to include the proper
byte order mark to specify the encoding.

Note: It is recommended to use the Macintosh or Latin-1 character set only for Lasso pages that do not contain
extended, accented, or foreign characters.

Editing Lasso Pages
Lasso pages can be edited in any text editor. If a Lasso page contains markup from a specific language such as
HTML, WML, or XML then it can be edited using an application which is specific to creating that type of file.

In order to make creating and editing Lasso pages which contain HTML easier, LassoSoft supplies a product
called Lasso Studio. Lasso Studio provides tag-specific inspectors, wizards, and builders which allow a
developer to quickly build Lasso pages within either Macromedia Dreamweaver, or Adobe GoLive. More
information about Lasso Studio is available at the following URL:

http://www.lassostudio.com/

Functional Types
Lasso pages can be classified based on the types of Lasso tags they contain or based on the commands they
will perform within a Web site. The following list contains terms commonly used to refer to different types of
Lasso pages. A Lasso page can be classified as being one or more of these types.

	 •	Pre-Lasso is used to refer to a Lasso page that contains only command tags within HTML form inputs and
URLs. Since Lasso does not perform any substitutions on command tags, these Lasso pages do not require
any processing by Lasso before they are served to a client. Pre-Lasso pages can be named with a .html file
name extension and can even be served from a Web server that does not have a Lasso Web server connector
installed.

4 0

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 3 — L a s s o P a g e s

	 •	Post-Lasso pages are the most common type of Lasso pages. Post-Lasso pages can contain any
combination of tags in square brackets, command tags in HTML form inputs and URLs, and LassoScripts.
Post-Lasso pages need to be processed by Lasso Service before they are served to the client. They are usually
named with a .lasso file name extension.

	 •	Library Lasso pages are used to modify Lasso’s programming environment by defining new tags and data
types, setting up global constants, and performing initialization code. Libraries are included in other Lasso
pages to modify the environment in which a single Lasso page is processed or loaded at startup to modify
the global environment in which all Lasso pages are processed.

	 •	Add Page, Search Page, Update Page, Listing Page, Detail Page and others are Lasso page names
based upon the action which the client will perform when they load the page in their Web browser. For
example, a Lasso page might implement the search page of a site. An update page would allow a user to
edit a record from a database. A listing page is usually the result of a search and contains links to a detail
page which presents more information about each of the records listed.

	 •	Add Response, Search Response, Delete Response and others are Lasso pages named based on
the action which results in the Lasso page being served to the client. These are typically called response
pages. For example, a delete response is served in response to the client opting to delete a record from the
database.

	 •	Error Page, Add Error, Search Error and others are Lasso pages that provide an error message to the
client based on the current action.

Action Methods
Web servers and Lasso Service are passive by nature. The software waits until an action is initiated by a client
before any processing occurs. Every page load which is processed by Lasso can be thought of as an action
with two components: a source and a response. A visitor selects a URL or submits an HTML form within the
source Lasso page and receives the response Lasso page. The different types of Lasso actions are summarized
in the table below and then described in more detail in the sections that follow.

Table 1: Action Methods

Action Method	 Example	

URL Action	 http://www.example.com/default.lasso

HTML Form Action	 <form action="Action.Lasso" method="post"> … </form>

Inline Action	 [Inline: -Database='Contacts', …, -Search] … [/Inline]

Scheduled Action	 [Event_Schedule: -URL='default.lasso', -Delay='10']

Startup Action	 /LassoStartup/startup.lasso
		

URL Action
A URL action is initiated or called when a client selects a URL in a source file. The source file could be an
HTML file from the same Web site, an HTML file from another Web site, the “favorites” of a Web browser, or
could be a URL typed directly in a Web browser. The selected URL triggers a designated response file that is
processed and returned to the client.

The characteristics of the URL determine the nature of the action which is performed.

	 •	HTML – If the URL references a file with a .html file name extension then no processing by Lasso will occur
(unless the Web server has been configured to send .html files to Lasso Service.). The referenced HTML file
will be returned to the client unchanged from how it is stored on disk.

http://www.example.com/default.html

	 •	Lasso – If the URL references a file with a .lasso file name extension then Lasso Service will be called upon
to process the file. The referenced Lasso page will be returned to the client after Lasso Service has evaluated
all the Lasso tags contained within.

4 1

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 3 — L a s s o P a g e s

http://www.example.com/default.lasso

	 •	Action.Lasso – If the URL references Action.Lasso then any command tags contained in the URL will be
evaluated and an appropriate response will be returned to the user. The response to an Action.Lasso URL will
always be processed by Lasso Service whether it is a .html file, a .lasso file, or a database field.

http://www.example.com/Action.Lasso?-Response=default.html

Note: Lasso will only process files with extensions that have been registered within Lasso Administration. See
the Setting Site Preferences chapter of the Lasso Professional 8 Setup Guide for more information.

HTML Form Action
An HTML form action is initiated or called when a client submits an HTML form in a source file. The source
file could be an HTML file from the same Web site or an HTML file from another Web site. The form action
and inputs of the form are evaluated and trigger a designated response file that is processed and returned to
the client.

The characteristics of the form action determine the nature of the action which is performed.

	 •	Lasso – If the HTML form references a file with a .lasso file name extension then Lasso Service will be
called upon to process the file. The referenced Lasso page will be returned to the client after Lasso Service
has evaluated all the Lasso tags contained within the inputs of the form.

<form action="default.lasso" method="post">
	 …
</form>

	 •	Action.Lasso – If the HTML form references Action.Lasso then any command tags contained in the inputs
in the form will be evaluated and an appropriate response will be returned to the user. The response to an
HTML form with an Action.Lasso form action will always be processed by Lasso Service whether it is a .html
file, a .lasso file, or a database field.

<form action="Action.Lasso" method="post">
	 <input type="hidden" name="-Response" value="default.lasso"
	 …
</form>

Note: Lasso will only process files with extensions that have been registered within Lasso Administration. See
the Setting Site Preferences chapter of the Lasso Professional 8 Setup Guide for more information.

Inline Action
Inline actions are initiated when the Lasso page in which they are contained is processed by Lasso Service.
The result of an inline action is the portion of the Lasso page contained within the [Inline] … [/Inline] tags that
describe the action. As with all Lasso pages, inline actions are processed as the result of a URL being visited
or an HTML form being submitted. However, inline actions are not reliant on command tags specified in the
URL or HTML form.

	 •	Inline Tag – The [Inline] … [/Inline] container tags can be used to implement an inline action within a Lasso
page. The action described in the opening [Inline] tag is performed and the contents of the [Inline] … [/Inline]
tags is processed as a sub-Lasso page specific to that action.

[Inline: … Action Description …]
	 … Response …
[/Inline]

4 2

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 3 — L a s s o P a g e s

	 •	Multiple Inlines – A single Lasso page can contain many [Inline] … [/Inline] container tags. Each set of tags
is implemented in turn. A single Lasso page can be used to perform many different database actions in
different databases as the result of a single URL action or HTML form action.

[Inline: … Action One Description …]
	 … Response One …
[/Inline]

[Inline: … Action Two Description …]
	 … Response Two …
[/Inline]

	 •	Nested Inlines – Inlines can be nested so that the results of one inline action are used to influence
the processing of subsequent inline actions. Nested inline actions allow for complex processing to be
performed such as copying records from one database to another or summarizing data in a database.

[Inline: … Action One Description …]
	 [Inline: … Action Two Description …]
		 … Combined Response …
	 [/Inline]
[/Inline]

	 •	Named Inlines – Inlines can be processed at the top of a Lasso page and their results can be used later in
the Lasso page. This allows the logical processing of an action to be separated from the data formatting.
The results of the inline action are retrieved by specifying the inline’s name in the [Records] … [/Records]
container tag.

[Inline: -InlineName='Action', … Action Description …]
	 … Empty …
[/Inline]
…
[Records: -InlineName='Action']
	 … Response …
[/Records]

Scheduled Action
Scheduled actions are initiated when they are queued using the [Event_Schedule] tag in a source file. The source
file could be a Lasso page which is loaded as the result of an action by a client or could be loaded as a startup
action. The response to the scheduled action is not processed until the designated date and time for the
action is reached.

Any type of Lasso page can be called as a scheduled action, but the results will not be stored. Scheduled
Lasso pages can effectively be thought of as pure Lasso pages. Scheduled Lasso pages can use logging or email
messages to notify a client that the action has occurred. See the Control Tags chapter for more information.

	 •	Lasso – The URL referenced when the action is scheduled will usually contain a .lasso file name extension.
The referenced Lasso page will be processed when the designated date and time is reached, but the results
will not be returned to any client. For example, the following [Event_Schedule] tag schedules a call to a page
that will send an email report to the administrator of the site every 24 hours (1440 minutes), even after
server restarts:

[Event_Schedule: -URL='http://www.example.com/admin/emailreport.lasso',
	 -Delay='1440', -Repeat=True, -Restart=True]

Startup Action
Startup actions are initiated when Lasso Service is launched by placing Lasso pages in the LassoStartup folder.
Lasso pages which are processed at startup are library files which are used to set up the global environment in
which all other pages will be processed. For example, they can add tags and custom data types to the global
environment, set up global constants, or queue scheduled actions.

4 3

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 3 — L a s s o P a g e s

	 •	Lasso – Lasso pages with .lasso file name extensions are used at startup to queue scheduled actions
or perform routine tasks on the databases or files managed by Lasso Service. Any Lasso pages in the
LassoStartup folder will be processed every time Lasso Service is launched.

	 •	Library – Libraries of Lasso tags and custom data types can be processed at startup in order to extend
the global environment in which all other pages are processed. All Lasso tags and data types in a library
processed at startup will be available to all other Lasso pages processed by Lasso Service. See the Files and
Logging chapter for more information about libraries.

Securing Lasso Pages
The information being collected or served in a Web site is often of a sensitive nature. Credit card numbers
and visitor’s personal information must be kept secure. Proper Lasso page security is the first step toward
creating a Web site which only provides the information you want it to publish.

The Lasso code contained in a Lasso page should be secured so visitors cannot examine it. Lasso pages
contain information about how to access your databases. They may contain passwords, table and field names,
or custom calculations.

Lasso code in a Lasso page is implicitly secured if it is stored in a Lasso page with a .lasso file extension. The
code in the file will always be processed by Lasso before it is served to visitors. Visitors can access the HTML
source of the file they receive, but cannot access the Lasso source of the original Lasso page.

It is important to ensure that your Lasso pages cannot be accessed unsecurely through other Internet
technologies such as FTP, Telnet, or file sharing. Make sure that the files in your Web serving folder can
only be accessed by trusted developers and administrators. See the Setting Up Security chapter in the Lasso
Professional 8 Setup Guide for more information.

Output Formats
Although Lasso pages are always text files, they can be used to output a wide variety of different data formats.
The most basic Lasso pages match the output format. For example, HTML Lasso pages are used to return
HTML output to Web browsers. But, pure Lasso pages can be used to return data in almost any format
through the use of the [Include] tag and data from database fields.

This section describes how to output the most common data formats from Lasso pages.

Text Formats
Lasso can be used to output any text-based data format. Lasso pages are usually based on a file of the desired
type. The following are common output formats:

	 •	HTML is the most common output format. Usually, HTML output is generated from HTML Lasso pages.
The embedded Lasso tags are processed, altering and adding to the content of the file, but the essential
characteristics of the file remain unchanged.

	 •	XML is rapidly becoming a standard for data exchange on the Internet. XML output is usually generated
through Lasso by processing XML Lasso pages. The embedded Lasso tags are processed, altering and adding
content to the XML data in the file. The resulting XML data can be made to conform to any Document
Type Definition (DTD) or XML Schema desired.

	 •	WML is the language used to communicate with WAP-enabled wireless devices. WML is a language which
is based on XML. It is an example of a DTD or XML Schema to which output data must conform. Lasso
usually generates WML output by processing WML Lasso pages. Developers can create WML Lasso pages by
using a WML authoring tool and then embedding Lasso tags within.

4 4

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 3 — L a s s o P a g e s

	 •	PDF or Portable Document Format is Adobe’s machine-independent format for distribution of electronic
documents. Lasso can be used in concert with PDFs in several ways. Lasso can be used to process forms
embedded within PDF files and to return results to a client. Lasso can be used to generate ASCII PDFs
through custom programming. Finally, Lasso can be used to provide access control to PDFs so only
authorized users are able to download certain PDFs.

Binary Formats
Lasso can be used to output a variety of binary data formats. Generally, Lasso is not used to perform any
processing on the binary data being served, but is just a conduit through which pre-existing binary data is
routed. See the Images and Multimedia chapter for more information about each of these methods. The
following list describes common methods of outputting binary data.

	 •	URLs can be created and manipulated using Lasso. For example, a database could contain a file name in a
field. Lasso can be used to convert that file name into a valid URL which will then be served as part of an
HTML page. The binary data will be fetched from the client directly without any further action by Lasso.

	 •	Database Fields can be used to store binary data such as image files in a container or binary format. If
a Lasso data source connector for the appropriate database supports fetching binary data, then Lasso can
serve the binary data or image files directly from the database field using the [Field], [Image_URL] or -Image
tags.

	 •	Binary Files can be served through Lasso using a combination of the [Include_Raw] tag to output the binary
data and the [Content_Type] tag to report to the client what type of data is being served.

File Management
Lasso 8 introduces a new distributed architecture. Lasso Service can be installed on one machine and a Lasso
Web server connector can be installed into a Web server on a different machine. It is important to realize
where Lasso pages are stored so they can be located on the appropriate machine.

Note: In most Lasso 8 installations Lasso Service and a Lasso Web server connector will be installed on the same
machine. The discussion below still applies since the various components of Lasso 8 will operate out of different
folders. An administrator can set up a machine so the same files are shared by all components of Lasso.

Lasso Web Server Connector
Most Lasso pages for a Web site will be stored on the same machine as a Lasso Web server connector in the
Web serving folder which contains the HTML and image files for the Web site.

	 •	Client Lasso Pages are stored alongside the HTML and image files which comprise a Web site. To the
client, these Lasso pages appear no different from plain HTML files except that they contain dynamic data.

	 •	Included Files are stored in the Web serving folder. These are files which are incorporated into Lasso pages
using the [Include] and [Include_Raw] tags. Included files could be other Lasso pages, plain HTML files, images
files, PDF files, etc.

	 •	Library Files can be stored in the Web serving folder. These files contain definitions for Lasso tags and data
types. Library files are referenced much like included files. The custom tags and data types defined in the
library file are available only in the pages which load the library file.

	 •	Administrative Files are stored in the Web serving folder in a folder named Lasso. These files comprise the
Web-based administration interface for Lasso Service.

Lasso Service
Lasso pages which are stored on the same machine as Lasso Service are used primarily when Lasso Service
starts up to set up the global environment. However, other files which are manipulated by Lasso’s logging and
file tags are also stored on the Lasso Service machine.

4 5

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 3 — L a s s o P a g e s

	 •	Startup Lasso Pages are stored in the LassoStartup folder with Lasso Service. These files are processed
when Lasso Service is launched and can perform routine tasks or modify the global environment in which
all other Lasso pages will be processed. Any Lasso tags, data types, or global constants defined in these
libraries will be available to all pages which are processed by Lasso Service.

	 •	Startup LassoApps are stored in the LassoStartup folder with Lasso Service. The default page of each
LassoApp is processed at startup and the LassoApp is pre-loaded into memory for fast serving.

	 •	Log Files are created using the [Log] tag. These files can be used to store information about the Lasso pages
which have been processed by Lasso Service. Log files are created on the same machine as Lasso Service.

	 •	Uploaded Files are stored in a temporary location in a folder with Lasso Service. Files can be uploaded by
a client using a standard HTML file input. Uploaded files must be moved from their temporary location to
a permanent folder before the page on which they were uploaded finishes processing.

	 •	File Tags operate on files in folders on the same machine as Lasso Service. The file tags can be used to
manipulate log files or uploaded files. The file tags are also used to manipulate HTML and other Lasso
pages in the Web serving folder if Lasso Service is installed on the same machine as a Lasso Web server
connector or if file sharing between the two machines facilitates accessing the files as a remote volume. See
the Files and Logging chapter for more information.

Note: A user can only access files to which the group they belong has been granted access . See the
Setting Up Security chapter in the Lasso Professional 8 Setup Guide for more information.

Specifying Paths
Lasso pages can be referenced in many different ways depending on how they are being used. They can be
referenced in any of the following ways:

	 •	A URL can be used to reference a Lasso page with a .lasso file extension directly:

http://www.example.com/default.lasso

	 •	A URL can be used to reference Lasso pages with any file extensions by calling Action.Lasso and then
specifying the Lasso page in a -Response command tag:

http://www.example.com/Action.Lasso?-Response=default.html

	 •	An HTML form can be used to reference a Lasso page with a .lasso file extension directly in the form action:

<form action="default.lasso" method="post">
	 …
</form>

	 •	An HTML form can be used to reference Lasso pages with any file extensions by calling Action.Lasso as the
form action and then specifying the Lasso page in a -Response hidden input:

<form action="Action.Lasso" method="post">
	 <input type="hidden" name="-Response" value="default.html">
	 …
</form>

	 •	A Lasso page can be referenced from within certain Lasso tags. For instance, the [Include] tag takes a single
Lasso page name as a parameter:

[Include: 'default.lasso']

Paths are specified for Lasso pages differently depending on what type of Lasso page contains the path
designation and to which type of Lasso page is being referred.

Note: Lasso cannot be used to reference files outside of the Web server root unless specific permission has
been granted within Lasso Administration. See the Setting Up Security chapter in the Lasso Professional 8 Setup
Guide for more information.

4 6

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 3 — L a s s o P a g e s

Relative and Absolute Paths
Most paths in Lasso pages follow the same rules as the paths between HTML files served by the Web server.
Relative and absolute paths are interpreted either by the client’s Web browser or by Lasso Service. These paths
are all defined within the context of the Web serving folder established by the Web server which is hosting a
Lasso Web server connector. If a single Web server is used to host multiple sites, the Web serving folder could
be different for each virtual host.

	 •	Relative Paths between files can be specified using all the rules and features of URL file paths. For
example, the following anchor tag designates a response in the same folder as the current page:

Response

	 •	Paths can use ../ to specify a higher level folder. The following anchor tag designates a response in the
folder one level higher than that which contains the current page:

Response

	 •	Relative paths designated within Lasso tags follow the same basic rules except that ../ cannot be used to
access the parent folder for a Lasso page. For example, the following [Include] tag includes a file from the
same folder as the current page.

[Include: 'include.lasso']

	 •	Absolute Paths are referenced from the root of the Web serving folder as designated by the Web serving
software. The Web server root is specified using the / character. The following anchor tag designates a
response file contained at the root level of the current Web site:

Response

	 •	Absolute paths designated within Lasso tags work the same as absolute paths in URLs. The following
[Include] tag includes a file contained at the root level of the current Web site.

[Include: '/include.lasso']

For more information about specifying relative and absolute paths, consult your favorite HTML reference or
the documentation for your Web serving application.

Action.Lasso Paths
If a Lasso page has been called using Action.Lasso in either a URL or in an HTML form action then all paths
within the Lasso page will be evaluated relative to the stated location of Action.Lasso.

	 •	Action.Lasso could be specified as Action.Lasso so it appears to be located in the same folder as the calling
Lasso page. All paths must then be specified as if the referenced Lasso page was located in the same folder
as the calling Lasso pages. Paths relative to the referenced Lasso page will fail, but paths relative to the
calling Lasso page will succeed.

Response

	 •	Action.Lasso could be specified as /Action.Lasso so it appears to be located at the root of the Web serving
folder. All paths must then be specified as if the referenced Lasso page was located at the root of the Web
serving folder. Paths relative to the referenced Lasso page will fail.

Response

	 •	Action.Lasso can also be specified using an arbitrary path such as /Folder/Action.Lasso. In this case all paths will
be relative to the specified location of Action.Lasso.

Response

4 7

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 3 — L a s s o P a g e s

Lasso Service Paths
Paths to Lasso pages on the machine hosting Lasso Service are specified differently than those which are used
in Lasso pages on the machine hosting a Lasso Web server connector. Lasso pages on the machine hosting
Lasso Service are usually only referenced by the file tags and log tag.

	 •	Most paths should be Fully Qualified Paths specified from the root of the disk on which Lasso Service is
installed. For example, the following path would represent a file in the same folder as Lasso Service in a
typical install on a Windows 2000 machine:

C://Program Files/OmniPilot Software/Lasso Professional 8/default.lasso

	 •	The following path would represent the same file if it were in the same folder as Lasso Service in a typical
install on a Mac OS X machine:

///Applications/Lasso Professional 8/default.lasso

In Mac OS X, the hard drive name is set to a slash / so the fully qualified paths must start with three slashes
///. Paths starting with a single slash / are defined to be relative to the Web server root.

For more information about specifying fully qualified paths, consult the Files and Logging chapter.

Note: Fully qualified paths can also be specified in a platform specific fashion. For example, the path
above could be written as C:\\Program Files\OmniPilot Software\Lasso Professional 8\default.lasso on Windows or as
Applications:Lasso Professional 8:default.lasso on Macintosh.

Page Execution Time Limit
Lasso includes a limit on the length of time that a Lasso page will be allowed to execute. This limit can help
prevent errors or crashes caused by infinite loops or other common coding mistakes. If a Lasso page runs for
longer than the time limit then it is killed and a critical error is returned and logged.

The execution time limit is set to 10 minutes (600 seconds) by default and can be modified or turned off
in the Setup > Global > Settings section of Lasso Admin. The execution time limit cannot be set below 60
seconds.

The limit can be overridden on a case by case basis by including the [Lasso_ExecutionTimeLimit] tag at the top
of a Lasso page. This tag can set the time limit higher or lower for the current page allowing it to exceed the
default time limit. Using [Lasso_ExecutionTimeLimit: 0] will deactivate the time limit for the current Lasso page
altogether.

On servers where the time limit should be strictly enforced, access to the [Lasso_ExecutionTimeLimit] tag can be
restricted in the Setup > Global > Tags and Security > Groups > Tags sections of Lasso Admin.

Asynchronous tags and compound expressions are not affected by the execution time limit. These processes
run in a separate thread from the main Lasso page execution.

Note: When the execution time limit is exceeded the thread that is processing the current Lasso page will be
killed. If there are any outstanding database requests or network connections open there is a potential for some
memory to be leaked. The offending page should be reprogrammed to run faster or exempted from the time
limit using [Lasso_ExecutionTimeLimit: 0]. Restarting Lasso Service will reclaim any lost memory.

Code Compilation and Caching
Lasso processes pages using a built-in compiler and automatically caches compiled pages for speed. The
operation of this compiler is normally transparent to the site designer so Lasso can appear to operate as an
interpreted language.

When Lasso is asked to process a Lasso page it locates the disk file for the page and notes its modification
time. The first time a page is called it is compiled into low-level byte code. That byte code is executed to
generate the response to the page. The byte code is also stored in a cache. Subsequent calls to the same page

4 8

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 3 — L a s s o P a g e s

will check the modification time for the disk file and if the disk file has not been modified will use the cached
byte code for the page.

Note that Lasso is caching the compiled LassoScript for the page, not the results of the page. Lasso processes
each page that is called every time it is called, but only re-compiles the page into byte code when the disk file
for the Lasso page is modified.

Since the cache checks the modification time of the disk file it will be automatically updated each time the
file is modified. The [Compiler_RemoveCachedDoc] tag can also be used to explicitly flush a Lasso page out of
Lasso’s cache and force the Lasso page to be re-compiled the next time it is called.

[Compiler_RemoveCachedDoc: '/default.lasso']

4 9

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 3 — L a s s o P a g e s

4
Chapter 4

Lasso 8.5 Syntax

Lasso Professional 8 supports several different syntax styles and methods of embedding Lasso code within a
Lasso page.

	 •	Overview provides an introduction to the different syntax styles available in Lasso Professional 8.

	 •	Colon Syntax describes the traditional syntax of Lasso which features a tag name followed by a colon and
the parameters of the tag [Tag_Name: Parameters].

	 •	Parentheses Syntax describes a new syntax style in Lasso Professional 8 which features a tag name
followed by parentheses that include the parameters of the tag [Tag_Name(Parameters)].

	 •	Square Brackets describes how to embed Lasso tags in HTML Lasso pages surrounded by square brackets
[…].

	 •	LassoScript describes how to embed Lasso tags in Lasso pages in a block of LassoScript <?LassoScript … ?>.

	 •	HTML Form Inputs describes how to embed Lasso tags within HTML forms.

	 •	URLs describes how to embed Lasso tags within URLs.

	 •	Compound Expressions describes how to embed Lasso tags within other Lasso expressions using braces
{ … }.

Overview
Lasso Professional 8 offers a great deal of flexibility in how Lasso code can be written and embedded within
Lasso pages. This allows the developer to select the best syntax style for each programming task. The different
syntax styles and embedding methods are completely interchangeable and a combination of different styles
can be used throughout a single Lasso page.

Syntax Styles
Lasso Professional 8 offers two different syntax styles. Colon syntax is the traditional syntax style of Lasso.
Parentheses syntax is a new syntax style that promotes better coding style by removing ambiguities from
the parser. Parentheses syntax may be an easier transition for developers who are familiar with other
programming languages while colon syntax may be preferred by experienced Lasso developers.

	 •	Colon Syntax – A tag name is followed by a colon : and then the parameters of the tag.

Tag_Name: Parameters

A tag which is used as a parameter to another tag should always be surrounded by parentheses since this
ensures that Lasso associates the parameters with the proper tag.

Tag_Name: (Sub_Tag: Parameters), More Parameters

	 •	Parentheses Syntax – A tag name is followed by parentheses (…) which contain parameters of the tag.

Tag_Name(Parameters)

5 0

L a s s o 8 . 5 L a n g u a g e G u i d e

A tag which is used as a parameter to another tag can be written the same as if it were at the top-level since
the parameters are automatically associated with the tag.

Tag_Name(Sub_Tag(Parameters), More Parameters)

The two syntax methods can be mixed even within the same expression although it is generally recommended
that one syntax style be used within any single block of Lasso code.

Tag_Name((Sub_Tag: Parameters, Sub_Tag(Parameters)), More Parameters)

Note: The introduction of parentheses syntax does not mean that colon syntax is de-emphasized or deprecated
in any way. Both syntax styles are equally supported in Lasso Professional 8.

Embedding Methods
Lasso Professional 8 offers three different embedding methods. The method to use depends on the particular
needs and outputs for a given block of code. The three different methods can be used alternately throughout
a single Lasso page.

	 •	Square Brackets – Each tag is surrounded by square brackets. The entire bracketed expression is replaced
by the value of the tag. Square brackets are most appropriate when embedding Lasso tags within HTML or
other markup languages.

[Field('Link_Name')]

	 •	LassoScript – An entire block of Lasso code is surrounded by a single <?LassoScript … ?> container. Each
tag must end with a semi-colon. The entire LassoScript is replaced by the value of all the tags within
concatenated together, but without any inter-tag whitespace. LassoScript is most appropriate when writing
a large block of Lasso code that does not have any output or that has highly structured output.

<?LassoScript
	 Tag_Name(Parameters);
	 Tag_Name(Parameters);
?>

Note: These two embedding methods are completely interchangeable. A single tag can be embedded within
a LassoScript container as <?LassoScript Tag_Name(Parameters) ?> or multiple tags can be embedded within square
brackets as [Tag_Name(Parameters); Tag_Name(Parameters)].

	 •	HTML Form Inputs – Lasso tags can be placed in HTML forms. When the form is submitted the command
tags will be interpreted before the response Lasso page is processed by Lasso.

<form action="Action.Lasso" method="POST">
	 <input type="hidden" name="-Response" value="format.lasso" />
	 <input type="submit" name="-Token.Action" value="Submit!" />
</form>

	 •	URLs – Lasso tags can be placed in URLs. When the URL is entered in a Web client the command tags will
be interpreted before the response Lasso page is processed by Lasso.

http://www.example.com/format.lasso?-Token.Action=Submit

Note: Classic Lasso syntax in which complete database operations are performed through HTML form inputs or
URLs has been deprecated. It’s use is no longer recommended. However, there are still some command tags that
work even with Classic Lasso support deactivated.

	 •	Compound Expressions – A block of Lasso code can be used as a parameter to a Lasso tag. This allows a
whole series of tags to be executed and the result to be returned as the parameter value.

Tag_Name({If(Condition); Return(True); /If; Return(False);}->Eval())

5 1

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 4 – L a s s o 8 . 5 S y n t a x

Colon Syntax
Colon syntax style is so-named because it features a tag name followed by a colon : and then the parameters
of the tag. Colon syntax is the traditional syntax of Lasso Professional. Colon syntax is fully supported within
Lasso Professional 8.

Table 1: Colon Syntax Delimiters

Delimiter	 Description	

:	 Separates a tag name from its parameters. Required for tags which have
parameters.

(…)	 Used to surround tags which have parameters and are used as parameters to
another tag.

,	 Used to separate parameters.
		

A simple tag with parameters in colon syntax is specified as follows:

Tag_Name: Parameters

A tag which is used as a parameter to another tag should always be surrounded by parentheses since this
ensures that Lasso associates the parameters with the proper tag.

Tag_Name: (Sub_Tag: Parameters), More Parameters

A tag which does not require any parameters must be written without a colon: It is not valid to have a colon
after a tag name without any parameters.

Simple_Tag

A tag which does not require any parameters can be used as a parameter to another tag with or without
surrounding parentheses.

Tag_Name: (Simple_Tag)

Tag_Name: Simple_Tag

Be careful to avoid ambiguities when specifying tags and parameters. In the following example [Tag_Name]
is being passed [Sub_Tag] as a parameter. It is not clear whether Parameter_3 is intended to be a parameter for
[Tag_Name] or [Sub_Tag].

Tag_Name: Parameter_1, Sub_Tag: Parameter_2, Parameter_3

This code will actually be interpreted as follows by Lasso. The outermost tag is greedy and will claim all the
parameters it can for itself. This leaves only Parameter_2 being passed to [Sub_Tag].

Tag_Name: Parameter_1, (Sub_Tag: Parameter_2), Parameter_3

In order to pass Parameter_2 and Parameter_3 to [Sub_Tag] the following syntax must be used.

Tag_Name: Parameter_1, (Sub_Tag: Parameter_2, Parameter_3)

Note: In early versions of Lasso the colon could be replaced by a comma. This is not allowed in Lasso
Professional 8.

Parentheses Syntax
Parentheses syntax style is so-named because it features a tag name followed by parentheses which surround
the parameters of the tag. Parentheses syntax is new in Lasso Professional 8. The advantages of parentheses
syntax include:

	 •	Parentheses syntax is less ambiguous than colon syntax since parameters are always clearly associated with
one tag without knowledge of the parser’s internal rules.

5 2

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 4 – L a s s o 8 . 5 S y n t a x

	 •	Parentheses syntax is closer to the syntax of programming languages like JavaScript. Developers who are
already familiar with other programming languages should feel right at home in parentheses syntax.

Table 2: Parentheses Syntax Delimiters

Delimiter	 Description	

(…)	 Used immediately following a tag name to contain the parameters of the tag. Can
be left empty if a tag has no parameters.

,	 Used to separate parameters.
		

A simple tag with parameters in parentheses syntax is specified as follows:

Tag_Name(Parameters)

A tag which is used as a parameter to another tag can be specified the same as if it were at the top-level of the
expression. The required parentheses in this syntax style ensure that there are no ambiguities.

Tag_Name(Sub_Tag(Parameters), More Parameters)

A tag which does not require any parameters must be written trailing parentheses. However, the trailing
parentheses can also be included without any ill effects.

Simple_Tag

Simple_Tag()

A tag which does not require any parameters can be used as a parameter to another tag with or without
trailing parentheses.

Tag_Name:(Simple_Tag)

Tag_Name(Simple_Tag())

It is impossible to introduce ambiguities when using this syntax. The examples below are the same as those
from the Colon Syntax section, but since the parentheses are required there is no question how the parser
will interpret these expressions.

Tag_Name(Parameter_1, Sub_Tag(Parameter_2), Parameter_3)

Tag_Name(Parameter_1, Sub_Tag(Parameter_2, Parameter_3))

Square Brackets
Square brackets allow Lasso tags to be used as a tag-based markup language. Square brackets are most
convenient when embedding Lasso tags within HTML, XML, or another markup language. Square brackets
have the following advantages:

 	 •	Brackets visually distinguish Lasso code from the angle bracket delimited markup languages in which they
are embedded.

	 •	White space between tags is preserved and output to the site visitor.

Lasso tags within square brackets are each executed in turn. The entire bracketed expressions is replaced by
the value of the processed tag. The returned value is encoded using HTML encoding by default. This can be
changed using an encoding keyword or [Encode_Set] … [/Encode_Set] tags.

Table 3: Square Bracket Delimiters

Delimiter	 Description	

[Starts a square bracket tag. Required.

]	 Ends a square bracket tag. Required.
		

5 3

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 4 – L a s s o 8 . 5 S y n t a x

To create a square bracket tag:

Place the tag within square brackets. Either colon or parentheses syntax can be used.

[Field: 'Field_Name', -EncodeNone] ➜ John

[Math_Add:(, 2, 3, 4, 5)] ➜ 15

To use container tags with square brackets:

Container tags are specified surrounding a portion of a page. The opening tag is written normally with
parameters. The closing tag has the same name as the opening tag, but preceded with a forward slash /.
Indentation is often used to make the contents of the container tag clear, but is not required. In the following
example a [Loop] tag is used to output the numbers 1 through 5 using the [Loop_Count] tag.

[Loop(5)]
	 [Loop_Count]
[/Loop]

➜	 1 2 3 4 5

To specify a comment within square brackets:

Specify a comment using the /* … */ delimiter. All text between these delimiters will not be processed.

[Field: 'First Name' /* This is a comment */]

To suppress output from a square bracket tag:

	 •	Use the [Null] tag to suppress output from a single square bracket tag.

[Null: Field('First Name')]

	 •	Use the [Output_None] … [/Output_None] tags around a block of square bracket tags. In the following example,
the expression will return no value even though it contains several [Field] tags.

[Output_None]
	
[Field('First Name')] [Field('Last Name')]
[/Output_None]

To change the encoding for a square bracket tag:

	 •	Use an encoding keyword on the tag. By default all tags are encoded using -EncodeHTML.

[Field('First_Name', -EncodeNone)]

	 •	Use an [Encode_…] tag to specify the encoding explicitly.

[Encode_HTML: Field('First_Name')]

	 •	Use the [Encode_Set] … [/Encode_Set] tags around the square bracket tags. This changes the default encoding
without use of the -EncodeNone keyword in each tag.

[Encode_Set: -EncodeNone]
	 [Output: '<p>This HTML code will render
with breaks.']
[/Encode_Set]

➜	 <p>This HTML code will render

with breaks.

To prevent square brackets from being interpreted:

Sometimes it is desirable to have square brackets in a Lasso page which are not interpreted by Lasso. This can
be useful for including Lasso samples on a page, for using array references within JavaScript, or simply for
typographic design flexibility. These methods work for either square bracket or LassoScript syntax.

	 •	Surround the code that should not be processed with [NoProcess] … [/NoProcess] tags. Lasso will not interpret
any code within this container.

5 4

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 4 – L a s s o 8 . 5 S y n t a x

[NoProcess]
	 The [Field] tag returns the value of a database field for the current record.
[/NoProcess]

➜	 The [Field] tag returns the value of a database field for the current record.

	 •	Surround the code that should not be processed with HTML comments <!-- … -->. This method is
particularly useful for JavaScript code blocks.

<script langauge="JavaScript">
	 <!--
		 array[1] = array[2];
	 // -->
</script>

LassoScript
LassoScript allows Lasso tags and symbols to be used as a scripting language in a fashion which is
complementary with the traditional use of Lasso as a tag-based markup language. LassoScripts have the
following advantages:

	 •	Concise format allows better formatting of long code segments.

	 •	Represented as a single object in many visual authoring environments. This makes it easy to separate the
logic of a page from the presentation or to hide implementation details from Web designers who are
working on the visual aspects of the page.

	 •	Comments allow code to be self-documented for better maintainability.

	 •	Compatible with HTML and XML standards for embedding server-side scripting commands.

	 •	Provides scripting-like method of coding for programmers who prefer this method.

Lasso tags contained within a LassoScript execute exactly as they would if they were specified within square
brackets. The value returned by a LassoScript is the concatenation of all the values which are returned from
the tags that make up the LassoScript. No encoding is applied to the output of a LassoScript, but normal
encoding rules apply to each of the tags within a LassoScript that outputs values.

LassoScripts begin with <?LassoScript and end with ?>. Lasso tags within a LassoScript are delimited by a single
semi-colon ; at the end of the tag rather than by square brackets. White space within a LassoScript is ignored.
Comments begin with a double forward slash // and continue to the end of the line. To continue a comment
on another line, another // must be used. All text in a LassoScript must be part of a tag or part of a comment,
no extraneous text is allowed.

Values returned from expressions within a LassoScript are not encoded by default. The [Encode_…] tags can be
used to apply explicit encoding to values output from a LassoScript.

<?LassoScript
	 Encode_HTML: '
This is the output from the LassoScript.';
?>

➜	
This is the output from the LassoScript.

Table 4: LassoScript Delimiters

Delimiter	 Description	

<?LassoScript	 Starts a LassoScript. Required.

?>	 Ends a LassoScript. Required.

;	 Ends a Lasso tag. Required.

//	 Comment. All text to the end of the line will be ignored.

/* … */	 Block Comment. All text between the delimiters will be ignored. Allows multi-line
comments.

		

5 5

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 4 – L a s s o 8 . 5 S y n t a x

Note: Square brackets […] are not allowed in LassoScripts. However, it is possible to replace the
<?LassoScript … ?> delimiters with square brackets […].

To create a LassoScript with a single tag:

LassoScripts can be used for individual Lasso tags as well as for groups of tags. When only a single tag is
specified, the semi-colon at the end of the tag is optional. The container <?LassoScript … ?> can be substituted
for the square bracket container [… ] if necessary.

<?LassoScript Field: 'Field_Name', -EncodeNone ?>

<?LassoScript Math_Add: 1, 2, 3, 4, 5 ?> � 15

To use container tags within a LassoScript:

Container tags are specified just as they are in square-bracketed Lasso code. The opening container tag must
end with a semi-colon. The closing container tag should start with a forward slash / and end with a semi-
colon. Indentation is usually used to make the contents of the container tag clear, but is not required. In the
following example a [Loop] tag is used to output the numbers 1 through 5 using the [Loop_Count] tag.

<?LassoScript
	 Loop: 5;
		 Loop_Count + ' ';
	 /Loop;
?>

➜	 1 2 3 4 5

To use container tags between LassoScripts:

Container tags can be opened within one LassoScript then closed in a subsequent LassoScript. The following
example shows a mixture of LassoScript and square bracket syntax which implements a loop.

<?LassoScript
	 Loop: 5;
?>

	 [Loop_Count]

<?LassoScript
	 /Loop;
?>

➜	 1 2 3 4 5

To specify a comment within a LassoScript:

Use the // symbol to start a comment. All text until the end of the line will be part of the comment and will
not be executed by the LassoScript.

<?LassoScript
	 // This LassoScript only contains a comment.
?>

<?LassoScript
	 // The following line has been commented out. It will not be processed.
	 // Encode_HTML: 'Testing';
?>

Alternately, specify a multi-line comment using the /* … */ delimiter. All text between these delimiters will not
be processed.

5 6

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 4 – L a s s o 8 . 5 S y n t a x

<?LassoScript
	 /*
		 These lines have been commented out. The following line will not be processed.
		 Encode_HTML: 'Testing';
	 */
?>

To suppress output from a LassoScript:

Use the [Output_None] … [/Output_None] tags around the LassoScript. In the following example, the LassoScript
will return no value even though it contains several expressions that output values.

<?LassoScript
	 Output_None;
		 'This value will not be seen.';
		 'Neither will this value.';
	 /Output_None;
?>

To change the encoding for a LassoScript:

Use the [Encode_Set] … [/Encode_Set] tags around the LassoScript. In the following example, the LassoScript will
not perform any encoding so HTML values can output from the [Output] tags without use of the -EncodeNone
keyword in each tag.

<?LassoScript
	 Encode_Set: -EncodeNone;
		 Output: '<p>This HTML code will render
with breaks.';
	 /Encode_Set;
?>

➜	 <p>This HTML code will render

with breaks.

To use square brackets to surround a LassoScript:

The <?LassoScript … ?> delimiters can be replaced by square brackets […]. The following is a valid LassoScript.

[
	 Encode_HTML: '
This is the output from the LassoScript.';
]

➜	
This is the output from the LassoScript.

To convert Lasso square bracket code to a LassoScript:

	 1	Format the code so each tag is on a separate line.

	 2	Remove all opening square brackets [.

	 3	Replace all closing square brackets] with semi-colons ;.

	 4	Correct the indentation so tags inside container tags are indented.

	 5	Add <?LassoScript and ?> to the beginning and end of the code.

In the following example the same code is shown in square bracketed Lasso code and then as an equivalent
LassoScript.

5 7

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 4 – L a s s o 8 . 5 S y n t a x

[Loop: 5]
	 [Loop_Count]
[/Loop]

<?LassoScript
	 Loop: 5;
		 Loop_Count + ' ';
	 /Loop;
?>

HTML Form Inputs
Lasso tags can be embedded within HTML form inputs in two different ways. A Lasso command tag can be
embedded as the name parameter of an <input>, <select>, or <textarea> tag. Lasso tags in square brackets can
be embedded as either the name or value parameters. For example, the following <input> tag includes a Lasso
command tag -ResponseAnyError as the name parameter and a Lasso substitution tag [Response_FilePath] as the
value parameter.

<input type="hidden" name="-ResponseAnyError" value="[Response_FilePath]">

When the Lasso page that includes the -ResponseAnyError tag is served to a client, the -ResponseAnyError tag will
not be processed until the HTML form in which this <input> is embedded is submitted by a client. However,
the [Response_FilePath] substitution tag is replaced by the name of the current Web page to yield the following
HTML for the <input> tag.

�	 <input type="hidden" name="-ResponseAnyError" value="/form.lasso">

Any of the various tag types can be embedded within HTML form inputs, but the details differ for each type
of tag. See the section on Tag Types below for more details.

URLs
Lasso tags can be embedded within the parameters of URLs in two different ways. A Lasso command tag can
be embedded as the name half of a parameter. Lasso tags in square brackets can be embedded as either the
name or value half of a parameter. For example, the following URL includes a Lasso command tag -Token.Name
as the name half of the first parameter and a Lasso substitution tag [Client_Username] as the value half of the
first parameter.

When the Lasso page that includes this tag is served to a client the -Token.Name command tag will remain
unchanged. This tag will not be processed until the URL is selected by a client. The [Client_Username]
substitution tag will be replaced by the name of the current user logged in.

�	

Any of the various tag types can be embedded within URLs, but the details differ for each type of tag. See the
section on Tag Types below for more details.

Compound Expressions
Compound expressions allow for tags to be created within Lasso code and executed immediately. Compound
expressions can be used to process brief snippets of Lasso code inline within another tag’s parameters or can
be used to create reusable code blocks.

5 8

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 4 – L a s s o 8 . 5 S y n t a x

Table 5: Compound Expression Delimiters

Delimiter	 Description	

{	 Starts a compound expression. Required.

}	 Ends a compound expressions. Required.

;	 Ends a Lasso tag. Required.
		

Evaluating Compound Expressions
A compound expression is defined within curly braces { }. The syntax within the curly braces should match
that for LassoScripts using semi-colons between each Lasso tag. For example, a simple compound expression
that adds 6 to a variable myVariable would be written as follows. The expression can reference page variables.

[Variable: 'myExpression' = { $myVariable += 6; }]

The compound expression will not run until it is asked to execute using the [Tag->Eval] tag. The expression
defined above can be executed as follows.

[Variable: 'myVariable' = 5]
[$myExpression->Eval]
[Variable: 'myVariable']

➜	 11

A compound expression returns values using the [Return] tag just like a custom tag. A variation of the
expression above that simply returns the result of adding 6 to the variable, without modifying the original
variable could be written as follows.

[Variable: 'myExpression' = { Return: ($myVariable + 6); }]

This expression can then be called using the [Tag->Eval] tag and the result of that tag will be the result of the
stored calculation.

[Variable: 'myVariable' = 5]
[$myExpression->Eval]

➜	 11

Alternately, the expression can be defined and called immediately. For example, the following expression
checks the value of a variable myTest and returns Yes if it is True or No if it is False. Since the expression is
created and called immediately using the [Tag->Eval] tag it cannot be called again.

[Variable: 'myTest'= True]
[Encode_HTML: { If: $myTest; Return: 'Yes'; Else; Return: 'No'; /If; }->Eval]

➜	 Yes

Running Compound Expressions
The same conventions for custom tags may be used within a compound expression provided it is executed
using the [Tag->Run] tag. Compound expressions which are run can access the [Params] array and define local
variables.

For example, the following expression accepts a single parameter and returns the value of that parameter
multiplied by itself. The expression is formatted similar to a LassoScript using indentation to make the flow
of logic clear.

[Variable: 'myExpression' = {
	 Local: 'myValue' = (Params->(Get: 1));
	 Return: #myValue * #myValue;
}]

5 9

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 4 – L a s s o 8 . 5 S y n t a x

This expression can be used as a tag by calling it with the [Tag->Run] tag with an appropriate parameter. The
following example calls the stored tag with a parameter of 5.

[Encode_HTML: $myExpression->(Run: -Params=(Array: 5))]

➜	 25

6 0

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 4 – L a s s o 8 . 5 S y n t a x

5
Chapter 5

Lasso 8.5 Tag Language

This chapter introduces the methodology behind programming data-driven Web sites powered by Lasso 8.
This chapter introduces terminology which is used through the remainder of this language guide. All new
users of Lasso Professional 8 should read through this chapter to familiarize themselves with the structure of
LassoScript.

	 •	Introduction describes the layout of this chapter in detail.

	 •	Tag Types introduces the five types of Lasso 8 tags including substitution tags, process tags, container tags,
member tags, and command tags.

	 •	Tag Categories and Naming introduces the logic behind the names of Lasso 8 tags.

	 •	Parameter Types describes the different types of parameters that can be specified within a tag.

	 •	Encoding contains a discussion of character encoding features for substitution tags.

	 •	Data Types describes the different data types which Lasso 8 offers.

	 •	Expressions and Symbols introduces the concept of performing calculations directly within parameters.

	 •	Delimiters includes a technical description of the characters used to delimit Lasso 8 tags in any syntax.

The syntax of Lasso 8 including colon syntax, parentheses syntax, square brackets, LassoScript, HTML form
inputs, URLs, and compound expressions is introduced in the previous chapter Lasso 8 Syntax.

Introduction
This chapter describes the syntax features of Lasso 8. Most of the topics in this chapter are interrelated, and
many of the terms used in this chapter are defined in Appendix A: Glossary of the Lasso Professional 8
Setup Guide. Consult this glossary if you are unsure of how any terms are used in this guide.

The first part of this chapter describes the different types and categories of Lasso tags. The next part of the
chapter describes the syntax of individual tags. The different components of tags are discussed, followed by an
introduction to the various parameters that can be specified in Lasso tags. Next, the focus shifts to the values
which are used to specify parameters.

A discussion of Lasso’s built-in data types sets the stage for the introduction of symbols and expressions
which can be used to modify values. Finally, the chapter ends with a technical description of the delimiters
used to specify all the different tag types within Lasso and a brief discussion of syntax rules and guidelines
which make coding Lasso pages within Lasso easier.

6 1

L a s s o 8 . 5 L a n g u a g e G u i d e

Tag Types
Lasso 8 tags are divided into five different types depending on how the tags are used and how their syntax
is specified. Each of the five tag types is listed in the table below and then discussed in more detail in the
sections that follow, including details of how each tag type can be used within a Lasso page.

Table 1: Lasso 8 Tag Types

Tag Type	 Example	

Substitution Tag	 [Field: 'Company_Name']

Process Tag	 [Event_Schedule: -URL='http://www.example.com/']

Member Tag	 ['String'->(Get: 3)]

Container Tag	 [Loop: 5] … Looping Text … [/Loop]

Command Tag	 <input type="hidden" name="-Required">
		

Substitution Tags
Substitution tags return a value which is substituted in place of the tag within the Lasso page being served to
a client. Most of the tags in Lasso are substitution tags. Substitution tags are used to return field values from
a database query, return the results of calculations, or to display information about the state of Lasso Service
and the current page request.

The basic format for substitution tags is different in colon or parentheses syntax. Colon syntax features a tag
name followed by a colon and then one or more parameters separated by commas.

[Substitution_Tag: Tag_Parameter, -EncodingKeyword]

Parentheses syntax features a tag name followed by parentheses which surround the parameters of the tag.

[Substitution_Tag(Tag_Parameter, -EncodingKeyword)]

Every substitution tag also accepts an optional encoding keyword as described later.

Substitution tags have the same basic form when they are expressed in a LassoScript as when they are
expressed in square brackets, except that each tag must end with a semi-colon when expressed in a
LassoScript. The following example shows the format of substitution tags expressed in a LassoScript in both
colon and parentheses syntax

<?LassoScript
	 Substitution_Tag: Tag_Parameter, -EncodingKeyword;
	 Substitution_Tag(Tag_Parameter, -EncodingKeyword);
?>

To embed a substitution tag within square brackets:

	 •	Specify the substitution tag on its own. The tag will be replaced by its value when the page is served to
a client. For example, the following [Field] tags will be replaced by the company’s information from the
database. The tag is shown in both colon and parentheses syntax:

[Field: 'Company_Name'] � LassoSoft
[Field('Company_URL')] � http://www.lassosoft.com

	 •	Specify the substitution tag within HTML or XML markup tags. The Lasso tag will be replaced by its
value when the page is served to a client, but the markup tags will be served as written. For example, the
following [Field] tags are replaced by the company’s information from the database within an HTML anchor
tag.

[Field: 'Company_Name']

�	 LassoSoft

6 2

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 5 – L a s s o 8 . 5 T a g L a n g u a g e

To embed a substitution tag within a LassoScript:

	 •	Specify the substitution tag inside the LassoScript container followed by a semi-colon. The value of the
LassoScript will be the value of the lone substitution tag. For example, the [Field] tag is the value of the
LassoScript in the following code in colon syntax:

<?LassoScript
	 Field: 'Company_Name';
?>

�	 LassoSoft

	 •	Specify multiple substitution tags on separate lines of the LassoScript. End each tag with a semi-colon. The
value of the LassoScript will be the concatenation of the value of all the substitution tags. For example, the
[String] tags and [Field] tag define the value of the LassoScript in the following code in parentheses syntax:

<?LassoScript
	 String('', -EncodeNone);
	 Field('Company_Name');
	 String('', -EncodeNone);
?>

�	 LassoSoft

Note: Every substitution tag accepts an optional encoding parameter which specifies the output format for the
value which is being returned by the tag. Please see the section on Encoding below for more details.

Process Tags
Process tags perform an action which does not return a value. They can be used to alter the HTTP header of
an HTML file being served, to store values, to schedule tasks for later execution, to send email messages, and
more.

The basic format for process tags is identical to substitution tags: a tag name followed by a colon and
then one or more parameters separated by commas. Or, in parentheses syntax the tag name followed by
parentheses which contain the parameters of the tag.

[Process_Tag: Tag_Parameter]

[Process_Tag(Tag_Parameter)]

Process tags have the same basic form when they are expressed in a LassoScript as when they are expressed
in square brackets. Except that each tag must end with a semi-colon when expressed in a LassoScript. The
following examples shows the format of process tags expressed in a LassoScript:

<?LassoScript
	 Process_Tag: Tag_Parameter;
	 Process_Tag(Tag_Parameter);
?>

To embed a process tag within square brackets:

	 •	Specify the process tag on its own. The tag will be removed from the Lasso page when it is served. For
example, the following [Email_Send] tag will send an email to a specified email address, but will return no
value in the Web page being served.

[Email_Send: -Host='smtp.myserver.com',
						 -To='Somebody@example.com',
						 -From='Nobody@example.com',
						 -Subject='This is the subject of the email',
						 -Body='This is the message text of the email']

6 3

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 5 – L a s s o 8 . 5 T a g L a n g u a g e

To embed a process tag within a LassoScript:

	 •	Specify the process tag inside the LassoScript container followed by a semi-colon. Since the process tag
does not return a value it will not affect the return value of the LassoScript. For example, the following
[Email_Send] tag will send an email to a specified email address, but since the LassoScript contains only this
tag it will return no value in the Lasso page being served:

<?LassoScript
	 Email_Send: -Host='smtp.myserver.com',
						 -To='Somebody@example.com',
						 -From='Nobody@example.com',
						 -Subject='This is the subject of the email',
						 -Body='This is the message text of the email';
?>

A combination of substitution and process tags can be included in a LassoScript, but the output value of
the LassoScript will be determined solely by the value of the substitution tags.

Member Tags
Member tags modify or return data from a value of a specific data type. Each data type in Lasso has different
member tags. Member tags can either be used in the fashion of process tags to alter a value or they can be
used in the fashion of substitution tags to return a value.

Member tags differ from substitution and process tags in that they must be called using the member symbol
-> and a value from the appropriate data type. The following example shows the structure of member tags in
both colon and parentheses syntax:

[Value->(Tag_Name: Parameters)]

[Value->Tag_Name(Parameters)]

For example the [String->Get] member tag requires a value of type string. Member tags are always written in this
fashion in the documentation: the data type followed by the member symbol and the specific tag name. The
following code fetches the third character of the specified string literal:

[Encode_HTML: 'The String'->(Get: 3)] � e

[Encode_HTML('The String'->Get(3))] � e

Member tags are defined for any of the built-in data types and third parties can create additional member
tags for custom data types. The built-in data types include String, Integer, Decimal, Map, Array, and Pair. More
information can be found in the section on Data Types below.

To embed a member tag within square brackets:

	 •	Specify the member tag as the parameter of an [Encode_HTML] substitution tag. This makes it clear that you
want to output the value returned by the member tag.

[Encode_HTML: 'The String'->(Get: 3)] � e
[Encode_HTML: 123->(Type)] � Integer

To embed a member tag within a LassoScript:

	 •	Specify the member tag as the parameter of an [Encode_HTML] substitution tag. This makes it clear that you
want to output the value returned by the member tag.

<?LassoScript
	 Var:'Text'='The String';
	 Encode_HTML: $Text->(Get: 3);
?>

�	 e

6 4

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 5 – L a s s o 8 . 5 T a g L a n g u a g e

	 •	Member tags can be specified directly if they are being used in the fashion of a process tag. In the following
example, the [String->Append] member tag is used to add text to the string, but no result is returned.

<?LassoScript
	 Var:'Text'='The String';
	 $Text->(Append: ' is longer.');
?>

Container Tags
Container tags are a matching pair of tags which enclose a portion of a Lasso page or LassoScript and either
alter the enclosed contents or change the behavior of tags within the enclosed contents. The opening tag uses
the same syntax as a substitution or process tag. The closing tag has the same name as the opening tag, but
the closing tag is specified with a leading forward slash. This is similar to how HTML markup tags are paired.

In the documentation, container tags are referred to by specifying both tags with an ellipsis representing the
enclosed content. The loop tag will be referred to as [Loop] … [/Loop]. When the attributes or parameters of one
half of the container tag pair is being discussed, then just the single tag will be named. The opening loop tag
is [Loop] and the closing loop tag is [/Loop].

For example, the following [Loop] tag written in colon syntax has a single parameter which specifies the
number of times the contents of the tag will be repeated. The [/Loop] tag defines the end of the area which will
be repeated:

[Loop: 5] Repeated [/Loop]

�	 Repeated Repeated Repeated Repeated Repeated

The same loop written in parentheses syntax:

[Loop(5)] Repeated [/Loop]

�	 Repeated Repeated Repeated Repeated Repeated

To embed a container tag within square brackets:

	 •	Specify the opening container tag followed by the contents of the container tags and the closing container
tag. The contents of the container tags will be affected by the parameters passed to the opening container
tag. For example, the following [If] tag will output its contents if its parameter evaluates to True. Since 1 does
indeed equal 1 the output is True.

[If: 1 == 1] True [/If] � True

Note: Both the opening and closing tags of a container tag must be contained within the same Lasso page.
Container tags can be nested, but all enclosed container tags must be closed before the enclosing container tag
is closed. See the Conditional Logic chapter for more information.

To embed a container tag within a LassoScript:

	 •	Specify the opening container tag followed by the contents of the container tag and the closing container
tag. Each tag must end with a semi-colon. For readability, the contents of a container tag is often indented.
For example, the following [If] tag will output the contents of the enclosed tags if its parameter evaluates to
True. Since 1 does indeed equal 1 the output is True.

<?LassoScript
	 If: 1 == 1;
		 True;
	 /If;
?>

�	 True

6 5

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 5 – L a s s o 8 . 5 T a g L a n g u a g e

Command Tags
Most command tags are actually parameters of the [Inline] tag, but can be used on their own within HTML
forms or URLs. Command tags are used to send additional information in a form submission or URL request
that is flagged for special use by Lasso. This includes specifying field search operators, required form fields,
error response pages, and passing token information.

Command tags names always start with a hyphen, e.g. -Required. Command tags can be though of as “floating
parameters“, as they use the same hyphenated syntax conventions as substitution, process, and container tag
parameters, and can also be used directly as [Inline] tag parameters.

The basic format for a command tag is a tag name starting with a hyphen and an associated value. Since
command tags can be specified within HTML form inputs, URLs, and as parameters of the [Inline] tag, the form
of a command tag is different in each situation.

To embed command tags within an HTML form:

	 •	Specify multiple command tags within the HTML form inputs. Each command tag should be specified in
its own form input with the command tag as the name of the input tag.

<input type="hidden" name="-CommandTag" value="Command Value">

The following example shows a form that contains Lasso command tags. Each -Operator command tag is
contained in an HTML hidden input, which augments a field inputs below it. When the form is submitted,
each field passed to the searchresponse.lasso page will be passed with an Equals operator, meaning the field
value submitted must match values in a database exactly before results will be returned.

<form action="searchresponse.lasso" method="post">
	 <input type="hidden" name="-Operator" value="equals">
	 <input type="text" name="Field1" value="">
	 <input type="hidden" name="-Operator" value="equals">
	 <input type="text" name="Field2" value="">

	 <input type="submit" value="Search">

</form>

	 •	Command tags occasionally accept a parameter which is specified just after the name of the tag following
a period. For example, the -Token tag has a name parameter and a value parameter. The -Token tag can be
specified in a form as follows:

<input type="text" name="-Token.Name" value="Default Value">

To embed command tags within a URL:

	 •	Specify multiple command tags within the parameters of the URL. A URL consists of a page reference
followed by a question mark and one or more URL parameters. Each command tag parameter should be
specified as the command tag followed by an equal sign then its value. Individual command tag parameters
should be separated in the URL by ampersands.

http://www.example.com/default.lasso?-CommandTag=Command%20Value

A full action would be specified as follows. The result of selecting this URL in a Web browser would be that
the response page searchresponse.lasso will be returned to the visitor with the result of the search from the
specified database and table.

http://www.example.com/searchresponse.lasso?-Operator=Equals&Field1=Value1&
-Operator=Equals&Field2=Value2

To embed command tags within an [Inline]:

	 •	Specify multiple command tags within the opening [Inline] tag. The command tags will specify the action
which the [Inline] is to perform. The contents of the [Inline] … [/Inline] tags will be affected by the results of this
action. The following example shows how the -Op tags can be used directly within an [Inline] tag.

6 6

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 5 – L a s s o 8 . 5 T a g L a n g u a g e

[Inline:
	 -Database='Contacts'
	 -Table='People',
	 -KeyField='ID',
	 -Op='eq',
	 'Field1'='Value1',
	 -Op='eq',
	 'Field2'='Value2',
	 -Search]
	 …
[/Inline]

Tag Categories and Naming
All of the tags in Lasso 8 are grouped and named according to a few simple rules. These rules define where
the tag can be found in Lasso 8 documentation and in Lasso Administration.

Tag Categories
The following chart describes the major tag categories in Lasso 8. Each tag category is discussed in more detail
later in the book. Look for a chapter which has the same name as the tag category or use the index to locate a
particular tag.

Table 2: Lasso 8 Tag Categories

Tag Category	 Description	

Action	 Data source actions.

Administration	 Administration and security tags.

Array	 Array, map, pair, and other compound data types.

Bytes	 Byte streams for manipulating binary data and converting data between character
sets.

Client	 Information about the current visiting client.

Comparators	 Used to sort and match elements within compound data types.

Conditional	 Conditional logic and looping tags.

Constant	 Constant values that are used throughout Lasso.

Custom Tag	 Create custom Lasso tags, data types, and data sources.

Data Types	 Tags to cast values to specific data types.

Database	 Information about the current database.

Date	 Date manipulation tags.

Email	 Tags for sending, receiving, and processing email.

Encoding	 Tags for encoding data.

Encryption	 Encrypt data so it can be transmitted securely.

Error	 Tags for reporting and handling errors.

File	 Tags for manipulating files.

Image	 Tags for manipulating images.

Include	 Allows data to be included in a Lasso page.

JavaBeans	 Call JavaBeans from within Lasso code.

Link	 Link to other records in the current found set.

Matchers	 Match elements within compound data types.

Math	 Mathematical operations and integer member tags.

Namespace	 Use, load, and unload tag namespaces.

Networking	 Tags for performing network operartions.

6 7

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 5 – L a s s o 8 . 5 T a g L a n g u a g e

Operator	 Set and retrieve logical and field-level operators.

Output	 Tags for formatting or suppressing output.

PDF	 Tags for creating PDF documents.

Results	 Results from the current Lasso action.

Sessions	 Create session variables.

String	 String operations and string member tags.

Tags	 Member tags of the Null and Tag t ypes.

Technical	 Tags for performing low-level operations.

Threads	 Thread communication and synchronization.

Utility	 Tags which don't fit in any other category.

Variable	 Tags for creating and manipulating variables.

XML	 Tags for processing XML.
		

Tag Naming Conventions
Tags in Lasso are named according to a set of well-defined naming conventions. Understanding these
conventions will make it easier to locate the documentation for specific tags. We also recommend the
following naming conventions when creating custom tags, libraries, and modules.

	 •	Case is unimportant in both tag name and tag parameter names. All Lasso tags can be written in uppercase,
lowercase, or any combination of mixed case. Tags are always written in title case in the documentation.
The following tag names would all be equivalent, but the first, e.g. title case, is preferred:

[Tag_Name]		 [tag_name]
[TAG_NAME]		 [TaG_NaMe]

	 •	Core language tags usually have simple tag names and do not contain underscore characters. For example:

[Variable]			 [Field]
[If] … [Else] … [/If]		 [Inline] … [/Inline]

	 •	Most tag names include a category name (or namespace) followed by an underscore then the specific tag
name. For example: [Math_Sin] is the tag in the “Math” category that performs the function “Sine.” Similarly,
[Link_NextRecordURL] is the tag in the “Link” category that returns the URL of the next record in the found
set. Category names appear in tag names based on the following format:

[Category_TagName]

	 •	Tag names never start with an underscore character. These tag names are reserved for internal use.

	 •	Some tag names reference another tag or other component of Lasso 8 followed by an underscore then
a specific tag name. For example [MaxRecords_Value] returns the value of the -MaxRecords command tag.
There is no underscore in the words MaxRecords since it is referring to another tag. This association can be
expressed as follows:

[TagReference_TagName]

	 •	Many tag names include a word at the end that specifies what the output of the tag will be. For instance,
[Link_NextRecord] … [/Link_NextRecord] is a container tag that links to the next record, but [Link_NextRecordURL]
is a substitution tag that returns the URL of the next record. Tags that end in “URL” output URLs. Tags that
end in “List” and most tags that have plural names output arrays. Tags that end in “Name” return the name
of a database entity. Tags that end in “Value” return the value of the named database entity.

[Link_NextRecordURL]	 [File_ListDirectory]
[Action_Params]		 [Variables]
[KeyField_Name]		 [KeyField_Value]

6 8

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 5 – L a s s o 8 . 5 T a g L a n g u a g e

	 •	Member tag names are written in the documentation with the data type followed by the member symbol
then the tag name. For example, the Get tag of the data type string would be written: [String->Get]. All of the
member tags of a particular data type are considered to be part of the category which has the same name as
the data type. All of the string member tags are part of the string category.

	 •	Tags created by third parties should start with a prefix which identifies the creator of the tag. For example,
tags from “Example Company” might all start with Ex_. This ensures that the third party tags do not
conflict with built-in tags or other third party tags.

[Ex_TagName]		 [ExCategory_TagName]

Synonyms and Abbreviations
The following charts detail some standard synonyms and abbreviations in Lasso 8. Any of the synonyms or
abbreviations in the right column can be used instead of the term in the left column, but the term in the left
column is preferred.

Table 3: Lasso 8 Synonyms

Preferred 	 Synonym	 Example	

Field	 Column	 [Field_Name] [Column_Name]

Record	 Row	 [Records] [Rows]

KeyValue	 RecordID	 [KeyField_Value] [RecordID_Value]

Table	 Layout	 [Table_Name] [Layout_Name]
		

Table 4: Lasso 8 Abbreviations

Preferred	 Abbreviation	 Example	

Operator	 Op	 -Operator -Op

Required	 Req	 -Required -Req

Variable	 Var	 [Variable] [Var]
		

Some tags which were synonyms in earlier version of Lasso are no longer supported. Please see the
Upgrading Your Solutions section for more information. For a complete list of synonyms and abbreviations
please consult the Lasso 8.5 Reference.

Parameter Types
This section introduces the different types of parameters which can be specified within Lasso tags. This
discussion is applicable to substitution tags, process tags, the opening tag of container tags, and member tags.
Command tag parameters are fully described in the previous section.

Table 5: Parameter Types

Parameter Type	 Example	

Value	 [Field: 'Field_Name']

Keyword	 [Error_CurrentError: -ErrorCode]

Keyword/Value	 [Inline: -Database=(Database_Name), …]

Name/Value	 [Variable: 'Variable_Name'='Variable_Value']
		

Some parameters are required for a tag to function properly. The [Field] and [Variable] tags require that the
field or variable to be returned is specified. In contrast, the keyword in [Error_CurrentError] is optional and
can be safely omitted. If no keyword is specified for an optional parameter then a default will be used. For
a complete listing of required, optional, and default parameters for each tag, please consult the Lasso 8.5
Reference.

6 9

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 5 – L a s s o 8 . 5 T a g L a n g u a g e

A Value is the most basic parameter type, and consists of a basic data type contained within a tag after a
colon character (:). Values include string literals, integer literals, decimal literals, sub-tags, and complex
expressions.

[Field: 'Field_Name']			 [Date: '09/29/2003']
[Var_Defined: 'Variable_Name']		 [Encode_HTML: 123]

A value can also be the value of a sub-tag. Any substitution tag or member tag can be used as a sub-tag. The
syntax of the sub-tag is the same as that for the substitution tag or member tag except that the tag is enclosed
in parentheses rather than square brackets. The following [Encode_HTML] tags are used to output the value of
several different sub-tags:

[Encode_HTML: (Field: 'Field_Name')]	 [Encode_HTML: (Date)]
[Encode_HTML: (Loop_Count)]		 [Encode_HTML: 'String'->(Get: 3)]

A Keyword is a tag-specific parameter that alters the behavior of a tag. Keyword names always start with a
hyphen. This makes it easy to distinguish tag-specific keywords from user-defined parameters. The following
examples of [Server_Date] show how the same tag can be used to generate different content based on the
keyword that is specified:

[Server_Date: -Short] � 3/24/2001
[Server_Date: -Long] � March 24, 2001
[Server_Date: -Abbrev] � Mar 24, 2001
[Server_Date: -Extended] � 2001-03-24

Note: For backwards compatibility, some tags will accept keyword names without the leading hyphen. This
support is not guaranteed to be in future versions of Lasso so it is recommended that you write all keyword
names with the leading hyphen.

A Keyword/Value parameter is the combination of a tag specific keyword and a user-defined value which
affects the output of a tag. The keyword name is specified followed by an equal sign and the value. Keyword/
value parameters are sometimes referred to as named parameters. For example, the [Date] tag accepts multiple
keyword/value parameters which specify the characteristics of the date which should be output:

[Date: -Year=2001, -Day=24, -Month=3] � 3/24/2001

Command tags are used like keyword/value parameters in the [Inline] tag. The command tag functions like the
keyword and is written with a leading hyphen. For example, the following [Inline] contains several command
tags that define a database action:

[Inline: -FindAll
		 -Database='Contacts',
		 -Table='People',
		 -KeyField='ID']
	 … Results …
[/Inline]

A Name/Value parameter is the combination of a user-defined name with a user-defined value. The
name and the value are separated by an equal sign. Name/value parameters are most commonly used in
the [Inline] tag to refine the definition of a database action. For example, the previous [Inline] example can be
modified to search for records where the field First_Name starts with the letter s by the addition of a name/
value parameter 'First_Name'='s':

[Inline: -Search,
		 'First_Name'='s',
		 -Database='Contacts',
		 -Table='People',
		 -KeyField='ID']
	 … Results …
[/Inline]

7 0

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 5 – L a s s o 8 . 5 T a g L a n g u a g e

Encoding
Encoding keyword parameters specify the character format in which the data output from a substitution tag
should be rendered. Encoding ensures that reserved or illegal characters are changed to entities so that they
will display properly in the desired output format. Encoding keywords allow substitution tags to be used to
output data in any of the following formats:

	 •	HTML text for display in a Web browser (default).

	 •	HTML tags for display in a Web browser.

	 •	XML data for data interchange.

	 •	URL parameters to construct a hyperlink.

	 •	ASCII text for inclusion in an email message or log file.

The following table demonstrates each of the encoding keywords available in Lasso 8.

Table 6: Encoding Keywords

Keyword	 Encoding Performed	

-EncodeNone	 No encoding is performed.

-EncodeHTML	 Reserved, illegal, and extended ASCII characters are changed to their
hexadecimal equivalent HTML entities.

-EncodeSmart	 Illegal and extended ASCII characters are changed to their hexadecimal
equivalent HTML entities. Reserved HTML characters are not changed.

-EncodeBreak	 ASCII carriage return characters are changed to HTML
.

-EncodeURL	 Illegal and extended ASCII characters are changed to their equivalent
hexadecimal HTTP URL entities.

-EncodeStrictURL	 Reserved, illegal and extended ASCII characters are changed to their equivalent
hexadecimal HTTP URL entities.

-EncodeXML	 Reserved, illegal, and extended ASCII characters are changed to their UTF-8
equivalent XML entities.

		

To use an encoding keyword:

Append the desired encoding keyword at the end of a substitution tag. For example, angle brackets are
reserved characters in HTML. If you want to include an angle bracket in your HTML output it needs to be
changed into an HTML entity. The entity for < is < and the entity for > is >.

[String: 'HTML Text', -EncodeHTML] � HTML Text

See the Encoding chapter for more information.

Data Types
Every value in Lasso is defined as belonging to a specific data type. The data type determines what member
tags are available and how symbols affect the value. Data types generally correspond to everyday descriptions
of a value with the addition of some data types for structured data. The following table lists the primary data
types available in Lasso:

7 1

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 5 – L a s s o 8 . 5 T a g L a n g u a g e

Table 7: Primary Lasso 8 Data Types

Data Type	 Example	

String	 'This is a string surrounded by single quotes'

Bytes	 [Bytes: 'Binary representation of text or data']

Integer	 1500

Decimal	 3.14159

Date	 9/29/2002 19:12:02

Duration	 168:00:00

Array	 [Array: 'red', 'green', 'blue', 'yellow']

Map	 [Map: 'Company_Name'='LassoSoft', 'City'='Manchester']
		

Note: This section describes the primary data types which are used most frequently in Lasso. There are many
other special-purpose data types in Lasso, including PDF, Image, File, and Network Types. These special-purpose
types are described in appropriate chapters later in this guide.

Strings
Strings are any series of alphanumeric characters. String literals are surrounded by single quotes. The results
of a substitution tag will be considered a string if it contains any characters other than numbers. Please see
the String Operations chapter for more information.

Some examples of string values include:

	 •	'String literal' is a string surrounded by single quotes.

	 •	'123456' is a string literal since it is surrounded by single quotes.

	 •	 'A string with \'quotes\' escaped' is a string that contains quote marks. The quote marks are considered part of
the string since they are preceded by back slashes.

	 •	The following [Field] tag returns a string value. Notice that the value of a substitution tag is a string value
since it contains alphabetic characters:

[Field: 'Company_Name'] � LassoSoft

	 •	The following code sets a variable to a string value, then retrieves that value:

[Variable: 'String' = 'abcdef']
[Variable: 'String'] � abcdef

Bytes
Bytes are streams of binary data. This data type is used to represent incoming data from remote Web
application servers, files on the local hard disk, or BLOB fields in MySQL databases.

Integers
Integers are any series of numeric characters that represent a whole number. Integer literals are never
surrounded by quotes. The results of a substitution tag will be considered an integer if it contains only
numeric characters which represent a whole number. Please see the Math Operations chapter for more
information.

Some examples of integer values include:

	 •	123456 is an integer literal since it is not surrounded by quotes.

	 •	(-50) is an integer literal. The minus sign (hyphen) is used to define a negative integer literal. The
parentheses are required if the literal is to be used as the right-hand parameter of a symbol.

	 •	The following [Field] tag returns an integer value. The value is recognized as an integer since it contains only
numeric characters and represents a whole number:

7 2

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 5 – L a s s o 8 . 5 T a g L a n g u a g e

[Field: 'Employee_Age'] � 23

	 •	The following code sets a variable to an integer value, then retrieves that value:

[Variable: 'Integer' = 1000]
[Variable: 'Integer'] � 1000

Decimals
Decimals are any series of characters that represent a decimal number. Decimal literals are never surrounded
by quotes. Decimal values must include a decimal point and can be expressed in exponential notation. Please
see the Math Operations chapter for more information.

Some examples of decimal values include:

	 •	123.456 is a decimal literal since it contains a decimal point and is not surrounded by quotes.

	 •	 (-50.0) is a negative decimal literal. The parentheses are required if the literal is to be used as the right-hand
parameter of a symbol.

	 •	The following [Field] tag returns a decimal value. The value is recognized as a decimal since it contains
numeric characters and a decimal point:

[Field: 'Annual_Percentage_Rate'] � 0.12

	 •	The following code sets a variable to a decimal value, then retrieves that value:

[Variable: 'Decimal' = 137.48]
[Variable: 'Decimal'] � 137.48

Dates
Dates are a special data type that represent a date and/or time string. Dates in Lasso 8 can be manipulated in
a similar manner as integers, and calculations can be performed to determine date differences, durations, and
more. For Lasso to recognize a string as a date data type, the string must be explicitly cast as a date data type
using the [Date] tag. When casting as a date data type, the following date formats are automatically recognized
as valid date strings by Lasso:

1/1/2001
1/1/2001 12:34
1/1/2001 12:34:56
1/1/2001 12:34:56 GMT
2001-01-01
2001-01-01 12:34:56
2001-01-01 12:34:56 GMT

The “/”, “-”, and “:” characters are the only punctuation marks recognized in valid date strings by Lasso.
If using a date format not listed above, custom date formats can be defined as date data types using the
[Date] tag with the -Format parameter. See the Date and Time Operations chapter for more information.

Some examples of dates include:

	 •	[Date:'9/29/2002'] is a valid date data type recognized by Lasso.

	 •	[Date:'9.29.2002'] is not recognized by Lasso as a valid date data type due to its punctuation, but can be
converted to a date data type using the [Date] tag with the -Format parameter.

[Date:'9.29.2002', -Format='%m.%d.%Y']

	 •	Specific date and time information can be obtained from date data types using accessors.

[(Date:'9/29/2002')->DayofYear] � 272

	 •	Date data types can be manipulated using math symbols. Date and time durations can be specified using
the [Duration] tag.

[(Date:'9/29/2002') + (Duration: -Day=2)] � 10/01/2002

7 3

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 5 – L a s s o 8 . 5 T a g L a n g u a g e

	 •	A valid date data type can be displayed in an alternate format using the [Date_Format] tag.

[Date_Format:(Date:'9/29/2002'), -Format='%Y-%m-%d'] � 2002-09-29

Note: Lasso uses internal standardized date libraries to automatically adjust for leap years and day light
savings time when performing date calculations. The current time and time zone are based on that of the
Web server. For information on special cases with date calculations during day light saving time, see the
Date and Time Operations chapter.

Durations
Durations are a special data type that represent a length of time in hours, minutes, and seconds. Durations
are not 24-hour clock times, and can represent any length of time. Duration data types in Lasso 8 are related
to date data types, and can be manipulated in a similar manner. For Lasso to recognize a string as a duration
data type, the string must be explicitly cast as a duration data type using the [Duration] tag. Any numeric string
formatted as hours:minutes:seconds or just seconds may be cast as a duration data type.

168:00:00
60

Colon characters (:) are the only punctuation marks recognized in valid duration strings by Lasso. The
[Duration] tag always outputs values in hours:minutes:seconds format regardless of what the input format was. See
the Date and Time Operations chapter for more information.

Some examples of durations include:

	 •	[Duration:'169:00:00'] is a valid duration data type recognized by Lasso, and represents a duration of 169
hours. This duration will be output as 169:00:00.

	 •	[Duration:'300'] is a valid duration data type recognized by Lasso, and represents a duration of 300 seconds.
This duration will be output as 00:05:00 (five minutes).

Arrays
Arrays are a series of values which can be stored and retrieved by numeric index. Arrays can contain values of
any other data type, including other arrays. Only certain substitution tags return array values. Array values are
never returned from database fields. Please see the Arrays and Maps chapter for more information.

Some examples of how to work with arrays include:

	 •	Create an array using the [Array] tag. The following two examples create an array with the days of the week
in it, where each day of the week is a string literal. The second example shows abbreviated syntax where the
colon (:) character is used to specify the start of an array data type.

[Array: 'Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday', 'Saturday', 'Sunday']
[: 'Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday', 'Saturday', 'Sunday']

	 •	Store an array in a variable using the following code which stores the array created in the code above in a
variable named Week.

[Variable: 'Week' = (Array: 'Monday', 'Tuesday', 'Wednesday',
	 'Thursday', 'Friday', 'Saturday', 'Sunday')]

	 •	Fetch a specific item from the array using the [Array->Get] member tag. This code fetches the name of the
third day of the week.

[(Variable: 'Week')->(Get:3)] � Wednesday

	 •	Set a specific item from the array using the [Array->Get] member tag. The following code sets the name of the
third day of the week to its Spanish equivalent Miercoles.

[(Variable: 'Week')->(Get:3) = 'Miercoles']

The new value of the third entry in the array can now be fetched.

[(Variable: 'Week')->(Get:3)] � Miercoles

7 4

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 5 – L a s s o 8 . 5 T a g L a n g u a g e

Maps
Maps are a series of values which can be stored and retrieved by name. Maps can contain values of any other
data type, including arrays or other maps. Only certain substitution tags return map values. Map values are
never returned from database fields. Please see the Arrays and Maps chapter for more information.

Some examples of how to work with maps include:

	 •	Create a map using the [Map] tag. The following creates a map with some user information in it. The name
of each item is a string literal, the values are either string literals or integer literals:

[Map:
	 'First Name'='John',
	 'Last Name'='Doe',
	 'Age'=25]

	 •	Store a map in a variable using the following code which stores the map created in the code above in a
variable named Visitor:

[Variable: 'Visitor' = (Map:
	 'First Name'='John',
	 'Last Name'='Doe',
	 'Age'=25)]

	 •	Fetch a specific item from the map using the [Map->Get] member tag. This code fetches the visitor’s first
name:

[(Variable: 'Visitor')->(Get:'First Name')] � John

	 •	Set a specific item from the map using the [Map->Get] member tag. This code sets the age of the visitor to 29.
Notice that the expression returns no value since the member tag is being used in the fashion of a process
tag to set a value.

[(Variable: 'Visitor')->(Get:'Age') = 29]

The new value of the age entry in the map can now be fetched:

[(Variable: 'Visitor')->(Get:'Age')] � 29

Other Types
Lasso includes numerous other data types including null, booleans, sets, lists, queues, stacks, priority queues,
tree maps, pairs, XML, XMLStream, POP, SMTP, thread tools, and more. See the Data Types section for
complete documentation of the many data types that Lasso offers.

Expressions and Symbols
Virtually all of the values shown in this chapter so far have been simple string, integer or decimal literals. Any
tag in Lasso which accepts a value as a parameter can accept an expression in place of that value. This allows
nested operations to be performed within the parameters of Lasso tags.

This section discusses each of the different types of expressions that can be used as values within Lasso. It
starts with simple expressions and then moves on to more complex expressions.

7 5

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 5 – L a s s o 8 . 5 T a g L a n g u a g e

Table 8: Types of Lasso 8 Expressions

Expression	 Example	

Literal	 'String Literal', 100, 150.34

Sub-Tag	 (Variable: 'Variable_Name')

Member tag	 (Array: 1, 2, 3, 4)->(Get: 4)

Retarget	 $String->Uppercase & Get(4)

String Expression	 'String One' + 'String Two'

Math Expression	 100 / 4 + 25 - (-20)

Complex Expression	 '' + 100 / 4 + ''

Conditional Expression	 'azure' == 'blue'

Logical Expression	 ('blue' != 'orange') || ('red' != 'green')

If Else Expression	 ($conditional ? 'True Result' | 'False Result')

Tag Reference	 \Tag_Name
		

This section also describes each of the different symbols that can be used to modify expressions specific to
each type of expression.

Literals
Any string literal, integer literal, or decimal literal can be used as a value in Lasso. These are the most basic
types of values and the simplest examples of expressions. These literals are defined in the previous section on
Data Types. Some examples of outputting literal values include:

['String Literal']		 [123]
[100.14]					 [(-123)]

Sub-Tags
Substitution tags are Lasso tags that return a value and any substitution tag can be used as a simple
expression in Lasso. The syntax of the sub-tag is the same as that for the substitution tag except that the tag
is enclosed in parentheses rather than square brackets. The value of the expression is simply the value of the
substitution tag. For example, the following expressions output the value of the specified sub-tag.

[(Field: 'Field_Name')]		 [(Date)]
[(Loop_Count)]

Note: Substitution tags have a default encoding keyword of -EncodeHTML applied when they are the outermost
tag. However, when substitution tags are used as sub-tags or in square brackets without an [Encode_HTML] tag, no
encoding is applied by default. See the Encoding chapter for more information.

Member Tags
Member tags that return values can be used as simple expressions in Lasso. An appropriate member tag for
any given data type can be attached to a value of that data type using the member symbol ->. For example, the
following member tag returns a character from the specified string literal:

[Encode_HTML: 'String'->(Get: 3)]

The value on the left side of the member symbol can be any expression which is valid in Lasso. It can be a
string literal, integer literal, decimal literal, sub-tag, or any of the expressions which are defined below. For
example, the following member tag would return the third character of the name which is returned from the
database:

[Encode_HTML: (Field: 'First Name')->(Get: 3)]

Note: The [Encode_HTML] tag is not technically required in member tag expressions. ['String'->(Get: 3)] will evaluate
to the character r. However, for ubiquitous HTML encoding, the use of the [Encode_HTML] tag is recommended.

7 6

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 5 – L a s s o 8 . 5 T a g L a n g u a g e

Table 9: Member Tag Symbol

Symbol	 Name	 Example	

->	 Member	 ['abcdef'->(Get: 3)] � c
		

Retarget
Many member tags modify the target of the tag but do not return any result. The retarget symbol & can be
used to modify these tags so they modify the target and return the target as a result.

Table 10: Retarget Symbol

Symbol	 Name	 Example	

&	 Retarget	 [$String->Uppercase & Get(3)] � C
		

For example, adding the redirection symbol & to the example above results in the value of $Text being
modified and returned.

<?LassoScript
	 Var:'Text'='The String';
	 $Text->Append(' is longer.') &;
?>

�	 The String is longer.

The retarget symbol allows multiple member tags to be strung together to perform a series of operations on
the target. For example, this code sorts an array and then gets one elements within it. Without first sorting the
array the result would be 4.

[(Array: 2, 4, 3, 5, 1)->Sort & (Get: 2)]

�	 2

String Expressions
String expressions are the combination of string values with one or more string symbols. A string expression
defines a series of operations that should be performed on the string values. The string values which are to be
operated upon can be either string literals or any expressions which return a string value.

Symbols should always be separated from their parameters by spaces and string literals should always be
surrounded by single quotes. Otherwise, Lasso may have a difficult time distinguishing literals and Lasso tags.

The most common string symbol is + for concatenation. This symbol can be used to combine multiple string
values into a single string value. For example, to add bold tags to the output of a [Field] tag we could use the
following string expression:

['' + (Field: 'CompanyName') + '']

�	 LassoSoft

String symbols can also be used to compare strings. String symbols can check if two strings are equal using
the equality == symbol or can check whether strings come before or after each other in alphabetical order
using the greater than > or less than < symbols. For example, the following code reports the proper order for
two strings:

[If: 'abc' == 'def']
	 abc equals def
[Else: 'abc' < 'def']
	 abc comes before def
[Else: 'abc' > 'def']
	 abc comes after def
[/If]

7 7

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 5 – L a s s o 8 . 5 T a g L a n g u a g e

�	 abc comes before def

Note: Always place spaces between a symbol and its parameters. The - symbol can be mistaken for the start of a
negative number, command tag, keyword, or keyword/value parameter if it is placed adjacent to the parameter
that follows.

Table 11: String Expression Symbols

Symbol	 Name	 Example	

+	 Concatenation	 ['abc' + 'def'] � abcdef

*	 Repetition	 ['abc' * 2] � abcabc

-	 Deletion	 ['abcdef' - 'cde'] � abf

>>	 Contains	 ['abcdef' >> 'bcd'] � True

!>>	 Not Contains	 ['abcdef' !>> 'bcd'] � False

==	 Equality (Value Only)	 ['abc' == 'def'] � False

===	 Equality (Value & Type)	 ['123' == 123] � False

!=	 Inequality (Value Only)	 ['abc' != 'def'] � True

!==	 Inequality (Value & Type)	 ['123' != 123] � True

<	 Less Than	 ['abc' < 'def'] � True

>	 Greater Than	 ['abc' > 'def'] � False
		

Please see the String Operations chapter for more information.

Math Expressions
Math expressions are the combination of decimal or integer values with one or more math symbols. A math
expression defines a series of operations that should be performed on the decimal or integer values. The
numeric values which are to be operated upon can be either decimal or integer literals or any expressions
which return a numeric value.

Symbols should always be separated from their parameters by spaces. This ensures that the + and - symbols
are not mistaken for the sign of one of the parameters.

Simple math operations can be performed directly within an expression. For example, the following
expressions return the value of the specified simple math calculations.

[10 + 5] � 15			 [10 - 5] � 5
[10 * 5] � 50			 [10 / 5] � 2

If the second parameter of the expression is negative it should be surrounded by parentheses.

[10 + (-5)] � 5		 [10 * (-5)] � -50

Math expressions can be used on either decimal or integer values. If both parameters of a math symbol are
integer values then an integer result will be returned. However, if either parameter of a math symbol is a
decimal value then a decimal value will be returned. Decimal return values always have at least six significant
digits.

Note: Always place spaces between a symbol and its parameters. The - symbol can be mistaken for the start of a
negative number, command tag, keyword, or keyword/value parameter if it is placed adjacent to the parameter
that follows.

Table 12: Math Expression Symbols

Symbol	 Name	 Example	

+	 Addition	 [100 + 25] � 125

-	 Subtraction	 [100 - 25] � 75

*	 Multiplication	 [100 * 25] � 2500

/	 Division	 [100 / 25] � 4

7 8

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 5 – L a s s o 8 . 5 T a g L a n g u a g e

%	 Modulo	 [100 % 25] � 0

==	 Equality (Value Only)	 [100 == 25] � False

===	 Equality (Value & Type)	 [100 === 100.0] � False

!=	 Inequality (Value Only)	 [100 != 25] � True

!==	 Inequality (Value & Type)	 [100 !== 100.0] � True

>	 Greater Than	 [100 > 25] � True

>=	 Greater Than or Equal	 [100 >= 25] � True

<	 Less Than	 [100 < 25] � False

<=	 Less Than or Equal	 [100 <= 25] � False
		

Please see the Math Operations chapter for more information.

Complex Expressions
Complex expressions can be created by combining sub-expressions together using one or more string or
math symbols. The results of the sub-expressions are used as the parameters of the enclosing parameters.
Expressions can be enclosed in parentheses so that the order of operation is clear.

For example, the following complex math expression contains many nested math expressions. The
expressions in the innermost parentheses are processed first and the result is used as a parameter for the
enclosing expression. Notice that spaces are used on either side of each of the mathematical symbols.

[(1 + (2 * 3) + (4.0 / 5) + (-6))] � 1.8

The following complex string expressions contains many nested string expressions. The expressions in the
innermost parentheses are processed first and the result is used as a parameter for the enclosing expression:

[('abc' + ('def' * 2) + ('abcdef' - 'def') + 'def')] � abcdefdefabcdef

String and math expressions can be combined. The behavior of the symbols in the expression is determined
by the parameters of the symbol. If either parameter is a string value then the symbol is treated as a string
symbol. Only if both parameters are decimal or integer values will the symbol be treated as a math symbol.
For example, the following code adds two numbers together using the math addition + symbol and then
appends bold tags to the start and end of that value using the string concatenation + symbol:

['' + (100 + (-35)) + '', -EncodeNone] � 65

Conditional Expressions
Conditional expressions are the combination of values of any data type with one or more conditional
symbols. A conditional expression defines a series of comparisons that should be performed on the
parameter values. The values which are to be operated upon can be valid values or expressions.

Conditional symbols were introduced in the String Expressions and Math Expressions sections above in the
context of comparing string or math values. They can actually be used on values of any data type including
arrays, maps, and custom types defined by third parties.

Values are automatically converted to an appropriate data type for a comparison. For example, the following
comparison returns True even though the first parameter is a number and the second parameter is a string.
The second parameter is converted to the same type as the first parameter, then the values are compared:

[123 == '123'] � True

Conditional expressions are used in the [If] … [/If] and [While] … [/While] container tags to specify the condition
under which the contents of the tag will be output. For example, the following [If] tag contains a conditional
expression that will evaluate to True only if the company name is LassoSoft:

[If: (Field: 'Company_Name') == 'LassoSoft']
	 The company name is LassoSoft
[/If]

7 9

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 5 – L a s s o 8 . 5 T a g L a n g u a g e

Table 13: Conditional Expression Symbols

Symbol	 Name	 Example	

>>	 Contains	 ['abcdef' >> 'bcd'] � True

!>>	 Not Contains	 ['abcdef' !>> 'bcd'] � False

==	 Equality (Value Only)	 [100 == 25] � False

=== 	 Equality (Value & Type)	 [100 == '100'] � False

!=	 Inequality (Value Only)	 [100 != 25] � True

!== 	 Inequality (Value & Type)	 [100 !== '100'] � True

>	 Greater Than	 [100 > 25] � True

>=	 Greater Than or Equal	 [100 >= 25] � True

<	 Less Than	 [100 < 25] � False

<=	 Less Than or Equal	 [100 <= 25] � False
		

Please see the Conditional Logic chapter for more information.

Logical Expressions
Logical expressions are made up of multiple conditional sub-expressions combined with one or more logical
symbols. The values of the conditional sub-expressions are combined according to the operation defined by
the logical symbol.

Logical expressions are most commonly used in the [If] … [/If] container tag to specify the condition under
which the contents of the tag will be output. A single [If] tag can check multiple conditional expressions if
they are combined into a single logical expressions.

For example, the following [If] tag contains a logical expression that will evaluate to True if one or the other of
the sub-expressions is True. The [If] … [/If] container tag will display its contents only if the company name is
LassoSoft or the product name is Lasso Professional:

[If: ((Field: 'Company_Name') == 'LassoSoft') ||
		 ((Field: 'Product_Name') == 'Lasso Professional')]
	 The company name is LassoSoft
[/If]

Table 14: Logical Expression Symbols

Symbol	 Name	 Example	

&&	 And	 [True && False] � False

||	 Or	 [True || False] � True

!	 Not	 [! True] � False
		

Please see the Conditional Logic chapter for more information.

Note: These logical symbols should not be confused with the logical search operators which can be used to
assemble complex search criteria. See the Database Interaction Fundamentals chapter for more information
about logical search operators.

If Else Expressions
The if else symbol ? | allows a conditional expression to be specified inline. The symbol is a good alternative
to using [If] … [/If] tags for simple conditional expressions.

Table 15: Logical Expression Symbols

Symbol	 Name	 Example	

? |	 If Else	 [True ? 'TrueResult' | 'FalseResult'] � TrueResult

		 [False ? 'TrueResult' | 'FalseResult'] � FalseResult
		

8 0

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 5 – L a s s o 8 . 5 T a g L a n g u a g e

Please see the Conditional Logic chapter for more information.

In the following example the field First_Name is checked to see if it is empty. If it is then N/A is returned.
Otherwise, the field value is returned.

[Encode_HTML: (Field: 'First_Name') == '' ? 'N/A' | (Field: 'First_Name')]

Tag References
The back slash \ can be used to reference tags by name. This allows the member tags of the tag data type to be
used on both built-in and custom tags. For more information about the tag data type consult the Extending
Lasso Guide.

For example, \Field returns a reference to the built-in [Field] tag. Each of the following code samples is an
equivalent way of calling the [Field] tag.

<?LassoScript

	 Field: 'First_Name';

	 \Field->(Run: -Params=(Array: 'First_Name'));

	 \Field->(Invoke: 'First_Name');

?>

Similarly, the member tags of a data type can be referenced using the -> symbol and the back slash \ symbol
together. For example, Array->\Join would return a reference the [Array->Join] tag. Each of the following code
samples is an equivalent way of calling the [Array->Join] tag.

<?LassoScript

	 (Array: 'One', 'Two')->(Join: ' - ');

	 (Array: 'One', 'Two')->\Join->(Run: -Params=(Array: ' - '));

	 (Array: 'One', 'Two')->\Join->(Invoke: ' - ');

?>

Delimiters
This section describes the delimiters which are used to define LassoScript and HTML. It is important to
understand how delimiters are used so that tags can be constructed with the proper syntax.

Table 16: Lasso 8 Delimiters

Symbol	 Name	 Function	

[Square Bracket	 Start of tag square bracket syntax.

]	 Square Bracket	 End of tag in square bracket syntax.

/	 Forward Slash	 Closing container tag name.

\	 Back Slash	 Escapes special characters in strings or returns a reference to a tag or member
tag.

:	 Colon	 Separates tag name from tag parameters in colon syntax

()	 Parentheses	 Surround tag parameters in parentheses syntax. Also used to surround sub-tags
or expressions.

,	 Comma	 Separates tag parameters.

=	 Equal Sign	 Separates name/value parameter.

- 	 Hyphen	 Starts command tag name and keyword names.

'	 Single Quote	 Start and end of a string literal.

8 1

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 5 – L a s s o 8 . 5 T a g L a n g u a g e

<?LassoScript	 LassoScript	 Start of LassoScript.

?>	 LassoScript	 End of LassoScript.

{	 Curly Brace	 Start of compound expression syntax (LassoScript contained within square
bracket syntax).

}	 Curly Brace	 End of compound expression syntax.

;	 Semi-Colon	 Separates tags within LassoScript.

//	 Double Slash	 Start of line comment in LassoScript.

/*	 Asterisk Slash	 Start of extended comment in LassoScript.

*/	 Asterisk Slash	 End of extended comment in LassoScript.

->	 Member Symbol	 Separates data value from member tag.

&	 Retarget Symbol	 Separates multiple member tags in expression.

? |	 If Else Symbol	 Specifies an inline conditional expression.

	 Space	 Specified between symbols and their parameters.
		

When possible, parentheses should be used around all expressions, sub-tag calls, and negative literals. The
parentheses will ensure that Lasso accurately parses each expression. If an expression does not seem to be
working correctly, try adding parentheses to make the order of operation explicit.

Unlike symbols, white space is generally not required around delimiters. White space may be used to format
code in order to make it more readable.

Note: The double quote " was a valid Lasso separator in earlier versions of Lasso but has been deprecated in
Lasso Professional 8. It is not guaranteed to work in future versions of Lasso.

The following table shows the delimiters which are used in HTML pages and HTTP URLs.

Table 17: HTML/HTTP Delimiters

Symbol	 Name	 Function	

<	 Angle Bracket	 Start of an HTML or XML tag.

>	 Angle Bracket	 End of an HTML or XML tag.

=	 Equal Sign	 Separates name/value parameter or attribute.

" 	 Double Quote	 Start and end of HTML string value.

?	 Question Mark	 Separates path from parameters in URL.

#	 Hash Mark	 Separates path from target in URL.

&	 Ampersand	 Separates URL parameters.

/	 Forward Slash	 Folder delimiter in URL paths or designation of Web server root if used at the
start of a URL path.

../	 Dot Dot Slash	 Up one folder level in URL paths.

	 Space	 Separates tag attributes.
		

8 2

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 5 – L a s s o 8 . 5 T a g L a n g u a g e

Illegal Characters
The following chart details characters which can cause Lasso problems if they appear in a Lasso page or
within Lasso code outside of a string literal. These characters are not valid in tag names, keyword names, or
parameter names.

For best results use a dedicated HTML editor such as Macromedia Dreamweaver or Adobe GoLive or a text
editor to create Lasso pages.

Table 18: Illegal Characters

Symbol	 Name	 Function	

\0	 Null Character	 The null-character is often used as and end-of-file marker. Lasso may abort
processing if it reads a null character within a Lasso page.

		

Note: The non-breaking space is now recognized as white space by Lasso when it is encountered within Lasso
statements.

8 3

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 5 – L a s s o 8 . 5 T a g L a n g u a g e

6
Chapter 6

Lasso 8.5 Reference

This chapter documents how to use the Lasso 8.5 Reference.

	 •	Overview provides an overview of the Lasso 8.5 Reference and how to access it.

	 •	LassoScript discusses browsing the Lasso 8.5 Reference by tag type or category.

	 •	Utility discusses how all available tags can be listed.

Overview
The Lasso 8.5 Reference is a resource provided by LassoSoft for finding descriptions, usage guidelines, and
detailed examples of Lasso tags. It is the official reference for all tags in Lasso 8. The reference is hosted by
LassoSoft software on their Web site and is also available as a local LassoApp and database included with
each installation of Lasso.

To access the Lasso 8.5 Reference:

	 •	The Lasso 8.5 Reference can be accessed at LassoSoft at the following URL. This reference is the most up-
to-date version of the reference since updates to the database can be made between incremental updates of
Lasso.

http://reference.lassosoft.com/

	 •	The Lasso 8.5 Reference can be accessed through the Setup > Site > Summary section in Lasso
Administration. Alternately, the following URL will bring up the reference on the local machine. The host
name can be changed from localhost to the actual domain name of the Lasso server in order to access the
reference on another server. Logging in to the Lasso Reference requires a local username and password.

http://localhost/Reference.LassoApp

Note: The name and URL of the Lasso Reference has changed for Lasso 8.5. This change reflects the evolution of
the reference to include documentation of every aspect of Lasso rather than simply descriptions about the tags in
Lasso.

Components
The local version of the Lasso 8.5 Reference consists of two components. The interface is provided by the
Reference.LassoApp file located in the LassoApps directory of the Lasso application folder. The data for the
reference is stored within the internal datta source in a database named LDML8_Reference. Both components
are installed as part of the standard Lasso installation.

8 4

L a s s o 8 . 5 L a n g u a g e G u i d e

Figure 1: Lasso 8.5 Reference

Sections of the Interface
The interface is divided into four sections, navigable via tabs at the top of the screen. These sections are:

	 •	LassoScript – Provdes information about all of the tags in Lasso and an overview of LassoScript.

	 •	Utility – Provides a collection of utilities for Lasso including regular expressions, XPath, and Unicode.

Navigation
Navigation occurs by selecting the tab for the desired section at the top of the interface. Doing so will display
the default screen for that tab and additional tabs for any subsections. Many screens have a blue sidebar
on the left. The sidebar generally provides a search interface, navigation summary and controls, and other
options.

LassoScript
The LassoScript section of the reference provides detailed documentation of more than one thousand tags
which are provided by Lasso. The tags can be browsed by category, type, Lasso version, or change. Or, the
reference can be searched for specific tags or for tags which contains keywords in their description. The detail
for each tag provides a summary of the tag, a description, sample syntax, parameter details, change notes, and
examples.

Overview
The LassoScript > Overview section of the reference provides a summary of the language. This overview
should be read by new users who want to become familiar with the language or by anyone who wants a
refresher on the basics of the language.

8 5

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 6 — L a s s o 8 . 5 R e f e r e n c e

Browsing
The LassoScript > Browse section of the reference allows for browsing the tags in Lasso by category,
type, version, and more. This section also allows tags to be searched by tag name or keywords in the tag
description. All of the browse, search, and navigation controls are included in the blue sidebar to the left.

Tags can be searched by entering or selecting values from the following fields, and then selecting
the Search button. The Find All button will restore the default values for all search parameters. The red x next
to each search parameter can also be used to restore only that parameter to its default.

	 •	Tag – Searches for tags by name.

	 •	Category – Pull-down menu listing all Lasso tag categories (e.g. Database, Array, XML, PDF, etc.).

	 •	Type – Pull-down menu listing all possible tag types (e.g. Substitution, Member, Symbol, etc.).

	 •	Set – Pull-down menu listing all available tag sets. All preferred Lasso tags belong to the Lasso 8.5 set.

	 •	Support – Pull-down menu listing the types of tag support in Lasso Professional 8. A Preferred tag is part of
the core syntax for Lasso 8.5. An Abbreviation is an abbreviation of a preferred tag. A Synonym is a synonym of
a preferred tag. A Deprecated tag is supported in Lasso 8.5, but may not be supported in a future version.

	 •	Changes – Allows tags to be searched depending on whether they are new or have modified functionality
in Lasso 8.5. Options include New, Updated, or Unchanged.

	 •	Description – Searches for a keyword within the descriptions of the tags.

The summary reports how many tags have been found. The navigation controls page through the found tags
displaying one hundred tags at a time. The options allow the tag listing to be re-sorted by tag name, type, set,
or support.

Search results are displayed in the right hand side of the window. Each tag includes its tag name, type,
category, support, what version it was introduced, and what Lasso sets it belongs to. Selecting a tag name
shows the detail page for the tag.

Figure 2: Tag Detail Page

8 6

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 6 — L a s s o 8 . 5 R e f e r e n c e

Detail
The LassoScript > Detail section of the reference provides information about a single Lasso tag. The search
and navigation controls are still available in the blue sidebar to the left. The found set for the browse and
detail sections is identical.

The detail for each section includes the following sections. Each section can be collapsed and, after navigating
to another tag, the reference will remember the state of each section.

	 •	Overview – Lists information about the tag. See below for details.

	 •	Description – Defines what a tag does, and how and where it is used.

	 •	Syntax – Shows a syntax example for the tag.

	 •	Parameters – Lists all parameters or modifiers that can be used with the tag. Required Parameters must be
present in the tag syntax for the tag to work properly, while Optional Parameters do not.

	 •	Change Notes – Provides information about how a tag has changed from different versions of Lasso, and
if applicable, what tag it replaces.

	 •	Examples – Provides examples of how the tag can be used to perform a specific function within a Lasso
solution.

	 •	Related Tags – A list of tags which are related to the current tag.

	 •	Category Tags – A list of additional tags which are in the same category as the current tag.

The overview lists the following tag information:

	 •	Category – Specifies the tag category (e.g. Array, Encoding, etc.). Selecting the tag category displays the
Browse > Category page.

	 •	Type – Specifies the tag type (e.g. Command, Container, etc.).

	 •	Set – Specifies the versions of Lasso in which the tag is supported. All native Lasso Professional 8.5 tags
belong to the Lasso 8.5 set.

	 •	Support – Specifies the tag support in Lasso Professional 8. A Preferred tag is part of the core syntax for
Lasso 8. An Abbreviation is an abbreviation of a preferred tag. A Synonym is a synonym of a preferred tag. A
Deprecated tag is supported in Lasso 8, but support may be dropped in a future version of Lasso. Deprecated
tags are not recommended for use in new projects. Any returns all support types.

	 •	Version – Specifies the version of Lasso from which the tag originated (e.g. 7.0, 6.0, 5.0, 3.6.6.2, etc.).

	 •	Change – Specifies whether a tag is new, updated, or unchanged between the last major release and the
current release.

	 •	Data Source – Specifies the data source with which the tag can be used.

	 •	Output Type – Specifies what data type the tag will output. Many tags output multiple data types in which
case each data type or Any is shown.

	 •	Security – Specifies whether access to the tag can be controlled through Lasso Administration. Options
include Classic for tags that are disabled with Classic Lasso, Tag for tags that are controlled by tag
permissions, File for tags that are controlled by file permissions, Database for tags that are controlled by
database permissions, and LJAPI for tags that are disabled if LJAPI support is disabled.

	 •	Lasso 3 Equivalent – For tags which have been updated since Lasso 3.x, a Lasso 3.x tag is listed that
provides similar functionality to the current tag.

	 •	Lasso 8.5 Equivalent – For tags which are not preferred Lasso 8.5 syntax, an equivalent Lasso 8.5 tag is
listed that provides similar functionality to the current tag.

8 7

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 6 — L a s s o 8 . 5 R e f e r e n c e

Utility
The Utility section of the reference provides several useful tools including the following.

	 •	Regular Expressions – Provides a quick reference to the symbols which can be used to specify regular
expressions in Lasso. Also allows regular expressions to be performed on live data and shows the Lasso
syntax which corresponds to each expression.

	 •	XML XPaths – Provides a quick reference to the symbols which can be used to specify XPath expressions
in Lasso. Also allows XPaths to be applied on XML data and shows the Lasso syntax which corresponds to
each expression.

	 •	Unicode Code Tables – Provides a quick reference to all of the Unicode Code Tables. The detail for each
characters shows the Lasso, HTML, and Unicode entities for the character, Unicode characteristics for the
character, and more.

8 8

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 6 — L a s s o 8 . 5 R e f e r e n c e

II
Section II

Database Interaction

This section includes an introduction to interacting with databases in Lasso Professional 8 and more specific
discussions of particular database actions and tags and techniques particular to MySQL and FileMaker Pro
databases.

	 •	Chapter 7: Database Interaction Fundamentals introduces the concepts required to work with databases
in Lasso Professional 8.

	 •	Chapter 8: Searching and Displaying Data discusses how to create search queries and display the results
of those queries.

	 •	Chapter 9: Adding and Updating Records discusses how to create queries to add, update, and delete data-
base records.

	 •	Chapter 10: SQL Data Sources documents tags for all data sources which support SQL including MySQL,
SQLite, PostgreSQL, Oracle, OpenBase, Microsoft SQL Server, and others.

	 •	Chapter 11: FileMaker Data Sources documents tags specific to the FileMaker Pro, FileMaker Server
Advanced 7 or higher, and FileMaker Server 9 or 10 data source connectors including tags to execute
FileMaker scripts, return images from a FileMaker container field, and display information in repeating
fields and portals.

	 •	Chapter 12: JDBC and ODBC Data Sources documents tags specific to the JDBC and ODBC data source
connector.s

	 •	Chapter 13: Other Data Sources documents tags specific to the Spotlight data source and some custom
and third-party connectors.

8 9

L a s s o 8 . 5 L a n g u a g e G u i d e

7
Chapter 7

Database Interaction Fundamentals

One of the primary purposes of Lasso is to perform database actions which are a combination of pre-
defined and visitor-defined parameters and to format the results of those actions. This chapter introduces the
fundamentals of specifying database actions in Lasso.

	 •	Inline Database Actions includes full details for how to use the [Inline] tag to specify database actions.

	 •	Action Parameters describes how to get information about an action.

	 •	Results includes information about how to return details of a Lasso database action.

	 •	Showing Database Schema describes the tags that can be used to examine the schema of a database.

	 •	SQL Statements describes the -SQL command tag and how to issue raw SQL statements to SQL-compliant
data sources.

	 •	SQL Transactions describes how to perform reversible SQL transactions using Lasso.

Inlines
The [Inline] … [/Inline] container tags are used to specify a database action and to present the results of that
action within a Lasso page. The database action is specified using parameters as keyword/value parameters
within the opening [Inline] tag. Additional name/value parameters specify the user-defined parameters of the
database action. Each [Inline] normally represents a single database action, but when using SQL statements
a single inline can be use to perform batch operations as well. Additional actions can be performed in
subsequent or nested [Inline] … [/Inline] tags.

Table 1: Inline Tag

Tag/Parameter	 Description	

[Inline] … [/Inline]	 Performs the database action specified in the opening tag. The results of the
database action are available inside the container tag or later on the page within
[ResultSet] … [/ResultSet] tags.

-Database	 Specifies the name of the database which will be used to perform the database
action. If no -Host is specified then the database is used to determine what data
source should process the inline action. (Optional)

-Host	 Specifies the connection parameters for a host within the inline. This provides
an alternative to setting up data source hosts within Lasso Site Administration.
(Optional)

-InlineName	 Specifies a name for the inline. The same name can be used with the [ResultSet]
… [/ResultSet] tags to return the records from the inline later on the page.
(Optional)

-Log	 Specifies at what log level the statement from the inline should be logged. Values
include None, Detail, Warning, and Critical. If not specified then the default log
level for action statements will be used. (Optional)

9 0

L a s s o 8 . 5 L a n g u a g e G u i d e

-StatementOnly	 Specifies that the inline should generate the internal statement required to
perform the action, but not actually perform the action. The statement can be
fetched with [Action_Statement]. (Optional)

-Table	 Specifies the table that should be used to perform the database action. Most
database actions require that a table be specified. The -Table is used to
determine what encoding will be used when interpreting database results so a
-Table may be necessary even for an inline with a -SQL action. (Optional)

-Username	 Specifies the name of the user whose permissions should be used to perform
the database action. If no -Username is specified then the permissions of the
surrounding inline will be used or the permissions of the calling Lasso page
itself. An inline with just a -Username and -Password, but no database action
can be used to run the contained portion of the page with the permissions of the
specified user. (Optional)

-Password	 Specifies the password for the user. (Required if -Username is specified.)
		

The results of the database action can be displayed within the contents of the [Inline] … [/Inline] container tags
using the [Records] … [/Records] container tags and the [Field] substitution tag. Alternately, the [Inline] can be
named using -InlineName and the results can be displayed later using [ResultSet] … [/ResultSet] tags.

The entire database action can be specified directly in the opening [Inline] tag or visitor-defined aspects of
the action can be retrieved from an HTML form submission. [Link_…] tags can be used to navigate a found
set in concert with the use of [Inline] … [/Inline] tags. Nested [Inline] … [/Inline] tags can be used to create complex
database actions.

Inlines can log the statement (SQL or otherwise) that they generate. The optional -Log parameter controls
at what level the statement is logged. Setting -Log to None will suppress logging from the inline. If no -Log is
specified then the default log-level set for the data source in Site Administration will be used.

The -StatementOnly option instructs the data source to generate the implementation-specific statement required
to perform the desired database action, but not to actually perform it. The generated statement can be
returned with [Action_Statement]. This is useful in order to see the statement Lasso will generate for an action,
perform some modifications to that statement, then re-issue the statement using -SQL in another inline.

To change the log level for an inline database action:

Use the -Log parameter within the opening [Inline] tag.

	 •	Suppress the action statement from being logged by setting -Log='None'. The action statement will not be
logged no matter how the various log levels are routed.

[Inline: -Search, -Database='Example', -Table='Example', -Log='None', …]
	 …
[/Inline]

	 •	Log the action statement at the critical log level by setting -Log='Critical'. This can be useful when debugging
a Web site since the action statement generated by this inline can be seen even if action statements are
generally being suppressed by the log routing preferences.

[Inline: -Search, -Database='Example', -Table='Example', -Log='Critical', …]
	 …
[/Inline]

To see the action statement generated by an inline database action:

Use the [Action_Statement] tag within the [Inline] … [/Inline] tags. The tag will return the action statement that
was generated by the data source connector to fulfill the specified database action. For SQL data sources like
MySQL and SQLite a SQL statement will be returned. Other data sources may return a different style of action
statement.

[Inline: -Search, -Database='Example', -Table='Example', …]
	 [Action_Statement]
	 …
[/Inline]

9 1

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 7 – D a t a b a s e I n t e r a c t i o n F u n d a m e n t a l s

To see the action statement that would be generated by the data source without actually performing the
database action the -StatementOnly parameter can be specified in the opening [Inline] tag. The [Action_Statement]
tag will return the same value is would for a normal inline database action, but the database action will not
actually be performed.

[Inline: -Search, -Database='Example', -Table='Example', -StatementOnly, …]
	 [Action_Statement]
	 …
[/Inline]

Database Actions
A database action is performed to retrieve data from a database or to manipulate data which is stored in a
database. Database actions can be used in Lasso to query records in a database that match specific criteria, to
return a particular record from a database, to add a record to a database, to delete a record from a database,
to fetch information about a database, or to navigate through the found set from a database search. In
addition, database actions can be used to execute SQL statements in compliant databases.

The database actions in Lasso are defined according to what action parameter is used to trigger the action.
The following table lists the parameters which perform database actions that are available in Lasso.

Table 2: Inline Database Action Parameters

Tag	 Description	

-Search	 Finds records in a database that match specific criteria, returns detail for a
particular record in a database, or navigates through a found set of records.

-FindAll	 Returns all records in a specific database table.

-Random	 Returns a single, random record from a database table.

-Add	 Adds a record to a database table.

-Update	 Updates a specific record from a database table.

-Duplicate	 Duplicates a specific record in a database table. Only works with FileMaker Pro
databases.

-Delete	 Removes a specified record from a database table.

-Show	 Returns information about the tables and fields within a database.

-SQL	 Executes a SQL statement in a compatible data source. Only works with SQLite,
MySQL, and other SQL databases.

-Prepare	 Creates a prepared SQL statement in a compatible data source. Nested inlines
with an -Exec action will execute the prepared statement with different values.

-Exec	 Executes a prepared statement. Must be called from an inline nested within an
inline with a -Prepare action.

-Nothing	 The default action which performs no database interaction, but simply passes the
parameters of the action.

		

Note: Table 2: Database Action Parameters lists all of the database actions that Lasso supports. Individual data
source connectors may only support a subset of these parameters. The Lasso Connector for MySQL and the
Lasso Connector for SQLite do not support the -Duplicate action. The Lasso Connector for FileMaker Pro does
not support the -SQL action. See the documentation for third party data source connectors for information about
what parameters they support.

Each database action parameter requires additional parameters in order to execute the proper database action.
These parameters are specified using additional parameters and name/value pairs. For example, a -Database
parameter specifies the database in which the action should take place and a -Table parameter specifies the
specific table from that database in which the action should take place. Name/value pairs specify the query
for a -Search action, the initial values for the new record created by an -Add action, or the updated values for
an -Update action.

9 2

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 7 – D a t a b a s e I n t e r a c t i o n F u n d a m e n t a l s

Full documentation of which [Inline] parameters are required for each action are detailed in the section specific
to that action in this chapter, the Searching and Displaying Data chapter, or the Adding and Updating
Records chapter.

Example of specifying a -FindAll action within an [Inline]:

The following example shows an [Inline] … [/Inline] tag that has a -FindAll database action specified in the opening
tag. The [Inline] tag includes a -FindAll parameter to specify the action, -Database and -Table parameters to specify
the database and table from which records should be returned, and a -KeyField parameter which specifies the
key field for the table. The entire database action is hard-coded within the [Inline] tag.

The tag [Found_Count] returns how many records are in the database. The [Records] … [/Records] container tags
repeat their contents for each record in the found set. The [Field] tags are repeated for each found record
creating a listing of the names of all the people stored in the Contacts database.

[Inline: -FindAll,
	 -Database='Contacts',
	 -Table='People',
	 -KeyField='ID']
	 There are [Found_Count] record(s) in the People table.
	 [Records]
		
[Field: 'First_Name'] [Field: 'Last_Name']
	 [/Records]
[/Inline]

�	 There are 2 record(s) in the People table.
John Doe
Jane Doe

Example of specifying a -Search action within an [Inline]:

The following example shows an [Inline] … [/Inline] tag that has a -Search database action specified in the
opening tag. The [Inline] tag includes a -Search parameter to specify the action, -Database and -Table parameters
to specify the database and table records from which records should be returned, and a -KeyField parameter
which specifies the key field for the table. The subsequent name/value parameters, 'First_Name'='John' and
'Last_Name'='Doe', specify the query which will be performed in the database. Only records for John Doe will be
returned. The entire database action is hard-coded within the [Inline] tag.

The tag [Found_Count] returns how many records for John Doe are in the database. The [Records] … [/Records]
container tags repeat their contents for each record in the found set. The [Field] tags are repeated for each
found record creating a listing of all the records for John Doe stored in the Contacts database.

[Inline: -Search,
	 -Database='Contacts',
	 -Table='People',
	 -KeyField='ID',
	 'First_Name'='John',
	 'Last_Name'='Doe']
	 There were [Found_Count] record(s) found in the People table.
	 [Records]
		
[Field: 'First_Name'] [Field: 'Last_Name']
	 [/Records]
[/Inline]

�	 There were 1 record(s) found in the People table.
John Doe

Using HTML Forms
The previous two examples show how to specify a hard-coded database action completely within an opening
[Inline] tag. This is an excellent way to embed a database action that will be the same every time a page is
loaded, but does not provide any room for visitor interaction.

9 3

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 7 – D a t a b a s e I n t e r a c t i o n F u n d a m e n t a l s

A more powerful technique is to use values from an HTML form or URL to allow a site visitor to modify
the database action which is performed within the [Inline] tag. The following two examples demonstrate two
different techniques for doing this using the singular [Action_Param] tag and the array-based [Action_Params] tag.

Example of using HTML form values within an [Inline] with [Action_Param]:

An inline-based database action can make use of visitor specified parameters by reading values from an
HTML form which the visitor customizes and then submits to trigger the page containing the [Inline] … [/Inline]
tags.

The following HTML form provides two inputs into which the visitor can type information. An input
is provided for First_Name and one for Last_Name. These correspond to the names of fields in the
Contacts database. The action of the form is set to response.lasso which will contain the [Inline] … [/Inline] tags that
perform the actual database action. The action tag specified in the form is -Nothing which instructs Lasso to
perform no database action when the form is submitted.

<form action="/response.lasso" method="POST">
	
First Name: <input type="text" name="First_Name" value="">
	
Last Name: <input type="text" name="Last_Name" value="">
	
<input type="submit" value="Search">
</form>

The [Inline] tag on response.lasso contains the name/value parameter 'First_Name'=(Action_Param: 'First_Name'). The
[Action_Param] tag instructs Lasso to fetch the input named First_Name from the action which resulted in the
current page being served, namely the form shown above. The [Inline] contains a similar name/value parameter
for Last_Name.

[Inline: -Search,
	 -Database='Contacts',
	 -Table='People',
	 -KeyField='ID',
	 'First_Name'=(Action_Param: 'First_Name'),
	 'Last_Name'=(Action_Param: 'Last_Name')]
	 There were [Found_Count] record(s) found in the People table.
	 [Records]
		
[Field: 'First_Name'] [Field: 'Last_Name']
	 [/Records]
[/Inline]

If the visitor entered Jane for the first name and Doe for the last name then the following results would be
returned.

�	 There were 1 record(s) found in the People table.
Jane Doe

As many parameters as are needed can be named in the HTML form and then retrieved in the response page
and incorporated into the [Inline] tag.

Note: The [Action_Param] tag is equivalent to the [Form_Param] tag used in prior versions of Lasso.

Example of using an array of HTML form values within an [Inline] with [Action_Params]:

Rather than specifying each [Action_Param] individually, an entire set of HTML form parameters can be entered
into an [Inline] tag using the array-based [Action_Params] tag. Inserting the [Action_Params] tag into an [Inline]
functions as if all the parameters and name/value pairs in the HTML form were placed into the [Inline] at the
location of the [Action_Params] parameter.

The following HTML form provides two inputs into which the visitor can type information. An input
is provided for First_Name and one for Last_Name. These correspond to the names of fields in the
Contacts database. The action of the form is set to response.lasso which will contain the [Inline] … [/Inline] tags
that perform the actual database action. The database action is -Nothing which instructs Lasso to perform no
database action when the HTML form is submitted.

9 4

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 7 – D a t a b a s e I n t e r a c t i o n F u n d a m e n t a l s

<form action="/response.lasso" method="POST">
	
First Name: <input type="text" name="First_Name" value="">
	
Last Name: <input type="text" name="Last_Name" value="">
	
<input type="submit" value="Search">
</form>

The [Inline] tag on response.lasso contains the array parameter [Action_Params]. This instructs Lasso to take all the
parameters from the HTML form or URL which results in the current page being loaded and insert them in
the [Inline] as if they had been typed at the location of [Action_Params]. This will result in the name/value pairs
for First_Name, Last_Name, and the -Nothing action to be inserted into the [Inline]. The latest action specified has
precedence so the -Search tag specified in the actual [Inline] tag overrides the -Nothing which is passed from the
HTML form.

[Inline: (Action_Params),
	 -Search,
	 -Database='Contacts',
	 -Table='People',
	 -KeyField='ID']
	 There were [Found_Count] record(s) found in the People table.
	 [Records]
		
[Field: 'First_Name'] [Field: 'Last_Name']
	 [/Records]
[/Inline]

If the visitor entered Jane for the first name and Doe for the last name then the following results would be
returned.

�	 There were 1 record(s) found in the People table.
Jane Doe

As many parameters as are needed can be named in the HTML form. They will all be incorporated into the
[Inline] tag at the location of the [Action_Params] tag. Any parameters in the [Inline] after the [Action_Params] tag will
override conflicting settings from the HTML form.

Note: [Action_Params] is a replacement for the -ReUseFormParams keyword in prior versions of Lasso. See the
Upgrading section for more information.

HTML Form Response Pages
Every HTML form or URL needs to have a response page specified so Lasso knows what Lasso page to process
and return as the result of the action. The referenced Lasso page could contain simple HTML or complex
calculations, but some Lasso page must be specified.

To specify a Lasso page within an HTML form or URL:

	 •	The HTML form action can be set to the location of a Lasso page. For example, the following HTML <form>
tag references the file /response.lasso in the root of the Web serving folder.

<form action="/response.lasso" method="POST"> … </form>

	 •	The URL can reference the location of a Lasso page before the question mark ? delimiter. For example, the
following anchor tag references the file response.lasso in the same folder as the page in which this anchor is
contained.

 Link

	 •	The HTML form can reference /Action.Lasso and then specify the path to the Lasso page in a -Response tag.
For example, the following HTML <form> tag references the file response.lasso in the root of the Web serving
folder. The path is relative to the root because the placeholder /Action.Lasso is specified with a leading
forward slash /.

<form action="/Action.Lasso" method="POST">
	 <input type="hidden" name='-Response" value="response.lasso">
</form>

9 5

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 7 – D a t a b a s e I n t e r a c t i o n F u n d a m e n t a l s

	 •	The URL can reference Action.Lasso and then specify the path to the Lasso page in a -Response tag. For
example, the following anchor tag references the file response.lasso in the same folder as the page in which
the link is specified. The path is relative to the local folder because the placeholder Action.Lasso is specified
without a leading forward slash /.

 Link

The -Response tag can be used on its own or action specific response tags can be used so a form is sent to
different response pages if different actions are performed using the form. Response tags can also be used to
send the visitor to different pages if different errors happen when the database action is attempted by Lasso.
The following table details the available response tags.

Table 3: Response Parameters

Tag	 Description	

-Response	 Default response tag. The value for this response tag is used if no others are
specified.

-ResponseAnyError	 Default error response tag. The value for this response tag is used if any error
occurs and no more specific error response tag is set.

-ResponseReqFieldMissingError	 Error to use if a -Required field is not given a value by the visitor.

-ResponseSecurityError	 Error to use if a security violation occurs because the current visitor does not
have permission to perform the database action.

-LayoutResponse	 FileMaker Server data sources will format the results using the layout specified in
this tag rather than the layout used to specify the database action.

		

See the Error Control chapter for more information about using the error response pages.

Setting HTML Form Values
If the Lasso page containing an HTML form is the response to an HTML form or URL, then the values of the
HTML form inputs can be set to values retrieved from the previous Lasso page using [Action_Param].

For example, if a form is on default.lasso and the action of the form is default.lasso then the same page will be
reloaded with new form values each time the form is submitted. The following HTML form uses [Action_Param]
tags to automatically restore the values the user specified in the form previously, each time the page is
reloaded.

<form action="default.lasso" method="POST">
	
First Name:
		 <input type="hidden" name="First_Name" value="[Action_Param: 'First_Name']">
	
First Name:
		 <input type="hidden" name="Last_Name" value="[Action_Param: 'Last_Name']">
	
<input type="submit" value="Submit">
</form>

Tokens
Tokens can be used with HTML forms and URLs in order to pass data along with the action. Tokens are
useful because they do not affect the operation of a database action, but allow data to be passed along with
the action. For example, meta-data could be associated with a visitor to a Web site without using sessions or
cookies.

	 •	Tokens can be set in a form using the -Token.TokenName=TokenValue parameter. Multiple named tokens can be
set in a single form.

<form action="response.lasso" method="POST">
	 <input type="hidden" name="-Token.TokenName" value="TokenValue">
</form>

	 •	Tokens can be set in a URL using the -Token.TokenName=TokenValue parameter. Multiple named tokens can be
set in a single URL.

9 6

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 7 – D a t a b a s e I n t e r a c t i o n F u n d a m e n t a l s

 Link

	 •	Tokens set in an HTML form or URL are available in the response page of the database action. Tokens are
not available inside [Inline] … [/Inline] tags on the responses page unless they are explicitly set within the [Inline]
tag itself.

	 •	Tokens can be set in an [Inline] using the -Token.TokenName=TokenValue parameter. Multiple named tokens can
be set in a single [Inline].

	 •	Tokens set in an [Inline] are only available immediately inside the [Inline]. They are not available to
nested [Inlines] unless they are set specifically within each [Inline].

	 •	By default, tokens are included in the [Link_…] tags and in [Action_Params]. Unless specifically set otherwise,
tokens will be redefined on pages which are returned using the [Link_…] tags.

Nesting Inline Database Actions
Database actions can be combined to perform compound database actions. All the records in a database that
meet certain criteria could be updated or deleted. Or, all the records from one database could be added to
a different database. Or, the results of searches from several databases could be merged and used to search
another database.

Database actions are combined by nesting [Inline] … [/Inline] tags. For example, if [Inline] … [/Inline] tags are placed
inside the [Records] … [/Records] container tag within another set of [Inline] … [/Inline] tags then the inner [Inline]
will execute once for each record found in the outer [Inline].

All database results tags function for only the innermost set of [Inline] … [/Inline] tags. Variables can pass through
into nested [Inline] … [/Inline] tags, but tokens cannot, these need to be reset in each [Inline] tag in the hierarchy.

SQL Note: Nested inlines can also be used to perform reversible SQL transactions in transaction-compliant SQL
data sources. See the SQL Transactions section at the end of this chapter for more information.

Example of nesting [Inline] … [/Inline] tags:

This example will use nested [Inline] … [/Inline] tags to change the last name of all people whose last name
is currently Doe in a database to Person. The outer [Inline] … [/Inline] tags perform a hard-coded search for all
records with Last_Name equal to Doe. The inner [Inline] … [/Inline] tags update each record so Last_Name is now
equal to Person. The output confirms that the conversion went as expected by outputting the new values.

[Inline: -Search,
	 -Database='Contacts',
	 -Table='People',
	 -KeyField='ID',
	 'Last_Name'='Doe',
	 -MaxRecords='All']
	 [Records]
		 [Inline: -Update,
			 -Database='Contacts',
			 -Table='People',
			 -KeyField='ID',
			 -KeyValue=(KeyField_Value),
			 'Last_Name'='Person']
			
Name is now [Field: 'First_Name'] [Field: 'Last_Name']
		 [/Inline]
	 [/Records]
[/Inline]

�	 Name is now Jane Person
Name is now John Person

9 7

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 7 – D a t a b a s e I n t e r a c t i o n F u n d a m e n t a l s

Array Inline Parameters
Most parameters can be used within an [Inline] tag to specify an action. In addition, parameters and name/
value parameters can be stored in an array and then passed into an [Inline] as a block. Any single value in an
[Inline] which is an array data type will be interpreted as a series of parameters inserted at that location in the
array. This technique is useful for programmatically assembling database actions.

Many parameters can only take a single value within an [Inline] tag. For example, only a single action can be
specified and only a single database can be specified. The last action parameter defines the value that will
be used for the action. The last, for example, -Database parameter defines the value that will be used for the
database of the action. If an array parameter comes first in an [Inline] then all subsequent parameters will
override any conflicting values within the array parameter.

Example of using an array to pass values into an [Inline]:

The following LassoScript performs a -FindAll database action with the parameters first specified in an array
and stored in the variable Params, then passed into the opening [Inline] tag all at once. The value for -MaxRecords
in the [Inline] tag overrides the value specified within the array parameter since it is specified later. Only the
number of records found in the database are returned. Note that the action -FindAll is specified as a pair with a
dummy value.

<?LassoScript
	 Variable: 'Params'=(Array:
		 -FindAll='',
		 -Database='Contacts',
		 -Table='People',
		 -MaxRecords=50
);
	 Inline: (Var: 'Params'), -MaxRecords=100;
		 'There are ' + (Found_Count) + 'record(s) in the People table.';
	 /Inline;
?>

�	 There are 2 record(s) in the People table.

Action Parameters
Lasso has a set of substitution tags which allow for information about the current action to be returned. The
parameters of the action itself can be returned or information about the action’s results can be returned.

The following table details the substitution tags which allow information about the current action to be
returned. If these tags are used within an [Inline] … [/Inline] container tag they return information about the
action specified in the opening [Inline] tag. Otherwise, these tags return information about the action which
resulted in the current Lasso page being served.

Even Lasso pages called with a simple URL such as http://www.example.com/response.lasso have an implicit -Nothing
action. Many of these substitution tags return default values even for the -Nothing action.

Table 4: Action Parameter Tags

Tag	 Description	

[Action_Param]	 Returns the value for a specified name/value parameter. Equivalent to [Form_
Param].

[Action_Params]	 Returns an array containing all of the parameters and name/value parameters
that define the current action.

[Action_Statement]	 Returns the statement that was generated by the datasource to implement the
requested action. For SQL datasources this will return a SQL statement. Other
datasources may return different values.

[Database_Name]	 Returns the name of the current database.

[KeyField_Name]	 Returns the name of the current key field.

9 8

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 7 – D a t a b a s e I n t e r a c t i o n F u n d a m e n t a l s

[KeyField_Value]	 Returns the name of the current key value if defined. Equivalent to [RecordID_
Value].

[Lasso_CurrentAction]	 Returns the name of the current Lasso action.

[MaxRecords_Value]	 Returns the number of records from the found set that are currently being
displayed.

[Operator_LogicalValue]	 Returns the value for the logical operator.

[Response_FilePath]	 Returns the path to the current Lasso page.

[SkipRecords_Value]	 Returns the current offset into a found set.

[Table_Name]	 Returns the name of the current table. Equivalent to [Layout_Name].

[Token_Value]	 Returns the value for a specified token.

[Search_Arguments]	 Container tag repeats once for each name/value parameter of the current action.

[Search_FieldItem]	 Returns the name portion of a name/value parameter of the current action.

[Search_OperatorItem]	 Returns the operator associated with a name/value parameter of the current
action.

[Search_ValueItem]	 Returns the value portion of a name/value parameter of the current action.

[Sort_Arguments]	 Container tag repeats once for each sort parameter.

[Sort_FieldItem]	 Returns the field which will be sorted.

[Sort_OrderItem]	 Returns the order by which the field will be sorted.
		

The individual substitution tags can be used to return feedback to site visitors about what database action is
being performed or to return debugging information. For example, the following code inserted at the top of a
response page to an HTML form or URL or in the body of an [Inline] … [/Inline] tag will return details about the
database action that was performed.

Action: [Lasso_CurrentAction]
Database: [Database_Name]
Table: [Table_Name]
Key Field: [KeyField_Name]
KeyValue: [KeyField_Value]
MaxRecords: [MaxRecords_Value]
SkipRecords: [SkipRecords_Value]
Logical Operator: [Operator_LogicialValue]
Statement: [Action_Statement]

�	 Action: Find All
Database: Contacts
Table: People
Key Field: ID
KeyValue: 100001
MaxRecords: 50
SkipRecords: 0
Logical Operator: AND
Statement: SELECT * FROM Contacts.People LIMIT 50

The [Action_Params] tag can be used to return information about the entire Lasso action in a single array. Rather
than assembling information using the individual substitution tags it is often easier to extract information
from the [Action_Params] array. The schema of the array returned by [Action_Params] is detailed in Table 5:
[Action_Params] Array Schema.

The schema shows the names of the values which are returned in the array. Even if -Layout is used to specify
the layout for a database action, the value of that tag is returned after -Table in the [Action_Params] array.

To output the parameters of the current database action:

The value of the [Action_Params] tag in the following example is formatted to show the elements of the
returned array clearly. The [Action_Params] array contain values for -MaxRecords, -SkipRecords, and -OperatorLogical
even though these aren’t specified in the [Inline] tag.

9 9

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 7 – D a t a b a s e I n t e r a c t i o n F u n d a m e n t a l s

[Inline: -Search,
		 -Database='Contacts',
		 -Table='People',
		 -KeyField='ID']
	 [Action_Params]
[/Inline]

�	 (Array:
	 (Pair: (-Search) = ()),
	 (Pair: (-Database) = (Contacts)),
	 (Pair: (-Table) = (People)),
	 (Pair: (-KeyField) = (ID)),
	 (Pair: (-MaxRecords) = (50)),
	 (Pair: (-SkipRecords) = (0)),
	 (Pair: (-OperatorLogical) = (AND))
)

Table 5: [Action_Params] Array Schema

Name	 Description	

Action	 The action parameter is always returned first. The name of the first item is set to
the action parameter and the value is left empty.

-Database	 If defined, the name of the current database.

-Table	 If defined, the name of the current table.

-KeyField	 If defined, the name of the field which holds the primary key for the specified
table.

-KeyValue	 If defined, the particular value for the primary key.

-MaxRecords	 Always included. Defaults to 50.

-SkipRecords	 Always included. Defaults to 0.

-OperatorLogical	 Always included. Defaults to AND.

-ReturnField	 If defined, can have multiple values.

-SortOrder, -SortField	 If defined, can have multiple values. -SortOrder is always defined for each -
SortField. Defaults to ascending.

-Token	 If defined, can have multiple values each specified as -Token.TokenName with
the appropriate value.

Name/Value Parameter	 If defined, each name/value parameter is included.

-Required	 If defined, can have multiple values. Included in order within name/value
parameters.

-Operator	 If defined, can have multiple values. Included in order within name/value
parameters.

-OperatorBegin	 If defined, can have multiple values. Included in order within name/value
parameters.

-OperatorEnd	 If defined, can have multiple values. Included in order within name/value
parameters.

		

The [Action_Params] array contains all the parameters and name/value parameters required to define a database
action. It does not include any -Response… parameters, the -Username and -Password parameters, -FMScript…
parameters, -InlineName keyword or any legacy or unrecognized parameters.

To output the name/value parameters of the current database action:

Loop through the [Action_Params] tag and display only name/value pairs for which the name does not start
with a hyphen, i.e. any name/value pairs which do not start with a keyword. The following example shows a
search of the People table of the Contacts database for a person named John Doe.

1 0 0

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 7 – D a t a b a s e I n t e r a c t i o n F u n d a m e n t a l s

[Inline: -Search,
		 -Database='Contacts',
		 -Table='People',
		 -KeyField='ID',
		 'First_Name'='John',
		 'Last_Name'='Doe']
	 [Loop: (Action_Params)->Size]
		 [If: !(Action_Params)->(Get: Loop_Count)->(First)->(BeginsWith: '-')]
			
[Encode_HTML: (Action_Params)->(Get: Loop_Count)]
		 [/If]
	 [/Loop]
[/Inline]

�	
(Pair: (First_Name) = (John))

(Pair: (Last_Name) = (Doe))

To display action parameters to a site visitor:

The [Search_Arguments] … [/Search_Arguments] container tag can be used in conjunction with the [Search_FieldItem],
[Search_ValueItem] and [Search_OperatorItem] substitution tags to return a list of all name/value parameters and
associated operators specified in a database action.

[Search_Arguments]
	
[Search_OperatorItem] [Search_FIeldItem] = [Search_ValueItem]
[/Search_Arguments]

The [Sort_Arguments] … [/Sort_Arguments] container tag can be used in conjunction with the [Sort_FieldItem]
and [Sort_OrderItem] substitution tags to return a list of all name/value parameters and associated operators
specified in a database action.

[Sort_Arguments]
	
[Sort_OperatorItem] [Sort_FIeldItem] = [Sort_OrderItem]
[/Sort_Arguments]

Results
The following table details the substitution tags which allow information about the results of the current
action to be returned. These tags provide information about the current found set rather than providing data
from the database or providing information about what database action was performed.

Table 6: Results Tags

Tag	 Description	

[Field]	 Returns the value for a specified field from the result set.

[Found_Count]	 Returns the number of records found by Lasso.

[Records] … [/Records]	 Loops once for each record in the found set. [Field] tags within the [Records] … [/
Records] tags will return the value for the specified field in each record in turn.
Can be used with an -InlineName to return the records for a named inline outside
of the inline container.

[Records_Array]	 Returns the complete found set in an array of arrays. The outer array contains
one item for every record in the found set. The item for each record is an array
containing one item for each field in the result set.

[Records_Map]	 Returns the complet found set in a map of maps. See the table below for details
about the parameters and output of [Records_Map].

[ResultSet_Count]	 Returns the number of result sets which were generated by the inline. This will
generally only be applicable to inlines which include a -SQL parameter with
multiple statements. An optional -InlineName parameter will return the number of
result sets that a named inline has, outside of the inline container.

1 0 1

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 7 – D a t a b a s e I n t e r a c t i o n F u n d a m e n t a l s

[ResultSet] … [/ResultSet]	 Returns a single result set from an inline. The opening tag requires an integer
parameter which specifies which result set to return. An optional -InlineName
parameter will return the indicated result set from a named inline.

[Shown_Count]	 Returns the number of records shown in the current found set. Less than or
equal to [MaxRecords_Value].

[Shown_First]	 Returns the number of the first record shown from the found set. Usually
[SkipRecords_Value] plus one.

[Shown_Last]	 Returns the number of the last record shown from the found set.

[Total_Records]	 Returns the total number of records in the current table. Works with FileMaker
Pro databases only.

		

Note: Examples of using most of these tags are provided in the following Searching and Displaying Data
chapter.

The found set tags can be used to display information about the current found set. For example, the following
code generates a status message that can be displayed under a database listing.

Found [Found_Count] records of [Total_Records] Total.

Displaying [Shown_Count] records from [Shown_First] to [Shown_Last].

�	 Found 100 records of 1500 Total.
Displaying 10 records from 61 to 70.

These tags can also be used to create links that allow a visitor to navigate through a found set.

Records Array
The [Records_Array] tag can be used to get access to all of the data from an inline operation. The tag returns
an array with one element for each record in the found set. Each element is itself an array that contains one
element for each field in the found set.

The tag can either be used to quickly output all of the data from the inline operation or can be used with the
[Iterate] … [/Iterate] or other tags to get access to the data programmatically.

[Inline: -Search, -Database='Contacts', -Table='People']
	 [Records_Array]
[/Inline]

�	 (Array: (Array: (John), (Doe)), (Array: (Jane), (Doe)), …)

The output can be made easier to read using the [Iterate] … [/Iterate] tags and the [Array->Join] tag.

[Inline: -Search, -Database='Contacts', -Table='People']
	 [Iterate: Records_Array, (Var: 'Record')]
		 "[Encode_HTML: $Record->(Join: '", "')]"

	 [/Iterate]
[/Inline]

�	 "John", "Doe"

"Jane", "Doe"

…

The output can be listed with the appropriate field names by using the [Field_Names] tag. This tag returns an
array that contains each field name from the current found set. The [Field_Names] tag will always contain the
same number of elements as the elements of the [Records_Array] tag.

[Inline: -Search, -Database='Contacts', -Table='People']
	 "[Encode_HTML: Field_Names->(Join: '", "')]"

	 [Iterate: Records_Array, (Var: 'Record')]
		 "[Encode_HTML: $Record->(Join: '", "')]"

	 [/Iterate]
[/Inline]

1 0 2

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 7 – D a t a b a s e I n t e r a c t i o n F u n d a m e n t a l s

�	 "First_Name", "Last_Name"

"John", "Doe"

"Jane", "Doe"

…

Together the [Field_Names] and [Records_Array] tags provide a programmatic method of accessing all the data
returned by an inline action. When used appropriately these tags can yield better performance than using
[Records] … [/Records], [Field], and [Field_Name] tags.

Records Map
The [Records_Map] tag functions similarly to the [Records_Array] tag, but returns all of the data from an inline
operation as a map of maps. The keys for the outer map are the key field values for each record from the
table. The keys for the inner map are the field names for each record in the found set.

[Inline: -Search, -Database='Contacts', -Table='People', -KeyField='ID']
	 [Records_Map]
[/Inline]

�	 (Map: (1)=(Map: (First)=(John), (Last)=(Doe)), (2)=(Map: (First)=(Jane), (Last)=(Doe)), …)

The output of the [Records_Map] tag can be modified with the following parameters.

Table 7: [Records_Map] Parameters

Tag	 Description	

-KeyField	 The name of the field to use as the key for the outer map. Defaults to the current
[KeyField_Name], “ID”, or the first field of the database results.

 -ReturnField	 Specifies a field name that should be included in the inner map. Should be called
multiple times to include multiple fields. If no -ReturnField is specified then all
fields will be returned.

 -ExcludeField	 The name of a field to exclude from the inner map. If no -excludeField is
specified then all fields will be returned.

 -Fields	 An array of field names to use for the inner map. By default the value for [Field_
Names] will be used.

 -Type	 By default the tag returns a map of maps. By specifying -Type=’array’ the tag will
instead return an array of maps. This can be useful when the order of records is
important.

		

Result Sets
An inline which uses a -SQL action can return multiple result sets. Each SQL statement within the -SQL action
is separated by a semi-colon and generates its own result set. This allows multiple SQL statements to be
issued to a data source in a single connection and for the results of each statement to be reviewed individu-
ally.

In the following example the [ResultSet_Count] tag is used to report the number of result sets that the inline
returned. Since the -SQL parameter contains two SQL statements, two result sets are returned. The two result
sets are then looped through by passing the [ResultSet_Count] tag to the [Loop] … [/Loop] tag and passing the
[Loop_Count] as the parameter for the [ResultSet] … [/ResultSet] tags Finally, the [Records] … [/Records] tags are used
as normal to display the records from each result set.

1 0 3

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 7 – D a t a b a s e I n t e r a c t i o n F u n d a m e n t a l s

[Inline: -Search, -Database='Contacts', -Table='People',
		 -SQL='SELECT * FROM People; SELECT * From Companies']
	 [ResultSet_Count] Result Sets
	 <hr />
	 [Loop: ResultSet_Count]
		 [ResultSet: Loop_Count]
			 [Records]
				 [Field: 'Name']

			 [/Records]
			 <hr />
		 [/ResultSet]
	 [/Loop]
[/Inline]

�	 2 Result Sets
<hr />
John Doe

Jane Doe

<hr />
LassoSoft

<hr />

All of the tags from the preceding table including [Records] … [/Records], [Records_Array], [Field_Names],
[Found_Count], etc. can be used within the [ResultSet] … [/ResultSet] tags.

The same example can be rewritten using a named inline. An -InlineName parameter with the name MyResults
is added to the opening [Inline] tag, the [ResultSet_Count] tag, and the opening [ResultSet] tag. Now the result sets
can be output from any where on the page below the closing [/Inline] tag. The results of the following example
will be the same as those shown above.

[Inline: -InlineName='MyResults', -Search, -Database='Contacts', -Table='People',
		 -SQL='SELECT * FROM People; SELECT * From Companies']
[/Inline]

	 [ResultSet_Count: -InlineName='MyResults'] Result Sets
	 <hr />
	 [Loop:(ResultSet_Count: -InlineName='MyResults')]
		 [ResultSet: Loop_Count, -InlineName='MyResults']
			 [Records]
				 [Field: 'Name']

			 [/Records]
			 <hr />
		 [/ResultSet]
	 [/Loop]

Showing Database Schema
The schema of a database can be inspected using the [Database_…] tags or the -Show parameter which allows
information about a database to be returned using the [Field_Name] tag. Value lists within FileMaker Pro
databases can also be accessed using the -Show parameter. This is documented fully in the FileMaker Pro
Data Sources chapter.

Table 8: -Show Parameter

Tag	 Description	

-Show	 Allows information about a particular database and table to be retrieved.
		

The -Show parameter functions like the -Search parameter except that no name/value parameters, sort tags,
results tags, or operator tags are required. -Show actions can be specified in [Inline] … [/Inline] tags, HTML forms,
or URLs.

1 0 4

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 7 – D a t a b a s e I n t e r a c t i o n F u n d a m e n t a l s

Table 9: -Show Action Requirements

Tag	 Description	

-Show	 The action which is to be performed. Required.

-Database	 The database which should be searched. Required.

-Table	 The table from the specified database which should be searched. Required.

-KeyField	 The name of the field which holds the primary key for the specified table.
Recommended.

		

The tags detailed in Table 9: Schema Tags allow the schema of a database to be inspected. The
[Field_Name] tag must be used in concert with a -Show action or any database action that returns results
including -Search, -Add, -Update, -Random, or -FindAll. The [Database_Names] … [/Database_Names] and
[Database_TableNames] … [/Database_TableNames] tags can be used on their own.

Table 10: Schema Tags

Tag	 Description	

[Database_Names]	 Container tag repeats for every database available to the current user in Lasso.
Requires internal [Database_NameItem] tag to show results.

[Database_NameItem]	 When used inside [Database_Names] … [/Database_Names] container tags
returns the name of the current database.

[Database_RealName]	 Returns the real name of a database given an alias.

[Database_TableNames]	 Container tag repeats for every table available to the current user within a
database. Accepts one required parameter, the name of the database. Requires
internal [Database_TableNameItem] tag to show results. Synonym is [Database_
LayoutNames].

[Database_TableNameItem]	 When used inside [Database_TableNames] … [/Database_TableNames]
container tags returns the name of the current table. Synonym is [Database_
LayoutNameItem].

[Field_Name]	 Returns the name of a field in the current database and table. A number
parameter returns the name of the field in that position within the current table.
Other parameters are described below. Synonym is [Column_Name].

[Field_Names]	 Returns an array containing all the field names in the current result set. This is
the same data as returned by [Field_Name], but in a format more suitable for
iterating or other data processing. Synonym is [Column_Names].

[Required_Field]	 Returns the name of a required field. Requires one parameter which is the
number of the field name to return or a -Count keyword to return the total number
of required fields.

[Table_RealName]	 Returns the real name of a table given an alias. Requires a -Database parameter
which specifies the database in which the table or alias resides.

		

Note: See the previous Records Array section for an example of using [Field_Names].

To list all the databases available to the current user:

The following example shows how to list the names of all available databases using
the [Database_Names] … [/Database_Names] and [Database_NameItem] tags. This code will list all databases available
to the current user. An [Inline] … [/Inline] with a -Username and -Password can be wrapped around this code to
display the databases availble to a given Lasso user.

[Database_Names]
	
[Loop_Count]: [Database_NameItem]
[/Database_Name]

�	
1: Contacts

2: Examples

3: Site

1 0 5

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 7 – D a t a b a s e I n t e r a c t i o n F u n d a m e n t a l s

To list all the tables within a database:

The following example shows how to list the names of all the tables within a database using
the [Database_TableNames] … [/Database_TableNames] and [Database_TableNameItem] tags. The tables within the
Site database are listed. This code will list all tables within the databases which are available to the current
user. An [Inline] … [/Inline] with a -Username and -Password can be wrapped around this code to display the tables
availble to a given Lasso user.

[Database_TableNames: 'Site']
	
[Loop_Count]: [Database_TableNameItem]
[/Database_TableNames]

�	
1: _outgoingemail

2: _outgoingemailprefs

3: _schedule

4: _sessions

To list all the fields within a table:

The [Field_Name] tag accepts a number of optional parameters which allow information about the tags in the
current table to be returned. These parameters are detailed in Table 10: [Field_Name] Parameters.

Table 11: [Field_Name] Parameters

Parameter	 Description	

Number	 The position of the field name to be returned. Required unless -Count is
specified.

-Count	 Returns the number of fields in the current table.

-Type	 Returns the type of the field rather than the name. Types include Text, Number,
Image, Date/Time, Boolean, or Unknown. Requires that a number parameter be
specified.

-Protection	 Returns the protection status of the field rather than the name. Protection
statuses include None or Read Only. Requires that a number parameter be
specified.

		

To return information about the fields in a table:

The following example demonstrates how to return information about the fields in a table using the
[Inline] … [/Inline] tags to perform a -Show action. [Loop] … [/Loop] tags loop through the number of fields
in the table and the name, type, and protection status of each field is returned. The fields within the
Contacts Web table are shown. A -Username and -Password may be required if the database and table are only
available to certain Lasso users.

[Inline: -Show,
		 -Database='Contacts',
		 -Table='People',
		 -KeyField='ID']
	 [Loop: (Field_Name: -Count)]
		
[Loop_Count]: [Field_Name: (Loop_Count)]
			 ([Field_Name: (Loop_Count), -Type], [Field_Name: (Loop_Count), -Protection])
	 [/Loop]
[/Inline]

�	
1: Creation Date (Date, None)

2: ID (Number, Read Only)

3: First_Name (Text, None)

4: Last_Name (Text, None)

1 0 6

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 7 – D a t a b a s e I n t e r a c t i o n F u n d a m e n t a l s

To list all the required fields within a table:

The [Required_Field] tag accepts a number of optional parameters which allow information about the tags in
the current table to be returned. These parameters are detailed in Table 11: [Required_Field] Parameters.

Table 12: [Required_Field] Parameters

Parameter	 Description	

Number	 The position of the field name to be returned. Required unless -Count is
specified.

-Count	 Returns the number of required fields in the current table.
		

The [Required_Field] substitution tag can be used to return a list of all required fields for the current action. A
-Show action is used to retrieve the information from the database and then [Loop] … [/Loop] tags are used to
loop through all the required fields. In the example that follows the People table of the Contacts database has
only one required field, the primary key field ID.

[Inline: -Show,
		 -Database='Contacts',
		 -Table='People']
	 [Loop: (Required_Field: -Count)]
		
[Required_Field: (Loop_Count)]
	 [/Loop]
[/Inline]

�	
ID

Inline Hosts
Lasso provides two different methods to specify the data source which should execute an inline database
action. The connection characteristics for the data source host can be specified entirely within the inline or
the connection characteristics can be specified within Lasso Site Administration and then looked up based on
what -Database is specified within the inline.

Each of the methods is described in more detail below including when one method may be preferable to the
other method and drawbacks of each method. The database method is used throughout most of the examples
in this documentation.

Database Method
When Lasso executes an inline it performs several tasks. First, if the inline contains a -Username and -Password
then they are used to authenticate against the users which have been defined in Lasso Security. Second, if the
inline contains a -Database then it is used to look up what host and data source should be used to service the
inline. Third, the inline action is checked against Lasso security based on the permissions of the current user.
The permissions can depend on both the -Database and -Table. The -Table is additionally used to look up what
encoding should be used for the results of the database action. Finally, the action is issued against the speci-
fied data source for processing and the results are returned.

If an inline does not have a specified -Username and -Password then it inherits the authentication of the
surrounding inline or the page as a whole. If an inline does not have a specified -Database then it inherits the
-Database (and -Table and -KeyField) from the surrounding inline.

	 •	Advantages – When using the database method, all of the connection characteristics for the data source
host are defined in Lasso Site Administration. This makes it easy to change the characteristics of a host, and
even move databases from one host to another, without modifying any LassoScript code. Lasso’s built-in
security system is used to vette all database actions before they occur. This ensures that security is handled
within Lasso rather than relying on the data source host to be set up properly.

1 0 7

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 7 – D a t a b a s e I n t e r a c t i o n F u n d a m e n t a l s

	 •	Disadvantages – Setting up a new data source when using the database method requires visiting Lasso
Site Administration and configuring Lasso security. This helps promote good security practices, but can be
an impediment when working on simple Web sites or when quickly mocking up solutions. In addition,
having part of the set up for a Web site in Lasso Site Administration means that Lasso must be configured
properly in order to deploy a solution. It is sometimes desirable to have all of the configuration of a solu-
tion contained within the code files of the solution itself.

Inline Host Method
With the inline host method all of the characteristics of the data source host which will be used to process
the inline database action are specified directly within the inline. Lasso security is not checked when the
inline host method is used.

	 •	Advantages – Data source hosts can be quickly specified directly within an inline. No need to visit Lasso
Site Administration to set up a new data source host. Reduced overhead since Lasso’s security settings don’t
need to be checked.

	 •	Disadvantages – The username and password for the host must be embedded within the Lasso code.
Switching data source hosts can be more difficult if inline hosts have been hard coded. Lasso does not
provide any security for what actions can be performed on the data source. Any desired security settings
must be configured directly within the data source itself.

Inline hosts are specified using a -Host parameter within the inline. The value for the parameter is an array
that specifies the connection characteristics for the inline host. The following example shows an inline host
for the MySQL data source connector which connects to localhost using a username of Root.

Inline:
		 -Host=(Array: -Datasource='mysqlds', -Name='localhost', -Username='root'),
		 -SQL='SHOW DATABASES';
 Records_Array;
/Inline;

The following table lists all of the parameters that can be specified within the -Host array. Some data sources
may required just that the -Datasource be specified, but most data sources will require -Datasource, -Name,
-Username, and -Password.

The -Host parameter can also take a value of inherit which specifies that the -Host from the surrounding inline
should be used. This is necessary when specifying a -Database within nested inlines to prevent Lasso from
looking up the database as it would using the database method.

Table 13: -Host Array Parameters

Parameter	 Description	

-DataSource	 Required data source name. The name for each data source can be found in
Lasso Site Administration in the Setup > Data Sources > Connectors section.
Required.

-Name	 The IP address, DNS host name, or connection string for the data source.
Required for most data source.

-Port	 The port for the data source. Optional.

-Username	 The username for the data source connection. Required for most data sources.

-Password	 The password for the username. Required if a username was specified.

-Schema	 The schema for the data source connection. Required for some data sources .

-Extra	 Configuration information which may be used by some data sources. Optional.

-TableEncoding	 The table encoding for the data source connection. Defaults to UTF-8. Optional.
		

Note that the -Username and -Password specified in this -Host array are sent to the remote data source. They are
not used to authenticate against Lasso security. Consult the documentation for each data source for details
about which parameters are required, their format, and whether the -Extra parameter is used.

1 0 8

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 7 – D a t a b a s e I n t e r a c t i o n F u n d a m e n t a l s

Once a -Host array has been specified the rest of the parameters of the inline will work much the same as they
do in inlines which use a configured data source host. The primary differences are explained here:

	 •	Nested inlines will inherit the -Host from the surrounding inline if they are specified with -Host='inherit' or if
they do not contain a -Database parameter.

	 •	Nested inlines which have a -Database parameter and no -Host parameter will use the -Database parameter to
look up the data source host.

	 •	Nested inlines can specify a different -Host parameter than the surrounding inline. Lasso can handle arbi-
trarily nested inlines each of which use a different host.

	 •	The parameters -Database, -Table, -KeyField (or -Key), and -Schema may be required depending on the database
action. Inline actions such as -Search, -FindAll, -Add, -Update, -Delete, etc. require that the database, table, and
keyfield be specified just as they would need to be in any inline.

	 •	Some SQL statements may also require that a -Database be specified. For example, in MySQL, a host-level
SQL statement like SHOW DATABASES doesn’t require that a -Database be specified. A table-level SQL state-
ment like SELECT * FROM `people` won’t work unless the -Database is specified in the inline. A fully qualified
SQL statement like SELECT * FROM `contacts`.`people` will also work without a -Database.

SQL Statements
Lasso provides the ability to issue SQL statements directly to SQL-compliant data sources, including the
MySQL data source. SQL statements are specified within the [Inline] tag using the -SQL command tag. Many
third-party databases that support SQL statements also support the use of the -SQL command tag.

SQL inlines can be used as the primary method of database interaction in Lasso 8, or they can be used along
side standard inline actions (e.g. -Search, -Add, -Update, -Delete) where a specific SQL function is desired that
cannot be replicated using standard database commands.

For most data sources multiple SQL statements can be specified within the -SQL parameter separated by
a semi-colon. Lasso will issue all of the statements to the data source at once and will collect all of the
results into result sets. The [ResultSet_Count] tag returns the number of result sets which Lasso found. The
[ResultSet] … [/ResultSet] tag can then be used with an integer parameter to return the results from one of the
result sets.

Important: Visitor supplied values must be encoded when they are concatenated into SQL statements. Encoding
these values ensures that no invalid characters are passed to the data source and helps to prevent SQL injection
attacks. The [Encode_SQL] tag should be used to encode values for MySQL data sources. The [Encode_SQL92] tag
should be used to encode values for other SQL-compliant data sources including JDBC data sources and SQLite.
The -Search, -Add, -Update, etc. database actions automatically perform encoding on values passed as name/value
pairs into an inline.

SQL Language Note: Documentation of SQL itself is outside the realm of this manual. Please consult the
documentation included with your data source for information on what SQL statements are supported by it.

FileMaker Note: The -SQL inline parameter is not supported for FileMaker data sources.

Table 14: SQL Inline Parameters

Tag	 Description	

-SQL	 Issues one or more SQL command to a compatible data source. Multiple
commands are delimited by a semicolon. When multiple commands are used, all
will be executed, however only the last command issued will return results to the
[Inline] … [/Inline] tags unless the [ResultSet] … [/ResultSet] tags are used.

-Database	 A database in the data source in which to execute the SQL statement.

-Table	 A table in the database. The encoding specified for this table in Site
Administration will be used for the return value from the data source. Only
required if an encoding other than the default for the data source is necessary.

-MaxRecords	 The maximum number of records to return. Optional, defaults to 50.

1 0 9

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 7 – D a t a b a s e I n t e r a c t i o n F u n d a m e n t a l s

-SkipRecords	 The offset into the found set at which to start returning records. Optional, defaults
to 1.

		

The -Database parameter can be any database within the data source in which the SQL statement should
be executed. The -Database parameter will be used to determine the data source, table references within the
statement can include both a database name and a table name, e.g. Contacts.People in order to fetch results
from multiple tables. For example, to create a new database in MySQL, a CREATE DATABASE statement can be
executed with -Database set to Site.

The -Table parameter is optional. If specified, Lasso will use the character set established for the table in
Site Administration when it interprets the data returned by the data source. If no -Table is specified then the
default character encoding will be used.

When referencing the name of a database and table in a SQL statement (e.g. Contacts.People), only the true
file names of a database or table can be used as MySQL does not recognize Lasso aliases in a SQL command.
Lasso 8 contains two SQL helper tags that return the true file name of a SQL database or table, as shown in
Table 13: SQL Helper Tags.

Table 15: -SQL Helper Tags

Tag	 Description	

[Database_RealName]	 Returns the actual name of a database from an alias. Useful for determining the
true name of a database for use with the -SQL tag.

[Table_RealName]	 This tag returns the actual name of a table from an alias. Useful for determining
the true name of a table for use with the -SQL tag.

[Encode_SQL]	 Encodes illegal characters in MySQL string literals by escaping them with
a backslash. Helps to prevent SQL injection attacks and ensures that SQL
statements only contain valid characters. This tag must be used to encode visitor-
supplied values within SQL statements for MySQL data sources.

[Encode_SQL92]	 Encodes illegal characters in SQL string literals by escaping them with a
backslash. Helps to prevent SQL injection attacks and ensures that SQL
statements only contain valid characters. This tag can be used to encode values
for JDBC and most other SQL-compliant data sources.

		

To determine the true database and table name for a SQL statement:

Use the [Database_RealName] and [Table_RealName] tags. When using the -SQL tag to issue SQL statements to a
MySQL host, only true database and tables may be used (bypassing the alias). The [Database_RealName] and
[Table_RealName] tags can be used to automatically determine the true name of a database and table, allowing
them to be used in a valid SQL statement.

[Var_Set:'Real_DB' = (Database_RealName:'Contacts_Alias')]
[Var_Set:'Real_TB' = (Table_RealName:'Contacts_Alias')]
[Inline: -Database ='Contacts_Alias', -SQL='select * from ((Var:'Real_DB') + '.' + (Var:'Real_TB'))']

Results from a SQL statement are returned in a record set within the [Inline] … [/Inline] tags. The results can be
read and displayed using the [Records] …  [/Records] container tags and the [Field] substitution tag. However,
many SQL statements return a synthetic record set that does not correspond to the names of the fields of the
table being operated upon. This is demonstrated in the examples that follow.

To issue a SQL statement:

Specify the SQL statement within [Inline] … [/Inline] tags in a -SQL command tag.

	 •	The following example calculates the results of a mathematical expression 1 + 2 and returns the value as
a [Field] value named Result. Note that even though this SQL statement does not reference a database, a
-Database tag is still required so Lasso knows to which data source to send the statement.

[Inline: -Database='Example', -SQL='SELECT 1+2 AS Result']
	
The result is: [Field: 'Result'].
[/Inline]

1 1 0

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 7 – D a t a b a s e I n t e r a c t i o n F u n d a m e n t a l s

�	
The result is 3.

	 •	The following example calculates the results of several mathematical expressions and returns them as field
values One, Two, and Three.

[Inline: -Database='Example',
	 -SQL='SELECT 1+2 AS One, sin(.5) AS Two, 5%2 AS Three']
	
The results are: [Field: 'One'], [Field: 'Two'], and [Field: 'Three'].
[/Inline]

�	
The results are 3, 0.579426, and 1.

	 •	The following example calculates the results of several mathematical expressions using Lasso and
returns them as field values One, Two, and Three. It demonstrate how the results of Lasso expressions and
substitution tags can be used in a SQL statement.

[Inline: -Database='Example',
	 -SQL='SELECT ' + (1+2) + ' AS One, ' + (Math_Sin: .5) +
		 ' AS Two, ' + (Math_Mod: 5, 2) + ' AS Three']
	
The results are: [Field: 'One'], [Field: 'Two'], and [Field: 'Three'].
[/Inline]

�	
The results are 3, 0.579426, and 1.

	 •	The following example returns records from the Phone_Book table where First_Name is equal to John. This is
equivalent to a -Search using Lasso.

[Inline: -Database='Example',
		 -SQL='SELECT * FROM Phone_Book WHERE First_Name = \'John\'']
	 [Records]
		
[Field: 'First_Name'] [Field: 'Last_Name']
	 [/Records]
[/Inline]

�	
John Doe

John Person

To encode visitor supplied values in a SQL statement:

All visitor supplied values must be encoded before they are concatenated into a SQL statement in order to
ensure the validity of the SQL statement and to prevent SQL injection. Values from the [Action_Param], [Cookie],
[Field], and [Token_Value] tags should be encoded as well as values from any calculations which rely on these
tags. The [Encode_SQL] tag should be used to encode values within SQL statements for MySQL data sources.
The [Encode_SQL92] tag should be used to encode values for other SQL-compliant data sources including JDBC
data sources and SQLite.

	 •	The following example encodes the action parameter for First_Name using [Encode_SQL] for a MySQL data
source.

[Inline: -Database='Example',
		 -SQL='SELECT * FROM Phone_Book WHERE First_Name = \'' + (Encode_SQL: (Action_Param: 'First_Name')) + '\'']
	 …
[/Inline]

	 •	The following example encodes the action parameter for First_Name using [Encode_SQL92] for a SQLite (or
other SQL-compliant) data source.

[Inline: -Database='Example',
		 -SQL='SELECT * FROM Phone_Book WHERE First_Name = \'' + (Encode_SQL92: (Action_Param: 'First_Name')) + '\'']
	 …
[/Inline]

1 1 1

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 7 – D a t a b a s e I n t e r a c t i o n F u n d a m e n t a l s

If a value is known to be a number then the [Integer] or [Decimal] tags can be used to cast the value to the
appropriate data type instead of using an encoding tag. Also, date values which are formatted using
[Date_Format] or [Date->Format] do not generally need to be encoded since they have been parsed and refor-
matted into a known valid format.

To issue a SQL statement with multiple commands:

Specify the SQL statements within [Inline] … [/Inline] tags in a -SQL command tag, with each SQL command
separated by a semi-colon. The following example adds three unique records to the Contacts database. Note
that all single quotes within the SQL statement have been properly escaped using the \ character, as described
at the beginning of this chapter.

[Inline: -Database='Contacts',
	 -SQL='INSERT INTO Contacts.People (First_Name, Last_Name) VALUES 					
		 (\'John\', \'Jakob\');
					 INSERT INTO Contacts.People (First_Name, Last_Name) VALUES 					
		 (\'Tom\', \'Smith\');										
	 INSERT INTO Contacts.People (First_Name, Last_Name) VALUES 						
	 (\'Sally\', \'Brown\')']
[/Inline]

To automatically format the results of a SQL statement:

Use the [Field_Name] tag and [Loop] … [/Loop] tags to create an HTML table that automatically formats the results
of a -SQL command. The -MaxRecords tag should be set to All so all records are returned rather than the default
(50).

The following example shows a REPAIR TABLE Contacts.People SQL statement being issued to a MySQL database,
and the result is automatically formatted. The statement returns a synthetic record set which shows the results
of the repair.

Notice that the database Contacts is specified explicitly within the SQL statement. Even though the database is
identified in the -Database command tag within the [Inline] tag it still must be explicitly specified in each table
reference within the SQL statement.

[Inline: -Database='Contacts',
		 -SQL='REPAIR TABLE Contacts.People',
		 -MaxRecords='All']
	 <table border="1">
		 <tr>
			 [Loop: (Field_Name: -Count)]
				 <td>[Field_Name: (Loop_Count)]</td>
			 [/Loop]
		 </tr>
		 [Records]
			 <tr>
				 [Loop: (Field_Name: -Count)]
					 <td>[Field: (Field_Name: Loop_Count)]</td>
				 [/Loop]
			 </tr>
		 [/Records]
	 </table>
[/Inline]

The results are returned in a table with bold column headings. The following results show that the table did
not require any repairs. If repairs are performed then many records will be returned.

�	 Table	Op	Msg_Type	 Msg_Text
People	Check	 Status	 OK

1 1 2

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 7 – D a t a b a s e I n t e r a c t i o n F u n d a m e n t a l s

SQL Transactions
Lasso supports the ability to perform reversible SQL transactions provided that the data source used (e.g.
MySQL 4.x) supports this functionality. See your data source documentation to see if transactions are
supported.

FileMaker Note: SQL transactions are not supported for FileMaker Pro data sources.

SQL transactions can be achieved within nested [Inline] … [/Inline] tags. A single connection to MySQL or JDBC
data sources will be held open from the opening [Inline] tag to the closing [/Inline] tag. Any nested inlines that
use the same data source will make use of the same connection.

Note: When using named inlines, the connection is not available in
subsequent [Records: -InlineName='Name'] … [/Records] tags.

To open a transaction and commit or rollback in MySQL:

Use nested -SQL inlines, where the outer inline performs a transaction, and the inner inline commits or rolls
back the transaction depending on the results of a conditional statement.

[Inline: -Database='Contacts', -SQL='START TRANSACTION;
		 INSERT INTO Contacts.People (Title, Company) VALUES (\'Mr.\', \'LassoSoft\');']
	 [If: (Error_CurrentError) != (Error_NoError)]
		 [Inline: -Database='Contacts', -SQL='ROLLBACK;']
		 [/Inline]
	 [Else]
		 [Inline: -Database='Contacts', -SQL='COMMIT;']
		 [/Inline]
	 [/If]
[/Inline]

To fetch the last inserted ID in MySQL:

Used nested -SQL inlines, where the outer inline performs an insert query, and the inner inline retrieves the
ID of the last inserted record using the MySQL last_insert_id() function. Because the two inlines share the same
connection, the inner inline will always return the value added by the outer inline.

[Inline: -Database='Contacts',
		 -SQL='INSERT INTO People (Title, Company) VALUES (\'Mr.\', \'LassoSoft\');']
	 [Inline: -SQL='SELECT last_insert_id()']
		 [Field: 'last_insert_id()']
	 [/Inline]
[/Inline]

�	 23

Prepared Statements
Lasso supports the ability to use prepared statements to speed up database operations provided that the
data source used (e.g. MySQL 4.x) supports this functionality. See your data source documentation to see if
prepared statements are supported.

A prepared statement can speed up database operations by cutting down on the amount of overhead which
the data source needs to perform for each statement. For example, processing the following INSERT state-
ment requires the data source to load the people table, determine its primary key, load information about its
indexes, and determine default values for fields not listed. After the new record is inserted the indexes must
be updated. If another INSERT is performed then all of these steps are repeated from scratch.

INSERT INTO people (`first name`, `last name`) VALUES ("John", "Doe");

1 1 3

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 7 – D a t a b a s e I n t e r a c t i o n F u n d a m e n t a l s

When this statement is changed into a prepared statement then the data source knows to expect multiple
executions of the statement. The data source can cache information about the table in memory and re-use
that information for each execution. The data source might also be able to defer some operations such as
finalizing index updates until after several statements have been executed.

The specific details of how prepared statements are treated are data source independent. The savings in over-
head and increase in speed may vary depending on what type of SQL statement is being issues, the size of the
table and indexes that are being used, and other factors.

The statement above can be rewritten as a prepared statement by replacing the values with question marks.
The name of the table and field list are defined just as they were in the original SQL statement. This statement
is a template into which particular values will be placed before the data source executes it.

INSERT INTO people (`first name`, `last name`) VALUES (?, ?)

The particular values are specified as an array. Each element of the array corresponds with one question mark
from the prepared statement. To insert John Doe into the People table the following array would be used.

(Array: "John", "Doe")

Two new database actions are used to prepare statement and execute them. -Prepare is similar to -SQL, but
informs Lasso that you want to create a prepared statement. Nested inlines are then issues with an -Exec
action that gives the array of values which should be plugged into the prepared statement.

Table 16: Prepared Statements

Tag	 Description	

-Prepare	 Prepares a SQL statement for multiple executions. The statement should contain
question marks in place of values that will be substitued in by the -Exec arrays.

-Exec	 Executes a prepared statement with specific values specified as an array. Multiple
inlines with -Exec statements should be specified immediately within the inline
with the -Prepare action.

-Database	 A database in the data source in which to prepare the SQL statement. Required
only for the -Prepare action.

		

The prepared statement and values shown above would be issued by the following inlines. The outer inline
prepares the statement and the inner inline executes it with specific values. Note that the inner inline does
not contain any -Database or -Table parameters. These are inherited from the outer inline so don’t need to be
specified again.

Inline: -Database='Contacts', -Table='People', -Prepare='INSERT INTO people (`first name`, `last name`) VALUES (?, ?)';
	 Inline: -Exec=(Array: "John", "Doe");
	 /Inline;
/Inline;

If the executed statement returns any values then those results can be inspected within the inner inline. The
inline with the -Prepare action will never return any results itself, but each inline with an -Exec result may
return a result as if the full equivalent SQL statement were issued in that inline.

1 1 4

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 7 – D a t a b a s e I n t e r a c t i o n F u n d a m e n t a l s

8
Chapter 8

Searching and
Displaying Data

This chapter documents the Lasso command tags which search for records and data within Lasso compatible
databases and display the results.

	 •	Overview provides an introduction to the database actions described in this chapter and presents
important security considerations.

	 •	Searching Records includes instructions for searching records within a database.

	 •	Displaying Data describes the tags that can be used to display data that result from database searches.

	 •	Linking to Data includes requirements and instructions for navigating through found sets and linking to
particular records within a database.

Overview
Lasso provides command tags for searching records within Lasso compatible databases. These command tags
are used in conjunction with additional command tags and name/value parameters in order to perform the
desired database action in a specific database and table or within a specific record.

The command tags documented in this chapter are listed in Table 1: Command Tags. The sections that
follow describe the additional command tags and name/value parameters required for each database action.

Table 1: Command Tags

Tag	 Description	

-Search	 Searches for records within a database.

-FindAll	 Finds all records within a database.

-Random	 Returns a random record from a database. Only works with FileMaker Pro
databases.

		

How Searches are Performed
This section describes the steps that take place each time a search is performed using Lasso.

	 1	Lasso checks the database, table, and field name specified in the search to ensure that they are all valid.

Note: If an inline host is specified with a -Host array then step 2 is skipped since Lasso security is bypassed.

	 2	Lasso security is checked to ensure that the current user has permission to perform a search in the
desired database, table, and field. Filters are applied to the search criteria if they are defined within Lasso
Administration.

1 1 5

L a s s o 8 . 5 L a n g u a g e G u i d e

	 3	The search query is formatted and sent to the database application. FileMaker Pro search queries are
formatted as URLs and submitted to the Web Companion. MySQL search queries are formatted as SQL
statements and submitted directly to MySQL.

	 4	The database application performs the desired search and assembles a found set. The database application
is responsible for interpreting search criteria, wild cards in search strings, field operators, and logical
operators.

	 5	The database application sorts the found set based on sort criteria included in the search query. The
database application is responsible for determining the order of records returned to Lasso.

	 6	A subset of the found set is sent to Lasso as the result set. Only the number of records specified
by -MaxRecords starting at the offset specified by -SkipRecords are returned to Lasso. If any -ReturnField
command tags are included in a search then only those fields named by the -ReturnField command tags are
returned to Lasso.

	 7	The result set can be displayed and manipulated using Lasso tags that return information about the result
set and Lasso tags that return fields or other values.

Character Encoding
Lasso stores and retrieves data from data sources based on the preferences established in the Setup > Data
Sources section of Lasso Administration. The following rules apply for each standard data source.

Inline Host – The character encoding can be specified explicitly using a -TableEncoding parameter within the
-Host array.

MySQL – By default all communication is in the Latin-1 (ISO 8859-1) character set. This is to preserve
backwards compatibility with prior versions of Lasso. The character set can be changed to the Unicode
standard UTF-8 character set in the Setup > Data Sources > Tables section of Lasso Administration.

FileMaker Pro – By default all communication is in the MacRoman character set when Lasso Professional
is hosted on Mac OS X or in the Latin-1 (ISO 8859-1) character set when Lasso Professional is hosted on
Windows. The preference in the Setup > Data Sources > Databases section of Lasso Administration can be
used to change the character set for cross-platform communications.

JDBC – All communication with JDBC data sources is in the Unicode standard UTF-8 character set.

See the Lasso Professional 8 Setup Guide for more information about how to change the character set settings
in Lasso Administration.

Error Reporting
After a database action has been performed, Lasso reports any errors which occurred via the [Error_CurrentError]
tag. The value of this tag should be checked to ensure that the database action was successfully performed.

To display the current error code and message:

The following code can be used to display the current error message. This code should be placed in a Lasso
page which is a response to a database action or within a pair of [Inline] … [/Inline] tags.

[Error_CurrentError: -ErrorCode]: [Error_CurrentError]

If the database action was performed successfully then the following result will be returned.

�	 0: No Error

To check for a specific error code and message:

The following example shows how to perform code to correct or report a specific error if one occurs. The
following example uses a conditional [If] … [/If] tag to check the current error message and see if it is equal to
[Error_NoRecordsFound].

[If: (Error_CurrentError) == (Error_NoRecordsFound)]
	 No records were found!
[/If]

1 1 6

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 8 — S e a r c h i n g a n d D i s p l a y i n g D a t a

Full documentation about error tags and error codes can be found in the Error Control chapter. A list of all
Lasso error codes and messages can be found in Appendix B: Error Codes.

Classic Lasso
If Classic Lasso support has been disabled within Lasso Administration then database actions will not be
performed automatically if they are specified within HTML forms or URLs. Although the database action will
not be performed, the -Response tag will function normally. Use the following code in the response page to
the HTML forms or URL to trigger the database action.

[Inline: (Action_Params)]
	 [Error_CurrentError: -ErrorCode]: [Error_CurrentError]
[/Inline]

See the Database Interaction Fundamentals chapter in this guide and the Setting Site Preferences chapter
in the Lasso Professional 8 Setup Guide for more information.

Note: The use of Classic Lasso has been deprecated. All solutions should be transitioned over to the
[Inline] … [/Inline] tag based methods described in this chapter.

Security
Lasso has a robust internal security system that can be used to restrict access to database actions or to allow
only specific users to perform database actions. If a database action is attempted when the current visitor has
insufficient permissions then they will be prompted for a username and password. An error will be returned
if the visitor does not enter a valid username and password.

Note: If an inline host is specified with a -Host array then Lasso security is bypassed.

An [Inline] … [/Inline] can be specified to execute with the permissions of a specific user by specifying -Username
and -Password command tags within the [Inline] tag. This allows the database action to be performed even
though the current site visitor does not necessarily have permissions to perform the database action. In
essence, a valid username and password are embedded into the Lasso page.

Table 2: Security Command Tags

Tag	 Description	

-Username	 Specifies the username from Lasso Security which should be used to execute the
database action.

-Password	 Specifies the password which corresponds to the username.
		

To specify a username and password in an [Inline]:

The following example shows a -FindAll action performed within an [Inline] tag using the permissions granted
for username SiteAdmin with password Secret.

[Inline: -FindAll,
	 -Database='Contacts',
	 -Table='People',
	 -Username='SiteAdmin',
	 -Password='Secret']

	 [Error_CurrentError: -ErrorCode]: [Error_CurrentError]

[/Inline]

A specified username and password is only valid for the [Inline] … [/Inline] tags in which it is specified. It is not
valid within any nested [Inline] … [/Inline] tags. See the Setting Up Security chapter of the Lasso Professional 8
Setup Guide for additional important information regarding embedding usernames and passwords into [Inline]
tags.

1 1 7

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 8 — S e a r c h i n g a n d D i s p l a y i n g D a t a

Searching Records
Searches can be performed within any Lasso compatible database using the -Search command tag. The -Search
command tag is specified within [Inline] … [/Inline] tags. The -Search command tag requires that a number of
additional command tags be defined in order to perform the search. The required command tags are detailed
in Table 3: -Search Action Requirements.

Note: If Classic Lasso syntax is enabled then the -Search command tag can also be used within HTML forms or
URLs. The use of Classic Lasso syntax has been deprecated so solutions which rely on it should be updated to
use the inline methods described in this chapter.

Additional command tags are described in Table 4: Operator Command Tags and Table 6: Results
Command Tags in the sections that follow.

Table 3: -Search Action Requirements

Tag	 Description	

-Search	 The action which is to be performed. Required.

-Database	 The database which should be searched. Required.

-Table	 The table from the specified database which should be searched. Required.

-KeyField	 The name of the field which holds the primary key for the specified table.
Recommended.

-KeyValue	 The particular value for the primary key of the record which should be returned.
Using -KeyValue overrides all the other search parameters and returns the single
record specified. Optional.

Name/Value Parameters	 A variable number of name/value parameters specify the query which will be
performed.

-Host	 Optional inline host array. See the section on Inline Hosts in the Database
Interaction Fundamentals chapter for more information.

		

Any name/value parameters included in the search action will be used to define the query that is performed
in the specified table. All name/value parameters must reference a field within the database. Any fields which
are not referenced will be ignored for the purposes of the search.

To search a database using [Inline] … [/Inline] tags:

The following example shows how to search a database by specifying the required command tags within an
opening [Inline] tag. -Database is set to Contacts, -Table is set to People, and -KeyField is set to ID. The search returns
records which contain John with the field First_Name.

The results of the search are displayed to the visitor inside the [Inline] … [/Inline] tags. The tags inside the
[Records] … [/Records] tags will repeat for each record in the found set. The [Field] tags will display the value for
the specified field from the current record being shown.

[Inline: -Search,
		 -Database='Contacts',
		 -Table='People',
		 -KeyField='ID',
		 'First_Name'='John']

	 [Records]
		
[Field: 'First_Name'] [Field: 'Last_Name']
	 [/Records]

[/Inline]

If the search was successful then the following results will be returned.

�	
John Person

John Doe

1 1 8

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 8 — S e a r c h i n g a n d D i s p l a y i n g D a t a

Additional name/value parameters and command tags can be used to generate more complex searches. These
techniques are documented in the following section on Operators.

To search a database using visitor-defined values:

The following example shows how to search a database by specifying the required command tags within an
opening [Inline] tag, but allow a site visitor to specify the search criteria in an HTML form.

The visitor is presented with an HTML form in the Lasso page default.lasso. The HTML form contains two
text inputs for First_Name and Last_Name and a submit button. The action of the form is the response page
response.lasso which contains the [Inline] … [/Inline] tags that will perform the search. The contents of the
default.lasso file include the following.

<form action="response.lasso" method="POST">
	
First Name: <input type="text" name="First_Name" value="">
	
Last Name: <input type="text" name="Last_Name" value="">
	
<input type="submit" name="-Nothing" value="Search Database">
</form>

The search is performed and the results of the search are displayed to the visitor inside the [Inline] … [/Inline] tags
in response.lasso. The values entered by the visitor in the HTML form in default.lasso are inserted into the [Inline]
tag using the [Action_Param] tag. The tags inside the [Records] … [/Records] tags will repeat for each record in the
found set. The [Field] tags will display the value for the specified field from the current record being shown.
The contents of the response.lasso file include the following.

[Inline: -Search,
		 -Database='Contacts',
		 -Table='People',
		 -KeyField='ID',
		 'First_Name'=(Action_Param: 'First_Name'),
		 'Last_Name'=(Action_Param: 'Last_Name')]

	 [Records]
		
[Field: 'First_Name'] [Field: 'Last_Name']
	 [/Records]

[/Inline]

If the visitor entered John for First_Name and Person for Last_Name then the following result would be returned.

��	
John Person

Operators
Lasso includes a set of command tags that allow operators to be used to create complex database queries.
These command tags are summarized in Table 4: Operator Command Tags.

Table 4: Operator Command Tags

Tag	 Description	

-OperatorLogical	 Specifies the logical operator for the search. Abbreviation is -OpLogical. Defaults
to and.

-Operator	 When specified before a name/value parameter, establishes the search operator
for that name/value parameter. Abbreviation is -Op. Defaults to bw. See below for
a full list of field operators. Operators can also be written as -BW, -EW, -CN, etc.

-OperatorBegin	 Specifies the logical operator for all search parameters until -OperatorEnd is
reached. Abbreviation is -OpBegin.

-OperatorEnd	 Specifies the end of a logical operator grouping started with -OperatorBegin.
Abbreviation is -OpEnd.

		

The operator command tags are divided into two categories.

1 1 9

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 8 — S e a r c h i n g a n d D i s p l a y i n g D a t a

	 •	Field Operators are specified using the -Operator command tag before a name/value parameter. The field
operator changes the way that the named field is searched for the value. If no field operator is specified
then the default begins with bw operator is used. See Table 5: Field Operators for a list of the possible
values for this tag. Field operators can also be abbreviated as -BW, -EW, -CN, etc.

	 •	Logical Operators are specified using the -OperatorLogical, -OperatorBegin, and -OperatorEnd tags. These tags
specify how the results of different name/value parameters are combined to form the full results of the
search.

Field Operators
The possible values for the -Operator command tag are listed in Table 5: Field Operators. The default operator
is begins with bw. Case is unimportant when specifying operators.

Field operators are interpreted differently depending on which data source is being accessed. For example,
FileMaker Pro interprets bw to mean that any word within a field can begin with the value specified for that
field. MySQL interprets bw to mean that the first word within the field must begin with the value specified.
See the chapters on each data source or the documentation that came with a third-party data source
connector for more information.

Several of the field operators are only supported in MySQL or other SQL databases. These include the ft full
text operator and the rx nrx regular expression operators.

Table 5: Field Operators

Operator	 Description	

-Op='bw' or -BW	 Begins With. Default if no operator is set.

-Op='cn' or -CN	 Contains.

-Op='ew' or -EW	 Ends With.

-Op='eq' or -EQ	 Equals.

-Op='ft' or -FT	 Full Text. MySQL databases only.

-Op='gt' or -GT	 Greater Than.

-Op='gte' or -GTE	 Greater Than or Equals.

-Op='lt' or -LT	 Less Than.

Op='lte' or -LTE	 Less Than or Equals.

-Op='neq' or -NEQ	 Not Equals.

-Op='rx' or -RX	 RegExp. Regular expression search. SQL databases only.

-Op='nrx' or -NRX	 Not RegExp. Opposite of RegExp. SQL databases only.
		

Note: In previous versions of Lasso the field operators could be specified using either a short form, e.g. bw or
a long form, e.g. Begins With. In Lasso Professional 8 only the short form is preferred. Use of the long form is
deprecated. It is supported in this version, but may not work in future versions of Lasso Professional.

To specify a field operator in an [Inline] tag:

Specify the field operator before the name/value parameter which it will affect. The following [Inline] … [/Inline]
tags search for records where the First_Name begins with J and the Last_Name ends with son.

1 2 0

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 8 — S e a r c h i n g a n d D i s p l a y i n g D a t a

[Inline: -Search,
		 -Database='Contacts',
		 -Table='People',
		 -KeyField='ID',
		 -Operator='bw', 'First_Name'='J',
		 -Operator='ew', 'Last_Name'='son']
	 [Records]
		
[Field: 'First_Name'] [Field: 'Last_Name']
	 [/Records]
[/Inline]

The results of the search would include the following records.

�	
John Person

Jane Person

Logical Operators
The logical operator command tag -OperatorLogical can be used with a value of either AND or OR. The command
tags -OperatorBegin, and -OperatorEnd can be used with values of AND, OR, or NOT. -OperatorLogical applies to all
search parameters specified with an action . -OperatorBegin applies to all search parameters until the matching
-OperatorEnd tag is reached. The case of the value is unimportant when specifying a logical operator.

	 •	AND specifies that records which are returned should fulfil all of the search parameters listed.

	 •	OR specifies that records which are returned should fulfil one or more of the search parameters listed.

	 •	NOT specifies that records which match the search criteria contained between the -OperatorBegin and
-OperatorEnd tags should be omitted from the found set. NOT cannot be used with the -OperatorLogical tag.

Note: In lieu of a NOT option for -OperatorLogical, many field operators can be negated individually by
substituting the opposite field operator. The following pairs of field operators are the opposites of each
other: eq and neq, lt and gte, gt and lte.

FileMaker Note: The -OperatorBegin and -OperatorEnd tags do not work with Lasso Connector for FileMaker Pro.

To perform a search using an AND operator:

Use the -OperatorLogical command tag with an AND value. The following [Inline] … [/Inline] tags return records
for which the First_Name field begins with John and the Last_Name field begins with Doe. The position of the
-OperatorLogical command tag within the [Inline] tag is unimportant since it applies to the entire action.

[Inline: -Search,
		 -Database='Contacts',
		 -Table='People',
		 -KeyField='ID',
		 -OperatorLogical='AND',
		 'First_Name'='John',
		 'Last_Name'='Doe']
	 [Records]
		
[Field: 'First_Name'] [Field: 'Last_Name']
	 [/Records]
[/Inline]

To perform a search using an OR operator:

Use the -OperatorLogical command tag with an OR value. The following [Inline] … [/Inline] tags return records for
which the First_Name field begins with either John or Jane. The position of the -OperatorLogical command tag
within the [Inline] tag is unimportant since it applies to the entire action.

1 2 1

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 8 — S e a r c h i n g a n d D i s p l a y i n g D a t a

[Inline: -Search,
		 -Database='Contacts',
		 -Table='People',
		 -KeyField='ID',
		 -OperatorLogical='OR',
		 'First_Name'='John',
		 'First_Name'='Jane']
	 [Records]
		
[Field: 'First_Name'] [Field: 'Last_Name']
	 [/Records]
[/Inline]

To perform a search using a NOT operator:

Use the -OperatorBegin and -OperatorEnd command tags with a NOT value. The following [Inline] … [/Inline] tags
return records for which the First_Name field begins with John and the Last_Name field is not Doe. The operators
tags must surround the parameters of the search which are to be negated.

[Inline: -Search,
		 -Database='Contacts',
		 -Table='People',
		 -KeyField='ID',
		 'First_Name'='John',
		 -OperatorBegin='NOT',
			 'Last_Name'='Doe',
		 -OperatorEnd='NOT']
	 [Records]
		
[Field: 'First_Name'] [Field: 'Last_Name']
	 [/Records]
[/Inline]

To perform a search with a complex query:

Use the -OperatorBegin and -OperatorEnd tags to build up a complex query. As an example, a query can be
constructed to find records in a database whose First_Name and Last_Name both begin with the same letter J, or
M. The desired query could be written in pseudo-code as follows.

((First_Name begins with J) AND (Last_Name begins with J)) OR
((First_Name begins with M) AND (Last_Name begins with M))

The pseudo code is translated into a URL as follows. Each line of the query becomes a pair of
-OpBegin=AND and -OpEnd=AND tags with a name/value parameter for First_Name and Last_Name contained
inside. The two lines are then combined using a pair of -OpBegin=OR and -OpEnd=OR tags. The nesting of the
command tags works like the nesting of parentheses in the pseudo code above to clarify how Lasso should
combine the results of different name/value parameters.

<a href="/response.lasso?-Search&
		 -Database=Contacts&
		 -Table=People&
		 -KeyField=ID&
		 -OpBegin=OR&
			 -OpBegin=AND&
				 First_Name=J&
				 Last_Name=J&
		 	 -OpEnd=AND&
			 -OpBegin=AND&
				 First_Name=M&
				 Last_Name=M&
			 -OpEnd=AND&
		 -OpEnd=OR">
	 First Name and Last Name both begin with J or M

1 2 2

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 8 — S e a r c h i n g a n d D i s p l a y i n g D a t a

The following results might be returned when this link is selected.

�	
Johnny Johnson

Jimmy James

Mark McPerson

Results
Lasso includes a set of command tags that allow the results of a search to be customized. These command
tags do not change the found set of records that are returned from the search, but they do change the data
that is returned to Lasso for formatting and display to the visitor. The results command tags are summarized
in Table 6: Results Command Tags.

Table 6: Results Command Tags

Tag	 Description	

-Distinct	 Specifies that only records with distinct values in all returned fields should be
returned. MySQL databases only.

-MaxRecords	 Specifies how many records should be shown from the found set. Optional,
defaults to 50.

-SkipRecords	 Specifies an offset into the found set at which records should start being shown.
Optional, defaults to 1.

-ReturnField	 Specifies a field that should be returned in the results of the search. Multiple
-ReturnField tags can be used to return multiple fields. Optional, defaults to
returning all fields in the searched table.

-SortField	 Specifies that the results should be sorted based on the data in the named field.
Multiple -SortField tags can be used for complex sorts. Optional, defaults to
returning data in the order it appears in the database.

-SortOrder	 When specified after a -SortField parameter, specifies the order of the sort,
either ascending, descending or custom. Optional, defaults to ascending for each
-SortField.

-SortRandom	 Sorts the returned results randomly. MySQL databases only.

-UseLimit	 Specifies that a MySQL LIMIT should be used instead of Lasso's built-in tools for
limiting the found set. MySQL databases only.

-NoValueLists	 Specifies that value lists should not be fetched with the results. This applies
to FileMaker Server data sources and may apply to others as well. Check the
chapters on each data source for details.

		

The results command tags are divided into three categories.

	 •	Sorting is specified using the -SortField and -SortOrder command tags. These tags change the order of the
records which are returned by the search. The sort is performed by the database application before Lasso
receives the record set.

The -SortRandom tag can be used to perform a random sort on the found set from MySQL databases. Note
that the sort will be random each time a set of records is returned so -MaxRecords and -SkipRecords cannot be
used to navigate a found set that is sorted randomly.

	 •	The portion of the Found Set being shown is specified using the -MaxRecords and -SkipRecords tags.
-MaxRecords sets the number of records which will be shown between the [Records] … [/Records] tags that
format the results for the visitor. The -SkipRecords tag sets the offset into the found set which is shown.
These two tags define the window of records which are shown and can be used to navigate through a found
set.

The -UseLimit tag instructs MySQL data sources to use a SQL LIMIT tag to restrict the found set based on the
values of the -MaxRecords and -SkipRecords tags. This may increase performance when many records are being
found, but -MaxRecords is set to a low value.

1 2 3

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 8 — S e a r c h i n g a n d D i s p l a y i n g D a t a

	 •	The Fields which are available are specified using the -ReturnField tag. Normally, all fields in the table that
was searched are returned. If any -ReturnField tags are specified then only those fields will be available to be
returned to the visitor using the [Field] tag. Specifying -ReturnField tags can improve the performance of Lasso
by not sending unnecessary data between the database and the Web server.

Note: In order to use the [KeyField_Value] tag within an inline the keyfield must be specified as one of the -
ReturnField values.

	 •	The -Distinct tag instructs MySQL data sources to return only records which contain distinct values across
all returned fields. This tag is useful when combined with a single -ReturnField tag and a -FindAll to return all
distinct values from a single field in the database.

To return sorted results:

Specify -SortField and -SortOrder command tags within the search parameters. The following inline includes
sort command tags. The records are first sorted by Last_Name in ascending order, then sorted by First_Name in
ascending order.

[Inline: -Search,
		 -Database='Contacts',
		 -Table='People',
		 -KeyField='ID',
		 'First_Name'='J',
		 -SortField='Last_Name', -SortOrder='Ascending',
		 -SortField='First_Name', -SortOrder='Ascending']
	 [Records]
		
[Field: 'First_Name'] [Field: 'Last_Name']
	 [/Records]
[/Inline]

The following results could be returned when this inline is run. The returned records are sorted in order of
Last_Name. If the Last_Name of two records are equal then those records are sorted in order of First_Name.

�	
Jane Doe

John Doe

Jane Person

John Person

To return a portion of a found set:

A portion of a found set can be returned by manipulating the values for -MaxRecords and -SkipRecords. In the
following example, a search is performed for records where the First_Name begins with J. This search returns
four records, but only the second two records are shown. -MaxRecords is set to 2 to show only two records and
-SkipRecords is set to 2 to skip the first two records.

[Inline: -Search,
		 -Database='Contacts',
		 -Table='People',
		 -KeyField='ID',
		 'First_Name'='J',
		 -MaxRecords=2,
		 -SkipRecords=2]
	 [Records]
		
[Field: 'First_Name']
	 [/Records]
[/Inline]

The following results could be returned when this inline is run. Neither of the Doe records from the
previous example are shown since they are skipped over.

�	
Jane Person

John Person

1 2 4

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 8 — S e a r c h i n g a n d D i s p l a y i n g D a t a

To limit the fields returned in search results:

Use the -ReturnField command tag. If a single -ReturnField command tag is used then only the fields that are
specified will be returned. If no -ReturnField command tags are specified then all fields within the current table
will be shown. In the following example, only the First_Name field is shown since it is the only field specified
within a -ReturnField command tag.

[Inline: -Search,
		 -Database='Contacts',
		 -Table='People',
		 -KeyField='ID',
		 'First_Name'='J',
		 -ReturnField='First_Name']
	 [Records]
		
[Field: 'First_Name']
	 [/Records]
[/Inline]

The following results could be returned when this link is selected. The Last_Name field cannot be shown for
any of these records since it was not specified in a -ReturnField command tag.

�	
Jane

John

Jane

John

If [Field: 'Last_Name'] were specified inside the [Inline] … [/Inline] tags and not specified as a -ReturnField then an
error would be returned rather than the indicated results.

Finding All Records
All records can be returned from a database using the -FindAll command tag. The -FindAll command tag
functions exactly like the -Search command tag except that no name/value parameters or operator tags are
required. Sort tags and tags which sort and limit the found set work the same as they do for -Search actions.
-FindAll actions can be specified in [Inline] … [/Inline] tags.

Note: If Classic Lasso syntax is enabled then the -FindAll command tag can also be used within HTML forms or
URLs. The use of Classic Lasso syntax has been deprecated so solutions which rely on it should be updated to
use the inline methods described in this chapter.

Table 7: -FindAll Action Requirements

Tag	 Description	

-FindAll	 The action which is to be performed. Required.

-Database	 The database which should be searched. Required.

-Table	 The table from the specified database which should be searched. Required.

-KeyField	 The name of the field which holds the primary key for the specified table.
Recommended.

-Host	 Optional inline host array. See the section on Inline Hosts in the Database
Interaction Fundamentals chapter for more information.

		

To find all records within a database:

The following [Inline] … [/Inline] tags find all records within a database Contacts and displays them. The results
are shown below.

1 2 5

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 8 — S e a r c h i n g a n d D i s p l a y i n g D a t a

[Inline: -FindAll,
		 -Database='Contacts',
		 -Table='People',
		 -KeyField='ID']
	 [Records]
		
[Field: 'First_Name'] [Field: 'Last_Name']
	 [/Records]
[/Inline]

�	
Jane Doe

John Person

Jane Person

John Doe

To return all unique field values:

The unique values from a field in a MySQL database can be returned using the -Distinct tag. Only records
which have distinct values across all fields will be returned. In the following example, a -FindAll action is used
on the People table of the Contacts database. Only distinct values from the Last_Name field are returned.

[Inline: -FindAll,
		 -Database='Contacts',
		 -Table='People',
		 -Distinct,
		 -SortField='First_Name',
		 -ReturnField='First_Name']
	 [Records]
		
[Field: 'First_Name']
	 [/Records]
[/Inline]

The following results are returned. Even though there are multiple instances of John and Jane in the
database, only one record for each name is returned.

�	
Jane

John

Finding Random Records
A random record can be returned from a database using the -Random command tag. The -Random command
tag functions exactly like the -Search command tag except that no name/value parameters or operator tags are
required. -Random actions can be specified in [Inline] … [/Inline] tags.

Note: If Classic Lasso syntax is enabled then the -Random command tag can also be used within HTML forms or
URLs. The use of Classic Lasso syntax has been deprecated so solutions which rely on it should be updated to
use the inline methods described in this chapter.

Table 8: -Random Action Requirements

Tag	 Description	

-Random	 The action which is to be performed. Required.

-Database	 The database which should be searched. Required.

-Table	 The table from the specified database which should be searched. Required.

-KeyField	 The name of the field which holds the primary key for the specified table.
Recommended.

-Host	 Optional inline host array. See the section on Inline Hosts in the Database
Interaction Fundamentals chapter for more information.

		

1 2 6

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 8 — S e a r c h i n g a n d D i s p l a y i n g D a t a

To find a single random record from a database:

The following inline finds a single random record from a FileMaker Pro database Contacts.fp3 and displays it.
-MaxRecords is set to 1 to ensure that only a single record is shown. One potential result is shown below. Each
time this inline is run a different record will be returned.

[Inline: -Random,
		 -Database='Contacts',
		 -Table='People',
		 -KeyField='ID',
		 -MaxRecords=1]
	 [Records]
		
[Field: 'First_Name'] [Field: 'Last_Name']
	 [/Records]
[/Inline]

�	
Jane Person

To return multiple records sorted in random order:

The -SortRandom tag can be used with the -Search or -FindAll actions to return many records from a MySQL
database sorted in random order. In the following example, all records from the People table of the
Contacts database are returned in random order.

[Inline: -FindAll,
		 -Database='Contacts',
		 -Table='People',
		 -KeyField='ID',
		 -SortRandom]
	 [Records]
		
[Field: 'First_Name'] [Field: 'Last_Name']
	 [/Records]
[/Inline]

�	
John Doe

Jane Doe

Jane Person

John Person

Displaying Data
The examples in this chapter have all relied on the [Records] … [/Records] tags and [Field] tag to display the results
of the search that have been performed. This section describes the use of these tags in more detail.

Table 9: Field Display Tags

Tag	 Description	

[Records] … [/Records]	 Loops through each record in a found set. Optional -InlineName parameter
specifies that results should be returned from a named inline. Synonym is [Rows]
… [/Rows].

[Field]	 Returns the value for a database field. Requires one parameter, the field name.
Optional parameter -RecordIndex specifies what record in the current found set a
field should be shown from. Synonym is [Column].

		

The [Field] tag always returns the value for a field from the current record when it is used within
[Records] … [/Records] tags. If the [Field] tag is used outside of [Records] … [/Records] tags then it returns
the value for a field from the first record in the found set. If the found set is only one record then the
[Records] … [/Records] tags are optional.

FileMaker Note: Lasso Connector for FileMaker Pro includes a collection of FileMaker Pro specific tags which
return database results. See the FileMaker Pro Data Sources chapter for more information.

1 2 7

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 8 — S e a r c h i n g a n d D i s p l a y i n g D a t a

To display the results from a search:

Use the [Records] … [/Records] tags and [Field] tag to display the results of a search. The following [Inline] … [/Inline]
tags perform a -FindAll action in a database Contacts. The results are returned each formatted on a line by itself.
The [Loop_Count] tag is used to indicate the order within the found set.

[Inline: -FindAll,
		 -Database='Contacts',
		 -Table='People',
		 -KeyField='ID']
	 [Records]
		
[Loop_Count]: [Field: 'First_Name'] [Field: 'Last_Name']
	 [/Records]
[/Inline]

�	
1: Jane Doe

2: John Person

3: Jane Person

4: John Doe

To display the results for a single record:

Use [Field] tags within the contents of the [Inline] … [/Inline] tags. The [Records] … [/Records] tags are unnecessary if
only a single record is returned. The following [Inline] … [/Inline] tags perform a -Search for a single record whose
primary key ID equals 1. The [KeyField_Value] is shown along with the [Field] values for the record.

[Inline: -Search,
		 -Database='Contacts',
		 -Table='People',
		 -KeyField='ID',
		 -KeyValue=1]
	
[KeyField_Value]: [Field: 'First_Name'] [Field: 'Last_Name']
[/Inline]

�	
1: Jane Doe

To display the results from a named inline:

Use the -InlineName parameter in both the opening [Inline] tag and in the opening [Records] tag. The
[Records] … [/Records] tags can be located anywhere in the page after the [Inline] … [/Inline] tags that define the
database action. The following example shows a -FindAll action at the top of a page in a LassoScript with the
results formatted later.

<?LassoScript
	 Inline: -FindAll,
		 -Database='Contacts',
		 -Table='People',
		 -KeyField='ID',
		 -InlineName='FindAll Results';
	 /Inline;
?>

… Page Contents …

[Records: -InlineName='FindAll Results']
	
[Loop_Count]: [Field: 'First_Name'] [Field: 'Last_Name']
[/Records]

�	
1: Jane Doe

2: John Person

3: Jane Person

4: John Doe

1 2 8

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 8 — S e a r c h i n g a n d D i s p l a y i n g D a t a

To display the results from a search out of order:

The -RecordIndex parameter of the [Field] tag can be used to show results out of order. Instead of using
[Records] … [/Records] tags to loop through a found set, the following example uses [Loop] … [/Loop] tags to loop
down through the found set from [MaxRecords_Value] to 1. The [Field] tags all reference the [Loop_Count] in their
-RecordIndex parameter.

[Inline: -FindAll,
		 -Database='Contacts',
		 -Table='People',
		 -KeyField='ID'']
	 [Loop: -LoopFrom=(MaxRecords_Value), -LoopTo=1, -LoopIncrement=-1]
		
[Loop_Count]: [Field: 'First_Name', -RecordIndex=(Loop_Count)]
			 [Field: 'Last_Name', -RecordIndex=(Loop_Count)]
	 [/Loop]
[/Inline]

�	
4: John Doe

3: Jane Person

2: John Person

1: Jane Doe

Linking to Data
This section describes how to create links which allow a visitor to manipulate the found set. The following
types of links can be created.

	 •	Navigation – Links can be created which allow a visitor to page through a found set. Only a portion of the
found set needs to be shown, but the entire found set can be accessed.

	 •	Detail – Links can be created which allow detail about a particular record to be shown in another Lasso
page.

	 •	Sorting – Links can be provided to re-sort the current found set on a different field.

Note: If Classic Lasso syntax is enabled then the links tags can be used to trigger actions using command tags
embedded in URLs. The use of Classic Lasso syntax has been deprecated so solutions which rely on it should be
updated to use the inline methods described in this chapter.

Most of the link techniques implicitly assume that the records within the database are not going to change
while the visitor is navigating through the found set. The database search is actually performed again for
every page served to a visitor and if the number of results change then the records being shown to the visitor
can be shifted or altered as soon as another link is selected.

Link Tags
Lasso 8 includes many tags which make creating detail links and navigation links easy within Lasso solutions.
The general purpose link tags are specified in Table 10: Link Tags. The common parameters for all link tags
are specified in Table 11: Link Tag Parameters.

The remainder of the chapter lists and demonstrates the link URL, container, and parameter tags. Tags which
generate URLs for links automatically are listed in Table 12: Link URL Tags. Container tags which generate
entire HTML anchor tags <a> automatically are listed in Table 13: Link Container Tags. Tags which provide
parameter arrays for each link option are listed in Table 14: Link Parameter Tags.

1 2 9

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 8 — S e a r c h i n g a n d D i s p l a y i n g D a t a

Table 10: Link Tags

Tag	 Description	

[Link] … [/Link]	 General purpose link tag that provides an anchor tag with the specified
parameters. The -Response parameter is used as the URL for the link.

[Link_Params]	 General purpose link tag that processes a set of parameters using the common
rules for all link tags.

[Link_SetFormat]	 Sets a standard set of options that will be used for all link tags that follow in the
current Lasso page.

[Link_URL]	 General purpose link tag that provides a URL based on the specified parameters.
The -Response parameter is used as the URL for the link.

		

Each of the general purpose link tags implement the basic behavior of all the link tags, but are not usually
used on their own. The section on Link Tag Parameters below describes the common parameters that all link
tags interpret. The following sections include the link URL, container, and parameter tags and examples of
their use.

Note: The [Link_…] tags do not include values for the -SQL, -Username, -Password or the -ReturnField tags in the links
they generate.

Link Tag Parameters
All of the link tags accept the same parameters which allow the link that is being formed to be customized.
These parameters include all the command tags which can be passed to the opening [Inline] tag and a series
of parameters detailed in Table 11: Link Tag Parameters which allow various command tags to be removed
from the generated link tags.

The link tags interpret their parameters as follows.

	 •	The parameters are processed in the order they are specified within the link tag. Later parameters override
earlier parameters.

	 •	Most link tags process [Action_Params] first, then any parameters specified in [Link_SetFormat], and finally
the parameters specified within the link tag itself. The general purpose link tags do not include [Action_
Params] automatically.

	 •	Parameters of type array are inserted into the parameters as if each item of the array was specified in order
at the location of the array.

	 •	Many command tags will only be included once in the resulting link. These include -Database, -Table,
-KeyField, -MaxRecords, and any other command tags that can only be specified once within an inline. The
last value for the command tag will be included in the resulting link.

	 •	Only one action such as -Search, -FindAll, or -Nothing will be included in the resulting link. The last action
specified in the link tag will be used.

	 •	Command tags such as -Required, -Op, -OpBegin, -OpEnd, -SortField, -SortOrder, and -Token will be included in
the order they are specified within the tag.

	 •	The resulting link will consist of the action followed by all command tags specified once in alphabetical
order, and finally all name/value parameters and command tags that are specified multiple times in the
same order they were specified in the parameters.

	 •	All -No… parameters are interpreted at the location they occur in the parameters. If a -NoDatabase parameter
is specified early in the parameter list and a -Database command tag is included later then the -Database
command tag will be included in the resulting link.

	 •	The -NoClassic parameter removes all command tags that are not essential to specifying the search and
location in the found set to an [Inline] tag. The -Database, -Table, -KeyField, and action are all removed. All
name/value parameters, -Sort… tags, -Op tags, and either -MaxRecords and -SkipRecords or -KeyValue are
included.

1 3 0

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 8 — S e a r c h i n g a n d D i s p l a y i n g D a t a

	 •	The value of the -Response command tag will be used as the URL for the resulting link. The link tags always
link to a response file on the same server they are called. If not specified the -Response will be the same as
[Response_FilePath].

	 •	The -SQL, -Username, -Password, and -ReturnField tags are never returned by the link tags.

Note: The [Referrer] and [Referrer_URL] tags are special cases which simply return the referrer specified in the HTTP
request header. They do not accept any parameters.

Table 11: Link Tag Parameters

Tag	 Description	

Command Tag	 Inserts the specified command tag. Either appends the command tag or overrides
an existing command tag with the new value.

Name/Value Pair	 Inserts the specified name/value pair.

Array Parameter	 An array of pairs is inserted as if each name/value pair in the array was specified
in the tag parameters at the location of the array.

-NoAction	 Removes the action command tag.

-NoClassic	 Removes all parameters required to specify an action in Classic Lasso leaving
only those parameters required to specify the query and current location in the
found set.

-NoDatabase	 Removes the -Database command tag.

-NoTable	 Removes the -Table or -Layout command tag. -NoLayout is a synonym.

-NoKeyField	 Removes the -KeyField command tag.

-NoKeyValue	 Removes the -KeyValue command tag.

-NoOperatorLogical	 Removes the -OperatorLogical command tag.

-NoResponse	 Removes the -Response command tag.

-NoMaxRecords	 Removes the -MaxRecords command tag.

-NoSkipRecords	 Removes the -SkipRecords command tag.

-NoParams	 Removes name/value pairs, -Operator, -OperatorBegin, -OperatorEnd, and -
Required tags.

-NoSort	 Removes all -Sort… command tags.

-NoToken, -NoToken.Name	 Removes the -Token command tag. With a parameter as -NoToken.Name
removes the specified token command tag.

-NoTokens	 Removes all -Token… command tags.

-NoSchema	 Removes the -Schema command tag for JDBC data sources.

-No.Name	 Removes a specified name/value parameter.

-Response	 Specifies the file that will be used as the URL for the link tag. The link tags
always link to a file on the current server.

		

Link URL Tags
The tags listed in Table 12: Link URL Tags each return a URL based on the current database action. Each of
these tags accepts the same parameters as specified in Table 11: Link Tag Parameters above and corresponds
to matching container and parameter tags. Examples of the link tags are included in the Link Examples
section that follows.

1 3 1

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 8 — S e a r c h i n g a n d D i s p l a y i n g D a t a

Table 12: Link URL Tags

Tag	 Description	

[Link_CurrentActionURL]	 Returns a link to the current Lasso action.

[Link_FirstGroupURL]	 Returns a link to the first group of records based on the current Lasso action.
Sets -SkipRecords to 0.

[Link_PrevGroupURL]	 Returns a link to the next group of records based on the current Lasso action.
Changes -SkipRecords.

[Link_NextGroupURL]	 Returns a link to the next group of records based on the current Lasso action.
Changes -SkipRecords.

[Link_LastGroupURL]	 Returns a link to the last group of records based on the current Lasso action.
Changes -SkipRecords.

[Link_CurrentRecordURL]	 Returns a link to the current record. Sets -MaxRecords to 1 and changes -
SkipRecords.

[Link_FirstRecordURL]	 Returns a link to the first record based on the current Lasso action. Sets -
MaxRecords to 1 and -SkipRecords to 0.

[Link_PrevRecordURL]	 Returns a link to the next record based on the current Lasso action. Sets -
MaxRecords to 1 and changes
-SkipRecords.

[Link_NextRecordURL]	 Returns a link to the next record based on the current Lasso action. Sets -
MaxRecords to 1 and changes
-SkipRecords.

[Link_LastRecordURL]	 Returns a link to the last record based on the current Lasso action. Sets -
MaxRecords to 1 and changes
-SkipRecords.

[Link_DetailURL]	 Returns a link to the current record using the primary key and key value.
Changes -KeyValue.

[Referrer_URL]	 Returns a link to the previous page which the visitor was at before the current
page. [Referer_URL] is a synonym.

t		

Note: The [Referrer_URL] tag is a special case which simply returns the referrer specified in the HTTP request
header. It does not accept any parameters.

Link Container Tags
The tags listed in Table 13: Link Container Tags each return an anchor tag based on the current database
action. The anchor tags surround the contents of the container tag. If the link tag is not valid then no result is
returned. Each of these tags accepts the same parameters as specified in Table 11: Link Tag Parameters above
and corresponds to matching URL and parameter tags. Examples of the link tags are included in the Link
Examples section that follows.

1 3 2

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 8 — S e a r c h i n g a n d D i s p l a y i n g D a t a

Table 13: Link Container Tags

Tag	 Description	

[Link_CurrentAction]	 Returns a link to the current Lasso action.

[Link_FirstGroup]	 Returns a link to the first group of records based on the current Lasso action.
Sets -SkipRecords to 0.

[Link_PrevGroup]	 Returns a link to the previous group of records based on the current Lasso
action. Changes -SkipRecords.

[Link_NextGroup]	 Returns a link to the next group of records based on the current Lasso action.
Changes -SkipRecords.

[Link_LastGroup]	 Returns a link to the last group of records based on the current Lasso action.
Changes -SkipRecords.

[Link_CurrentRecord]	 Returns a link to the current record. Sets -MaxRecords to 1 and changes -
SkipRecords.

[Link_FirstRecord]	 Returns a link to the first record based on the current Lasso action. Sets -
MaxRecords to 1 and -SkipRecords to 0.

[Link_PrevRecord]	 Returns a link to the previous record based on the current Lasso action. Sets
-MaxRecords to 1 and changes -SkipRecords.

[Link_NextRecord]	 Returns a link to the next record based on the current Lasso action. Sets -
MaxRecords to 1 and changes
-SkipRecords.

[Link_LastRecord]	 Returns a link to the last record based on the current Lasso action. Sets -
MaxRecords to 1 and changes
-SkipRecords.

[Link_Detail]	 Returns a link to the current record using the -KeyField and -KeyValue. Changes
-KeyValue.

[Referrer]	 Returns a link to the previous page which the visitor was at before the current
page. [Referer] is a synonym.

t		

Note: The [Referrer] … [/Referrer] tag is a special case which simply returns the referrer specified in the HTTP request
header. It does not accept any parameters.

Link Parameter Tags
The tags listed in Table 14: Link Parameter Tags each return an array of parameters based on the current
database action. Each of these tags accepts the same parameters as specified in Table 11: Link Tag Parameters
above and corresponds to matching container and URL tags. Examples of the link tags are included in the
Link Examples section that follows.

1 3 3

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 8 — S e a r c h i n g a n d D i s p l a y i n g D a t a

Table 14: Link Parameter Tags

Tag	 Description	

[Link_CurrentActionParams]	 Returns a link to the current Lasso action.

[Link_FirstGroupParams]	 Returns a link to the first group of records based on the current Lasso action.
Sets -SkipRecords to 0.

[Link_PrevGroupParams]	 Returns a link to the previous group of records based on the current Lasso
action. Changes -SkipRecords.

[Link_NextGroupParams]	 Returns a link to the next group of records based on the current Lasso action.
Changes -SkipRecords.

[Link_LastGroupParams]	 Returns a link to the last group of records based on the current Lasso action.
Changes -SkipRecords.

[Link_CurrentRecordParams]	 Returns a link to the current record. Sets -MaxRecords to 1 and changes -
SkipRecords.

[Link_FirstRecordParams]	 Returns a link to the first record based on the current Lasso action. Sets -
MaxRecords to 1 and -SkipRecords to 0.

[Link_PrevRecordParams]	 Returns a link to the previous record based on the current Lasso action. Sets
-MaxRecords to 1 and changes
-SkipRecords.

[Link_NextRecordParams]	 Returns a link to the next record based on the current Lasso action. Sets -
MaxRecords to 1 and changes
-SkipRecords.

[Link_LastRecordParams]	 Returns a link to the last record based on the current Lasso action. Sets -
MaxRecords to 1 and changes
-SkipRecords.

[Link_DetailParams]	 Returns a link to the current record using the primary key and key value.
Changes -KeyValue.

t		

Note: There is no link parameter tag equivalent to the referrer tags.

Link Examples
The basic technique for using the link tags is the same as that which was described to allow site visitors to
enter values into HTML forms and then use those values within an [Inline] … [/Inline] action. The [Inline] tags can
have some command tags and search parameters specified explicitly, with variables, an array, [Action_Params],
or one of the link tags defining the rest.

For example, an [Inline] … [/Inline] could be specified to find all records within a database as follows. The entire
action is specified within the opening [Inline] tag. Each time a page with the code on it is visited the action will
be performed as written.

[Inline: -FindAll,
		 -Database='Contacts',
		 -Table='People',
		 -KeyField='ID',
		 -MaxRecords=10]
	 …
[/Inline]

The same inline can be modified so that it can accept parameters from an HTML form or URL which is
used to load the page it is on, but can still act as a standalone action. This is accomplished by adding an
[Action_Params] tag to the opening [Inline] tag.

1 3 4

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 8 — S e a r c h i n g a n d D i s p l a y i n g D a t a

[Inline: (Action_Params),
		 -Search,
		 -Database='Contacts',
		 -Table='People',
		 -KeyField='ID',
		 -MaxRecords=4]
	 …
[/Inline]

Any command tags or name/value pairs in the HTML form or URL that triggers the page with this inline will
be passed into the inline through the [Action_Params] tag as if they had been typed directly into the [Inline].
However, the command tags specified directly in the [Inline] tag will override any corresponding tags from the
[Action_Params].

Since the action -Search is specified after the [Action_Params] array it will override any other action
from the array. The action of this inline will always be -Search. Similarly, all of the -Database, -Table,
-KeyField, or -MaxRecords tags will have the values specified in the [Inline] overriding any values passed in
through [Action_Params].

The various link tags can be used to generate URLs which work with the specified inline in order to change
the set of records being shown, the sort order and sort field, etc. The link tags are able to override any
command tags not specified in the opening [Inline] tag, but the basic action is always performed exactly as
specified.

Navigation Links
Navigation links are created by manipulating the value for -SkipRecords so that the visitor is shown a different
portion of the found set each time they follow a link or by setting -KeyValue to an appropriate value to show
one record in a database.

To create next and previous links:

The [Link_NextGroup] … [/Link_NextGroup] and [Link_PrevGroup] … [/Link_PrevGroup] tags can be used with the inline
specified above to page through a set of found records.

The [Link_SetFormat] tag is used to include a -NoClassic parameter in each link tag that follows. This ensures that
the -Database, -Table, and -KeyField are not included in the links generated by the link tags.

The full inline is shown below. It uses the [Records] … [/Records] tags to show the people that have been found
in the database and includes next and previous links to page through the found set.

[Inline: (Action_Params),
		 -Search,
		 -Database='Contacts',
		 -Table='People',
		 -KeyField='ID',
		 -MaxRecords=4]

	 <p>[Found_Count] records were found, showing [Shown_Count]
	 records from [Shown_First] to [Shown_Last].

	 [Records]
		
[Field: 'First_Name'] [Field: 'Last_Name']
	 [/Records]

	 [Link_SetFormat: -NoClassic]
	 [Link_PrevGroup]
Previous [MaxRecords_Value] Records [/Link_PrevGroup]
	 [Link_NextGroup]
Next [MaxRecords_Value] Records [/Link_NextGroup]
[/Inline]

The first time this page is loaded the first four records from the database are shown. Since this is the first
group of records in the database only the Next 4 Records link is displayed.

1 3 5

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 8 — S e a r c h i n g a n d D i s p l a y i n g D a t a

�	 <p>16 records were found, showing 4 records from 1 to 4.

Jane Doe

John Person

Jane Person

John Doe

Next 4 Records

If the Next 4 Records link is selected then the same page is reloaded. The value for -SkipRecords is taken from
the link tag and passed into the opening [Inline] tag through the [Action_Params] array. The following results are
displayed. This time both the Next 4 Records and the Previous 4 Records links are displayed.

�	 <p>16 records were found, showing 4 records from 5 to 8.

Jane Surname

John Last_Name

Mark Last_Name

Tom Surname

Previous 4 Records

Next 4 Records

To create first and last links:

Links to the first and last groups of records in the found set can be added using the
[Link_FirstGroup] … [/Link_FirstGroup] and [Link_LastGroup] … [/Link_LastGroup] tags. The following inline includes
both next/previous links and first/last links.

[Inline: (Action_Params),
		 -Search,
		 -Database='Contacts',
		 -Table='People',
		 -KeyField='ID',
		 -MaxRecords=4]

	 <p>[Found_Count] records were found, showing [Shown_Count]
	 records from [Shown_First] to [Shown_Last].

	 [Records]
		
[Field: 'First_Name'] [Field: 'Last_Name']
	 [/Records]

	 [Link_SetFormat: -NoClassic]
	 [Link_FirstGroup]
First [MaxRecords_Value] Records [/Link_FirstGroup]
	 [Link_PrevGroup]
Previous [MaxRecords_Value] Records [/Link_PrevGroup]
	 [Link_NextGroup]
Next [MaxRecords_Value] Records [/Link_NextGroup]
	 [Link_LastGroup]
Last [MaxRecords_Value] Records [/Link_LastGroup]
[/Inline]

The first time this page is loaded the first four records from the database are shown. Since this is the
first group of records in the database only the Next 4 Records and Last 4 Records links are displayed. The
Previous 4 Records and First 4 Records links will automatically appear if either of these links are selected by the
visitor.

�	 <p>16 records were found, showing 4 records from 1 to 4.

Jane Doe

John Person

Jane Person

John Doe

Next 4 Records

Last 4 Records

1 3 6

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 8 — S e a r c h i n g a n d D i s p l a y i n g D a t a

To create links to page through the found set:

Many Web sites include page links which allow the visitor to jump directly to any set of records within the
found set. The example -FindAll returns 16 records from Contacts so four page links would be created to jump to
the 1st, 5th, 9th, and 13th records.

A set of page links can be created using the [Link_CurrentActionURL] tag as a base and then customizing the
-SkipRecords value as needed. The following loop creates as many page links as are needed for the current
found set.

[Inline: (Action_Params),
		 -Search,
		 -Database='Contacts',
		 -Table='People',
		 -KeyField='ID',
		 -MaxRecords=4]

	 <p>[Found_Count] records were found, showing [Shown_Count]
	 records from [Shown_First] to [Shown_Last].

	 [Records]
		
[Field: 'First_Name'] [Field: 'Last_Name']
	 [/Records]

	 [Link_SetFormat: -NoClassic]
	 [Variable: 'Count' = 0]
	 [While: $Count < (Found_Count)]
		

			 Page [Loop_Count]
		
		 [Variable: 'Count' = $Count + (MaxRecords_Value)]
	 [/While]

[/Inline]

The results of this code for the example -Search would be the following. There are four page links. The first is
equivalent to the First 4 Records link created above and the last is equivalent to the Last 4 Records link created
above.

�	 <p>16 records were found, showing 4 records from 1 to 4.

Jane Doe

John Person

Jane Person

John Doe

Page 1

Page 2

Page 3

Page 4

Sorting Links
Sorting links are created by adding or manipulating -SortField and -SortOrder command tags. The same found
set is shown, but the order is determined by which link is selected. Often, the column headers in a table of
results from a database will represent the sort links that allow the table to be resorted by the values in that
specific column.

To create links that sort the found set:

The following code performs a -Search in an inline and formats the results as a table. The column heading
at the top of each table column is a link which re-sorts the results by the field values in that column.
The links for sorting the found set are created by specifying -NoSort and -SortField parameters to the
[Link_FirstGroup] … [/Link_FirstGroup] tags.

1 3 7

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 8 — S e a r c h i n g a n d D i s p l a y i n g D a t a

[Inline: (Action_Params),
		 -Search,
		 -Database='Contacts',
		 -Table='People',
		 -KeyField='ID',
		 -MaxRecords=4]

	 [Link_SetFormat: -NoClassic]
	 <table>
		 <tr>
			 <th>
				 [Link_FirstGroup: -NoSort, -SortOrder='First_Name']
					 First Name
				 [/Link_FirstGroup]
			 </th>
			 <th>
				 [Link_FirstGroup: -NoSort, -SortOrder='Last_Name']
					 Last Name
				 [/Link_FirstGroup]
			 </th>
		 </tr>

	 [Records]
		 <tr>
			 <td>[Field: 'First_Name']</td>
			 <td>[Field: 'Last_Name']</td>
		 </tr>
	 [/Records]

	 </table>
[/Inline]

Detail Links
Detail links are created in order to show data from a particular record in the database table. Usually, a listing
Lasso page will contain only limited data from each record in the found set and a detail Lasso page will
contain significantly more information about a particular record.

A link to a particular record can be created using the [Link_Detail] … [/Link_Detail] tags to set the -KeyField and
-KeyValue fields. This method is guaranteed to return the selected record even if the database is changing while
the visitor is navigating. However, it is difficult to create next and previous links on the detail page. This
option is most suitable if the selected database record will need to be updated or deleted.

Alternately, a link to a particular record can be created using [Link_CurrentAction] … [/Link_CurrentAction] and
setting -MaxRecords to 1. This method allows the visitor to continue navigating by records on the detail page.

To create a link to a particular record:

There are two Lasso pages involved in most detail links. The listing Lasso page default.lasso includes the
[Inline] … [/Inline] tags that define the search for the found set. The detail Lasso page response.lasso includes the
[Inline] … [/Inline] tags that find and display the individual record.

	 1	The [Inline] tag in default.lasso simply performs a -FindAll action. Each record in the result set is displayed with
a link to response.lasso created using the [Link_Detail] … [/Link_Detail] tags.

[Inline:-FindAll,
		 -Database='Contacts',
		 -Table='People',
		 -KeyField='ID',
		 -MaxRecords=4]
	 [Link_SetFormat: -NoClassic]
	 [Records]
		
[Link_Detail: -Response='response.lasso']

1 3 8

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 8 — S e a r c h i n g a n d D i s p l a y i n g D a t a

			 [Field: 'First_Name'] [Field: 'Last_Name']
		 [/Link_Detail]
	 [/Records]
[/Inline]

�	
Jane Doe

John Person

Jane Person

John Doe

	 2	The [Inline] tag on response.lasso uses [Action_Params] to pull the values from the URL generated by the link
tags. The results contain more information about the particular records than is shown in the listing. In this
case, the Phone_Number field is included as well as the First_Name and Last_Name.

[Inline:(Action_Params),
		 -Search,
		 -Database='Contacts',
		 -Table='People',
		 -KeyField='ID']
	
[Field: 'First_Name'] [Field: 'Last_Name']
	
[Field: 'Phone_Number']
	 …
[/Inline]

�	
Jane Doe

555-1212

To create a link to the current record in the found set:

There are two Lasso pages involved in most detail links. The listing Lasso page default.lasso includes
the [Inline] … [/Inline] tags that define the search for the found set. The detail Lasso page response.lasso includes
the [Inline] … [/Inline] tags that find and display the individual record. The [Link_CurrentAction] … [/Link_CurrentAction]
tags are used to create a link from default.lasso to response.lasso showing a particular record.

	 1	The [Inline] tag on default.lasso simply performs a -FindAll action. Each record in the result set is displayed with
a link to response.lasso created using the [Link_CurrentAction] … [/Link_CurrentAction] tag.

[Inline:-FindAll,
		 -Database='Contacts',
		 -Table='People',
		 -KeyField='ID',
		 -MaxRecords=4]
	 [Link_SetFormat: -NoClassic]
	 [Records]
		
[Link_CurrentAction: -Response='response.lasso', -MaxRecords=1]
			 [Field: 'First_Name'] [Field: 'Last_Name']
		 [/Link_CurrentAction]
	 [/Records]
[/Inline]

�	
Jane Doe

John Person

Jane Person

John Doe

	 2	The [Inline] tag in response.lasso uses [Action_Params] to pull the values from the URL generated by the link
tags. The results contain more information about the particular records than is shown in the listing. In this
case, the Phone_Number field is included as well as the First_Name and Last_Name.

The detail page can also contain links to the previous and next records in the found set. These are created
using the [Link_PrevRecord] … [/Link_PrevRecord] and [Link_NextRecord] … [/Link_NextRecord] tags. The visitor can
continue navigating the found set record by record.

1 3 9

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 8 — S e a r c h i n g a n d D i s p l a y i n g D a t a

[Inline:(Action_Params),
		 -Search,
		 -Database='Contacts',
		 -Table='People',
		 -KeyField='ID']
	
[Field: 'First_Name'] [Field: 'Last_Name']
	
[Field: 'Phone_Number']
	 …
	 [Link_SetFormat: -NoClassic]
	
[Link_PrevRecord] Previous Record [/Link_PrevRecord]
	
[Link_NextRecord] Next Record [/Link_NextRecord]
[/Inline]

�	
Jane Last_Name

555-1212

Previous Record

Next Record

1 4 0

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 8 — S e a r c h i n g a n d D i s p l a y i n g D a t a

9
Chapter 9

Adding and Updating Records

This chapter documents the Lasso command tags which add, update, delete, and duplicate records within
Lasso compatible databases.

	 •	Overview provides an introduction to the database actions described in this chapter and presents
important security considerations.

	 •	Adding Records includes requirements and instructions for adding records to a database.

	 •	Updating Records includes requirements and instructions for updating records within a database.

	 •	Deleting Records includes requirements and instructions for deleting records within a database.

	 •	Duplicating Records includes requirements and instructions for duplicating records within a database.

Overview
Lasso provides command tags for adding, updating, deleting, and duplicating records within Lasso
compatible databases. These command tags are used in conjunction with additional command tags and
name/value parameters in order to perform the desired database action in a specific database and table or
within a specific record.

The command tags documented in this chapter are listed in Table 1: Command Tags. The sections that
follow describe the additional command tags and name/value parameters required for each database action.

Table 1: Command Tags

Tag	 Description	

-Add	 Adds a record to a database.

-Update	 Updates a record or records within a database.

-Delete	 Removes a record or records from a database.

-Duplicate	 Duplicates a record within a database. Works with FileMaker Pro databases.
		

Character Encoding
Lasso stores and retrieves data from data sources based on the preferences established in the Setup > Data
Sources section of Lasso Administration. The following rules apply for each standard data source.

Inline Host – The character encoding can be specified explicitly using a -TableEncoding parameter within the
-Host array.

MySQL – By default all communication is in the Latin-1 (ISO 8859-1) character set. This is to preserve
backwards compatibility with prior versions of Lasso. The character set can be changed to the Unicode
standard UTF-8 character set in the Setup > Data Sources > Tables section of Lasso Administration.

1 4 1

L a s s o 8 . 5 L a n g u a g e G u i d e

FileMaker Pro – By default all communication is in the MacRoman character set when Lasso Professional
is hosted on Mac OS X or in the Latin-1 (ISO 8859-1) character set when Lasso Professional is hosted on
Windows. The preference in the Setup > Data Sources > Databases section of Lasso Administration can be
used to change the character set for cross-platform communications.

JDBC – All communication with JDBC data sources is in the Unicode standard UTF-8 character set.

See the Lasso Professional 8 Setup Guide for more information about how to change the character set settings
in Lasso Administration.

Error Reporting
After a database action has been performed, Lasso reports any errors which occurred via the [Error_CurrentError]
tag. The value of this tag should be checked to ensure that the database action was successfully performed.

To display the current error code and message:

The following code can be used to display the current error message. This code should be placed in a format
file which is a response to a database action or within a pair of [Inline] … [/Inline] tags.

[Error_CurrentError: -ErrorCode]: [Error_CurrentError]

If the database action was performed successfully then the following result will be returned.

0: No Error

To check for a specific error code and message:

The following example shows how to perform code to correct or report a specific error if one occurs. The
following example uses a conditional [If] … [/If] tag to check the current error message and see if it is equal to
[Error_AddError].

[If: (Error_CurrentError) == (Error_AddError)]
	 An Add Error has occurred!
[/If]

Full documentation about error tags and error codes can be found in the Error Control chapter. A list of all
Lasso error codes and messages can be found in Appendix B: Error Codes.

Classic Lasso
If Classic Lasso support has been disabled within Lasso Administration then database actions will not be
performed automatically if they are specified within HTML forms or URLs. Although the database action will
not be performed, the -Response tag will function normally. Use the following code in the response page to
the HTML forms or URL to trigger the database action.

[Inline: (Action_Params)]
	 [Error_CurrentError: -ErrorCode]: [Error_CurrentError]
[/Inline]

See the Database Interaction Fundamentals chapter and the Setting Site Preferences chapter of the Lasso
Professional 8 Setup Guide for more information.

Security
Lasso has a robust internal security system that can be used to restrict access to database actions or to allow
only specific users to perform database actions. If a database action is attempted when the current visitor has
insufficient permissions then they will be prompted for a username and password. An error will be returned
if the visitor does not enter a valid username and password.

Note: If an inline host is specified with a -Host array then Lasso security is bypassed.

1 4 2

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 9 – A d d i n g a n d U p d a t i n g R e c o r d s

An [Inline] … [/Inline] can be specified to execute with the permissions of a specific user by specifying -Username
and -Password command tags within the [Inline] tag. This allows the database action to be performed even
though the current site visitor does not necessarily have permissions to perform the database action. In
essence, a valid username and password are embedded into the format file.

Table 2: Security Command Tags

Tag	 Description	

-Username	 Specifies the username from Lasso Security which should be used to execute the
database action.

-Password	 Specifies the password which corresponds to the username.
		

To specify a username and password in an [Inline]:

The following example shows a -Delete action performed within an [Inline] tag using the permissions granted
for username SiteAdmin with password Secret.

[Inline: -Delete,
	 -Database='Contacts',
	 -Table='People',
	 -KeyField='ID',
	 -KeyValue=137,
	 -Username='SiteAdmin',
	 -Password='Secret']

	 [Error_CurrentError: -ErrorCode]: [Error_CurrentError]

[/Inline]

A specified username and password is only valid for the [Inline] … [/Inline] tags in which it is specified. It is not
valid within any nested [Inline] … [/Inline] tags. See the Setting Up Security chapter of the Lasso Professional 8
Setup Guide for additional important information regarding embedding usernames and passwords into [Inline]
tags.

Adding Records
Records can be added to any Lasso compatible database using the -Add command tag. The -Add command
tag requires that a number of additional command tags be defined in order to perform the -Add action. The
required command tags are detailed in the following table.

Table 3: -Add Action Requirements

Tag	 Description	

-Add	 The action which is to be performed. Required.

-Database	 The database in which the record should be added. Required.

-Table	 The table from the specified database in which the record should be added.
Required.

-KeyField	 The name of the field which holds the primary key for the specified table.
Recommended.

Name/Value Parameters	 A variable number of name/value parameters specify the initial field values for the
added record. Optional.

-Host	 Optional inline host array. See the section on Inline Hosts in the Database
Interaction Fundamentals chapter for more information.

		

Any name/value parameters included in the -Add action will be used to set the starting values for the record
which is added to the database. All name/value parameters must reference a writable field within the
database. Any fields which are not referenced will be set to their default values according to the database’s
configuration.

1 4 3

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 9 – A d d i n g a n d U p d a t i n g R e c o r d s

Lasso returns a reference to the record which was added to the database. The reference is different depending
on what type of database to which the record was added.

	 •	SQL Data Sources – The -KeyField tag should be set to the primary key field or auto-increment field of the
table. Lasso will return the added record as the result of the action by checking the specified key field for
the last inserted record. The [KeyField_Value] tag can be used to inspect the value of the auto-increment field
for the inserted record.

If no -KeyField is specified, the specified -KeyField is not an auto-increment field, or -MaxRecords is set to 0
then no record will be returned as a result of the -Add action. This can be useful in situations where a large
record is being added to the database and there is no need to inspect the values which were added.

	 •	FileMaker Pro – The [KeyField_Value] tag is set to the value of the internal Record ID for the new record. The
Record ID functions as an auto-increment field that is automatically maintained by FileMaker Pro for all
records.

FileMaker Pro automatically performs a search for the record which was added to the database. The found
set resulting from an -Add action is equivalent to a search for the single record using the [KeyField_Value].

The value for -KeyField is ignored when adding records to a FileMaker Pro database. The value
for [KeyField_Value] is always the internal Record ID value.

Note: Consult the documentation for third-party data sources to see what behavior they implement when
adding records to the database.

To add a record using [Inline] … [/Inline] tags:

The following example shows how to perform an -Add action by specifying the required command tags
within an opening [Inline] tag. -Database is set to Contacts, -Table is set to People, and -KeyField is set to ID.
Feedback that the -Add action was successful is provided to the visitor inside the [Inline] … [/Inline] tags using the
[Error_CurrentError] tag. The added record will only include default values as defined within the database itself.

[Inline: -Add,
		 -Database='Contacts',
		 -Table='People',
		 -KeyField='ID']

	 <p>[Error_CurrentError: -ErrorCode]: [Error_CurrentError]

[/Inline]

If the -Add action is successful then the following will be returned.

�	 0: No Error

To add a record with data using [Inline] … [/Inline] tags:

The following example shows how to perform an -Add action by specifying the required command tags within
an opening [Inline] tag. In addition, the [Inline] tag includes a series of name/value parameters that define
the values for various fields within the record that is to be added. The First_Name field is set to John and the
Last_Name field is set to Doe. The added record will include these values as well as any default values defined
in the database itself.

[Inline: -Add,
		 -Database='Contacts',
		 -Table='People',
		 -KeyField='ID',
		 'First_Name'='John',
		 'Last_Name'='Doe']

	 <p>[Error_CurrentError: -ErrorCode]: [Error_CurrentError]
	
Record [Field: 'ID'] was added for [Field: 'First_Name'] [Field: 'Last_Name'].

[/Inline]

The results of the -Add action contain the values for the record that was just added to the database.

1 4 4

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 9 – A d d i n g a n d U p d a t i n g R e c o r d s

�	 0: No Error
Record 2 was added for John Doe.

To add a record using an HTML form:

The following example shows how to perform an -Add action using an HTML form to send values into an
[Inline] tag through [Action_Params]. The text inputs provide a way for the site visitor to define the initial values
for various fields in the record which will be added to the database. The site visitor can set values for the
fields First_Name and Last_Name.

<form action="response.lasso" method="POST">
	
First Name: <input type="text" name="First_Name" value="">
	
Last Name: <input type="text" name="Last_Name" value="">
	
<input type="submit" name="-Nothing" value="Add Record">
</form>

The response page for the form, response.lasso, contains the following code that performs the action using an
[Inline] tag and provides feedback that the record was successfully added to the database. The field values for
the record that was just added to the database are automatically available within the [Inline] … [/Inline] tags.

[Inline: (Action_Params),
		 -Add,
		 -Database='Contacts',
		 -Table='People',
		 -Keyfield='ID']
	 <p>[Error_CurrentError: -ErrorCode]: [Error_CurrentError]
	
Record [Field: 'ID'] was added for [Field: 'First_Name'] [Field: 'Last_Name'].
[/Inline]

If the form is submitted with Mary in the First Name input and Person in the Last Name input then the following
will be returned.

�	 0: No Error
Record 3 was added for Mary Person

To add a record using a URL:

The following example shows how to perform an -Add action using a URL to send values into an [Inline] tag
through [Action_Params]. The name/value parameters in the URL define the starting values for various fields in
the database: First_Name is set to John and Last_Name is set to Person.

	 Add John Person

The response page for the URL, response.lasso, contains the following code that performs the action using
[Inline] tag and provides feedback that the record was successfully added to the database. The field values for
the record that was just added to the database are automatically available within the [Inline] … [/Inline] tags.

[Inline: (Action_Params),
		 -Add,
		 -Database='Contacts',
		 -Table='People',
		 -Keyfield='ID']
	 <p>[Error_CurrentError: -ErrorCode]: [Error_CurrentError]
	
Record [Field: 'ID'] was added for [Field: 'First_Name'] [Field: 'Last_Name'].
[/Inline]

If the link for Add John Person is selected then the following will be returned.

�	 0: No Error
Record 4 was added for John Person.

1 4 5

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 9 – A d d i n g a n d U p d a t i n g R e c o r d s

Updating Records
Records can be updated within any Lasso compatible database using the -Update command tag. The
-Update command tag requires that a number of additional command tags be defined in order to perform the
-Update action. The required command tags are detailed in the following table.

Table 4: -Update Action Requirements

Tag	 Description	

-Update	 The action which is to be performed. Required.

-Database	 The database in which the record should be added. Required.

-Table	 The table from the specified database in which the record should be added.
Required.

-KeyField	 The name of the field which holds the primary key for the specified table. Either a
-KeyField and -KeyValue or a -Key is Required.

-KeyValue	 The value of the primary key of the record which is to be updated.

-Key	 An array that specifies the search parameters to find the records to be updated.
Either a -KeyField and -KeyValue or a -Key is Required.

Name/Value Parameters	 A variable number of name/value parameters specifying the field values which
need to be updated. Optional.

-Host	 Optional inline host array. See the section on Inline Hosts in the Database
Interaction Fundamentals chapter for more information.

		

Lasso has two methods to find which records are to be updated.

	 •	-KeyField and -KeyValue – Lasso can identify the record which is to be updated using the values for the
command tags -KeyField and -KeyValue. -KeyField must be set to the name of a field in the table. Usually, this
is the primary key field for the table. -KeyValue must be set to a valid value for the -KeyField in the table. If no
record can be found with the specified -KeyValue then an error will be returned.

The following inline would update the record with an ID of 1 so it has a last name of Doe.

Inline: -Update,
		 -Database='Contacts',
		 -Table='People',
		 -KeyField='ID',
		 -KeyValue=1,
		 'Last_Name'='Doe';
/Inline;

Note that if the specified key value returns multiple records then all of those records will be updated within
the target table. If the -KeyField is set to the primary key field of the table (or any field in the table which has
a unique value for every record in the table) then the inline will only update one record.

	 •	-Key – Lasso can identify the records that are to be updated using a search which is specified in an array.
The search can use any of the fields in the current database table and any of the operators and logical oper-
ators which are described in the previous chapter.

The following inline would update all records in the people database which have a first name of John. to
have a last name of Doe.

Inline: -Update,
		 -Database='Contacts',
		 -Table='People',
		 -Key=(Array: -Eq, 'First_Name'='John'),
		 'Last_Name'='Doe';
/Inline;

Care should be taken when creating the search in a -Key array. An update can very quickly modify up to all
of the records in a database and there is no undo. Update inlines should be debugged carefully before they
are deployed on live data.

1 4 6

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 9 – A d d i n g a n d U p d a t i n g R e c o r d s

Any name/value parameters included in the update action will be used to set the field values for the record
which is updated. All name/value parameters must reference a writable field within the database. Any fields
which are not referenced will maintain the values they had before the update.

Lasso returns a reference to the record which was updated within the database. The reference is different
depending on what type of database is being used.

	 •	SQL Data Sources – The [KeyField_Value] tag is set to the value of the key field which was used to identify
the record to be updated. The -KeyField should always be set to the primary key or auto-increment field of
the table. The results when using other fields are undefined.

If the -KeyField is not set to the primary key field or auto-increment field of the table or if -MaxRecords is set
to 0 then no record will be returned as a result of the -Update action. This is useful if a large record is being
updated and the results of the update do not need to be inspected.

	 •	FileMaker Pro – The [KeyField_Value] tag is set to the value of the internal Record ID for the updated record.
The Record ID functions as an auto-increment field that is automatically maintained by FileMaker Pro for
all records.

Lasso automatically performs a search for the record which was updated within the database. The found set
resulting from an -Update action is equivalent to a search for the single record using the [KeyField_Value].

Note: Consult the documentation for third-party data sources to see what behavior they implement when
updating records within a database.

To update a record with data using [Inline] … [/Inline] tags:

The following example shows how to perform an -Update action by specifying the required command tags
within an opening [Inline] tag. The record with the value 2 in field ID is updated. The [Inline] tag includes a
series of name/value parameters that define the new values for various fields within the record that is to be
updated. The First_Name field is set to Bob and the Last_Name field is set to Surname. The updated record will
include these new values, but any fields which were not included in the action will be left with the values
they had before the update.

[Inline: -Update,
		 -Database='Contacts',
		 -Table='People',
		 -KeyField='ID',
		 -KeyValue=2,
		 'First_Name'='Bob',
		 'Last_Name'='Surname']

	 <p>[Error_CurrentError: -ErrorCode]: [Error_CurrentError]
	
Record [Field: 'ID'] was added for [Field: 'First_Name'] [Field: 'Last_Name'].

[/Inline]

The updated field values from the -Update action are automatically available within the [Inline].

�	 0: No Error
Record 2 was updated to Bob Surname.

To update a record using an HTML form:

The following example shows how to perform an -Update action using an HTML form to send values into an
[Inline] tag. The text inputs provide a way for the site visitor to define the new values for various fields in the
record which will be updated in the database. The site visitor can see and update the current values for the
fields First_Name and Last_Name.

1 4 7

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 9 – A d d i n g a n d U p d a t i n g R e c o r d s

[Inline: -Search,
		 -Database='Contacts',
		 -Table='People',
		 -KeyField='ID',
		 -KeyValue=3]

<form action="response.lasso" method="POST">
	 <input type="hidden" name="-KeyValue" value="[KeyField_Value]">

	
First Name: <input type="text" name="First_Name"
		 value="[Field: 'First_Name']">
	
Last Name: <input type="text" name="Last_Name"
		 value="[Field: 'Last_Name']">
	
<input type="submit" name="-Update" value="Update Record">
</form>

[/Inline]

The response page for the form, response.lasso, contains the following code that performs the action using an
[Inline] tag and provides feedback that the record was successfully updated in the database. The field values
from the updated record are available automatically within the [Inline] … [/Inline] tags.

[Inline: (Action_Params),
		 -Update,
		 -Database='Contacts',
		 -Table='People',
		 -Keyfield='ID']
	 <p>[Error_CurrentError: -ErrorCode]: [Error_CurrentError]
	
Record [Field: 'ID'] was updated to [Field: 'First_Name'] [Field: 'Last_Name'].
[/Inline]

The form initially shows Mary for the First Name input and Person for the Last Name input. If the form is
submitted with the Last Name changed to Peoples then the following will be returned. The First Name field is
unchanged since it was left set to Mary.

�	 0: No Error
Record 3 was updated to Mary Peoples.

To update a record using a URL:

The following example shows how to perform an -Update action using a URL to send field values to an
[Inline] tag. The name/value parameters in the URL define the new values for various fields in the database:
First_Name is set to John and Last_Name is set to Person.

<a href="response.lasso?-KeyValue=4&
	 First_Name=John&Last_Name=Person"> Update John Person

The response page for the URL, response.lasso, contains the following code that performs the action using
[Inline] … [/Inline] tags and provides feedback that the record was successfully updated within the database.

[Inline: (Action_Params),
		 -Update,
		 -Database='Contacts',
		 -Table='People',
		 -Keyfield='ID']
	 <p>[Error_CurrentError: -ErrorCode]: [Error_CurrentError]
	
Record [Field: 'ID'] was updated to [Field: 'First_Name'] [Field: 'Last_Name'].
[/Inline]

If the link for Update John Person is submitted then the following will be returned.

�	 0: No Error
Record 4 was updated for John Person.

1 4 8

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 9 – A d d i n g a n d U p d a t i n g R e c o r d s

To update several records at once:

The following example shows how to perform an -Update action on several records at once within a single
database table. The goal is to update every record in the database with the last name of Person to the new last
name of Peoples.

There are two methods to accomplish this. The first method is to use the -Key parameter to find the records
that need to be updated within a single -Update inline. The second method is to use an outer inline to find the
records to be updated and then an inner inline which is repeated once for each record.

The -Key method has the advantage of speed and is the best choice for simple updates. The nested inline
method can be useful if additional processing is required on each record before it is updated within the data
source.

	 •	The inline uses a -Key array which performs a search for all records in the database Last_Name equal to
Person. The update is performed automatically on this found set.

[Inline: -Update,
		 -Database='Contacts',
		 -Table='People',
		 -Key=(Array: -Eq, 'Last_Name'='Person'),
		 -MaxRecords='All',
		 'Last_Name'='Peoples']
[/Inline]

	 •	The outer [Inline] … [/Inline] tags perform a search for all records in the database with Last_Name equal to
Person. This forms the found set of records which need to be updated. The [Records] … [/Records] tags repeat
once for each record in the found set. The -MaxRecords='All' command tag ensures that all records which
match the criteria are returned.

The inner [Inline] … [/Inline] tags perform an update on each record in the found set. Substitution tags
are used to retrieve the values for the required command tags -Database, -Table, -KeyField, and -KeyValue.
This ensures that these values match those from the outer [Inline] … [/Inline] tags exactly. The name/value
pair 'Last_Name'='Peoples' updates the field to the new value.

[Inline: -Search,
		 -Database='Contacts',
		 -Table='People',
		 -KeyField='ID',
		 -MaxRecords='All',
		 'Last_Name'='Person']
	 [Records]

		 [Inline: -Update,
				 -Database=(Database_Name),
				 -Table=(Table_Name),
				 -KeyField=(KeyField_Name),
				 -KeyValue=(KeyField_Value),
				 'Last_Name'='Peoples']

			 <p>[Error_CurrentError: -ErrorCode]: [Error_CurrentError]
			
Record [Field: 'ID'] was updated to
				 [Field: 'First_Name'] [Field: 'Last_Name'].

		 [/Inline]

	 [/Records]
[/Inline]

This particular search only finds one record to update. If the update action is successful then the following
will be returned for each updated record.

�	 0: No Error
Record 4 was updated to John Peoples.

1 4 9

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 9 – A d d i n g a n d U p d a t i n g R e c o r d s

Deleting Records
Records can be deleted from any Lasso compatible database using the -Delete command tag. The
-Delete command tag can be specified within an [Inline] tag, an HTML form, or a URL. The -Delete command
tag requires that a number of additional command tags be defined in order to perform the -Delete action. The
required command tags are detailed in the following table.

Table 5: -Delete Action Requirements

Tag	 Description	

-Delete	 The action which is to be performed. Required.

-Database	 The database in which the record should be added. Required.

-Table	 The table from the specified database in which the record should be added.
Required.

-KeyField	 The name of the field which holds the primary key for the specified table. Either a
-KeyField and -KeyValue or a -Key is Required.

-KeyValue	 The value of the primary key of the record which is to be deleted. Required.

-Key	 An array that specifies the search parameters to find the records to be updated.
Either a -KeyField and -KeyValue or a -Key is Required.

-Host	 Optional inline host array. See the section on Inline Hosts in the Database
Interaction Fundamentals chapter for more information.

		

Lasso has two methods to find which records are to be deleted.

	 •	-KeyField and -KeyValue – Lasso can identify the record which is to be deleted using the values for the
command tags -KeyField and -KeyValue. -KeyField must be set to the name of a field in the table. Usually, this
is the primary key field for the table. -KeyValue must be set to a valid value for the -KeyField in the table. If no
record can be found with the specified -KeyValue then an error will be returned.

The following inline would delete the record with an ID of 1.

Inline: -Delete,
		 -Database='Contacts',
		 -Table='People',
		 -KeyField='ID',
		 -KeyValue=1;
/Inline;

Note that if the specified key value returns multiple records then all of those records will be deleted from
the target table. If the -KeyField is set to the primary key field of the table (or any field in the table which has
a unique value for every record in the table) then the inline will only delete one record.

	 •	-Key – Lasso can identify the records that are to be deleted using a search which is specified in an array.
The search can use any of the fields in the current database table and any of the operators and logical
operators which are described in the previous chapter.

The following inline would delete all records in the people database which have a first name of John.

Inline: -Delete,
		 -Database='Contacts',
		 -Table='People',
		 -Key=(Array: -Eq, 'First_Name'='John');
/Inline;

Care should be taken when creating the search in a -Key array. A delete can very quickly remove up to all of
the records in a database and there is no undo. Delete inlines should be debugged carefully before they are
deployed on live data.

Lasso returns an empty found set in response to a -Delete action. Since the record has been deleted from the
database the [Field] tag can no longer be used to retrieve any values from it. The [Error_CurrentError] tag should
be checked to ensure that it has a value of No Error in order to confirm that the record has been successfully
deleted.

1 5 0

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 9 – A d d i n g a n d U p d a t i n g R e c o r d s

There is no confirmation or undo of a delete action. When a record is removed from a database it is removed
permanently. It is important to set up Lasso security appropriately so accidental or unauthorized deletes don’t
occur. See the Setting Up Security chapter in the Lasso Professional 8 Setup Guide for more information
about setting up database security.

To delete a record with data using [Inline] … [/Inline] tags:

The following example shows how to perform a delete action by specifying the required command tags
within an opening [Inline] tag. The record with the value 2 in field ID is deleted.

[Inline: -Delete,
		 -Database='Contacts',
		 -Table='People',
		 -KeyField='ID',
		 -KeyValue=2]

	 <p>[Error_CurrentError: -ErrorCode]: [Error_CurrentError]

[/Inline]

If the delete action is successful then the following will be returned.

�	 0: No Error

To delete several records at once:

The following example shows how to perform a -Delete action on several records at once within a single
database table. The goal is to delete every record in the database with the last name of Peoples.

Warning: These techniques can be used to remove all records from a database table. It should be used with
extreme caution and tested thoroughly before being added to a public Web site.

There are two methods to accomplish this. The first method is to use the -Key parameter to find the records
that need to be deleted within a single -Delete inline. The second method is to use an outer inline to find the
records to be deleted and then an inner inline which is repeated once for each record.

The -Key method has the advantage of speed and is the best choice for simple deletes. The nested inline
method can be useful if additional processing is required to decide if each record should be deleted.

	 •	The inline uses a -Key array which performs a search for all records in the database Last_Name equal to
Peoples. The records in this found set are automatically deleted.

[Inline: -Delete,
		 -Database='Contacts',
		 -Table='People',
		 -Key=(Array: -Eq, 'Last_Name'='Peoples')]
[/Inline]

	 •	The outer [Inline] … [/Inline] tags perform a search for all records in the database with Last_Name equal to
Peoples. This forms the found set of records which need to be updated. The [Records] … [/Records] tags repeat
once for each record in the found set. The -MaxRecords='All' command tag ensures that all records which
match the criteria are returned.

The inner [Inline] … [/Inline] tags delete each record in the found set. Substitution tags are used to retrieve the
values for the required command tags -Database, -Table, -KeyField, and -KeyValue. This ensures that these values
match those from the outer [Inline] … [/Inline] tags exactly.

[Inline: -Search,
		 -Database='Contacts',
		 -Table='People',
		 -KeyField='ID',
		 -MaxRecords='All',
		 'Last_Name'='Peoples']
	 [Records]

1 5 1

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 9 – A d d i n g a n d U p d a t i n g R e c o r d s

		 [Inline: -Delete,
				 -Database=(Database_Name),
				 -Table=(Table_Name),
				 -KeyField=(KeyField_Name),
				 -KeyValue=(KeyField_Value)]

			 <p>[Error_CurrentError: -ErrorCode]: [Error_CurrentError]

		 [/Inline]

	 [/Records]
[/Inline]

This particular search only finds one record to delete. If the delete action is successful then the following
will be returned for each deleted record.

�	 0: No Error

Duplicating Records
Records can be duplicated within any Lasso compatible database using the -Duplicate command tag.
The -Duplicate command tag can be specified within an [Inline] tag, an HTML form, or a URL. The
-Duplicate command tag requires that a number of additional command tags be defined in order to perform
the -Duplicate action. The required command tags are detailed in the following table.

Note: Lasso Connector for MySQL and Lasso Connector for SQLite do not support the -Duplicate command tag.

Table 6: -Duplicate Action Requirements

Tag	 Description	

-Duplicate	 The action which is to be performed. Required.

-Database	 The database in which the record should be added. Required.

-Table	 The table from the specified database in which the record should be added.
Required.

-KeyField	 The name of the field which holds the primary key for the specified table.
Required.

-KeyValue	 The value of the primary key of the record which is to be duplicated. Required.

Name/Value Parameters	 A variable number of name/value parameters specifying field values which should
be modified in the duplicated record. Optional.

-Host	 Optional inline host array. See the section on Inline Hosts in the Database
Interaction Fundamentals chapter for more information.

		

Lasso identifies the record which is to be duplicated using the values for the command tags -KeyField and
-KeyValue. -KeyField must be set to a field in the table which has a unique value for every record in the table.
Usually, this is the primary key field for the table. -KeyValue must be set to a valid value for the -KeyField in the
table. If no record can be found with the specified -KeyValue then an error will be returned.

Any name/value parameters included in the duplicate action will be used to set the field values for the
record which is added to the database. All name/value parameters must reference a writable field within the
database. Any fields which are not referenced will maintain the values they had from the record which was
duplicated.

Lasso always returns a reference to the new record which was added to the database as a result of the
-Duplicate action. This is equivalent to performing a -Search action which returns a single record found set
containing just the record which was added to the database.

1 5 2

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 9 – A d d i n g a n d U p d a t i n g R e c o r d s

To duplicate a record with data using [Inline] … [/Inline] tags:

The following example shows how to perform a duplicate action within a FileMaker Pro database by
specifying the required command tags within an opening [Inline] tag. The record with the value 2 for the
keyfield value is duplicated. The [Inline] tag includes a series of name/value parameters that define the new
values for various fields within the record that is to be updated. The First_Name field is set to Joe and the
Last_Name field is set to Surname. The new record will include these values, but any fields which were not
specified in the action will be left with the values they had from the source record.

[Inline: -Duplicate,
		 -Database='Contacts.fp3',
		 -Table='People',
		 -KeyField='ID',
		 -KeyValue=2,
		 'First_Name'='Joe',
		 'Last_Name'='Surname']

	 <p>[Error_CurrentError: -ErrorCode]: [Error_CurrentError]
	
Record [Field: 'ID'] was duplicated for [Field: 'First_Name'] [Field: 'Last_Name'].

[/Inline]

If the duplicate action is successful then the following will be returned. The values from the [Field] tags are
retrieved from the record which was just added to the database as a result of the duplicate action.

�	 0: No Error
Record 6 was duplicated for Joe Surname.

1 5 3

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 9 – A d d i n g a n d U p d a t i n g R e c o r d s

10
Chapter 10

SQL Data Sources

This chapter documents tags and behaviors which are specific to the SQL data sources in Lasso. These include
the data sources for MySQL, SQLite, Oracle, OpenBase, PostgreSQL, and SQL Server. See the appropriate
chapter for information about other data sources including FileMaker Data Sources, JDBC and ODBC Data
Sources, and Other Data Sources (Spotlight, custom data source).

	 •	Overview introduces the SQL data sources and includes tips for working with the data sources.

	 •	Feature Matrix includes a table which lists all of the features of each SQL data source and highlights the
differences between them.

	 •	SQL Tags describes tags specific to SQL data sources.

	 •	Searching Records describes unique search operations that can be performed using SQL data sources.

	 •	Adding and Updating Records describes unique add and update operations that can be performed using
SQL data sources.

	 •	Value Lists describes how to retrieve and show lists of allowed field values for ENUM and SET fields in SQL
data sources.

Overview
This chapter documents tags and features unique to SQL data sources. Most of the features of Lasso work
equally across all data sources. The differences specific to each SQL data source are noted in the features
matrix and in the descriptions of individual features.

Table 1: Data Sources

Data Source	 Description	

MySQL	 Supports MySQL 3.x, 4.x, or 5.x data sources.

OpenBase	 Supports OpenBase data sources.

Oracle	 Supports Oracle data sources. The Oracle "Instant Client" libraries must be
installed in order to activate this data source. See the Oracle Data Sources
section in the Lasso Setup Guide for more information.

PostgreSQL	 Supports PostgreSQL data sources. The PostgreSQL client libraries must be
installed in order to activate this data source. See the PostgreSQL Data Sources
section in the Lasso Setup Guide for more information.

SQL Server	 Supports Microsoft SQL Server. The SQL Server client libraries must be installed
in order to activate this data source. See the SQL Server Data Sources section in
the Lasso Setup Guide for more information.

SQLite	 SQLite is the internal data source which is used for the storage of Lasso's
preferences and security settings.

		

1 5 4

L a s s o 8 . 5 L a n g u a g e G u i d e

Tips for Using MySQL Data Sources

	 •	Always specify a primary key field using the -KeyField command tag in -Search, -Add, and -Findall actions. This
will ensure that the [KeyField_Value] tag will always return a value.

	 •	Use -KeyField and -KeyValue to reference a particular record for updates, duplicates, or deletes.

	 •	Data sources can be case-sensitive. For best results, reference database and table names in the same letter-
case as they appear on disk in your Lasso code. Field names may also be case sensitive (such as in Oracle
and PostgreSQL).

	 •	Most data sources will truncate any data beyond the length they are set up to store. Ensure that all fields
have sufficient capacity for the values that need to be stored in them.

	 •	Use -ReturnField command tags to reduce the number of fields which are returned from a -Search action.
Returning only the fields that need to be used for further processing or shown to the site visitor reduces the
amount of data that needs to travel between Lasso Service and the data source.

	 •	When an -Add or -Update action is performed on a database, the data from the added or updated record is
returned inside the [Inline] … [/Inline] tags. If the -ReturnField parameter is used, then only those fields specified
should be returned from an -Add or -Update action. Setting -MaxRecords=0 can be used as an indication that
no record should be returned.

	 •	See the Site Administration Utilities chapter in the Lasso Professional 8 Setup Guide for information about
optimizing tables for optimum performance and checking tables for damage.

Security Tips

	 •	The -SQL command tag can only be allowed or disallowed at the host level for users in Lasso
Administration. Once the -SQL command tag is allowed for a user, that user may access any database within
the allowed host inside of a SQL statement. For that reason, only trusted users should be allowed to issue
SQL queries using the -SQL command tag. For more information, see the Setting Up Security chapter in
the Lasso Professional 8 Setup Guide.

	 •	SQL statements which are generated using visitor-defined data should be screened carefully for unwanted
commands such as DROP or GRANT. See the Setting Up Data Sources chapter of the Lasso Professional 8
Setup Guide for more information.

	 •	Always quote any inputs from site visitors that are incorporated into SQL statements. The [Encode_SQL] tag
should be used on any visitor supplied values which are going to be passed to a MySQL data source. The
[Encode_SQL92] tag should be used on any visitor supplies values which will be passed to another SQL-
based data source such as SQLite or JDBC data sources.

Encoding the values ensures that quotes and other reserved characters are properly escaped within the SQL
statement. The tags also help to prevent SQL injection attacks by ensuring that all of the characters within
the string value are treated as part of the value. Values from [Action_Param], [Cookie], [Token_Value], [Field], or
calculations which rely in part on values from any of these tags must be encoded.

For example, the following SQL SELECT statement includes quotes around the [Action_Param] value and uses
[Encode_SQL] to encode the value. The apostrophe (single quote) within the name is escaped as \' so it will
be embedded within the string rather than ending the string literal.

[Variable: 'SQL_Statement'='SELECT * FROM Contacts.People WHERE ' +
	 'Company LIKE \'' + (Encode_SQL: (Action_Param: 'Company')) + '\';']

If [Action_Param] returns McDonald's for First_Name then the SQL statement generated by this code would
appear as follows. Notice that the apostrophe in the company name is escaped.

SELECT * FROM Contacts.People WHERE Company LIKE 'McDonald\'s';

1 5 5

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 1 0 — S Q L D a t a S o u r c e s

Feature Matrix
The following tables detail the features of each data source in this chapter. Since some features are only
available in certain data sources it is important to check these tables when reading the documentation in
order to ensure that each data source supports your solutions required features.

Table 2: MySQL Data Source

Feature	 Description	

Friendly Name	 Lasso Connector for MySQL

Internal Name	 mysqlds

Module Name	 MySQLConnector.dll, MySQLConnector.dylib, or MySQLConnector.so

Inline Host Attributes	 Requires -Name specifying connection URL (i.e. mysql.example.com), -
Username, and -Password. Optional -Port defaults to 3306.

Actions	 -Add, -Delete, -Exec, -FindAll, -Prepare, -Search, -Show, -SQL, -Update

Operators	 -BW, -CN, -EQ, -EW, -FT, -GT, -GTE, -LT, -LTE, -NBW, -NCN, -NEW. -NRX, -RX
-OpBegin/-OpEnd with And, Or, Not.

KeyField	 -KeyField/-KeyValue and -Key=(Array)
		

Table 3: OpenBase Data Source

Feature	 Description	

Friendly Name	 Lasso Connector for OpenBase

Internal Name	 openbaseds

Module Name	 OpenBaseConnector.dll, OpenBaseConnector.dylib, or OpenBaseConnector.so

Inline Host Attributes	 Requires -Name specifying connection URL (i.e.’openbase.example.com/data-
base’), -Username, and -Password.

Actions	 -Add, -Delete, -FindAll, -Search, -Show, -SQL, -Update

Operators	 -BW, -CN, -EQ, -EW, -GT, -GTE, -LT, -LTE, -NBW, -NCN, -NEW.
-OpBegin/-OpEnd with And, Or, Not.

KeyField	 -KeyField/-KeyValue
		

Table 4: Oracle Data Source

Feature	 Description	

Friendly Name	 Lasso Connector for Oracle

Internal Name	 oracle

Module Name	 SQLConnector.dll, SQLConnector.dylib, or SQLConnector.so

Inline Host Attributes	 Requires -Name specifying connection URL (i.e.'oracle.example.com:1521/myda-
tabase), -Username, and -Password.

Actions	 -Add, -Delete, -FindAll, -Search, -Show, -SQL, -Update

Operators	 -BW, -CN, -EQ, -EW, -GT, -GTE, -LT, -LTE, -NBW, -NCN, -NEW.
-OpBegin/-OpEnd with And, Or, Not.

KeyField	 -KeyField/-KeyValue

Note	 Field names are case sensitive. All field names and key field names within the
inline must be specified with the proper case.

		

1 5 6

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 1 0 — S Q L D a t a S o u r c e s

Table 5: PostgreSQL Data Source

Feature	 Description	

Friendly Name	 Lasso Connector for PostgreSQL

Internal Name	 postgresql

Module Name	 SQLConnector.dll, SQLConnector.dylib, or SQLConnector.so

Inline Host Attributes	 Requires -Name specifying connection URL (i.e. postgresql.example.com),
-Username, and -Password.

Actions	 -Add, -Delete, -FindAll, -Search, -Show, -SQL, -Update

Operators	 -BW, -CN, -EQ, -EW, -GT, -GTE, -LT, -LTE, -NBW, -NCN, -NEW.
-OpBegin/-OpEnd with And, Or, Not.

KeyField	 -KeyField/-KeyValue

Note	 Field names are case sensitive. All field names and key field names within the
inline must be specified with the proper case.

		

Table 6: Microsoft SQL Server Data Source

Feature	 Description	

Friendly Name	 Lasso Connector for SQL Server

Internal Name	 sqlserver

Module Name	 SQLConnector.dll, SQLConnector.dylib, or SQLConnector.so

Inline Host Attributes	 Requires -Name specifying connection URL (i.e. sqlserver.example.com\mydata-
base), -Username, and -Password.

Actions	 -Add, -Delete, -FindAll, -Search, -Show, -SQL, -Update

Operators	 -BW, -CN, -EQ, -EW, -GT, -GTE, -LT, -LTE, -NBW, -NCN, -NEW.
-OpBegin/-OpEnd with And, Or, Not.

KeyField	 -KeyField/-KeyValue
		

Table 7: SQLite Data Source

Feature	 Description	

Friendly Name	 Lasso Internal

Internal Name	 sqliteconnector

Module Name	 Built-In

Actions	 -Add, -Delete, -FindAll, -Search, -Show, -SQL, -Update

Operators	 -BW, -CN, -EQ, -EW, -GT, -GTE, -LT, -LTE, -NBW, -NCN, -NEW.
-OpBegin/-OpEnd with And, Or, Not.

KeyField	 -KeyField/-KeyValue
		

SQL Data Source Tags
Lasso 8 includes tags to identify which type of MySQL data source is being used. These tags are summarized
in the following table.

Table 8: SQL Data Source Tags

Tag	 Description	

[Lasso_DatasourceIsMySQL]	 Returns True if a database is hosted by MySQL. Requires one string value, which
is the name of a database.

[Lasso_DatasourceIsOpenBase]	 Returns True if a database is hosted by OpenBase. Requires one string value,
which is the name of a database.

1 5 7

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 1 0 — S Q L D a t a S o u r c e s

[Lasso_DatasourceIsOracle]	 Returns True if a database is hosted by Oracle. Requires one string value, which
is the name of a database.

[Lasso_DatasourceIsPostgreSQL]	 Returns True if a database is hosted by PostgreSQL. Requires one string value,
which is the name of a database.

[Lasso_DatasourceIsSQLServer]	 Returns True if a database is hosted by Microsoft SQL Server. Requires one
string value, which is the name of a database.

[Lasso_DatasourceIsSQLite]	 Returns True if a database is hosted by SQLite. Requires one string value, which
is the name of a database.

		

To check whether a database is hosted by MySQL:

The following example shows how to use [Lasso_DatasourceIsMySQL] to check whether the database Example is
hosted by MySQL or not.

[If: (Lasso_DatasourceIsMySQL: 'Example')]
	 Example is hosted by MySQL!
[Else]
	 Example is not hosted by MySQL.
[/If]

�	 Example is hosted by MySQL!

To list all databases hosted by MySQL:

Use the [Database_Names] … [/Database_Names] tags to list all databases available to Lasso. The [Lasso_
DatasourceIsMySQL] tag can be used to check each database and only those that are hosted by MySQL will be
returned. The result shows two databases, Site and Example, which are available through MySQL.

[Database_Names]
	 [If: (Lasso_DatasourceIsMySQL:(Database_NameItem))]
		
[Database_NameItem]
	 [/If]
[/Database_Names]

�	
Example

Site

Searching Records
In Lasso 8, there are unique search operations that can be performed using MySQL data sources. These search
operations take advantage of special functions in MySQL such as full-text indexing, regular expressions,
record limits, and distinct values to allow optimal performance and power when searching. These search
operations can be used on MySQL data sources in addition to all search operations described in the
Searching and Displaying Data chapter.

Search Field Operators
Additional field operators are available for the -Operator (or -Op) tag when searching MySQL data sources.
These operators are summarized in Table 2: MySQL Search Field Operators. Basic use of the -Operator tag is
described in the Searching and Displaying Data chapter.

1 5 8

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 1 0 — S Q L D a t a S o u r c e s

Table 9: MySQL Search Field Operators

Operator	 Description	

-Op='ft' or -FT	 Full-Text Search. If used, a MySQL full-text search is performed on the field
specified. Will only work on fields that are full-text indexed in MySQL. Records
are automatically returned in order of high relevance (contains many instances
of that value) to low relevance (contains few instances of the value). Only one
ft operator may be used per action, and no -SortField parameter should be
specified.

-Op='nrx' or -RX	 Regular Expression. If used, then regular expressions may be used as part of
the search field value. Returns records matching the regular expression value for
that field.

-Op='nrx' or -NRX	 Not Regular Expression. If used, then regular expressions may be used as
part of the search field value. Returns records that do not match the regular
expression value for that field.

		

Note: For more information on full-text searches and regular expressions supported in MySQL, see the MySQL
documentation.

To perform a full-text search on a field:

If a MySQL field is indexed as full-text, then using -Op='ft' before the field in a search inline performs a MySQL
full text search on that field. The example below performs a full text search on the Jobs field in the Contacts
database, and returns the First_Name field for each record that contain the word Manager. Records that contain
the most instances of the word Manager are returned first.

[Inline: -Search, -Database='Contacts', -Table='People',
-Op='ft',
'Jobs'='Manager']
	 [Records]
		 [Field:'First_Name']

	 [/Records]
[/Inline]

�	 Mike

Jane

To use regular expressions as part of a search:

Regular expressions can be used as part of a search value for a field by using -Op='rx' before the field in
a search inline. The following example searches for all records where the Last_Name field contains eight
characters using a regular expression.

[Inline: -Search, -Database='Contacts', -Table='People',
-Op='rx',
'Last_Name'='.{8}',
-MaxRecords='All']
	 [Records]
		 [Field:'Last_Name'], [Field:'First_Name']

	 [/Records]
[/Inline]

�	 Lastname, Mike

Lastname, Mary Beth

The following example searches for all records where the Last_Name field doesn’t contain eight characters. This
is easily accomplished using the same inline search above using -Op='nrx' instead.

1 5 9

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 1 0 — S Q L D a t a S o u r c e s

[Inline: -Search, -Database='Contacts', -Table='People',
-Op='nrx',
'Last_Name'='.{8}',
-MaxRecords='All']
	 [Records]
		 [Field:'Last_Name'], [Field:'First_Name']

	 [/Records]
[/Inline]

�	 Doe, John

Doe, Jane

Surname, Bob

Surname, Jane

Surname, Margaret

Unknown, Thomas

Search Command Tags
Additional search command tags are available when searching the data sources in this chapter using the [Inline]
tag. These tags allow special search functions to be performed without writing SQL statements. These
operators are summarized in the following table.

Table 10: Search Command Tags

Tag	 Description	

-UseLimit	 Prematurely ends a -Search or FindAll action once the specified number of
records for the -MaxRecords tag have been found and returns the found records.
Requires the -MaxRecords tag. This issues a LIMIT or TOP statement.

-SortRandom	 Sorts returned records randomly. Is used in place of the -SortField and -
SortOrder parameters. Does not require a value.

-Distinct	 Causes a -Search action to only output records that contain unique field values
(comparing only returned fields). Does not require a value. May be used with the
-ReturnField parameter to limit the fields checked for distinct values.

-GroupBy	 Specifies a field name which should by used as the GROUP BY statement.
Allows data to be summarized based on the values of the specified field.

		

To immediately return records once a limit is reached:

Use the -UseLimit tag in the search inline. Normally, Lasso will find all records that match the inline search
criteria and then pair down the results based on -MaxRecords and -SkipRecords values. The -UseLimit tag instructs
the data source to terminate the specified search process once the number of records specified for -MaxRecords
is found. The following example searches the Contacts database with a limit of five records.

[Inline: -FindAll,
-Database='Contacts', -Table='People',
-MaxRecords='5',
-UseLimit]
[Found_Count]
[/Inline]

�	 5

Note: If the -UseLimit tag is used, the value of the [Found_Count] tag will always be the same as the -MaxRecords value
if the limit is reached. Otherwise, the [Found_Count] tag will return the total number of records in the specified table
that match the search criteria if -UseLimit is not used.

To sort results randomly:

Use the -SortRandom tag in a search inline. The following example finds all records and sorts first by last name
then randomly.

1 6 0

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 1 0 — S Q L D a t a S o u r c e s

[Inline: -FindAll, -Database='Contacts', -Table='People',
-Keyfield='ID',
-SortRandom]
	 [Records]
		 [Field:'ID']
	 [/Records]
[/Inline]

�	 5 2 8 1 3 6 4 7

Note: Due to the nature of the -SortRandom tag, the results of this example will vary upon each execution of the
inline.

To return only unique records in a search:

Use the -Distinct parameter in a search inline. The following example only returns records that contain distinct
values for the Last_Name field.

[Inline: -FindAll, -Database='Contacts', -Table='People',
-ReturnField='Last_Name',
-Distinct]
	 [Records]
		 [Field:'Last_Name']

	 [/Records]
[/Inline]

�	 Doe

Surname

Lastname

Unknown

The -Distinct tag is especially useful for generating lists of values that can be used in a pull-down menu. The
following example is a pull-down menu of all the last names in the Contacts database.

[Inline: -Findall, -Database='Contacts', -Table='People',
-ReturnField='Last_Name',
-Distinct]
	 <select name="Last_Name">
		 [Records]
			 <option value="[Field: 'Last_Name']">
				 [Field: 'Last_Name']
			 </Option>
		 [/Records]
	 </Select>
[/Inline]

Searching Null Values
When searching tables in a SQL data source, NULL values may be explicitly searched for within fields
using the [Null] tag. A NULL value in a SQL data source designates that there is no other value stored in that
particular field. This is similar to searching a field for an empty string (e.g. 'fieldname'=''), however NULL values
and empty strings are not the same in SQL data sources. For more information about NULL values, see the
documentation for the data source.

1 6 1

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 1 0 — S Q L D a t a S o u r c e s

[Inline: -Search,
-Database='Contacts', -Table='People',
-Op='eq',
'Title'=(Null),
-MaxRecords='All']
	 [Records]
		 Record [Field:'ID'] does not have a title.

	 [/Records]
[/Inline]

�	 Record 7 does not have a title.

Record 8 does not have a title.

Adding and Updating Records
In Lasso 8, there are special add and update operations that can be performed using SQL data sources in
addition to all add and update operations described in the Adding and Updating Data chapter.

Multiple Field Values
When adding or updating data to a field in MySQL, the same field name can be used several times in an
-Add or -Update inline. The result is that all data added or updated in each instance of the field name will be
concatenated in a comma-delimited form. This is particularly useful for adding data to SET field types.

To add or update multiple values to a field:

The following example adds a record with two comma delimited values in the Jobs field:

[Inline: -Add, -Database='Contacts', -Table='People',
-KeyField='ID',
'Jobs'='Customer Service',
'Jobs'='Sales']
[Field:'Title']
[/Inline]

�	 Customer Service, Sales

The following example updates the Jobs field of a record with three comma-delimited values:

[Inline: -Update, -Database='Contacts', -Table='People',
-KeyField='ID',
-KeyValue='5',
'Jobs'='Customer Service',
'Jobs'='Sales',
'Jobs'='Support']
[Field:'Title']
[/Inline]

�	 Customer Service, Sales, Support

Note: The individual values being added or updated should not contain commas.

Adding or Updating Null Values
NULL values can be explicitly added to fields using the [Null] tag. A NULL value in a SQL data source designates
that there is no value for a particular field. This is similar to setting a field to an empty string (e.g.
'fieldname'=''), however the two are different in SQL data sources. For more information about NULL values, see
the data source documentation.

1 6 2

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 1 0 — S Q L D a t a S o u r c e s

To add or update a null value to a field:

Use the [Null] tag as the field value. The following example adds a record with a NULL value in the Last_Name
field.

[Inline: -Add, -Database='Contacts', -Table='People',
-KeyField='ID',
'Last_Name'=(Null)]
[/Inline]

The following example updates a record with a NULL value in the Last_Name field.

[Inline: -Update, -Database='Contacts', -Table='People',
-KeyField='ID',
-KeyValue='5',
'Last_Name'=(Null)]
[/Inline]

Value Lists
A value list in Lasso is a set of possible values that can be used for a field. Value lists in MySQL are lists of
pre-defined and stored values for a SET or ENUM field type. A value list from a SET or ENUM field can be
displayed using the tags defined in Table 4: MySQL Value List Tags. None of these tags will in -SQL inlines or
if -NoValueLists is specified.

Table 11: MySQL Value List Tags

Tag	 Description	

[Value_List] … [/Value_List]	 Container tag repeats each value allowed for ENUM or SET fields. Requires
a single parameter: the name of an ENUM or SET field from the current
table. This tag will not work in -SQL inlines or if -NoValueLists is specified.

[Value_ListItem]	 Returns the value for the current item in a value list. Optional -Checked or -
Selected parameter returns only values currently contained in the ENUM or SET
field.

[Selected]	 Displays the word Selected if the current value list item is contained in the data
of the ENUM or SET field.

[Checked]	 Displays the word Checked if the current value list item is contained in the data
of the ENUM or SET field.

[Option]	 Generates a series of <option> tags for the value list. Requires a single
parameter: the name of an ENUM or SET field from the current table.

		

Note: See the Searching and Displaying Data chapter for information about the -Show command tag which is
used throughout this section.

To display values for an ENUM or SET field:

	 •	Perform a -Show action to return the schema of a MySQL database and use the [Value_List] tag to display the
allowed values for an ENUM or SET field. The following example shows how to display all values from the
ENUM field Title in the Contacts database. SET field value lists function in the same manner as ENUM value
lists, and all examples in this section may be used with either ENUM or SET field types.

[Inline: -Show, -Database='Contacts', -Table='People']
	 [Value_List: 'Title']
		
[Value_ListItem]
	 [/Value_List]
[/Inline]

1 6 3

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 1 0 — S Q L D a t a S o u r c e s

�	
Mr.

Mrs.

Ms.

Dr.

	 •	The following example shows how to display all values from a value list using a named inline. The same
name Values is referenced by -InlineName in both the [Inline] tag and [Value_List] tag.

[Inline: -InlineName='Values', -Show, -Database='Contacts', -Table='People']
[/Inline]
…
[Value_List: 'Title', -InlineName='Values']
	
[Value_ListItem]
[/Value_List]

�	
Mr.

Mrs.

Ms.

Dr.

To display an HTML pop-up menu in an -Add form with all values from a value list:

	 •	The following example shows how to format an HTML <select> … </select> pop-up menu to show all
the values from a value list. A select list can be created with the same code by including size and/or
multiple parameters within the <select> tag. This code is usually used within an HTML form that performs an
-Add action so the visitor can select a value from the value list for the record they create.

The example shows a single <select> … </select> within [Inline] … [/Inline] tags with a -Show command. If many
value lists from the same database are being formatted, they can all be contained within a single set of
[Inline] … [/Inline] tags.

<form action="response.lasso" method="POST">
	 <input type="hidden" name="-Add" value="">
	 <input type="hidden" name="-Database" value="Contacts">
	 <input type="hidden" name="-Table" value="People">
	 <input type="hidden" name="-KeyField" value="ID">

[Inline: -Show, -Database='Contacts', -Table='People']
	 <select name="Title">
		 [Value_List: 'Title']
			 <option value="[Value_ListItem]">[Value_ListItem]</option>
		 [/Value_List]
	 </select>
[/Inline]

	 <p><input type="submit" name="-Add" value="Add Record">
</form>

	 •	The [Option] tag can be used to easily format a value list as an HTML <select> … </select> pop-up menu. The
[Option] tag generates all of the <option> … </option> tags for the pop-up menu based on the value list for the
specified field. The example below generates exactly the same HTML as the example above.

<form action="response.lasso" method="POST">
	 <input type="hidden" name="-Add" value="">
	 <input type="hidden" name="-Database" value="Contacts">
	 <input type="hidden" name="-Table" value="People">
	 <input type="hidden" name="-KeyField" value="ID">

[Inline: -Show, -Database='Contacts', -Table='People']
	 <select name="Title">
		 [Option: 'Title']
	 </select>
[/Inline]

1 6 4

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 1 0 — S Q L D a t a S o u r c e s

	 <p><input type="submit" name="-Add" value="Add Record">
</form>

To display HTML radio buttons with all values from a value list:

The following example shows how to format a set of HTML <input> tags to show all the values from a value list
as radio buttons. The visitor will be able to select one value from the value list. Check boxes can be created
with the same code by changing the type from radio to checkbox.

<form action="response.lasso" method="POST">
	 <input type="hidden" name="-Add" value="">
	 <input type="hidden" name="-Database" value="Contacts">
	 <input type="hidden" name="-Table" value="People">
	 <input type="hidden" name="-KeyField" value="ID">

[Inline: -Show, -Database='Contacts', -Table='People']
	 [Value_List: 'Title']
		 <input type="radio" name="Title" value="[Value_ListItem]"> [Value_ListItem]
	 [/Value_List]
[/Inline]

	 <p><input type="submit" name="-Add" value="Add Record">
</form>

To display only selected values from a value list:

The following examples show how to display the selected values from a value list for the current record. The
record for John Doe is found within the database and the selected value for the Title field, Mr. is displayed.

	 •	The -Selected keyword in the [Value_ListItem] tag ensures that only selected value list items are shown. The
following example uses a conditional to check whether [Value_ListItem: -Selected] is empty.

[Inline: -Search, -Database='Contacts', -Table='People',
-KeyField='ID',
-KeyValue=126]
	 [Value_List: 'Title']
		 [If: (Value_ListItem: -Selected) != ' ']
			
[Value_ListItem: -Selected]
		 [/If]
	 [/Value_List]
[/Inline]

�	
Mr.

	 •	The [Selected] tag ensures that only selected value list items are shown. The following example uses a
conditional to check whether [Selected] is empty and only shows the [Value_ListItem] if it is not.

[Inline: -Search, -Database='Contacts', -Table='People',
-KeyField='ID',
-KeyValue=126]
	 [Value_List: 'Title']
		 [If: (Selected) != ' ']
			
[Value_ListItem]
		 [/If]
	 [/Value_List]
[/Inline]

�	
Mr.

	 •	The [Field] tag can also be used simply to display the current value for a field without reference to the value
list.

[Field: 'Title']

�	
Mr.

1 6 5

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 1 0 — S Q L D a t a S o u r c e s

To display an HTML pop-up menu in an -Update form with selected value list values:

	 •	The following example shows how to format an HTML <select> … </select> select list to show all the values
from a value list with the selected values highlighted. The [Selected] tag returns Selected if the current value
list item is selected in the database or nothing otherwise. This code will usually be used in an HTML form
that performs an -Update action to allow the visitor to see what values are selected in the database currently
and make different choices for the updated record.

<form action="response.lasso" method="POST">
	 <input type="hidden" name="-Update" value="">
	 <input type="hidden" name="-Database" value="Contacts">
	 <input type="hidden" name="-Table" value="People">
	 <input type="hidden" name="-KeyField" value="ID">
	 <input type="hidden" name="-KeyValue" value="127">

[Inline: -Search, -Database='Contacts', -Table='People',
-KeyField='ID',
-KeyValue=126]
	 <select name="Title" multiple size="4">
		 [Value_List: 'Title']
			 <option value="[Value_ListItem]" [Selected]>[Value_ListItem]</option>
		 [/Value_List]
	 </select>
[/Inline]

	 <p><input type="submit" name="-Update" value="Update Record">
</form>

	 •	The [Option] tag automatically inserts Selected parameters as needed to ensure that the proper options are
selected in the HTML select list. The example below generates exactly the same HTML as the example
above.

<form action="response.lasso" method="POST">
	 <input type="hidden" name="-Update" value="">
	 <input type="hidden" name="-Database" value="Contacts">
	 <input type="hidden" name="-Table" value="People">
	 <input type="hidden" name="-KeyField" value="ID">
	 <input type="hidden" name="-KeyValue" value="127">

[Inline: -Search, -Database='Contacts', -Table='People',
-KeyField='ID',
-KeyValue=126]
	 <select name="Title" multiple size="4">
		 [Option: 'Title']
	 </select>
[/Inline]

	 <p><input type="submit" name="-Update" value="Update Record">
</form>

To display HTML check boxes with selected value list values:

The following example shows how to format a set of HTML <input> tags to show all the values from a value
list as check boxes with the selected check boxes checked. The [Checked] tag returns Checked if the current value
list item is selected in the database or nothing otherwise. Radio buttons can be created with the same code by
changing the type from checkbox to radio.

<form action="response.lasso" method="POST">
	 <input type="hidden" name="-Update" value="">
	 <input type="hidden" name="-Database" value="Contacts">
	 <input type="hidden" name="-Table" value="People">
	 <input type="hidden" name="-KeyField" value="ID">
	 <input type="hidden" name="-KeyValue" value="127">

1 6 6

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 1 0 — S Q L D a t a S o u r c e s

[Inline: -Search, -Database='Contacts', -Table='People',
-KeyField='ID',
-KeyValue=126]
	 [Value_List: 'Title']
		 <input type="checkbox" name="Title" value="[Value_ListItem]" [Checked]>
			 [Value_ListItem]
	 [/Value_List]
[/Inline]

	 <p><input type="submit" name="-Update" value="Update Record">
</form>

Note: Storing multiple values is only supported using SET field types.

1 6 7

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 1 0 — S Q L D a t a S o u r c e s

11
Chapter 11

FileMaker Data Sources

This chapter documents tags and behaviors which are specific to the FileMaker data sources in Lasso. These
include the data sources for FileMaker Pro 4, 5, or 6, FileMaker Server Advanced 7 or higher, and FileMaker
Server 9 or higher. See the appropriate chapter for information about other data sources including SQL Data
Sources, JDBC and ODBC Data Sources, and Other Data Sources (Spotlight, custom data sources).

	 •	Overview introduces FileMaker data sources.

	 •	Feature Matrix includes a table which lists all of the features of each FileMaker data source and highlights
the differences between them.

	 •	Performance Tips includes recommendations which will help ensure that FileMaker is used to its full
potential.

	 •	Compatibility Tips includes recommendations which help ensure that FileMaker databases can be
transferred to a different back-end data source.

	 •	FileMaker Queries describes how queries are specified differently for each of the FileMaker data sources
and how these query formats differ from those used for SQL data sources.

	 •	FileMaker Tags describes tags specific to FileMaker data sources.

	 •	Primary Key Field and Record ID describes how the built-in record IDs in FileMaker can be used as
primary key fields.

	 •	Sorting Records describes how custom sorts can be performed in FileMaker databases.

	 •	Displaying Data describes methods of returning field values from FileMaker databases including repeating
field values and values from portals.

	 •	Value Lists describes how to retrieve and format value list data from FileMaker databases.

	 •	Container Fields describes how to retrieve images and other data stored in container fields.

	 •	FileMaker Scripts describes how to activate FileMaker scripts in concert with a Lasso database action.

Overview
Lasso Professional allows access to FileMaker Pro data sources through the Lasso Connector for FileMaker
Pro. Connections can be made to any version of FileMaker Pro that includes Web Companion including
FileMaker Pro 4.x and FileMaker Pro 5.x and 6.x Unlimited. FileMaker Pro 3 is not supported nor are
solutions which use the FileMaker runtime engine.

Lasso Professional allows access to FileMaker Server Advanced 7 or higher and FileMaker Server 9 or higher
through the Lasso Connector for FileMaker SA. Lasso provides several tags and options which are unique
to FileMaker Server connections including -LayoutResponse and -NoValueLists. Lasso cannot connect directly to
FileMaker Pro 7, 8, or 9.

1 6 8

L a s s o 8 . 5 L a n g u a g e G u i d e

Table 1: Data Sources

Data Source	 Description	

FileMaker Pro	 Suports FileMaker Pro 4.x, FileMaker Pro Unlimited 5.x and 6.x.

FileMaker Server	 Supports FileMaker Server Advanced 7 or higher and FileMaker Server 9 or
higher.

		

Please see the Setting Up Data Sources chapter in the Lasso Professional Setup Guide for information about
how to configure FileMaker for access through Lasso Professional.

LassoScript is a predominantly data source-independent language. It does include many FileMaker specific
tags which are documented in this chapter. However, all of the common procedures outlined in the Data
Source Fundamentals, Searching and Displaying Data, and Adding and Updating Records chapters can be
used with FileMaker data sources.

Note: The tags and procedures defined in this chapter can only be used with FileMaker data sources. Any
solution which relies on the tags in this chapter cannot be easily retargeted to work with a different back-end
database.

Terminology
Since Lasso works with many different data sources this documentation uses data source agnostic terms to
refer to databases, tables, and fields. The following terms which are used in the FileMaker documentation are
equivalent to their Lasso counterparts.

	 •	Database – Database is used to refer to a single FileMaker database file. FileMaker databases differ from
other databases in Lasso in that they contain layouts rather than individual data tables. Even in FileMaker 7
Lasso see individual layouts rather than data tables. From a data storage point of view, a FileMaker database
is equivalent to a single MySQL table.

	 •	Layout – Within Lasso a FileMaker layout is treated as equivalent to a Table. The two terms can be used
interchangeably. This equivalence simplifies Lasso security and makes transitioning between back-end data
sources easier. All FileMaker layouts can be thought of as views of a single data table. Lasso can only access
fields which are contained in the layout named within the current database action.

	 •	Record – FileMaker records are referenced using a single -KeyValue rather than a -KeyField and -KeyValue pair.
The -KeyField in FileMaker is always the record ID which is set internally.

	 •	Fields – The value for any field in the current layout in FileMaker can be returned including the values for
related fields, repeating fields, and fields in portals.

Although the equivalence of FileMaker databases to MySQL databases and FileMaker layouts to MySQL tables
is imperfect, it is an essential compromise in order to map both database models onto Lasso Professional’s
two-tier (e.g. database and table) security model.

Important: Every database which is referenced by a related field or a portal must have the same permissions
defined. If a related database does not have the proper permissions then FileMaker will not just leave the related
fields blank, but will deny the entire database request.

1 6 9

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 1 1 — F i l e M a k e r D a t a S o u r c e s

Feature Matrix
The following tables detail the features of each data source in this chapter. Since some features are only
available in certain data sources it is important to check these tables when reading the documentation in
order to ensure that each data source supports your solutions required features. See the section on FileMaker
Queries for important information about how FileMaker queries differ between each FileMaker data source
and from SQL data sources.

Table 2: FileMaker Pro Data Source

Feature	 Description	

Friendly Name	 Lasso Connector for FileMaker Pro

Internal Name	 fmremotedatasource

Module Name	 FMPConnector.dll, FMPConnector.dylib, or FMPConnector.so

Inline Host Attributes	 Requires -Name specifying connection URL (i.e. filemaker.example.com),
-Username, and -Password. Optional -Port defaults to 591.

Actions	 -Add, -Delete, -Duplicate, -FindAll, -Random, -Search, -Show, -Update

Operators	 -BW, -CN, -EQ, -EW, -GT, -GTE, -LT, -LTE, -NBW, -NCN, -NEW. Note that
operators act on words rather than the entire field in this data source.

KeyField	 The internal record ID is used as the key field so only -KeyValue is required.

Logical Operators	 Supports -OpLogical. No support for -OpBegin or -OpEnd.
		

Table 3: FileMaker Server Data Source

Feature	 Description	

Friendly Name	 Lasso Connector for FileMaker SA

Internal Name	 fmserveradvanceddatasource

Module Name	 FMSAConnector.dll, FMSAConnector.dylib, or FMSAConnector.so

Inline Host Attributes	 Requires -Name specifying connection URL (i.e. filemaker.example.com),
-Username, and -Password. Optional -Port defaults to 80.

Actions	 -Add, -Delete, -Duplicate, -FindAll, -Random, -Search, -Show, -Update

Operators	 -BW, -CN, -EQ, -EW, -GT, -GTE, -LT, -LTE, -NBW, -NCN, -NEW. Note that
operators act on words rather than the entire field in this data source.

KeyField	 The internal record ID is used as the key field so only -KeyValue is required.

Logical Operators	 Supports -OpLogical. No support for -OpBegin or -OpEnd.
		

Performance Tips
This section contains a number of tips which will help get the best performance from a FileMaker database.
Since queries must be performed sequentially within FileMaker, even small optimizations can yield
significant increases in the speed of Web serving under heavy load.

	 •	Dedicated FileMaker Machine – For best performance, place the FileMaker Pro or FileMaker Server on a
different machine from Lasso Service and the Web server.

	 •	FileMaker Server – If a FileMaker database must be accessed by a mix of FileMaker clients and Web
visitors through Lasso, it should be hosted on FileMaker Server. Lasso can access the database directly
through FileMaker Server Advanced 7 or higher, FileMaker Server 9 or higher, or through a single FileMaker
Pro 4, 5, or 6 client which is connected as a guest to FileMaker Server.

	 •	Web Companion – When using FileMaker Pro, always ensure that the latest version of FileMaker Web
Companion for the appropriate version of FileMaker is installed.

	 •	Index Fields – Any fields which will be searched through Lasso should have indexing turned on. Avoid
searching on unstored calculation fields, related fields, and summary fields.

1 7 0

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 1 1 — F i l e M a k e r D a t a S o u r c e s

	 •	Custom Layouts – Layouts should be created with the minimal number of fields required for Lasso. All
the data for the fields in the layout will be sent to Lasso with the query results. Limiting the number of
fields can dramatically cut down the amount of data which needs to be sent from FileMaker to Lasso.

	 •	Value Lists – For FileMaker Server data sources use the -NoValueLists tag to suppress the automatic sending
of value lists from FileMaker when those value lists are not going to be used on the response page.

	 •	Layout Response – For FileMaker Server data sources use the -LayoutResponse tag to specify what layout
should be used to return results from FileMaker. A different layout can be used to specify the request and
for the result of the request.

	 •	Return Fields – For FileMaker Pro data sources use the -ReturnField tag to limit the number of fields which
are returned to Lasso. If no -ReturnField tag is specified then all of the data for the fields in the current layout
will be sent to Lasso with the query results.

Note: -ReturnField does not work with FileMaker Server. The -LayoutResponse tag should be used instead to return a
custom layout that contains only the fields that will be shown on the response page.

	 •	Sorting – Sorting can have a serious impact on performance if large numbers of records must be sorted.
Avoid sorting large record sets and avoid sorting on calculation fields, related fields, unindexed fields, or
summary fields.

	 •	Contains Searching – FileMaker is optimized for the default Begins With searches (and for numerical
searches). Use of the contains operator cn can dramatically slow down performance since FileMaker will
not be able to use its indices to optimize searches.

	 •	Max Records – Using -MaxRecords to limit the number of records returned in the result set from FileMaker
can speed up performance. Use -MaxRecords and -SkipRecords or the [Link_…] tags to navigate a visitor through
the found set.

	 •	Calculation Fields – Calculation fields should be avoided if possible. Searching or sorting on unindexed,
unstored calculation fields can have a negative effect on FileMaker performance.

	 •	FileMaker Scripts – The use of FileMaker scripts should be avoided if possible. When FileMaker executes
a script, no other database actions can be performed at the same time. FileMaker scripts can usually be
rewritten as LassoScripts to achieve the same effect, often with greater performance.

In addition to these tips, MySQL can be used to shift some of the burden off of FileMaker. MySQL can
usually perform database searches much faster than FileMaker. Lasso also includes sessions and compound
data types that can be used to perform some of the tasks of a database, but with higher performance for small
amounts of data.

Compatibility Tips
Following these tips will help to ensure that it easy to transfer data from a FileMaker database to another data
source, such as a MySQL database, at a future date.

	 •	Database Names – Database, layout, and field names should contain only a mix of letters, numbers, and
the underscore character. They should not contain any punctuation other than spaces.

	 •	Calculation Fields – Avoid the use of calculation fields. Instead, perform calculations within Lasso and
store the results back into regular fields if they will be needed later.

	 •	Summary Fields – Avoid the use of summary fields. Instead, summarize data using [Inline] searches within
Lasso.

	 •	Scripts – Avoid the use of FileMaker scripts. Most actions which can be performed with scripts can be
performed using the database actions available within Lasso.

	 •	Record ID – Create a calculation field named ID and assign it to the following calculation. Always use the
-KeyField='ID' within [Inline] database actions, HTML forms, and URLs. This ensures that when moving to a
database that relies on storing the key field value explicitly, a unique key field value is available.

Status(CurrentRecordID)

1 7 1

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 1 1 — F i l e M a k e r D a t a S o u r c e s

FileMaker Queries
The queries generated by inlines for FileMaker data sources differ from the queries generated for other data
sources in several significant ways. This section includes a description of how search operators, logical opera-
tors, and other keywords are used to construct queries for each of the FileMaker data sources.

Search Operators
By default FileMaker performs a “begins with” search for each field in a query. FileMaker uses full-text search
automatically so “begins with” actually means “any word in the field begins with”. For example, if a search for
John in the FullName field is performed then records with the names John Doe or Johnny Doe or even Eric Johnson
will be returned. Each of these field values contains a word that “begins with” the specified parameter.

	 •	FileMaker Pro – In most versions of FileMaker Pro and FileMaker Pro Unlimited it is possible to use a
field multiple times within a single query with different search operators.

	 •	FileMaker Server – In FileMaker Server each field can only be specified one time within each search query.
See the information about FileMaker search symbols below for strategies to perform complex queries in
FileMaker Server.

Lasso also provides the following operators which allow different queries to be performed. Each operator
should be specified immediately before the field and its search value are specified. Note that this list of opera-
tors is somewhat different from those supported by other data source connectors including other FileMaker
data source connectors.

Table 4: FileMaker Operators

Tag	 Description	

-BW	 Begins with matches records where any word in the field begins with the specified
substring. This is the default if no other operator is specified.

-CN	 Contains matches records where any word in the field contains the substring.

-EQ	 Equals matches records where any word in the field exactly matches the string.

-EW	 Ends with matches records where any word in the field ends with the specified
substring.

-GT	 Greater than matches records where the field value is greater than the parameter.

-GTE	 Greater than or equals.

-LT	 Less than matches records where the field value is less than the parameter.

-LTE	 Less than or equals.

-RX	 Use a FileMaker search expression. See the table below for a list of symbols.
		

Each of the operators operates on words within the FileMaker field. If a FullName field contains the value
John Doe then the search term -BW, ‘FullName’=’John’ will match the record and so will the search term
-BW, ‘FullName’=’Doe’.

Note that there is no -NEQ operator or other negated operators. It is necessary to use a -Not query to omit
records from the found set instead. For example, to find records where the field FirstName is not Joe the
following search terms must be used.

-Not,
-Op='Eq', 'FirstName'='Joe',

1 7 2

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 1 1 — F i l e M a k e r D a t a S o u r c e s

The -RX operator can be used to pass a raw FileMaker search expression as a query. This allows the use of any
of the FileMaker search symbols. See the FileMaker documentation for a full list of how these symbols work.

Table 5: FileMaker Search Symbols

Symbol	 Description	

@	 Matches one character.

*	 Matches zero or more characters. A single * matches non-empty fields.

..	 Matches values between a range of values such as 1..10 or A..Z. Can be written
as two or three periods.

#	 Matches one number.

""	 Quotes surround a substring which should be matched literally.

=	 Matches a whole word. =John will match John, but not Johnny. A single =
matches empty field.

==	 Matches a whole field value rather than word by word. Should be specified at the
start of the search term.

< > <= >=	 Matches values less than, greater than, less than or equal to, or greater than or
equal to a specified value.

?	 Matches a record with invalid data in the field.

//	 Matches today's date.

!	 Matches records which have a duplicate value. Both records will be returned.
		

The range symbol .. is most useful for performing searches within a date range. For example a date in 2006
can be found by searching for -RX, 'DateField'='1/1/2006 .. 12/31/2006'.

Logical Operators
FileMaker data sources default to performing an “and” search. The records which are returned from the data
source must match all of the criteria that are specified. It is also possible to specify -OpLogical to switch to an
“or” search where the records which are returned from the data source may match any of the criteria that are
specified.

For example, the following criteria returns records where the FirstName is John and the LastName is Doe.

-EQ, 'FirstName'='John', -EQ, 'LastName'='Doe'

The following criteria instead returns records where the FirstName is John or the LastName is Doe. This would
return records for John Doe as well as Jane Doe and John Walker.

-OpLogical='or', -EQ, 'FirstName'='John', -EQ, 'LastName'='Doe'

FileMaker 9/10 Complex Queries

Note: This section applies to FileMaker Server 9 and FileMaker Server 10.

A FileMaker Server 9 search request is made up of one more queries. By default a single query is generated
and all of the search terms within it are combined using an “and” operator. Additional queries can be added
to either extend the found set using an “or” operator or to omit records from the found set using a “not”
operator. These queries correspond precisely to find requests within the FileMaker Pro user interface.

Each field can only be listed once per query. The standard Lasso operators can be used for most common
search parameters like equals, begins with, ends with, contains, less than, greater than, etc. FileMaker’s stan-
dard find symbols can be used for more complex criteria. It may also be necessary to use multiple queries for
more complex search criteria.

FileMaker Server 9 search requests do not support not equals operator or any of the not variant operators.
Instead, these should be created by combining an omit query with the appropriate affirmative operator. The
-OpLogical, -OpBegin, and -OpEnd operators are not supported. The -Or and -Not operators must be used instead.

1 7 3

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 1 1 — F i l e M a k e r D a t a S o u r c e s

Table 6: FileMaker Server 9 Logical Operators

Tag	 Description	

-Or	 Starts a new query. Records which match the query will be added to the result
set.

-Not	 Starts an omit query. Records which match the query will be omitted from the
result set.

		

A search with a single query uses an “and” operator to combine each of the search terms. Records where the
field FirstName begins with the letter J and the field LastName begins with the letter D can be found using the
following search terms in Lasso. Each record in the result set will match every search term in the query.

-BW, 'FirstName'='J',
-BW, 'LastName='D'

We start an additional query using an -Or operator. FileMaker runs the first and second queries independently
and then combines the search results. The result of the following search terms will be to find every record
where the field FirstName begins with the letter J and the field LastName begins with either the letter D or the
letter S. Each records in the result set will match either the first query or the second query.

-BW, 'FirstName'='J',
-BW, 'LastName='D'
-Or,
-BW, 'FirstName'='J',
-BW, 'LastName='S'

Note that each field name can only appear once per query, but the same field name can be used in multiple
queries. The FirstName search term is repeated in both queries so that all returned records will have a FirstName
starting with J. If the FirstName search term was left out of the second query then the result set would contain
ever records the field FirstName begins with the J and the field LastName begins with the letter D and every
record where the field LastName begins with the letter S.

The result set can be narrowed by adding an omit query using a -Not operator. FileMaker will run the first
query and any -Or queries first generating a complete result set. Then, the -Not queries will be run and any
records which match those queries will be omitted from the found set. The result of the following search
terms will be to find every record where the field FirstName begins with the letter J and the field LastName
begins withthe letter D except for the record for John Doe. Each records in the result set will match the first
query and will not match the second query.

-BW, 'FirstName'='J',
-BW, 'LastName='D'
-Not,
-BW, 'FirstName'='John',
-BW, 'LastName='Doe'

It is possible to construct most searches positively using only a single query or a few -Or queries, but some-
times it is more logical to construct a large result set and then use one or more -Not queries to omit records
from it.

1 7 4

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 1 1 — F i l e M a k e r D a t a S o u r c e s

Additional Commands
FileMaker Server 9 supports a number of additional unique commands which are summarized in the
following table. Most of these commands passed through to FileMaker without modification by Lasso. The
FileMaker Server 9 Custom Web Publishing with XML and XSLT documentation should be consulted for full
details about these commands.

Table 7: FileMaker Server 9 Additional Commands

Command	 Description	

-LayoutResponse	 Returns the result set using the layout specified in this tag rather than the layout
used to specify the database action.

-NoValueLists	 Suppresses the fetching of value list data for FileMaker Server data sources.

-Relatedsets.Filter	 If set to "layout" FileMaker will return only the number of related records shown
in portals on the current layout. Defaults to returning all records up to the number
set by -Relatedsets.Max.

-Relatedsets.Max	 Sets the number of related records returned. Can be set to a number or "all".

-Script and -Script.Param	 Runs a script after the find has been processed and sorted. The optional
parameter can be accessed from within the script.

-Script.Prefind and -Script.Prefind.Param	 Runs a script before the find is processed.

-Script.Presort and -Script.Presort.Param	 Runs a script after the find has been processed, but before the results are sorted.
		

FileMaker Tags
Lasso includes tags that allow the type of a database to be inspected.

Table 8: FileMaker Data Source Tags

Tag	 Description	

[Lasso_DataSourceIsFileMaker]	 Returns True if the specified database is hosted by FileMaker Pro 4, 5, or 6.

[Lasso_DataSourceIsFileMakerSA]	 Returns True if the specified database is hosted by FileMaker Server Advanced 7
or higher or FileMaker Server 9 or higher.

		

To check whether a database is hosted by FileMaker:

The following example shows how to use these tags to check whether or note the database Example is hosted
by FileMaker Pro, FileMaker Server Advanced 7 or higher, or FileMaker Server 9 or higher.

[If: (Lasso_DataSourceIsFileMaker: 'Example.fp7')]
	 Example is hosted by FileMaker Pro!
[Else: (Lasso_DataSourceIsFileMakerSA: 'Example.fp7')]
	 Example is hosted by FileMaker Server!
[Else]
	 Example is not hosted by FileMaker.
[/If]

�	 Example is hosted by FileMaker Server!

To list all databases hosted by FileMaker:

Use the [Database_Names] … [/Database_Names] tags to list all databases available to Lasso. The [Lasso_
DataSourceIs…] tag scan be used to check each database and only those that are hosted by FileMaker Pro
will be returned. The result shows two databases, Contacts.fp5 and Example.fp5, which are available through
FileMaker Pro.

1 7 5

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 1 1 — F i l e M a k e r D a t a S o u r c e s

[Database_Names]
	 [If: (Lasso_DataSourceIsFileMaker: (Database_NameItem))]
		
FMP [Database_NameItem]
	 [Else: (Lasso_DataSourceIsFileMakerSA: (Database_NameItem))]
		
FMSA [Database_NameItem]
	 [Else: (Lasso_DataSourceIsFileMaker9: (Database_NameItem))]
		
FMS9 [Database_NameItem]
	 [/If]
[/Dabase_Names]

�	
FMP Example.fp5

FMP Contacts.fp5

Primary Key Field and Record ID
FileMaker databases include a built-in primary key value called the Record ID. This value is guaranteed to
be unique for any record in a FileMaker database. It is predominantly sequential, but should not be relied
upon to be sequential. The values of the record IDs within a database may change after an import or after a
database is compressed using Save a Copy As…. Record IDs can be used within a solution to refer to a record
on multiple pages, but should not be stored as permanent references to FileMaker records.

Note: The tag [RecordID_Value] can also be used to retrieve the record ID from FileMaker records. However, for
best results, it is recommended that the [KeyField_Value] tag be used.

To return the current record ID:

The record ID for the current record can be returned using [KeyField_Value]. The following example shows
[Inline] … [/Inline] tags that perform a -FindAll action and return the record ID for each returned record using the
[KeyFIeld_Value] tag.

[Inline: -Database='Contacts.fp5', -Layout='People', -FindAll]
	 [Records]
		
[KeyField_Value]: [Field: 'First_Name'] [Field: 'Last_Name']
	 [/Records]
[/Inline]

�	
126: John Doe

127: Jane Doe

4096: Jane Person

To reference a record by record ID:

For -Update and -Delete command tags the record ID for the record which should be operated upon can be
referenced using -KeyValue. The -KeyField does not need to be defined or should be set to an empty string if it
is, -KeyField=''.

	 •	The following example shows a record in Contacts.fp5 being updated with -KeyValue=126. The name of the
person referenced by the record is changed to John Surname.

[Inline: -Database='Contacts.fp5',
		 -Layout='People',
		 -KeyValue=126,
		 'First_Name'='John',
		 'Last_Name'='Surname',
		 -Update]
	
[KeyField_Value]: [Field: 'First_Name'] [Field: 'Last_Name']
[/Inline]

�	
126: John Surname

	 •	The following example shows a record in Contacts.fp5 being deleted with -KeyValue=127. The -KeyField
command tag is included, but its value is set to the empty string.

1 7 6

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 1 1 — F i l e M a k e r D a t a S o u r c e s

[Inline: -Database='Contacts.fp5',
		 -Layout='People',
		 -KeyField='',
		 -KeyValue=126,
		 -Delete]
[/Inline]

To access the record ID within FileMaker:

The record ID for the current record in FileMaker can be accessed using the calculation value
Status(CurrentRecordID) within FileMaker.

Sorting Records
In addition to the Ascending and Descending values for the -SortOrder tag, FileMaker data sources can also accept
a custom value.

In FileMaker Pro 4, 5, or 6, the value Custom can be used as the -SortOrder for any field which is formatted with
a value list in the current layout. The field will be sorted according to the order of values within the value list.

In FileMaker Server, the value for -SortOrder should name a value list. The order of that value list will be used
as the custom sorting order for records in the result set. Note also that FileMaker Server only support the
specification of nine sort fields in a single database search.

To return custom sorted results:

Specify -SortField and -SortOrder command tags within the search parameters. The following [Inline] … [/Inline] tags
include sort command tags specified in hidden inputs. The records are first sorted by title in Custom order,
then by Last_Name and First_Name in ascending order. The Title field will be sorted in the order of the elements
within the value list associated with the field in the database. In this case, it will be sorted as Mr., Mrs., Ms.

[Inline: -FindAll,
		 -Database='Contacts.fp5',
		 -Table='People',
		 -KeyField='ID',
		 -SortField='Title', -SortOrder='Custom',
		 -SortField='Last_Name', -SortOrder='Ascending',
		 -SortField='First_Name', -SortOrder='Ascending']
	 [Records]
		
[Field: 'Title'] [Field: 'First_Name'] [Field: 'Last_Name']
	 [/Records]
[/Inline]

If FileMaker Server is being used then the line which specifies the sort would look as follows. The value list
Title is used to sort the field Title.

		 -SortField='Title', -SortOrder='Title',
The following results could be returned when this page is loaded. Each of the records with a title of Mr.
appear before each of the records with a title of Mrs. Within each title, the names are sorted in ascending
alphabetical order.

�	
Mr. John Doe

Mr. John Person

Mrs. Jane Doe

Mrs. Jane Person

1 7 7

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 1 1 — F i l e M a k e r D a t a S o u r c e s

Displaying Data
FileMaker includes a number of container tags and substitution tags that allow the different types of
FileMaker fields to be displayed. These tags are summarized in FileMaker Data Display Tags and then
examples are included in the sections that follow.

See also the sections on Value Lists and Images for more information about returning values from FileMaker
fields.

Table 9: FileMaker Data Display Tags

Tag	 Description	

[Field]	 Can be used to reference FileMaker fields including related fields and repeating
fields. Fields from the current table are named simply (e.g. [Field: 'First_Name']).
Fields from a related record are named with the related database name, two
colons, and the name of the field (e.g. [Field: 'Calls::Approved']). The record ID
of a related record can also be found by specifying -RecordID (e.g. [Field: 'Calls::
Approved', -RecordID]).

[Repeating] … [/Repeating]	 Container tag repeats for each defined repetition of a repeating field. Requires a
single parameter, the name of the repeating field from the current layout.

[Repeating_ValueItem]	 Returns the value for each repetition of a repeating field.

[Portal] … [/Portal]	 Container tag repeats for each record in a portal. Requires a single parameter,
the name of the portal relationship from the current layout. Fields from the portal
can be found using the same method as for related records (e.g. [Field: 'Calls::
Approved'] within a portal showing records from the Calls database).

		

Note: All fields which are referenced by Lasso must be contained in the current layout in FileMaker. For portals
and repeating fields only the number of repetitions shown in the current layout will be available to Lasso.

Related Fields
Related fields are named using the relationship name followed by two colons :: and the field name. For
example, a related field Call_Duration from a Calls.fp5 database might be referenced as Calls.fp5::Call_Duration. Any
related fields which are included in the layout specified for the current Lasso action can be referenced using
this syntax. Data can be retrieved from related fields or it can be set in related fields when records are added
or updated.

Important: Every database which is referenced by a related field or a portal must have the same permissions
defined. If a related database does not have the proper permissions then FileMaker will not just leave the related
fields blank, but will deny the entire database request.

To return data from a related field:

Specify the name of the related field within a [Field] tag. The related field must be contained in the current
layout either individually or within a portal. In a one-to-one relationship, the value from the single related
record will be returned. In a one-to-many relationship, the value from the first related record as defined by
the relationship options will be returned. See the section on Portals below for more control over one-to-
many relationships.

The following example shows a -FindAll action being performed in a database Contacts.fp5. The related field
Last_Call_Time from the Calls.fp5 databases is returned for each record through a relationship named Calls.fp5.

[Inline: -Database='Contacts.fp5', -Layout='People', -FindAll]
	 [Records]
		
[KeyField_Value]: [Field: 'First_Name'] [Field: 'Last_Name]
			 (Last call at: [Field: 'Calls::Last_Call_Time']).
	 [/Records]
[/Inline]

1 7 8

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 1 1 — F i l e M a k e r D a t a S o u r c e s

�	
126: John Doe (Last call at 12:00 pm).

127: Jane Doe (Last call at 9:25 am).

4096: Jane Person (Last call at 4:46 pm).

To return the record ID for a related field:

Add the -RecordID parameter to the [Field] tag which would return the value for a related field. Adding the
following tag within the [Records] … [/Records] tags in the example above would return the record ID for the
related Calls record rather than the value for the Last_Call_Time field.

[Field: 'Calls::Last_Call_Time', -RecordID]

To set the value for a related field:

Specify the name of the related field within the action which adds or updates a record within the database.
The related field must be contained in the current layout either individually or within a portal. In a one-to-
one relationship, the value for the field in a single related record will be modified.

In a one-to-many relationship, the record ID of the related record must be used within the inline to specify
which related record should be modified. Otherwise, the value for the field in the first related record as
defined by the relationship options will be modified. See the section on Portals below for more control over
one-to-many relationships.

The following example shows an -Update action being performed in a database Contacts.fp5. The related field
Last_Call_Time from the Calls.fp5 database is updated for Jane Person. The new value is returned.

[Inline: -Database='Contacts.fp5',
		 -Layout='People',
		 -KeyValue=4096,
		 'Calls.fp5::Last_Call_Time'='1:45 am',
		 -Update]
		
[KeyField_Value]: [Field: 'First_Name'] [Field: 'Last_Name]
			 (Last call at: [Field: 'Calls.fp5::Last_Call_Time']).
[/Inline]

�	
4096: Jane Person (Last call at 1:45 pm).

Portals
Portals allow one-to-many relationships to be displayed within FileMaker databases. Portals allow data from
many related records to be retrieved and displayed in a single Lasso page. A portal must be present in the
current FileMaker layout in order for its values to be retrieved using Lasso.

Important: Every database which is referenced by a related field or a portal must have the same permissions
defined. If a related database does not have the proper permissions then FileMaker will not just leave the related
fields blank, but will deny the entire database request.

Only the number of repetitions formatted to display within FileMaker will be displayed using Lasso. A portal
must contain a scroll bar in order for all records from the portal to be displayed using Lasso.

Fields in portals are named using the same convention as related fields. The relationship name is followed by
two colons :: and the field name. For example, a related field Call_Duration from a Calls.fp5 database might be
referenced as Calls.fp5::Call_Duration.

Note: Everything that is possible to do with portals can also be performed using nested [Inline] … [/Inline] tags to
perform actions in the related database. Portals are unique to FileMaker databases.

To return values from a portal:

Use the [Portal] … [/Portal] tags with the name of the portal referenced in the opening [Portal] tag. [Field] tags
within the [Portal] … [/Portal] tags should reference the fields from the current portal row using related field
syntax.

1 7 9

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 1 1 — F i l e M a k e r D a t a S o u r c e s

The following example shows a portal Calls.fp5 that is contained in the People layout of the Contacts.fp5
database. The Time, Duration, and Number of each call is displayed.

[Inline: -Database='Contacts.fp5', -Layout='People', -FindAll]
	 [Records]
		 <p>Calls for [Field: 'First_Name'] [Field: 'Last_Name]:
		 [Portal: 'Calls.fp5']
			
[Field: 'Calls.fp5::Number'] at [Field: 'Calls.fp5::Time']
				 for [Field: 'Calls.fp5::Duration'] minutes.
		 [/Portal]
	 [/Records]
[/Inline]

�	 <p>Calls for John Doe:

555-1212 at 12:00 pm for 15 minutes.

<p>Calls for Jane Doe:

555-1212 at 9:25 am for 60 minutes.

<p>Calls for Jane Person:

555-1212 at 2:23 pm for 55 minutes.

555-1212 at 4:46 pm for 5 minutes.

To add a record to a portal:

A record can be added to a portal by adding the record directly to the related database. In the following
example the Calls.fp5 database is related to the Contacts.fp5 database by virtue of a field Contact_ID that stores
the ID for the contact which the calls were made to. New records added to Calls.fp5 with the appropriate
Contact_ID will be shown through the portal to the next site visitor.

In the following example a new call is added to the Calls.fp5 database for John Doe. John Doe has an ID of 123 in
the Contacts.fp5 database. This is the value used for the Contact_ID field in Calls.fp5.

[Inline: -Add,
	 -Database='Calls.fp5',
	 -Layout='People',
	 'Contact_ID'=123,
	 'Number'='555-1212',
	 'Time'='12:00 am',
	 'Duration'=55]
[/Inline]

To update a record within a portal:

Lasso allows records within a portal to be updated by specifying the record ID of the related record within
the inline. The structure of the field name is Relation::Field.RecordID. The record ID for a related record can
be found using the [Field] tag with a -RecordID parameter. Rather than returning the value for the field name
specified, the [Field] tag will return the record ID for the related record. For example, the field name for the
Call_Duration field in the Calls.fp5 database on the record with ID 1234 would look like Calls.fp5::Call_Duration.1234
and could be generated with Calls.fp5::Call_Duration.[Field: 'Calls.fp5::Call_Duration', -RecordID].

For example, the following code assumes that there is a contacts database with a People layout and a related
Calls database. The calls for each contact are listed through a portal on the People layout. This code will create
an array of related fields from the Calls database to be updated in each record. The name of each field is
created using the [Field] tag with the -RecordID parameter and the value for the field is set to Yes. The nested
inline does an update of the Contacts database, but actually updates records in the Calls database through the
portal.

1 8 0

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 1 1 — F i l e M a k e r D a t a S o u r c e s

[Inline: -Database='Contacts.fp5', -Layout='People', -FindAll]
	 [Records]
		 [Var: 'myUpdateArray' = (Array)]
		 [Portal: 'Calls.fp5']
			 [$myUpdateArray->(Insert: 'Calls.fp5::Approved.' + (Field: ''Calls.fp5::Approved', -RecordID) = 'Yes')\
		 [/Porta]
		 [Inline: -Database='Contacts.fp5',
			 -Layout='People',
			 -KeyField=(KeyField_Value),
			 $myUpdateArray,
			 -Update']
		 [/Inline]
	 [/Records]
[/Inline]

It is also possible to use a field to return the record ID of each record in the portal, then use that value in
nested [Inline] … [/Inline] tags to update the related record. Create a calculation field named RecordID within the
related database (e.g. Calls.fp5) that contains the following FileMaker calculation.

Status(CurrentRecordID)

Place that field within the portal shown within the main database (e.g. Contacts.fp5). To perform an update of
a portal row, use [Inline] … [/Inline] tags which reference the related database and the RecordID from the portal.

The following example shows how to update every record contained within a portal. The field Approved is set
to Yes for each call from the Calls.fp5 database for all contacts from the Contacts.fp5 database.

[Inline: -Database='Contacts.fp5', -Layout='People', -FindAll]
	 [Records]
		 [Portal: 'Calls.fp5']
			 [Inline: -Database='Calls.fp5',
				 -Layout='People',
				 -KeyField=(Field: 'Calls.fp5::RecordID'),
				 'Approved'='Yes',
				 -Update']
			 [/Inline]
		 [/Portal]
	 [/Records]
[/Inline]

The results of the action will be shown the next time the portal is viewed by a site visitor.

To delete a record from a portal:

The same method as described above for updating records within a portal can be used to delete records
from a portal. In the following example, all records from Contacts.fp5 are returned and every record from the
Calls.fp5 portal is deleted.

[Inline: -Database='Contacts.fp5', -Layout='People', -FindAll]
	 [Records]
		 [Portal: 'Calls.fp5']
			 [Inline: -Database='Calls.fp5',
				 -Layout='People',
				 -KeyField=(Field: 'Calls.fp5::RecordID'),
				 -Delete]
			 [/Inline]
		 [/Portal]
	 [/Records]
[/Inline]

No records will be contained in the portal the next time the site is viewed by a site visitor. However, not all
records in Calls.fp5 have necessarily been deleted. Any records which were not associated with a contact in
Contacts.fp5 will still remain in the database.

1 8 1

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 1 1 — F i l e M a k e r D a t a S o u r c e s

Repeating Fields
Repeating fields in FileMaker allow many values to be stored in a single field. Each repeating field is defined
to hold a certain number of values. These values can be retrieved using the tags defined in this section. See
the documentation for FileMaker for more information about how to create and use repeating fields within
FileMaker.

In order to display or set values in a repeating field, the layout referenced in the current database action must
contain the repeating field formatted to show the desired number of repetitions. If a field is set to store eight
repetitions, but only to show two, then it will appear to be a two-repetition field to Lasso.

Note: The use of repeating fields is not recommended. Usually a simple text field which contains multiple values
separated by returns can be used for the same effect through Lasso. For more complex solutions a related
database and [Portal] … [/Portal] tags or nested [Inline] … [/Inline] tags can often be easier to use and maintain than a
solution with repeating fields.

To return values from a repeating field:

Use the [Repeating] … [/Repeating] and [Repeating_ValueItem] tags to return each of the values from a repeating
field. The opening [Repeating] tag takes a single parameter which names a field from the current FileMaker
layout that repeats. The contents of the [Repeating] … [/Repeating] tags is repeated for each repetition and the
[Repeating_ValueItem] tag is used to return the value for the current repetition.

The following example shows a repeating field Customer_ID that has four repetitions. Normally, only the first
repetition has a defined value, but for a contact that has multiple accounts, multiple values are defined. Since
Jane Person has two customer accounts, two repetitions of Customer_ID are returned.

[Inline: -Database='Contacts', -Layout='People', 'Last_Name'='Person', -Search]
	 [Records]
		 <p>[Field: 'First_Name'] [FIeld: 'Last_Name']
		 [Repeating: 'Customer_ID']
			
Customer ID [Loop_Count]: [Repeating_ValueItem].
		 [/Repeating]
	 [/Records]
[/Inline]

�	 <p>Jane Person

Customer ID 1: 100123.

Customer ID 2: 123654.

To add a record with a repeating field:

A record can be added with values in a repeating field by referencing the field multiple times within the -Add
action. The following example shows a new contact being added to Contacts.fp5. The contact Jimmy Last_Name is
given three customer ID numbers referenced by the field Customer_ID multiple times. The added record is
returned showing all three customer IDs are stored.

[Inline: -Database='Contacts',
	 -Layout='People',
	 'First_Name'='Jimmy',
	 'Last_Name'='Last_Name',
	 'Customer_ID'='2001',
	 'Customer_ID'='2010',
	 'Customer_ID'='2061',
	 -Add]
		 <p>[Field: 'First_Name'] [Field: 'Last_Name']
		 [Repeating: 'Customer_ID']
			
Customer ID [Loop_Count]: [Repeating_ValueItem].
		 [/Repeating]
[/Inline]

1 8 2

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 1 1 — F i l e M a k e r D a t a S o u r c e s

�	 <p>Jimmy Last_Name

Customer ID 1: 2001.

Customer ID 2: 2010.

Customer ID 3: 2061.

To update a record with a repeating field:

A repeating field can be updated by referencing it multiple times within the -Update action. The following
example shows an HTML form which displays four repetitions of the field Customer_ID and allows each of
them to be modified. Notice that the four repetitions are created using the looping [Repeating] … [/Repeating]
container tags.

<form action="response.lasso" method="POST">
	 <input type="hidden" name="-Database" value="Contacts.fp5">
	 <input type="hidden" name="-Layout" value="People">
	 <input type="hidden" name="-KeyValue" value="[KeyField_Value]">

	 <p>First Name:
		 <input type="text" name="First_Name" value="[Field: 'First_Name']">
	
Last Name:
		 <input type="text" name="Last_Name" value="[Field: 'Last_Name']">

	 [Repeating: 'Customer ID'
		
Customer ID:
			 <input type="text" name="Customer_ID" value="[Repeating_ValueItem]">
	 [/Repeating]

	 <p><input type="submit" name="-Update" value="Update this Record">
</form>

To delete values from a repeating field:

	 •	Records which contain repeating fields can be deleted using the same technique for deleting any FileMaker
records. All repetitions of the repeating field will be deleted along with the record. The following
[Inline] … [/Inline] tags will delete the record with a record ID of 127.

[Inline: -Database='Contacts.fp5', -Table='People', -KeyValue=127, -Delete]
	 <p>The record was deleted.
[/Inline]

	 •	A single repetition of a repeating field can be deleted by setting its value to an empty string. The
other values in the repeating field will not slide down to fill in the missing repetition. The following
[Inline] … [/Inline] will set the first repetition of a repeating field Customer_ID to the empty string, but leave the
second and third repetitions unchanged.

The values for the repeating field are first placed in an array so that they can be referenced by number
within the opening [Inline] tag.

[Variable: 'Customer_ID' = (Array: '', '', '')]
[Repeating: 'Customer_ID']
	 [(Variable: 'Customer_ID')->(Get: Loop_Count) = (Repeating_ValueItem)]
[/Repeating]

1 8 3

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 1 1 — F i l e M a k e r D a t a S o u r c e s

[Inline: -Update,
		 -Database='Contacts.fp5',
		 -Table='People',
		 -KeyValue=127,
		 'Customer_ID'='',
		 'Customer_ID'=(Variable: 'Customer_ID)->(Get: 2),
		 'Customer_ID'=(Variable: 'Customer_ID')->(Get: 3),
	 <p>[Field: 'First_Name'] [FIeld: 'Last_Name']
	 [Repeating: 'Customer_ID']
		
Customer ID [Loop_Count]: [Repeating_ValueItem].
	 [/Repeating]
[/Inline]

The results show that the value for the first repetition of the repeating field has been deleted, but the second
and third repetitions remain intact.

�	 <p>Jimmy Last_Name

Customer ID 1: .

Customer ID 2: 2010.

Customer ID 3: 2061.

Value Lists
Value lists in FileMaker allow a set of possible values to be defined for a field. The items in the value list
associated with a field on the current layout for a Lasso action can be retrieved using the tags defined in
FileMaker Value List Tags. See the documentation for FileMaker for more information about how to create
and use value lists within FileMaker.

In order to display values from a value list, the layout referenced in the current database action must contain
a field formatted to show the desired value list as a pop-up menu, select list, check boxes, or radio buttons.
Lasso cannot reference a value list directly. Lasso can only reference a value list through a formatted field in
the current layout.

Table 10: FileMaker Value List Tags

Tag	 Description	

[Value_List] … [/Value_List]	 Container tag repeats for each value in the named value list. Requires a single
parameter, the name of a field from the current layout which has a value list
assigned to it.

[Value_ListItem]	 Returns the value for the current item in a value list. Optional -Checked or -
Selected parameter returns only currently selected values from the value list.

[Selected]	 Displays the word Selected if the current value list item is selected in the field
associated with the value list.

[Checked]	 Displays the word Checked if the current value list item is selected in the field
associated with the value list.

[Option]	 Generates a series of <option> tags for the value list. Requires a single
parameter, the name of a field from the current layout which has a value list
assigned to it.

-NoValueLists	 Suppresses the fetching of value list data for FileMaker Server data sources.
		

Note: See the Searching and Displaying Data chapter for information about the -Show command tag which is
used throughout this section.

1 8 4

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 1 1 — F i l e M a k e r D a t a S o u r c e s

To display all values from a value list:

	 •	The following example shows how to display all values from a value list using a -Show action within
[Inline] … [/Inline] tags. The field Title in the Contacts.fp5 database contains five values Mr., Mrs., Ms., and Dr.
The -Show action allows the values for value lists to be retrieved without performing a database action.

[Inline: -Database='Contacts.fp5', -Layout='People', -Show]
	 [Value_List: 'Title']
		
[Value_ListItem]
	 [/Value_List]
[/Inline]

�	
Mr.

Mrs.

Ms.

Dr.

	 •	The following example shows how to display all values from a value list using a named inline. The same
name Values is referenced by -InlineName in both the [Inline] tag and [Value_List] tag.

[Inline: -InlineName='Values', -Database='Contacts.fp5', -Layout='People', -Show]
[/Inline]
…
[Value_List: 'Title', -InlineName='Values']
	
[Value_ListItem]
[/Value_List]

�	
Mr.

Mrs.

Ms.

Dr.

To display an HTML pop-up menu in an -Add form with all values from a value list:

	 •	The following example shows how to format an HTML <select> … </select> pop-up menu to show all
the values from a value list. A select list can be created with the same code by including size and/or
multiple parameters within the <select> tag. This code is usually used within an HTML form that performs an
-Add action so the visitor can select a value from the value list for the record they create.

The example shows a single <select> … </select> within [Inline] … [/Inline] tags with a -Show command. If many
value lists from the same database are being formatted, they can all be contained within a single set of
[Inline] … [/Inline] tags.

<form action="response.lasso" method="POST">
	 <input type="hidden" name="-Add" value="">
	 <input type="hidden" name="-Database" value="Contacts.fp5">
	 <input type="hidden" name="-Table" value="People">
	 <input type="hidden" name="-KeyField" value="ID">

[Inline: -Database='Contacts.fp5', -Layout='People', -Show]
	 <select name="Title">
		 [Value_List: 'Title']
			 <option value="[Value_ListItem]">[Value_ListItem]</option>
		 [/Value_List]
	 </select>
[/Inline]

	 <p><input type="submit" name="-Add" value="Add Record">
</form>

	 •	The [Option] tag can be used to easily format a value list as an HTML <select> … </select> pop-up menu. The
[Option] tag generates all of the <option> … </option> tags for the pop-up menu based on the value list for the
specified field. The example below generates exactly the same HTML as the example above.

1 8 5

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 1 1 — F i l e M a k e r D a t a S o u r c e s

<form action="response.lasso" method="POST">
	 <input type="hidden" name="-Add" value="">
	 <input type="hidden" name="-Database" value="Contacts.fp5">
	 <input type="hidden" name="-Table" value="People"?
	 <input type="hidden" name="-KeyField" value="ID">

[Inline: -Database='Contacts.fp5', -Layout='People', -Show]
	 <select name="Title">
		 [Option: 'Title']
	 </select>
[/Inline]

	 <p><input type="submit" name="-Add" value="Add Record">
</form>

To display HTML radio buttons with all values from a value list:

The following example shows how to format a set of HTML <input> tags to show all the values from a value list
as radio buttons. The visitor will be able to select one value from the value list. Check boxes can be created
with the same code by changing the type from radio to checkbox.

<form action="response.lasso" method="POST">
	 <input type="hidden" name="-Add" value="">
	 <input type="hidden" name="-Database" value="Contacts.fp5">
	 <input type="hidden" name="-Table" value="People">
	 <input type="hidden" name="-KeyField" value="ID">

[Inline: -Database='Contacts.fp5', -Layout='People', -Show]
	 [Value_List: 'Title']
		 <input type="radio" name="Title" value="[Value_ListItem]"> [Value_ListItem]
	 [/Value_List]
[/Inline]

	 <p><input type="submit" name="-Add" value="Add Record">
</form>

To display only selected values from a value list:

The following examples show how to display the selected values from a value list for the current record. The
record for John Doe is found within the database and the selected value for the Title field, Mr. is displayed.

	 •	The -Selected keyword in the [Value_ListItem] tag ensures that only selected value list items are shown. The
following example uses a conditional to check whether [Value_ListItem: -Selected] is empty.

[Inline: -Database='Contacts.fp5', -Layout='People', -KeyValue=126, -Search]
	 [Value_List: 'Title']
		 [If: (Value_ListItem: -Selected) != '']
			
[Value_ListItem: -Selected]
		 [/If]
	 [/Value_List]
[/Inline]

�	
Mr.

	 •	The [Selected] tag ensures that only selected value list items are shown. The following example uses a
conditional to check whether [Selected] is empty and only shows the [Value_ListItem] if it is not.

[Inline: -Database='Contacts.fp5', -Layout='People', -KeyValue=126, -Search]
	 [Value_List: 'Title']
		 [If: (Selected) != '']
			
[Value_ListItem]
		 [/If]
	 [/Value_List]
[/Inline]

1 8 6

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 1 1 — F i l e M a k e r D a t a S o u r c e s

�	
Mr.

	 •	The [Field] tag can also be used simply to display the current value for a field without reference to the value
list.

[Field: 'Title']

�	
Mr.

To display an HTML popup menu in an -Update form with selected value list values:

	 •	The following example shows how to format an HTML <select> … </select> select list to show all the values
from a value list with the selected values highlighted. The [Selected] tag returns Selected if the current value
list item is selected in the database or nothing otherwise. This code will usually be used in an HTML form
that performs an -Update action to allow the visitor to see what values are selected in the database currently
and make different choices for the updated record.

<form action="response.lasso" method="POST">
	 <input type="hidden" name="-Update" value="">
	 <input type="hidden" name="-Database" value="Contacts.fp5">
	 <input type="hidden" name="-Table" value="People">
	 <input type="hidden" name="-KeyField" value="ID">
	 <input type="hidden" name="-KeyValue" value="127">

[Inline: -Database='Contacts.fp5', -Layout='People', -KeyValue=126, -Search]
	 <select name="Title" multiple size="4">
		 [Value_List: 'Title']
			 <option value="[Value_ListItem]" [Selected]>[Value_ListItem]</option>
		 [/Value_List]
	 </select>
[/Inline]

	 <p><input type="submit" name="-Update" value="Update Record">
</form>

	 •	The [Option] tag automatically inserts Selected parameters as needed to ensure that the proper options are
selected in the HTML select list. The example below generates exactly the same HTML as the example above.

<form action="response.lasso" method="POST">
	 <input type="hidden" name="-Update" value="">
	 <input type="hidden" name="-Database" value="Contacts.fp5">
	 <input type="hidden" name="-Table" value="People">
	 <input type="hidden" name="-KeyField" value="ID">
	 <input type="hidden" name="-KeyValue" value="127">

[Inline: -Database='Contacts.fp5', -Layout='People', -KeyValue=126, -Search]
	 <select name="Title" multiple size="4">
		 [Option: 'Title']
	 </select>
[/Inline]

	 <p><input type="submit" name="-Update" value="Update Record">
</form>

To display HTML check boxes with selected value list values:

The following example shows how to format a set of HTML <input> tags to show all the values from a value
list as check boxes with the selected check boxes checked. The [Checked] tag returns Checked if the current value
list item is selected in the database or nothing otherwise. Radio buttons can be created with the same code by
changing the type from checkbox to radio.

1 8 7

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 1 1 — F i l e M a k e r D a t a S o u r c e s

<form action="response.lasso" method="POST">
	 <input type="hidden" name="-Update" value="">
	 <input type="hidden" name="-Database" value="Contacts.fp5">
	 <input type="hidden" name="-Table" value="People">
	 <input type="hidden" name="-KeyField" value="ID">
	 <input type="hidden" name="-KeyValue" value="127">

[Inline: -Database='Contacts.fp5', -Layout='People', -KeyValue=126, -Search]
	 [Value_List: 'Title']
		 <input type="checkbox" name="Title" value="[Value_ListItem]" [Checked]>
			 [Value_ListItem]
	 [/Value_List]
[/Inline]

	 <p><input type="submit" name="-Update" value="Update Record">
</form>

Container Fields
Lasso Professional 7.1 includes a new tag [Database_FMContainer] that allows the raw contents of a FileMaker
container field to be returned. This tag works with either FileMaker Pro data sources of FileMaker Server data
sources.

Note: The [Database_FMContainer] tag does not rely on Classic Lasso being enabled. This functionality offers a
replacement for the deprecated [Image_URL] and [IMG] tags when Classic Lasso is disabled.

Table 11: Container Field Tags

Tag	 Description	

[Database_FMContainer]	 Returns the raw data contained in a FileMaker container field. Requires one
parameter which is the name of the field.

		

The [Database_FMContainer] tag functions differently depending on whether FileMaker Pro or FileMaker Server
data sources are being accessed.

	 •	FileMaker Pro – Only image data can be fetched from container fields. An optional -Type parameter can
specify GIF or JPEG along with additional quality arguments the Web Companion supports.

	 •	FileMaker Server – Any type of data can be fetched from a container field. The tag automatically handles
any data type that can be stored in FileMaker.

The [Database_FMContainer] tag always returns a byte stream. The results of this tag will be most typically sent to
the current site visitor using [File_Serve].

To retrieve data from a FileMaker container field:

Use the [Database_FMContainer] tag. In the following example the data in the Image container field is retrieved
and stored in a variable ContainerData. See the following example for a demonstration of how to serve this data
as an image to the site visitor.

[Inline: -Database='Contacts',
		 -Layout='People',
		 'First_Name'='John',
		 'Last_Name'='Doe',
		 -Search]
	 [Records]
		 [Variable: 'ContainerData' = (Database_FMContainer: 'Image')]
		 …
	 [/Records]
[/Inline]

1 8 8

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 1 1 — F i l e M a k e r D a t a S o u r c e s

To serve an image from a FileMaker container field:

Pass the value of the [Database_FMContainer] field to the [File_Serve] tag. In the following example a single
image is fetched from a database based on the value of the action parameter ID. The contents of the Image
field is interpreted as a JPEG and passed to [File_Serve]. To the site visitor this file will serve a file named
FileMakerImage.jpg.

[Inline: -Database='Contacts.fp5',
		 -Layout='People',
		 -KeyValue=(Action_Param: 'ID')
		 -Search]
	 [File_Serve:
			 (Database_FMContainer: 'Image'),
			 -Type='image/jpeg',
			 -File='FileMakerImage.jpg']
[/Inline]

Note: The [File_Serve] tag replaces the current output of the page with the image and performs an [Abort]. The
code above represents the complete content of a Lasso page.

The code above could be saved into a Lasso page called Image.Lasso. This page would then be referenced
within an HTML tag as follows.

For example, an image from each record in a database could be displayed as follows:

[Inline: -Database='Contacts',
		 -Layout='People',
		 'First_Name'='John',
		 'Last_Name'='Doe',
		 -Search]
	 [Records]
		 <p>[Field: 'First_Name'] [Field: 'Last_Name']
		
</p>
	 [/Records]
[/Inline]

The result will be the first and last name of each person in the Contacts database followed by the stored picture
on the next line.

FileMaker Scripts
Lasso includes command tags which allow scripts in FileMaker databases to be executed. Scripts are usually
executed in concert with a database action. They can be performed before the database action, after the
database action but before the results are sorted, or just before the results are returned to Lasso. The command
tags for executing FileMaker scripts are described in FileMaker Scripts Tags.

FileMaker Tip: It is best to limit the use of FileMaker scripts. Most functionality of FileMaker scripts can be
achieved in Lasso with better performance especially on a busy Web server.

Table 12: FileMaker Scripts Tags

Tag	 Description	

-FMScript	 Specifies a script to be processed after the current database action has been
performed. Requires a single parameter which names a FileMaker script.
Synonym is -FMScriptPost.

-FMScriptPre	 Specifies a script to be processed before the current database action has been
performed. Requires a single parameter which names a FileMaker script.

-FMScriptPreSort	 Specifies a script to be processed after the current database action, but before
the results are sorted. Requires a single parameter which names a FileMaker
script.

1 8 9

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 1 1 — F i l e M a k e r D a t a S o u r c e s

		

Conditions for executing a FileMaker script:

	 1	The script must be defined in the database referenced by the action in which the -FMScript… tag is called.

	 2	The current user must have permission to execute scripts. See the Group section in the Setting Up Security
chapter of the Lasso Professional 8 Setup Guide for more information.

	 3	The found set should not be empty after performing a FileMaker script. Scripts should always ensure that
they return a non-empty found set after they execute.

	 4	All database action on the FileMaker machine must wait until the script finishes. Scripts should be as fast
and efficient as possible.

To execute a FileMaker script within [Inline] … [/Inline] tags:

The following example shows a FileMaker script named Filter_People being called after a -FindAll action is
performed within a FileMaker database Contacts.fp5. The script removes certain records from the found set and
returns the results.

[Inline: -Database='Contacts.fp5',
		 -Layout='People',
		 -FMScript='Filter_People',
		 -FindAll]
	 …
[/Inline]

The results of the [Inline] … [/Inline] tags will be the result of the script Filter_People. The record set and its order
can be completely determined by the script.

To execute a FileMaker script within an HTML form:

The following example shows a FileMaker script named Clean_Up being performed before a -FindAll action is
performed within Contacts.fp5. The script deletes invalid records so that the found set will only contain valid
records after the -FindAll is performed. The script is performed before the database action since it is called with
-FMScriptPre.

<form action="response.lasso" method="POST">
	 <input type="hidden" name="-FindAll">
	 <input type="hidden" name="-Database" value="Contacts.fp5">
	 <input type="hidden" name="-Layout" value="People">
	 <input type="hidden" name="-FMScriptPre" value="Clean_Up">

	
<input type="submit" name="-FindAll" value="Find All">
</form>

The results of the script include all valid records that were not deleted by the Clean_Up script.

To execute a FileMaker script within a URL:

The following example shows a script named Update_Priority which is performed after the -FindAll database
action, but before the results are sorted. The Update_Priority script could update a field Priority, based on the
records from the current found set, which the sort depends on. The script is called using the -FMScriptPreSort
tag.

<a href="response.lasso?-Database=Contacts.fp5&
		 -Layout=People&
		 -FMScriptPreSort=Update_Prioirty&
		 -SortOrder=Descending&
		 -SortField=Priority&
		 -FindAll">
	 Find All and Sort by Priority

1 9 0

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 1 1 — F i l e M a k e r D a t a S o u r c e s

The results of this URL, when it is selected, will be all records from the databases, sorted in descending order
according to the value of the Priority field after it has been updated by the Update_Priority script.

�	

Note: Additional parameters can be specified within the HTML tag in order to specify the width and height
of the returned image. The image will be scaled to the desired size. See the next section for details.

1 9 1

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 1 1 — F i l e M a k e r D a t a S o u r c e s

12
Chapter 12

JDBC and ODBC Data Sources

This chapter documents tags and behaviors which are specific to the JDBC and ODBC data sources in Lasso.
These data sources provide access to many data sources which don’t have a native connector in Lasso. See the
appropriate chapter for information about other data sources including SQL Data Sources, FileMaker Data
Sources, and Other Data Sources (Spotlight, custom data sources).

	 •	Overview introduces the ODBC and JDBC data sources.

	 •	Feature Matrix includes a table which lists all of the features of each data source and highlights the
differences between them.

	 •	Using JDBC Data Sources describes using JDBC data sources with Lasso Professional 8.

	 •	JDBC Schema Tags describes using Lasso tags to return schema values from JDBC data sources that
support schema ownership.

Overview
Native support for ODBC and JDBC data sources is included in Lasso. If a JDBC driver is available for a
data source, it can be installed in Lasso, allowing instant communication with that data source. This feature
allows Lasso to communicate with hundreds of ODBC and JDBC compliant data sources, including Sybase,
DB2, Frontbase, Openbase, Interbase, and Microsoft SQL Server. For more information on ODBC/JDBC
connectivity and availability for a particular data source, see the data source documentation or contact the
data source manufacturer.

Lasso functions as its own JDBC driver manager, and all JDBC drivers must be installed directly in Lasso’s
JDBC Drivers folder. Instructions on how to set up a JDBC data source for use with Lasso Professional are
documented in the Setting Up Data Sources chapter in the Lasso Setup Guide.

Lasso accesses ODBC drivers which are set up as System DSNs. The ODBC Data Source Administrator utility
or control panel should be used to configure the driver as a System DSN, then the data source name is
entered into Lasso. See the Setting Up Data Sources chapter in the Lasso Setup Guide for additional detals.

Table 1: Data Sources

Data Source	 Description	

JDBC	 Supports any data source with a compatible JDBC driver installed into the JDBC
Drivers folder. See the JDBC Data Sources section in the Lasso Setup Guide for
details about how to install JDBC drivers.

ODBC	 Support any data source with a compatible ODBC driver set up as a System
DSN. See the ODBC Data Sources section in the Lasso Setup Guide for details
about how to install ODBC drivers.

		

1 9 2

L a s s o 8 . 5 L a n g u a g e G u i d e

Tips for Using ODBC and JDBC Data Sources
The following is a list of tips to following when writing Lasso for use with ODBC and JDBC data sources.
These tips illustrate specific concepts and behaviors to keep in mind when coding.

	 •	Always specify a primary key field using the -KeyField command tag in -Search, -Add, and -FindAll actions. This
will ensure that the [KeyField_Value] tag will always return a value.

	 •	Use -KeyField and -KeyValue to reference a particular record for updates, duplicates, or deletes.

	 •	Fields may truncate any data beyond the length they are set up to store. Ensure that all fields in the
accessed databases have sufficiently long fields for the values that need to be stored in them.

	 •	Use -ReturnField command tags to reduce the number of fields which are returned from a -Search action.
Returning only the fields that need to be used for further processing or shown to the site visitor reduces the
amount of data that needs to travel between Lasso Service and the JDBC data source.

	 •	When an -Add or -Update action is performed on a database, the data from the added or updated record is
returned inside the [Inline] … [/Inline] tags. If the -ReturnField parameter is used, then only those fields specified
should be returned from an -Add or -Update action. Setting -MaxRecords=0 can be used as an indication that
no record should be returned.

	 •	The -SQL command tag can be allowed or disallowed at the host level for users in Lasso Administration.
Once the -SQL command tag is allowed for a user, that user may access any database within the allowed
host inside of a SQL statement. For that reason, only trusted users should be allowed to issue SQL queries
using the -SQL command tag. For more information, see the Setting Up Security chapter in the Lasso
Professional 8 Setup Guide.

	 •	SQL statements which are generated using visitor-defined data should be screened carefully for unwanted
commands such as DROP or GRANT. See the Setting Up Data Sources chapter of the Lasso Setup Guide for
more information.

	 •	Always quote any inputs from site visitors that are incorporated into SQL statements. The [Encode_SQL] tag
should be used on any visitor supplied values which are going to be passed to a MySQL data source. The
[Encode_SQL92] tag should be used on any visitor supplies values which will be passed to another SQL-
based data source such as SQLite or JDBC data sources.

Encoding the values ensures that quotes and other reserved characters are properly escaped within the SQL
statement. The tags also help to prevent SQL injection attacks by ensuring that all of the characters within
the string value are treated as part of the value. Values from [Action_Param], [Cookie], [Token_Value], [Field], or
calculations which rely in part on values from any of these tags must be encoded.

For example, the following SQL SELECT statement includes quotes around the [Action_Param] value and uses
[Encode_SQL92] to encode the value. The apostrophe (single quote) within the name is doubled so it will be
embedded within the string rather than ending the string literal.

[Variable: 'SQL_Statement'='SELECT * FROM Contacts.People WHERE ' +
	 'Company LIKE \'' + (Encode_SQL92: (Action_Param: 'Company')) + '\';']

If [Action_Param] returns McDonald's for First_Name then the SQL statement generated by this code would
appear as follows. Notice that the apostrophe in the company name is doubled up.

SELECT * FROM Contacts.People WHERE Company LIKE 'McDonald''s';

	 •	Lasso Professional 8 uses connection pooling when connecting to data sources via JDBC, and the JDBC
connections will remain open during the time that Lasso Professional 8 is running.

	 •	Check for LassoSoft Support Central articles at http://support.lassosoft.com for documented issues and data
source specified set up instructions for specific ODBC or JDBC data sources.

1 9 3

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 1 2 — J DB C a n d ODB C D a t a S o u r c e s

Feature Matrix
The following tables detail the features of each data source in this chapter. Since some features are only
available in certain data sources it is important to check these tables when reading the documentation in
order to ensure that each data source supports your solutions required features.

Table 2: JDBC Data Sources

Feature	 Description	

Friendly Name	 User-specified

Internal Name	 Uses JDBC driver name

Module Name	 LJAPI.dll, LJAPI.dylib, or LJAPI.so and LJAPI.jar

Actions	 -Add, -Delete, -FindAll, -Search, -Show, -SQL, -Update

Operators	 -BW, -CN, -EQ, -EW, -GT, -GTE, -LT, -LTE, -NBW, -NCN, -NEW
-OpBegin/-OpEnd with And, Or, Not.

KeyField	 -KeyField/-KeyValue
		

Table 3: ODBC Data Sources

Feature	 Description	

Friendly Name	 Lasso Connector for ODBC

Internal Name	 odbc

Module Name	 SQLConnector.dll, SQLConnector.dylib, or SQLConnector.so

Inline Host Attributes	 The -Name should specify the data source name (System DSN). A -Username
and -Password may also be required.

Actions	 -Add, -Delete, -FindAll, -Search, -Show, -SQL, -Update

Operators	 -BW, -CN, -EQ, -EW, -GT, -GTE, -LT, -LTE, -NBW, -NCN, -NEW
-OpBegin/-OpEnd with And, Or, Not.

KeyField	 -KeyField/-KeyValue
		

Using JDBC Data Sources
Data source operations outlined in the Database Interaction Fundamentals, Searching and Displaying
Data, and Adding and Updating Records chapters are supported with JDBC data sources. Because JDBC
is a standardized API for connecting to tabular data sources, there are few unique tags in Lasso 8 that are
specific to JDBC data sources or invoke special functions specific to any JDBC data source. The only JDBC-
specific Lasso tags are for JDBC data sources that support schema ownership (e.g. Frontbase, Sybase), and are
described in the JDBC Schema Tags section of this chapter.

Certification Note: LassoSoft Software has tested and certified Microsoft SQL Server 2000 with Microsoft SQL
Server 2000 Driver for JDBC for use with Lasso Professional 8 via JDBC. Other JDBC-compliant data sources
may be used with Lasso Professional 8, but all features cannot be guaranteed to work by LassoSoft Software. See
http://support.lassosoft.com for Support Central articles on connectivity with selected data sources.

JDBC Schema Tags
Lasso 8 includes tags that return the user schemas available in a JDBC data source host for the current Lasso
Service connection. These tags can only be used with data sources that use named schema ownership (e.g.
Frontbase, Sybase), and complement the other Lasso schema and database tags described in the Database
Interaction Fundamentals chapter.

Note: For information on whether or not your JDBC data source supports named schema ownership, refer to the
data source documentation.

1 9 4

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 1 2 — J DB C a n d ODB C D a t a S o u r c e s

Table 4: JDBC Schema Tags

Tag	 Description	

-Schema	 Allows a schema name to be passed as part of an [Inline] … [/Inline] data source
action. The schema name passed here overrides the default schema set for the
JDBC data source host in Lasso Administration.

[Schema_Name]	 Returns the name of the current schema in use in an [Inline] … [/Inline] data
source action.

[Database_SchemaNames]	 Repeats for every schema name in a JDBC data source host available to Lasso.
Requires the name of a database in the JDBC data source host as a parameter.

[Database_SchemaNameItem]	 Returns the name of the current schema name when used inside [Database_
SchemaNames] … [/Database_SchemaNames] tags.	

		

To reference a schema name in an inline database action:

Use the -Schema command tag to pass the name of the data source schema that should be used for the
database action.

[Inline: -Show, -Schema='SchemaName', -Database='DBName', -Table='TBName']
	 [Schema_Name]
[/Inline]

�	 SchemaName

To list all schema names in a JDBC data source:

Use the [Database_SchemaNames] … [/Database_SchemaNames] tags to list all databases available in a JDBC data
source host. The [Database_SchemaNameItem] tag returns the value of each schema name.

[Database_SchemaNames:'DBName']
	 [Database_SchemaNameItem]
[/Database_SchemaNames]

�	 SchemaName
SchemaName2

Using ODBC Data Sources
Data source operations outlined in the Database Interaction Fundamentals, Searching and Displaying
Data, and Adding and Updating Records chapters are supported with ODBC data sources. Because ODBC
is a standardized API for connecting to tabular data sources, there are few unique tags in Lasso 8 that are
specific to ODBC data sources or invoke special functions specific to any ODBC data source.

1 9 5

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 1 2 — J DB C a n d ODB C D a t a S o u r c e s

13
Chapter 13

Other Data Sources

This chapter documents tags and behaviors which are specific to the Spotlight and custom third-party
data sources in Lasso. See the appropriate chapter in this section for information about other data sources
including SQL Data Sources, FileMaker Data Sources, and JDBC and ODBC Data Sources.

	 •	Overview introduces the data sources.

	 •	Feature Matrix includes a table which lists all of the features of each data source and highlights the
differences between them.t

	 •	Spotlight Data Source describes how to access the file system indexing in Mac OS X 10.4/10.5 in order to
search the contents and attributes of files on the local machine.

	 •	Custom Data Sources describes how to access custom third-party data sources through Lasso.

Overview
The Spotlight data source allows the meta information which is generated by the Spotlight indexer on Mac
OS X 10.4/10.5 to be searched by Lasso. This data source provides an effective file system search which is
powerful and efficient.

This chapter also includes information about how to use custom third-party data sources with Lasso. Data
sources can be implemented in LassoScript, C/C++ (LCAPI), or Java (LJAPI). Third-party data sources can
adhere to the conventions created by the internal data sources or can diverge wildly.

Table 1: Data Sources

Data Source	 Description	

Spotlight	 Supports searching files on Mac OS X 10.4/10.5 systems only.

Custom	 Lasso allows third parties to create data sources using LassoScript, LCAPI, or
LJAPI.

		

1 9 6

L a s s o 8 . 5 L a n g u a g e G u i d e

Feature Matrix
The following tables detail the features of each data source in this chapter. Since some features are only
available in certain data sources it is important to check these tables when reading the documentation in
order to ensure that each data source supports your solutions required features.

Table 2: Spotlight Data Source

Feature	 Description	

Platform	 Mac OS X Only

Friendly Name	 Lasso Connector for Spotlight

Internal Name	 spotlightds.

Module Name	 SpotlightDS.dylib

Actions	 -Search, -Show, -SQL (to specify a raw Spotlight search)

Operators	 -BW, -CN, -EQ, -EW, -GT, -GTE, -LT, -LTE, -NBW, -NCN, -NEW
-OpBegin/-OpEnd with And, Or, Not.

Notes	 This data source differs significantly from other built-in data sources. Read the full
details in the Spotlight Data Source section..

		

Table 3: Custom Data Sources

Feature	 Description	

Module Name	 Third-party data sources can be implemented in a .lasso or .lassoapp file in
LassoStartup, or in a .dll, .dylib, .so, or .jar file in LassoModules.

Inline Host Attributes	 Data source dependent. Third-party data sources may use the -Name and -Port
fields in a manner similar to built-in data sources or may use them for custom
configuration data.

Actions	 Data source dependent. Third-party data sources may implement standard
actions or can implement completely custom actions.

		

Spotlight Data Source
The Spotlight data source is used to search the file system on machines with Mac OS X 10.4/10.5. This data
source is not supported on earlier versions of Mac OS X or on Windows or Linux.

The Spotlight data source has one pre-defined host and several databases which represent different metadata
sets that can be searched. The Lasso Site Administrator must enable the metadata sets which they want to
make available for searching.

Apple’s developer information page about Spotlight provides a conceptual background to how Spotlight
works, what types of metadata are indexed, and how to run Spotlight queries from the command line.

http://developer.apple.com/macosx/spotlight.html

Important: The Spotlight data source searches the raw contents of files. When the Web site root is searched the
raw LassoScript contained within Lasso pages will be searched, not the output of those pages.

Requirements
The Spotlight data source requires Mac OS X 10.4/10.5. The Spotlight data source can only be used to search
for files and folders which have been indexed by the Spotlight indexer.

Sites will only be able to return Spotlight search results for files contained within their Web server root unless
the Server Administrator has granted the site permission to access files outside the root and appropriate file
permissions have been granted to the user who is performing the search.

1 9 7

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 1 3 — O t h e r D a t a S o u r c e

Spotlight Metadata Sets (Databases)
Lasso defines four Spotlight metadata sets as databases within Lasso Site Administration. A set will also be
defined for each volume which is mounted on the machine hosting Lasso Service. Each set must be enabled
and appropriate permissions assigned to it before they can be searched by the site user. Some of the sets
also require file permissions to be configured. Each metadata set can be enabled by visiting the Site > Data
Sources > Databases section of Lasso Site Administration.

	 •	Spotlight_Site – This set corresponds to the Web site root. Once this “database” is enabled it can be
searched by any Lasso use who has permission to access it. No additional file permissions are required.

	 •	Spotlight_User – This set corresponds to the Lasso Professional 8 application folder. The site must be
assigned permission to access files outside of the Web server root and the Lasso user must have permission
to access those files in order to use this set.

	 •	Spotlight_Computer – This set corresponds to the root of the machine hosting Lasso Service. The site
must be assigned permission to access files outside of the Web server root and the Lasso user must have
permission to access those files in order to use this set. Note that the search results may contain files which
the Lasso user is not capable of manipulating through the file tags.

	 •	Spotlight_Network – This set corresponds to the local area network of the machine hosting Lasso Service.
The site must be assigned permission to access files outside of the Web server root and the Lasso user must
have permission to access those files in order to use this set.

	 •	/Volumes/MacintoshHD – Each local hard disk, mounted CD or DVD, mounted disk image, and file
server will appear as a separate “database” with the name /Volumes/ followed by the volume name.

Note: The -Table, -KeyField, -MaxRecords, and -SkipRecords tags are not used with the Spotlight data source.

Spotlight Fields
The fields for Spotlight are defined by the file importers which are active on the system. The following table
lists some of the most common field names. See below the table for code which returns a complete list of
available field names.

Table 4: Common Spotlight Field Names

Field Name	 Description	

Content Created	 The date/time the contents were created (06/03/20 19:20:58 GMT-08:00)

Content Modified	 The date/time the contents were modified (06/05/04 09:56:25 GMT-07:00)

Created	 The date/time the file was created (06/03/20 19:20:58 GMT-08:00)

Display Name	 The name of the file in the Finder (default.lasso)

File Extension Hidden	 Is the file extension hidden in the Finder (false)

File Invisible	 Is the file invisible in the Finder (false)

File Label	 The ID of the Finder label for the file (0)

File Pathname	 The path to the file (/Library/WebServer/Documents/85/default.lasso). This is the
only field which is returned by default if no -ReturnField parameter is specified.

Filename	 The name of the disk file (default.lasso)

Group	 The ID of the group which owns the file (80)

Last Opened	 The date/time the file was last opened (06/05/04 09:48:49 GMT-07:00)

Modified	 The date/time the file was modified (06/05/04 09:56:25 GMT-07:00)

Owner	 The ID of the user who owns the file (501)

Size	 The size of the file in bytes (24666)

Text Content	 The contents of the file. This field can be used for searching, but is not returned
in search results.

Type	 The type of the file (text file)

1 9 8

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 1 3 — O t h e r D a t a S o u r c e

*	 Can be specified as the return field to return all available fields -ReturnField='*'.
This is not recommended for general use since generating some of the field
values can be performance intensive.

kMDItem…	 It is also possible to use any of the low-level constants which Apple defines for
Spotlight queries. These look like kMDItemDisplayName and can be used in
place of the friendly field names which Lasso makes available.

		

To return the complete list of avaiiable fields:

Use an inline with a -Show command as in the following code.

Inline: -Show, -Database='Spotlight_Site';
	 Field_Names->Sort & Join('
');
/Inline;

�	 Album
Alpha channel
Aperture
Audiences	
Audio bit rate
Audio encoding application
…

Spotlight Queries
Spotlight queries can make use of any of the fields listed in the table above (or returned by the -Show inline
above). Lasso’s search operators function the same as they do for any database queries. By default all searches
of text data are performed as “begins with” searches. For example, the following search would find all disk
files whose name begins with default.

Inline: -Search,
		 -Database='Spotlight_Site',
		 'Display Name' = 'default';
	 Records_Array->Join('
');
/Inline;

�	 /Library/WebServer/Documents/default.html
/Library/WebServer/Documents/default.lasso

The operator can be changed by preceding the search terms with any of Lasso’s built-in operator keywords
-BW, -CN, -EQ, -EW, -NBW, -NCN, -NEQ, or -NEW. (or with -Op='bw' etc.). For example, the following search would
find all disk files which contain the word LassoScript.

Inline: -Search,
		 -Database='Spotlight_Site',
		 -CN, 'Text Content' = 'LassoScript';
	 Records_Array->Join('
');
/Inline;

�	 /Library/WebServer/Documents/default.lasso
/Library/WebServer/Documents/include.lasso

1 9 9

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 1 3 — O t h e r D a t a S o u r c e

The -OpLogical and -OpBegin/-OpEnd keywords can be used to create complex nested search. The following code
finds all files whose name ends with .lasso or .html and whose contents contains LassoScript.

Inline: -Search,
		 -Database='Spotlight_Site',
		 -OpLogical='And',
		 -OpBegin='Or',
			 -EW, 'Filename' = '.lasso',
			 -EW, 'Filename' = '.html',
		 -OpEnd='Or',
		 -CN, 'Text Content' = 'LassoScript';
	 Records_Array->Join('
');
/Inline;

�	 /Library/WebServer/Documents/default.lasso

When searching fields whose value is an integer, decimal, or boolean value an “Equals” search is used auto-
matically. The operator can be changed by preceding the search terms with any of Lasso’s built-in operator
keywords -EQ, -GT, -GTE, -LT, -LTE, or -NEQ (or with -Op='gt' etc.). For example, the following search would find
all disk files whose size is greater than 32k.

Inline: -Search,
		 -Database='Spotlight_Site',
		 -GT, 'size' = 32768;
	 Records_Array->Join('
');
/Inline;

�	 /Library/WebServer/Documents/splah.swf

Restricting a Query
A query can be restricted to a sub-folder of the Web site root using a File Pathname term. Most Spotlight
searches should be restricted to a folder that only contains the text, image, audio, video, or PDF files which
are to be searched. If Spotlight is allowed to search the entire Web server root it will find terms within the raw
LassoScript source code of Lasso pages.

The following code searches only within Images folders inside the Web root. Note that any path which
contains /Images/ is searched including an Images folder at the root of the Web server and an Images folder
within a sub-folder.

Inline: -Search,
		 -Database='Spotlight_Site',
		 -GT, 'size' = 32768,
		 -CN, 'File Pathname' = '/Images/';
	 Records_Array->Join('
');
/Inline;

�	 /Library/WebServer/Documents/Images/logo.gif
/Library/WebServer/Documents/Images/welcome.gif
/Library/WebServer/Documents/Admin/Images/secure.gif

Spotlight Return Fields
By default the Spotlight data source only returns the File Pathname field. Additional fields can be returned by
listing the desired field names with -ReturnField. Spotlight queries can return any of the fields listed in the
table above (or returned by the -Show inline above). In addition -ReturnField='*' can be used as a shortcut to
return every available field.

For example, the following code returns information about an AAC encoded audio file. The -ReturnField
keyword is used to return Album and Title information as well as the standard File Pathname.

2 0 0

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 1 3 — O t h e r D a t a S o u r c e

Inline: -Search,
		 -Database='Spotlight_Site',
		 -EW, 'filename' = '.m4a',
		 -ReturnField='Album',
		 -ReturnField='Title';
	 Records;
		 'Album: ' + (Field: 'Album') + '
';
		 'File Pathname: ' + (Field: 'File Pathname') + '
';
		 'Title: ' + (Field: 'Title') + '
';
	 /Records;
/Inline;

�	 Album: Music From The Good, The Bad And The Ugly & A Fistful Of Dollars & For A Few Dollars More
File pathname: /Library/WebServer/Documents/01 The Good, The Bad And The Ugly.m4a
Title: The Good, The Bad And The Ugly

If -ReturnField='*' is used instead then a wealth of information about the file is returned. Note that the code
within the inline uses a conditional to avoid displaying any field which has an empty value. The actual fields
which are displayed will depend on what indexers are available.

Inline: -Search,
		 -Database='Spotlight_Site',
		 -EW, 'filename' = '.m4a',
		 -ReturnField='*';
	 Records;
		 Iterate: Field_Names->Sort &, (Var: 'field');
			 (Field: $field) != '' ? $field + ': ' + (Field: $field) + '
';
		 /Iterate;
		 '<hr>';
	 /Records;
/Inline;

�	 Album: Music From The Good, The Bad And The Ugly & A Fistful Of Dollars & For A Few Dollars More
Audio bit rate: 124.852
Audio encoding application: iTunes v4.0.1, QuickTime 6.4
Channel count: 2
Display name: 01 The Good, The Bad And The Ugly.m4a
Duration: 166.997
File pathname: /Library/WebServer/Documents/01 The Good, The Bad And The Ugly.m4a
Filename: 01 The Good, The Bad And The Ugly.m4a
Modified: 04/02/18 07:56:52 GMT-08:00
Musical genre: Soundtrack
Size: 2722974
Streamable: false
Title: The Good, The Bad And The Ugly
Total bit rate: 124.852
Track number: 1
Type: MPEG-4 Audio File

2 0 1

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 1 3 — O t h e r D a t a S o u r c e

Raw Queries
The Spotlight data source supports the -SQL action as a method of specifying raw data source queries. The
[Action_Statement] tag can be used to view the raw query generated by any Spotlight inline. If -StatementOnly is
specified then the raw query will be generated and not actually performed. For example, the following inline
generates the raw query which corresponds to the specified search.

Inline: -Search,
		 -Database='Spotlight_Site',
		 -GT, 'size' = 32768,
		 -StatementOnly;
	 Action_Statement;
/Inline;

�	 ((kMDItemFSSize > 32768))

That raw query can then be executed by feeding it into the Spotlight data source through the -SQL action.

Inline: -Search,
		 -Database='Spotlight_Site',
		 -SQL='((kMDItemFSSize > 32768))';
	 Records_Array->Join('
');
/Inline;

�	 splah.swf

Custom Data Sources
Third-party custom data sources can be implemented in LassoScript, C/C++ (LCAPI), or Java (LJAPI). Third-
party data sources can adhere to the conventions created by the internal data sources or can diverge wildly.
Consult the documentation of the third-party data source for full details about how it operates.

See the Custom Data Sources, LCAPI Data Sources, or LJAPI Data Sources chapters in this manual for
more information about third-party data sources. The following Tip of the Week contains the source code of a
data source which is written in LassoScript.

Custom Inline Data Source
http://www.lassosoft.com/TotW.1768.8931.lasso

2 0 2

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 1 3 — O t h e r D a t a S o u r c e

III
Section III

Programming

This section documents the symbols, tags, expressions, and data types which allow programming logic to be
specified within Lasso pages. This section contains the following chapters.

	 •	Chapter 14: Programming Fundamentals introduces basic concepts of Lasso programming such as how to
output results, how to store and retrieve variables, and how to interact with HTML forms and URLs.

	 •	Chapter 15: Variables introduces concept of variables including global variables, local variables, and page
variables.

	 •	Chapter 16: Conditional Logic introduces the [If], [Loop], and [While] tags and demonstrates how they can be
used for flow control.

	 •	Chapter 17: Encoding explains how strings are encoded in Lasso for output to many different languages
and the tags and keywords that can be used to control that output.

	 •	Chapter 18: Sessions explains how to create server-side variables that maintain their value from page to
page while a visitor traverses a Web site.

	 •	Chapter 19: Error Control introduces Lasso’s error reporting mechanism and explains how custom error
tags can be created and what tags can be used to handle errors which occur while processing a Lasso page.

2 0 3

L a s s o 8 . 5 L a n g u a g e G u i d e

S e c t i o n III – P r o g r a m m i n g

14
Chapter 14

Programming
Fundamentals

This chapter introduces the basic concepts of programming using Lasso. It is important to understand these
concepts before reading the chapters that follow.

	 •	Overview explains how to use pages written in Lasso and how to deal with errors.

	 •	Logic vs. Presentation describes strategies for coding blocks of programming logic code.

	 •	Data Output describes strategies for outputting calculation results in HTML or XML.

	 •	Variables explains the theory behind variables and how to store and retrieve values.

	 •	Includes describes how to use the [Include] and [Library] tags.

	 •	Data Types explains how to recognize different data types, how to cast between data types, and casting
rules.

	 •	Symbols is an introduction to symbols and expressions including rules for grouping, precedence, and auto
casting.

	 •	Member Tags explains how to call member tags and how they differ from process and substitution tags.

	 •	Forms and URLs explains how to pass data between pages using HTML forms and URLs and introduces
form parameters and tokens.

	 •	Custom Tags explains how to create reusable functions or subroutines in Lasso.

Overview
LassoScript is a tag-based scripting language that has all the features of an advanced programming language.
LassoScript has support for data types, object-oriented member tags, mathematical symbols, string symbols,
complex nested expressions, logical flow control, threads, and custom tags which can extend Lasso’s built-in
functions and procedures.

Using Lasso Pages
Lasso pages which contain LassoScript must be processed by Lasso in order for the embedded tags to be
interpreted. The Open… command in a Web browser should not be used to view Lasso pages. Instead, Lasso
pages should be uploaded to a Web server and loaded with an appropriate URL. For example, a file named
default.lasso in the root of the Web serving folder might be loaded using the following URL.

http://www.example.com/default.lasso

Simple sequences of tags and LassoScripts can be placed in a text file and then called through the Web
browser in order to test LassoScript programming concepts without the overhead of HTML formatting tags.

2 0 4

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 1 4 – P r o g r a m m i n g F u n d a m e n t a l s

Reporting Errors
If there are any Lasso syntax errors in a Lasso page which is processed by Lasso, then all processing will stop
and an error message will be displayed. Depending on the current error reporting level, the error message
will provide the location of the error and a description of what syntax caused the error. All errors must be
corrected before the page can be fully processed.

It is recommended that the error reporting level for the server be set to Minimal or None and adjusted to High on
a per-page basis using the [Lasso_ErrorReporting] tag when a site is being actively developed. See the Error
Controls chapter for details about setting the error reporting level and customizing the built-in error page.

Figure 1: Error Page

An error occurred while processing your request.

Error Information

Error Message: The file include.inc was not found.

Error Code: -9984

Note: All valid Lasso code above the syntax error will be processed each time the page is loaded. If database
actions are being performed, they may be performed each time a page is loaded as long as they are above the
point in the page where the error occurs.

Logic vs. Presentation
Lasso code can be structured in many ways in order to adapt itself to different coding styles. Some methods
involve the tight integration of programming logic (LassoScript) with page presentation (HTML, XML, and
graphics). Other methods involve abstracting the programming logic from the page presentation. Lasso offers
maximum flexibility for you to determine how you want to structure your pages.

It is often desirable to separate programming logic from page presentation so that different people can work
on different aspects of a Web site. For example, a Lasso developer can concentrate on creating LassoScripts
and blocks of Lasso code which define the programming logic of a site. Meanwhile, a Web designer can
concentrate on the visual aspects of the Web site with only minimal knowledge of how to integrate Lasso into
the page presentation so that data is inserted and formatted correctly.

It is also at times desirable for all of your programming to fit tightly within the page presentation. Because
LassoScript is an HTML-like tag language, it is easy to embed LassoScript within HTML, in effect enhancing
static HTML to become dynamic HTML.

The following examples show how to use LassoScript within HTML as well as how to use LassoScript
abstracted from HTML.

Examples of LassoScript embedded in HTML:

	 •	Lasso tags can be used within HTML markup to insert data from databases, the results of calculations, or
Lasso commands into otherwise static HTML. The following example inserts the [Field] tag into an HTML
 tag in order to extract a URL for an image stored in a database.

	 •	Container tags can be used to hide or show portions of a page. The following example hides an HTML <h2>
header unless the variable ShowTitle equals True.

[If: (Variable: 'ShowTitle') == True]
	 <h2>Page Title</h2>
[/If]

2 0 5

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 1 4 – P r o g r a m m i n g F u n d a m e n t a l s

	 •	Container tags can be used to repeat a portion of a page to present data from many database records or to
construct complex HTML tables. The following example shows the fields First_Name and Last_Name from a
database search each in their own row of a constructed table. See the Database Interaction Fundamentals
chapter for more information about [Inline] … [/Inline] tags.

[Inline: -Database='Contacts', -Table='People', -KeyField='ID', -FindAll]
	 <table>
		 [Records]
			 <tr>
				 <td>[Field: 'First_Name'] [Field:'Last_Name']</td>
			 </tr>
		 [/Records]
	 </table>
[/Inline]

	 •	Custom tags can be used to execute a portion of code multiple times. The following custom tag creates an
HTML link with the specified URL and anchor. It is then called multiple times.

[Define_Tag: 'MyLink', -Required='URL', -Required='Anchor']
	 [Local: 'Output' = '' + #Anchor + '']
	 [Return: @#Output]
[/Define_Tag]

You can visit [MyLink: 'http://www.lassosoft.com', 'LassoSoft'] for more information about Lasso
or [MyLink: 'http://www.tagswap.net', 'TagSwap'] to see tags created by other developers.

�	 You can visit LassoSoft for more information about Lasso
or TagSwap to see tags created by other developers.

Examples of LassoScript abstracted from HTML:

	 •	LassoScripts can be used to collect programming logic into a block at the top of a Lasso page. Code in the
LassoScript can be formatted and commented separate from the HTML in a Lasso page. Separating the
programming logic from the page presentation tags allows for easier debugging and customization of Lasso
pages. The following example shows an [Inline] specified in a LassoScript with an -InlineName keyword set so
the results can be retrieved in the presentation portion of the Lasso page. See the Lasso Syntax chapter for
more information.

<?LassoScript
	 // This inline finds all records in Contacts.
	 // The results are fetched using [Records: -InlineName='Results'] … [/Records]
	 Inline: -InlineName='Results', -Database='Contacts',-Table='People',-FindAll;
	 /Inline;
?>

	 •	The [Include] tag can be used to include Lasso pages that contain portions of the final output. In the
following example, the Lasso page shown consists of the standard HTML tags with a pair of [Include] tags
that insert all of the programming logic from a file named Library.lasso and the data presentation code from
a file named Presentation.lasso. See the Files and Logging chapter for more information about using [Include]
tags.

<html>
	 <head>
		 <title>Lasso FormatFile</title>
		 [Include: 'Library.lasso']
	 </head>
	 <body>
		 [Include: 'Presentation.lasso']
	 </body>
</html>

2 0 6

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 1 4 – P r o g r a m m i n g F u n d a m e n t a l s

Data Output
The final output of most Lasso pages is an HTML page, XML page, or WML page which will be viewed by a
Web site visitor in a client browser. This section describes how the results of expressions can be output and
how the output of substitution tags can be controlled.

See also the Encoding chapter for more information about using encoding keywords.

Table 1: Output Tags

Tag	 Description	

[Output]	 Outputs the result of a calculation or sub-tag using default encoding

[Output_None] … [/Ouput_None]	 Hides a portion of page from being output, but processes the Lasso tags within.

[HTML_Comment] … [/HTML_Comment]	 Surrounds a portion of a page with HTML comment markers, but processes the
Lasso tags within.

		

Outputting Values
Substitution tags and member tags output values to the Lasso page which is currently being processed in
place. Their values are output whether they are contained within LassoScripts or appear intermixed with
HTML tags.

The [Output] tag is a substitution tag which can be used to apply the default encoding to the value of any Lasso
expression, member tag, or sub-tag.

Example of using the [Output] tag:

The [Output] tag allows encoding keywords to be used on the results of string expressions. The following
LassoScript shows the use of the [Output] tag to return the result of a string expression with the encoding
keyword -EncodeNone applied so the HTML tags are displayed properly on the page.

<?LassoScript
	 Output: '' + 'Bold Text' + '', -EncodeNone;
?>

�	 Bold Text

Suppressing Output
Sometimes it is desirable to have Lasso tags processed in a Lasso page, but not to show the results in the page
which is returned to the Web site visitor. The [Output_None] … [/Output_None] tag can be used to accomplish
this purpose. Any Lasso tags contained within the container tag will be processed, but the results will not be
returned to the Web site visitor.

The following examples use page specific variables in a block of code that will not be output to the user.

[Output_None]
	 This text will not be returned to the site visitor.
	 However, the following tags will be processed.
	 [Variable: 'Page Title'='Lasso Page']
	 [Variable: 'Page Error'='None']
[/Output_None]

This same example could be written as a LassoScript as follows. The LassoScript will return no value to the
page on which it is placed, but any tags within the LassoScript will be processed.

2 0 7

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 1 4 – P r o g r a m m i n g F u n d a m e n t a l s

<?LassoScript
	 Output_None;
		 // This LassoScript will return no value.
		 // However, the following tags will be processed.
		 Variable: 'Page Title'='Lasso Page';
		 Variable: 'Page Error'='None';
	 /Output_None;
?>

Another way to suppress output is to surround a portion of a page in [HTML_Comment] … [/HTML_Comment]
tags. These tags will become an HTML comment container <?-- … --> when the page is processed. Any results
of the tags inside the container tags will not be shown to the Web site visitor, but will be available if they
view the source of the page. This can be useful for providing debugging information which won’t affect the
overall layout of a Web page. In the following example, the values of several variables are shown in an HTML
comment.

[HTML_Comment]
	 This text will be available in the source of the completed Web page.
	 Page Title: [Variable: 'Page Title']
	 Page Error: [Variable: 'Page Error']
[/HTML_Comment]

�	 <!--
	 This text will be available in the source of the completed Web page.
	 Page Title: Lasso Page
	 Page Error: None
-->

Variables
Variables are named locations where values can be stored and later retrieved. The concepts of setting and
retrieving variables and performing calculations on variables are essential to understanding how to work with
Lasso’s data types and tags.

A variable is created and set using the [Variable] tag. The following tag sets a variable named VariableName to the
literal string value VariableValue.

[Variable: 'VariableName'='VariableValue']

A variable is also retrieved using the [Variable] tag. This time, the tag is simply passed the name of the variable
to be retrieved. The following tag retrieves the variable named VariableName returning the literal string value
VariableValue.

[Variable: 'VariableName'] � VariableValue

The following LassoScript sets a variable and then retrieves the value. The result of the LassoScript is the value
VariableValue.

<?LassoScript
	 Variable: 'VariableName'='VariableValue';
	 Variable: 'VariableName';
?>

�	 VariableValue

Creating Variables
There is only one way to create a variable, using the [Variable] tag with a name/value parameter. All variables
should be created and set to a default value before they are used.

2 0 8

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 1 4 – P r o g r a m m i n g F u n d a m e n t a l s

Examples of creating variables:

	 •	An empty variable can be created by setting the variable to ''.

[Variable: 'VariableName'='']

	 •	A variable can be created and set to the value of a string literal.

[Variable: 'VariableName'='String Literal']

	 •	A variable can be created and set to the value of an integer or decimal literal.

[Variable: 'VariableName'=123.456]

	 •	A variable can be created and set to the value of any substitution tag such as a field value.

[Variable: 'VariableName'=(Field: 'Field_Name')]

Multiple variables can be created in a single [Variable] tag by listing the name/value parameters defining the
variables separated by commas. The following tag defines three variables named x, y, and z.

[Variable: 'x'=100, 'y'=324, 'z'=1098]

Variable names can be any string literal and case is unimportant. For best results, variables names should
start with an alphabetic character, should not contain any punctuation except for underscores and should not
contain any white space except for spaces (no returns or tabs). Variable names should be descriptive of what
value the variable is expected to contain.

Note: Variables cannot have their value retrieved in the same [Variable] tag they are defined.
[Variable: 'x'=10, 'y'=(variable:'x')] is not valid.

Returning Variable Values
The most recent value of a variable can be returned using the [Variable] tag. For example, the following
LassoScript creates a variable named VariableName, then retrieves the value of the variable using
the [Variable] tag. The result is Variable Value.

<?LassoScript
	 Variable: 'VariableName'='Variable Value';
	 Variable: 'VariableName';
?>

�	 Variable Value

Variable values can also be retrieved using the $ symbol. The following LassoScript creates a variable named
VariableName, then retrieves the value of the variable using the $ symbol. The result is Variable Value.

<?LassoScript
	 Variable: 'VariableName'='Variable Value';
	 $VariableName;
?>

�	 Variable Value

Setting Variables
Once a variable has been created, it can be set to different values as many times as is needed. The easiest way
to set a variable is to use the [Variable] tag again just as it was used when the variable was created.

[Variable: 'VariableName'='New Value']

Variables can also be set using the expression $VariableName='NewValue'. This expression should only be used
within LassoScripts so that it is not confused with a name/value parameter. This expression can be used to set
a variable, but cannot be used to create a variable.

2 0 9

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 1 4 – P r o g r a m m i n g F u n d a m e n t a l s

The following LassoScript creates a variable named VariableName, sets it to a value New Value using an
expression, then retrieves the value of the variable. The result is New Value.

<?LassoScript
	 Variable: 'VariableName'='';
	 $VariableName='New Value';
	 $VariableName;
?>

�	 New Value

Includes
Lasso allows Lasso pages to be included within the current Lasso page. This can be very useful for setting up
site-wide navigation elements (e.g. page headers and footers), separating the graphical elements of a site from
the programming elements, and for organizing a project into reusable code components. There are three
types of files that can be included with the various include tags depending on how the Lasso code and other
data in the included file needs to be treated.

	 •	Lasso Pages can be included using the [Include] tag. The Lasso code within the included Lasso page
executes at the location of the [Include] tag as if it were part of the current file. Any HTML code or text within
the Lasso page is inserted into the current Lasso page.

[Include: 'Page.lasso']

The [Include_Once] tag functions identically to [Include] the first time it is called, but subsequent calls to
[Include_Once] with the same file name are ignored. This allows the same utility file to be included from
within both a Lasso page and a file included by that Lasso page without danger of the code within being
executed twice.

[Include_Once: 'Page.lasso']

	 •	Text or Binary Data can be included using the [Include_Raw] tag. No Lasso code in the included file is
processed and no encoding is performed on the included data.

[Include_Raw: 'Picture.gif']

	 •	Lasso code can be included using the [Library] tag. No output is returned from the [Library] tag, but any
Lasso code within the file is executed.

[Library: 'Library.lasso']

The [Library_Once] tag functions similarly to [Include_Once]. Only the first call to [Library_Once] with a given file
name is executed. Subsequent calls with the same file name are ignored.

[Library_Once: 'Library.lasso']

	 •	Variables can be set to the contents of a file using the [Include] and [Include_Raw] tags. The [Include] tag inserts
the results of processing any Lasso code within the file into the variable. The [Include_Raw] tag inserts the
raw text or binary data within the file into the variable.

[Variable: 'File_Data' = (Include: 'Page.lasso')]
[Variable: 'File_Data' = (Include_Raw: 'Picture.gif')]

See the Images and Multimedia chapter for tips about how to use [Include_…] tags to serve images and
multimedia files from Lasso.

Library Files
Library files are Lasso pages which are used to modify Lasso’s programming environment by defining new
tags and data types, setting up global constants, or performing initialization code. Libraries can be included
within a Lasso page using the [Library] or [Library_Once] tag or can be added to the global environment by
placing the library file within the LassoStartup folder and then restarting Lasso Service.

2 1 0

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 1 4 – P r o g r a m m i n g F u n d a m e n t a l s

Specifying Paths
All included files reference paths relative to the Lasso page which contains the include tag. The path specified
to the file is usually the same as the relative or absolute path which would be specified within an HTML
anchor tag to reference the same file.

Files in the same folder as the current Lasso page can be included by specifying the name of the file directly.
The following tag includes a file named Page.lasso in the same folder as the file this tag is specified within.

[Include: 'Page.lasso']

Files in sub-folders within the same folder as the current Lasso page can be included by specifying the relative
path to the file which is to be included. The following tag includes a library file named Library.lasso within a
folder named Includes that is in the same folder as the file this tag is specified within.

[Library: 'Includes/Library.lasso']

Files in other folders within the Web serving folder should be specified using absolute paths from the root
of the Web serving folder. The ../ construct can be used to navigate up through the hierarchy of folders. The
following tag includes an image file called Picture.gif from the Images folder contained in the root of the Web
serving folder.

[Include_Raw: '/Images/Picture.gif']

The [Include_Once] and [Library_Once] tags use the full path name to the included files to determine whether the
same file has already been included.

File Suffixes
Any file which is included by Lasso including Lasso pages, library files, and response files must have an
authorized file suffix within Lasso Administration. See the Setting Site Preferences chapter of the Lasso
Professional 8 Setup Guide for more information about how to authorize file suffixes.

By default the following suffixes are authorized within Lasso Administration. Any of these files suffixes can
be used for included files. The .inc file suffix is often used to make clear the role of Lasso pages which are
intended to be included.

.htm								 .html

.inc									 .incl

.las									 .Lasso

.LassoApp					 .text

.txt	

Error Controls
Includes suppress many errors from propagating out to the including page. If a syntax error occurs in an
included file then the [Include] tag will return the reported error to the site visitor. If a logical error occurs
in an included file then the [Include] tag will return the contents of the error page with the error reported.
Techniques for debugging included files are listed on the following pages.

2 1 1

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 1 4 – P r o g r a m m i n g F u n d a m e n t a l s

Table 2: Include Tags

Tag	 Description	

[Include]	 Inserts the specified Lasso page into the current Lasso page. Any Lasso code in
the included Lasso page is executed. Accepts a single parameter, the path and
name of the Lasso page to be included.

[Include_Once]	 Functions the same as [Include] on the first call. Subsequent calls which refer to
the same include file are ignored.

[Include_Raw]	 Inserts the specified file into the current Lasso page. No processing or encoding
is performed on the included file. Accepts a single parameter, the path and name
of the file to be included.

[Library]	 Executes any Lasso code in the specified Lasso page, but, inserts no result into
the current Lasso page. Accepts a single parameter, the path and name of the
Lasso page to be executed.

[Library_Once]	 Functions the same as [Include] on the first call. Subsequent calls which refer to
the same include file are ignored.

		

Note: See the HTTP/HTML Content and Controls chapter for documentation of the [Inlude_URL] tag.

To include a Lasso page:

Use the [Include] tag with the path to the Lasso page which is to be included. The included Lasso page will be
processed and the results will be inserted into the current Lasso page as if the code had been specified within
the current file at the location of the [Include] tag. The following example shows how to include a file named
Page.lasso which is contained in the same folder as the current Lasso page.

[Include: 'Page.lasso']

To include a library file:

Library files which contain custom tag definitions or Lasso code that does not return any output can be
included using the [Library] tag. The Lasso code within the library file will be executed, but no result will
be returned to the current Lasso page. The following example shows how to include a library file named
Library.lasso which is contained in the same folder as the current Lasso page.

[Library: 'Library.lasso']

To include a utility file which is required by several files:

Use the [Include_Once] or [Library_Once] tag in each file that requires the tags or code defined in the utility
file. The first tag which Lasso encounters will trigger processing of the include file. Subsequent tags which
reference the same file will be ignored.

For example, a utility file Tags.Lasso might define some custom tags for a site. This tag is used in the main
Default.Lasso page and also in an included library file Library.Lasso. The top of Default.Lasso has this code,
including both Tags.Lasso and Library.Lasso.

[Library_Once: 'Tags.lasso']
[Library: 'Library.lasso']
… Remainder of Default.Lasso…

The top of Library.Lasso has this code which simply includes Tags.Lasso

[Library_Once: 'Tags.lasso']
… Remainder of Default.Lasso…

When Default.Lasso is processed the [Library_Once] tag for Tags.Lasso is encountered first. This file is processed
and the tags within are defined. Next, Library.Lasso is processed. When the [Library_Once] tag for Tags.Lasso is
encountered within that file it is ignored since the file Tags.Lasso has already been processed.

2 1 2

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 1 4 – P r o g r a m m i n g F u n d a m e n t a l s

To debug an included file:

The include tags do return errors that occur in the included file, but it can be difficult to debug problems in
included files. The errors from an included file can sometimes be more easily seen by loading the file directly
within a Web browser. This will reveal any syntax errors within the included file and ensure that all the code
in the included file performs properly. The following URL references a Lasso page named Page.lasso inside an
Includes folder.

http://www.example.com/Includes/Page.lasso

Note: Some include files rely on variables from the Lasso page that includes them to operate properly. These
include files cannot be debugged by simply loading them in a Web browser.

To debug an included library file:

Since library files do not ordinarily return any output to the current Lasso page they can be difficult to debug.

To debug an included library file, insert debugging messages within the code of the library file. Ordinarily,
these messages will never be seen since the [Library] tag does not return any output. The following example
shows how to report the current error.

[(Error_CurrentError: -ErrorCode) + ': ' + (Error_CurrentError)]

If the [Library] tag which includes the code library is changed to an [Include] tag then the output of error
message will be inserted into the current Lasso page. This allows the debugging messages to be seen. Once the
file is working successfully, the [Include] can be changed back to a [Library] tag to hide the debugging messages.

To prevent included files from being served directly:

Included files can be named with any file suffix which is authorized within Lasso Administration. If a file
suffix is authorized within Lasso Administration, but is set to not be served by the Web server application
then files with that file suffix can only be used as include files and can never be served directly. For example,
to authorize the .inc file suffix the following steps must be taken.

	 1	Authorize .inc in Lasso Administration Setup > Settings > File Extensions.

	 2	Using the file suffix controls of your Web server applications, deny the suffix .inc so that files with that
suffix cannot be served. This can usually be accomplished with specific file suffix controls or with a Web
server realm. Consult the Web server documentation for more information.

Note: If Lasso code is placed in an include file that is authorized for processing by Lasso (step 1 above), but is
not set in the Web server preferences to always be processed by Lasso or never to be served (step 2 above),
then it may be possible for site visitors to view the unprocessed Lasso code by loading the include file directly.

Advanced Methodology
Includes and library files allow Lasso pages to be structured in order to create reusable components, separate
programming logic from data presentation, and in general to make Web sites easier to maintain. There are
many different methods of creating structured Web sites which are beyond the scope of this manual. Please
consult the third party resources at the LassoSoft Web site for more information.

Data Types
Every value in Lasso is defined as belonging to a specific data type. Every value stored in a variable belongs to
a specific data type. The data type determines what symbols and member tags are available for use with the
value.

Table 3: Data Type Tags

Tag	 Description	

[Null->Type]	 Returns the data type of a value.

[String]	 Casts a value to data type string.

2 1 3

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 1 4 – P r o g r a m m i n g F u n d a m e n t a l s

[Integer]	 Casts a value to data type integer.

[Decimal]	 Casts a value to data type decimal.

[Boolean]	 Casts a value to data type boolean.

[Date]	 Casts a value to data type date.

[Duration]	 Casts a value to data type duration.

[Array]	 Creates an array data type.

[Map]	 Creates a map data type.

[Pair]	 Creates a pair data type.

[Bytes]	 Creates a bytes data type.
		

Note: Lasso has many more data types than those listed. See the Data Types section in this manual or the Lasso
Reference. for complete documentation of all the available data types.

Several data types have already been introduced:

	 •	Strings are sequences of alphanumeric characters. String literals are delimited by single quotes as in
'String Literal'.

	 •	Integers are whole numbers. Integer literals are specified without quotes as in 123 or -987.

	 •	Decimals are numbers which contain a decimal point. Decimal literals are specified without quotes as in
3.1415926 or 24.99.

	 •	Dates are alphanumeric strings that represent a date and/or time. A date must always be cast using the [Date]
tag in a recognized format to be used as a date data type (e.g. [Date:'9/29/2002']).

	 •	Durations are alphanumeric strings that represent a length time (not a 24-hour clock time). A duration
must always be cast using the [Duration] tag in a recognized format to be used as a duration data type (e.g.
[Duration:'168:00:00']).

Variables which are set to literal values of a specific data type are themselves said to be of that data type.
Variables containing strings are string variables. Any symbols which operate on literal strings will also operate
on string variables.

It is important to keep track of what type of value is stored in each variable so that the values of expressions
and member tags can be safely predicted.

Returning the Type of a Variable
The [Null->Type] member tag can be used to return the type of a variable or other value. [Null->Type] is a member
tag of the data type null which is a precursor to all other data types. The [Null->…] member tags can be used
with values of any data type.

The following example shows the value of [Null->Type] for literals of different data types.

'String Value'->Type � string
123->Type � integer
9.999->Type � decimal

The following example shows the value of [Null->Type] when it is used on a variable which has been set to a
string literal.

<?LassoScript
	 Variable: 'Value' = 'String Value';
	 $Value->Type;
?>

�	 string

The [Null->Type] member tag also works on the compound data types: array, map, and pair. The following
example shows the value of [Null->Type] when it is used on a variable which has been set to an array literal.

2 1 4

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 1 4 – P r o g r a m m i n g F u n d a m e n t a l s

<?LassoScript
	 Variable: 'Value' = (Array: 'One', 'Two', 'Three', 'Four');
	 $Value->Type;
?>

�	 array

Casting a Value to a Data Type
Values can be cast from one data type to another in order to ensure that the proper member tags will be
available and symbols will work as expected. Each data type defines a tag which has the same name as the
data type that can be used to cast a value to that data type.

To cast a value to the string data type:

	 •	Integer and decimal values can be cast to type string using the [String] tag. The value of the string is the same
as the value of the integer or decimal value when it is output using the [Variable] tag.

[String: 999.999] � '999.999'

	 •	Boolean values can be cast to type string using the [String] tag. The value will always either be True or False.

[String: True] � 'True'

	 •	Arrays, maps, and pairs should not be cast to type string. The value which results is intended for debugging
purposes. More information can be found in the Arrays and Maps chapter.

To cast a value to the integer data type:

	 •	Decimal values can be cast to type integer using the [Integer] tag. The value of the decimal number will be
truncated at the decimal point. For example, casting 999.999 to type integer results in 999 not 1000.

[Integer: 999.999] � 999

	 •	String values can be cast to type integer using the [Integer] tag. The string must start with a numeric value.
For example casting 2String1 to an integer results in 2.

[Integer: '2001: A Space Odyssey'] � 2001
[Integer: '2String1'] � 2

	 •	Boolean values can be cast to type integer using the [Integer] tag. The value of the result will be 1 if the
boolean was True or 0 if the boolean was False.

[Integer: True] � 1
[Integer: False] � 0

	 •	Arrays, maps, and pairs should not be cast to type integer. The value which results will always be 0.

To cast a value to the decimal data type:

	 •	Integer values can be cast to type decimal using the [Decimal] tag. The value of the integer number will
simply have a decimal point added. For example, casting 123 to type integer results in 123.000000.

[Decimal: 123] � 123.000000

	 •	String values can be cast to type decimal using the [Decimal] tag. The string must start with a numeric value.
For example casting 2.5String1 to a decimal results in 2.500000. The 1 at the end of the string is ignored.

[Decimal: '2001: A Space Odyssey'] � 2001.000000
[Decimal: '2.5String1'] � 2.500000

	 •	Boolean values can be cast to type decimal using the [Decimal] tag. The value of the result will be 1.000000 if
the boolean was True or 0.000000 if the boolean was False.

[Decimal: True] � 1.000000
[Decimal: False] � 0.000000

2 1 5

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 1 4 – P r o g r a m m i n g F u n d a m e n t a l s

	 •	Arrays, maps, and pairs should not be cast to type integer. The value which results will always be 0.000000.

To cast a value to the boolean data type:

	 •	Integer and decimal values can be cast to type boolean using the [Boolean] tag. The value of the boolean will
be False if the number is zero or True if the number is non-zero.

[Boolean: 123] � True
[Boolean: 0.0] � False

	 •	String values can be cast to type boolean using the [Boolean] tag. The value of the boolean will be False if the
string contains just the word false or is empty and True otherwise.

[Boolean: 'false'] � False
[Boolean: ''] � False
[Boolean: 'true'] � True
[Boolean: 'value'] � True

	 •	Arrays, maps, and pairs should not be cast to type boolean. The value which results will always be False.

To cast a value to the date data type:

	 •	Specially formatted strings may be cast as date data types using the [Date] tag. For a list of date string
formats that are automatically recognized as dates, see the Date and Time Operations chapter.

[Date: '9/29/2002'] � 9/29/2002 00:00:00
[Date: '9/29/2002 12:30:00'] � 9/29/2002 12:30:00
[Date: '2002-09-29 12:30:00'] � 2002-09-29 12:30:00

	 •	Unrecognized date strings can be cast as date data types using the [Date] tag with the -Format parameter. All
eligible date strings must contain numbers, punctuation, and/or allowed words (e.g. February, GMT) in a
format that represents a valid date. For a description of how to format a date string, see the Date and Time
Operations chapter.

[Date: '9.29.2002', -Format='%m.%d.%Y'] � 9.29.2002
[Date: '20020929', -Format='%Y%m%d'] � 20020929
[Date: 'September 29, 2002', -Format='%B %d, %Y'] � September 29, 2002

To cast a value to the duration data type:

	 •	Specially formatted strings as either hours:minutes:seconds or just seconds may be cast as duration data types
using the [Duration] tag. The [Duration] tag always returns values in hours:minutes:seconds format. For more
information, see the Date and Time Operations chapter.

[Duration: '169:00:00'] � 169:00:00
[Duration: '00:30:00'] � 00:30:00
[Duration: '300'] � 00:05:00

To cast a value to type array, map, or pair:

Values cannot be cast to type array, map, or pair. However, an array, map, or pair can be constructed with the
simple data type as its initial value. See the Arrays and Maps chapter for more information about how to
construct these complex data types.

To cast a value to the bytes data type:

For discussion on the bytes data type, see the Advanced Programming Topics chapter.

Automatic Casting
Lasso will cast values to a specific data type automatically when they are used in expressions or as parameters
for tags which require a particular type of value. Values will be automatically cast in the following situations:

	 •	Values of every data type are cast to string values when they are output to the Web browser.

2 1 6

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 1 4 – P r o g r a m m i n g F u n d a m e n t a l s

	 •	Integer values are cast to decimal values when they are used as parameters in expressions with one integer
parameter and one decimal parameter.

	 •	Integer and decimal values are cast to string values when they are used as parameters in expressions with
one integer or decimal parameter and one string parameter.

	 •	Values of every data type are cast to boolean values when they are used in logical expressions.

	 •	The [Math_…] tags will automatically cast all parameters to integer or decimal values.

	 •	The [String_…] tags will automatically cast all parameters to string values.

Symbols
Symbols allow for powerful calculations to be performed within Lasso tags. The symbols which can be used
in expressions are discussed in full detail in the chapter devoted to each data type. String expressions and
symbols are discussed in the String Operations chapter and decimal and integer expressions and symbols are
discussed in the Math Operations chapter.

Using Symbols
Since symbols only function on values of a specific data type, values need to be cast to that data type
explicitly or they will be automatically cast. For best results, explicit casting should be performed so the
meaning of the symbols will be clear. Note that spaces should always be specified between a symbol and its
parameters.

As explained in the Automatic Casting section above, values used as a parameter in an expression will be
automatically cast to a string value if any parameter in the expression is a string value. Integer values will be
automatically cast to decimal values. Any value used in a logical expression will be automatically cast to a
boolean value.

	 •	The following expression returns 1212 since the integer 12 is automatically cast to a string because one
parameter is a string.

['12' + 12] � 1212

	 •	Similarly, the following expression returns 1212 since the integer 12 is automatically cast to a string because
one parameter is a string.

[12 + '12'] � 1212

	 •	The following expression returns 24 since the string 12 is explicitly cast to an integer.

[(Integer: '12') + 12] � 24

	 •	The following expression returns 24.000000 since the integer 12 is automatically cast to a decimal value
because one parameter is a decimal value.

[12 + 12.0] � 24.000000

	 •	The following expression returns True since the integer 12 is automatically cast to a boolean value
True because it is used in a logical expression.

[12 && 12] � True

When in doubt, the [String], [Integer], and [Decimal] tags should be used to explicitly cast values so that the
proper symbols are used.

Note: Always place spaces between a symbol and its parameters. The - symbol can be mistaken for the start of a
command tag, keyword, or keyword/value parameter if it is placed adjacent to the parameter that follows.

2 1 7

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 1 4 – P r o g r a m m i n g F u n d a m e n t a l s

Assignment Symbols
Variables can be set to the result of an expression, storing that result for later use. For example, the following
variable is set to the result of a simple math expression.

[Variable: 'MathResult'=(1 + 2)]

Variables can also be set using assignment symbols within LassoScripts. The equal sign = is the simplest
assignment symbol. Other assignment symbols can be formed by combining a decimal, integer, or string
symbol with the equal sign. For example, += is the additive assignment symbol.

The following LassoScript creates a variable named MathResult, performs a mathematical operation (adding 4)
on it using the additive assignment symbol, and returns the final value.

<?LassoScript
	 Variable: 'MathResult'=0;
	 $MathResult += 4;
	 $MathResult;
?>

�	 4

The assignment symbol replaces the value of the variable and does not return any output. The assignment
expression $MathResult += 4; is equivalent to the expression $MathResult = $MathResult + 4;. Since assignment
expressions do not return a value they should only be used within LassoScripts to modify variables.

LassoScripts can use variable results to build very complex operations. For example, the following LassoScript
uses several variables to perform a math expression.

<?LassoScript
	 Variable: 'x'=100, 'y'=4;
	 $x = $x / $y;
	 $y = $x + $y;
	 'x=' + $x + ' y=' + $y;
?>

�	 x=25 y=29

Note: If a negative number is used as the right-hand parameter of an assignment symbol it should be
surrounded by parentheses.

Member Tags
Member tags are associated with a particular data type and can be used on any value of that data type. The
data type of a member tag is represented in the documentation in the member tag name before the member
tag symbol ->. For example, the tag [String->Length] can be used with values of data type string, and the tag
[Decimal->SetFormat] can be used with values of data type decimal.

Member tags are available for string, decimal, integer, date, array, map, and pair data types, and are discussed
in detail in the String Operations, Math Operations, Date and Time Operations, and Arrays and Maps
chapters.

Using Member Tags
Since member tags only function on values of a specific data type, values need to be cast to that data type
explicitly. Member tags will not automatically cast values.

For example, the member tag [String->Length] can be used to return the length of a string value. If [String->Length]
is used on a number as in [123->Length] then an error will result:

"Length" was not a member of type "integer"

2 1 8

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 1 4 – P r o g r a m m i n g F u n d a m e n t a l s

Instead, the integer must be cast to a string value explicitly before the member tag can be used. The following
example returns the length of the string representing the integer correctly.

[(String: 123)->Length] � 3

When in doubt, the [String], [Integer], [Decimal], and [Date] tags should be used to explicitly cast values so that the
proper member tags are available.

Member Tag Types
Member tags can function like either substitution tags which return a value or like process tags which modify
the value which the member tag is called on, but do not return a value.

For example, the member tag [String->Length] functions like a substitution tag and returns the length of the
string on which it is called. The following LassoScript stores a string in a variable StringVariable then retrieves its
length. The string stored in the variable is left unchanged.

<?LassoScript
	 Variable: 'StringVariable' = 'A string value';
	 $StringVariable->Length;
?>

�	 14

In contrast, the member tag [Decimal->SetFormat] functions like a process tag, altering the way that a decimal
variable will be output when it is cast to a string. The following LassoScript shows the normal decimal value
output of a variable.

<?LassoScript
	 Variable: 'DecimalVariable' = 123.456;
	 $DecimalVariable;
?>

�	 123.456000

The following LassoScript shows how the output of the decimal value changes when a [Decimal->SetFormat] tag
is used on the variable DecimalVariable to truncate its output to two significant digits.

<?LassoScript
	 Variable: 'DecimalVariable' = 123.456;
	 $DecimalVariable->(SetFormat: -Precision=2);
	 $DecimalVariable;
?>

�	 123.45

The value stored in the variable DecimalVariable is not changed, but the value which is output is formatted
according to the rules set in the
[Decimal->SetFormat] tag.

Forms and URLs
This section discusses how to pass information from Lasso page to Lasso page through HTML forms and
URLs. Data can also be passed from Lasso page to Lasso page using database actions or sessions. Please see
the Database Interaction Fundamentals and Sessions chapters for more information.

Form Parameters
HTML forms can be used to pass values to a Lasso page. The values are retrieved in the Lasso page using the
[Action_Param] tag. Any <input>, <select>, or <textarea> values can be retrieved by name using the [Action_Param] tag
except for those which contain Lasso command tags.

2 1 9

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 1 4 – P r o g r a m m i n g F u n d a m e n t a l s

For example, the following form has two inputs for First_Name and Last_Name and a button that submits the
form.

<form action="response.lasso" method="POST">
	 <p>First Name: <input type="test" name="First_Name" value="">
	 <p>Last Name: <input type="test" name="Last_Name" value="">
	 <p><input type="submit" name="Submit" value="Submit Value">
</form>

In the Lasso page response.lasso—which is loaded when this form is submitted—the following Lasso tags will
retrieve the values submitted by the site visitor in the form.

First Name: [Action_Param: 'First_Name']
Last Name: [Action_Param: 'Last_Name']

Even the value of the submit button can be fetched. This can help distinguish between multiple buttons that
each have the same name displayed in the Web browser.

Button Value: [Action_Param: 'Submit']

URL Parameters
URLs can be used to pass values to a Lasso page. The values are retrieved in the Lasso page using the
[Action_Param] tag. Any values which are passed as URL parameters can be retrieved by name using the
[Action_Param] tag except for those which contain Lasso command tags.

For example, the URL in the following anchor tag has two parameters for First_Name and Last_Name.

John Doe

In the Lasso page response.lasso—which is loaded when this form is submitted—the following Lasso tags will
retrieve the values submitted by the site visitor on the form.

First Name: [Action_Param: 'First_Name']
Last Name: [Action_Param: 'Last_Name']

Custom Tags
What are commonly called functions, procedures, or sub-routines in other languages are referred to as tags
in Lasso. Custom tags are tags which are defined in LassoScript. A custom tag allows some LassoScript which
performs a specific task to be re-used multiple times with different parameters. By encapsulating the code as a
custom tag it is possible to debug it once and use it on many sites very easily.

Custom tags are introduced in this section, but are discussed in detail in the Custom Tags chapter of the
LassoScript section of this Language Guide. That section also discusses how to create custom data types and
even custom data source modules entirely in LassoScript. It is also possible to define tags, types, and data
sources in C++ or Java. Lasso ships with a combination of native tags, tags defined in C++ modules or Java
modules, and tags defined in LassoStartup as custom tags.

The simplest custom tag is one which returns a calculated value. For example, a site may display the date in
a particular format, and it grows tiring to use the [Date_Format] tag every time. By encapsulating that tag in a
custom tag you can change all the date formats on your site just by changing the custom tag. The [Return] tag
is used within the custom tag to return a value for the tag to the caller.

[Define_Tag: 'MyDateFormat']
	 [Return: (Date_Format: Date, -Format='%_d of %B %Y around %_h O\'clock')]
[/Define_Tag]

Now the custom tag is called using the name that it was given as if it were a built-in tag.

[MyDateFormat] � 12 of April 2006 around 1 O'clock

2 2 0

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 1 4 – P r o g r a m m i n g F u n d a m e n t a l s

That tag might be more useful if it could be used with a date passed in as a parameter rather than merely
formatting the current date and time. A required parameter for the tag is created by adding -Required with the
parameter name to the opening [Define_Tag]. That parameter is then created as a local variable within the tag.
The value for the local variable can be returned with the [Local] tag. Local variables function much like the
page variables that were introduced earlier, but they only have a value for the duration of the custom tag.
The same variable names can be used in multiple custom tag definitions without worrying about them over-
writing each other.

[Define_Tag: 'MyDateFormat', -Required='Input']
	 [Return: (Date_Format: (Local: 'Input'), -Format='%_d of %B %Y around %_h O\'clock')]
[/Define_Tag]

Now the custom tag is called with a date/time parameter and returns the expected output.

[MyDateFormat: '12/25/2006 3:00:00'] � 25 of December 2006 around 3 O'clock

Notice that the parameter name was not specified. Any parameters given to the tag are automatically assigned
to required parameters. The tag could be called like this with the same effect.

[MyDateFormat: -Input='12/25/2006 3:00:00'] � 25 of December 2006 around 3 O'clock

In addition to required parameters, custom tags support optional parameters. For example, if the parameter
is made optional in the tag defined above then the tag could return the current date/time if called with no
parameter or the specified date/time if called with a parameter. Optional parameters are created by adding
-Optional with the parameter name in the opening [Define_Tag]. The [Local_Defined] tag is used to check to see if
the optional parameter was specified or not.

[Define_Tag: 'MyDateFormat', -Optional='Input']
	 [If: (Local_Defined: 'Input')]
		 [Return: (Date_Format: (Local: 'Input'), -Format='%_d of %B %Y around %_h O\'clock')]
	 [Else]
		 [Return: (Date_Format: Date, -Format='%_d of %B %Y around %_h O\'clock')]
	 [/If]
[/Define_Tag]

The custom tag can now be called without a parameter to return the current date/time or with a parameter to
return that date/time properly formatted.

[MyDateFormat] � 12 of April 2006 around 1 O’clock
[MyDateFormat: '12/25/2006 3:00:00'] � 25 of December 2006 around 3 O’clock

This introduction only scratches the surface of what is possible with custom tags. See the chapter on Custom
Tags in the LassoScript section for full details about this programming concept.

2 2 1

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 1 4 – P r o g r a m m i n g F u n d a m e n t a l s

15
Chapter 15

Variables

This chapter introduces the basic concepts of variables in Lasso including page variables, global variables,
page variables, special variables, and references. It is important to understand these concepts before reading
the chapters that follow.

	 •	Overview explains how variables work in Lasso and how the different variable scopes interact.

	 •	Page Variables describes tags and symbols that can be used to manipulate page variables.

	 •	Global Variables describes tags and symbols that can be used to manipulate global variables which are
accessible from any page on a server.

	 •	Local Variables describes tags and symbols that can be used to manipulate local variables within compound
expressions or custom tags or data types.

	 •	References describes how multiple variables (or compound data type members) can reference the same
data.

Overview
A variable is a named location for storing a value. Variables in Lasso are used extensively to store temporary
values so they can be manipulated using tags, member tags, or symbols. A variable can store any type of value
within Lasso.

Lasso maintains a stack of environments as it processes Lasso code. The first environment is created when
Lasso starts up and includes global, server-wide variables. Each page has its own environment created when
it is parsed which includes normal, page-wide variables. Finally, each custom tag and data type has its own
environment that includes local variables. At any point, tags can be used to examine and modify values in the
environment above the current environment.

Variable Scope
Each variable in Lasso exists within a certain scope. When the scope in which a variable was created becomes
invalid then all the variables within that scope are deleted. The three possible scopes are as follows:

Page Scope – The most common scope is the page scope which exists from when Lasso starts processing
a Lasso page until it finishes and returns the results to the client. Most variables are created within the page
scope and exist for the duration of the Lasso page process.

Global Scope – Lasso maintains a global scope which contains variables that can be accessed by any page
that is processed by Lasso. Global variables allow values to be shared between multiple independent page
loads. They are used to store some of Lasso’s preferences and for cache storage.

Local Scope – Each compound expression and custom tag creates a local scope that exists for the duration
of the expression or tag processing. Local variables are only available within that expression or tag call. Note
that as additional custom tags are called each one creates its own independent local scope so there may be
many local scopes active at one time.

2 2 2

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 1 5 – V a r i a b l e s

Session Variables – Session variables exist within the page scope, but can be thought of as being defined
within a special session scope that is reloaded each time the [Session_Start] tag is called.

Instance Variables – Custom data types can store instance variables. These variables can be thought of as
being defined within an instance scope which exists for as long as the data type instance is defined. However,
the data type instance itself exists within either the page, global, or local scope.

Non-Variable Values
Lasso also allows many values that are not stored in variables to be manipulated. These values include:

Literals – A literal value is one that is specified directly within a Lasso page. Examples include string literals
'My String Value', integers 10, decimal values 35.6, or even arrays (Array: 1, 2, 3) or maps (Map: 'one'=1, 'two'=2).

Tag Values – Many tags return values that can be stored in a variable or otherwise manipulated. Examples
include [Date], [Server_IP], [Response_FilePath], and hundreds more.

Field Values – Values from a database are returned using the [Field] or [Record_Arrays] tags.

Action Params – Values from the current HTML form action or URL are returned using the [Action_Param]
tag.

Other Values – Other values from the current HTTP request can be returned using [Cookie_Value], [Token_Value],
etc.

Page Variables
Page variables are the most common type of variable in Lasso They only exist while the current Lasso page
is executing. Page variables are used to store temporary values in long calculations or to manipulate values
for output. The values stored in all page variables are lost at the end of the page unless they are stored in a
session.

This section includes an introduction to the tags and symbols that can be used to manipulate page variables.
This is followed by sections about creating variables, retrieving variable values, setting variables, checking to
see if a variable has been created, and removing a variable.

Table 1: Page Variable Tags

Tag	 Description	

[Variable]	 Creates or sets named variables or returns their values.

[Variable_Defined]	 Returns True if a variable is defined.

[Variables]	 Returns a map of all page variables.

[Var]	 Abbreviation of [Variable].

[Var_Defined]	 Abbreviation of [Variable_Defined].

[Var_Remove]	 Deletes the named variable.

[Var_Reset]	 Resets the specified variable to a new value, detaching any references.

[Vars]	 Abbreviation of [Variables].
		

Table 2: Page Variable Symbols

Symbol	 Description	

$	 Returns the value of a variable.

=	 Assigns a value to a variable: $Variable='NewValue'.

:=	 Assigns a value to a variable and returns the value.
		

2 2 3

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 1 5 – V a r i a b l e s

Creating Variables
Variables are created using the [Variable] tag with a name/value parameter. All variables should be created
and set to a default value before they are used. Variables can also be created implicitly if they are referenced
within the [Variable] tag. Implicitly created variables are set to Null.

Examples of creating variables:

	 •	An empty variable can be created by setting the variable to ''.

[Variable: 'VariableName'='']

	 •	A variable can be created and set to the value of a string literal.

[Variable: 'VariableName'='String Literal']

	 •	A variable can be created and set to the value of an integer or decimal literal.

[Variable: 'VariableName'=123.456]

	 •	A variable can be created and set to the value of any substitution tag such as a field value.

[Variable: 'VariableName'=(Field: 'Field_Name')]

Multiple variables can be created in a single [Variable] tag by listing the name/value parameters defining the
variables separated by commas. The following tag defines three variables named x, y, and z.

[Variable: 'x'=100, 'y'=324, 'z'=1098]

Variable names can be any string literal and case is unimportant. For best results, variables names should
start with an alphabetic character, should not contain any punctuation except for underscores and should not
contain any white space except for spaces (no returns or tabs). Variable names should be descriptive of what
value the variable is expected to contain.

Note: Variables cannot have their value retrieved in the same [Variable] tag they are defined.
[Variable: 'x'=10, 'y'=(variable:'x')] is not valid.

Returning Variable Values
The most recent value of a variable can be returned using the [Variable] tag. For example, the following
LassoScript creates a variable named VariableName, then retrieves the value of the variable using
the [Variable] tag. The result is Variable Value.

<?LassoScript
	 Variable: 'VariableName'='Variable Value';
	 Variable: 'VariableName';
?>

�	 Variable Value

Variable values can also be retrieved using the $ symbol. The following LassoScript creates a variable named
VariableName, then retrieves the value of the variable using the $ symbol. The result is Variable Value.

<?LassoScript
	 Variable: 'VariableName'='Variable Value';
	 Encode_HTML: $VariableName;
?>

�	 Variable Value

If a variable value is retrieved using the [Variable] tag before it has been defined then the variable is implicitly
created with a value of Null. The $ symbol will not implicitly create a variable. Referencing a variable name
with $ that has not already been defined will result in a syntax error.

2 2 4

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 1 5 – V a r i a b l e s

Setting Variables
Once a variable has been created, it can be set to different values as many times as is needed. The easiest way
to set a variable is to use the [Variable] tag again just as it was used when the variable was created.

[Variable: 'VariableName'='New Value']

Variables can also be set using the expression $VariableName='NewValue'. This expression should only be used
within LassoScripts so that it is not confused with a name/value parameter. This expression can be used to set
a variable, but cannot be used to create a variable.

The following LassoScript creates a variable named VariableName, sets it to a value New Value using an
expression, then retrieves the value of the variable. The result is New Value.

<?LassoScript
	 Variable: 'VariableName'='';
	 $VariableName='New Value';
	 $VariableName;
?>

�	 New Value

The = symbol does not return a value. The variable is set to the new value, but the expression does not return
a value. In order to set a variable to a new value and return the value that it was set to (for output or further
processing) the := symbol can be used.

The following example is equivalent to the one above, but since the := symbol is used it is not necessary to
output the variable value after it has been set.

<?LassoScript
	 Variable: 'VariableName'='';
	 $VariableName := 'New Value';
?>

�	 New Value

Resetting Variables
Multiple variables can point to the same underlying value in Lasso through the use of references (which are
described more fully at the end of this chapter). When two variables point by reference to the same value,
changing one variable changes the value of the other variable as well. A variable can be detached from any
references and set to a new value using the [Var_Reset] tag.

<?LassoScript
	 Var_Reset: 'VariableName'='New Value';
	 $VariableName;
?>

�	 New Value

Checking to See if a Variable has been Created
The [Variable_Defined] tag can be used to check if a variable has been created and used in the current Lasso
page. The following example will return false the first time [Variable_Defined] is called, then set the variable
using [Variable] and return True the second time [Variable_Defined] is called.

<?LassoScript
	 Variable_Defined: 'VariableName';
	 Variable: 'VariableName'='VariableValue';
	 Variable_Defined: 'VariableName';
?>

�	 False True

2 2 5

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 1 5 – V a r i a b l e s

The [Variable_Defined] tag will return True even if a variable is set to the empty string " (two single quotes with
no space) or to Null.

Deleting a Variable
Once a variable has been created it will exist until the end of the page even if its value is never retrieved. All
variables are automatically deleted once the current Lasso page is finished processing. However, it is also
possible to delete a variable explicitly using the [Var_Remove] tag. This is not generally necessary, but can be
useful in certain specific circumstances.

The following code creates a variable, checks to see if it is defined, then deletes the variable, and checks again.
The result is first True then False.

<?LassoScript
	 Var('MyVariable' = 'Testing');
	 Var_Defined('MyVariable');
	 Var_Remove('MyVariable');
	 Var_Defined('MyVariable');
?>

�	 True False

Global Variables
The globals tags allow direct access to global variables from any environment. These are the preferred way
of setting and retrieving global values. Globals can also be accessed implicitly from the page and local
environments following the rules described in the sections below.

Note: Many global variables are used to set preferences for internal Lasso processes such as the email queue,
the session handler, and the scheduler. Global variables which start with an underscore should never be modified.

Table 3: Global Tags

Tag	 Description	

[Global]	 If called with a string parameter, retrieves the value of a global variable. If called
with a name/value pair sets the value of a global variable.

[Global_Defined]	 Accepts a single string parameter. Returns True if the global variable has been
defined or False otherwise.

[Global_Remove]	 Removes the specifies variable from the globals.

[Global_Reset]	 Resets the specified variable to a new value, detaching any references.

[Globals]	 Returns a map of all global variables that are currently defined.
		

Startup Environment
When code is executed in LassoStartup it is executed in the startup or global environment. Any variables which
are set using the [Variable] tag at this level will end up as global variables when pages are executed. Similarly,
any tags which are defined at this level will be made available to all pages that are executed on the server.

To set a global variable at startup:

At startup, global variables can be set either using the [Global] tag or using the [Variable] tag. All variables set at
this level are implicitly global.

	 •	Use the [Global] tag to set the value of a global variable. The global variable will be available to any page
subsequently executed by Lasso. In the following example a variable Administrator_Email is created and set
with the value of the administrator’s email address.

[Global: 'Administrator_Email' = 'administrator@example.com']

2 2 6

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 1 5 – V a r i a b l e s

	 •	Use the [Variable] tag to set the values of global variables from code which is executed in the
LassoStarup folder. In the following example a variable Administrator_Email is created and set with the value of
the administrator’s email address.

[Variable: 'Administrator_Email' = 'administrator@example.com']

Page Environment
From the page level the values of global variables can be retrieved using the [Global] tag. The $ symbol will
return a global variable if no page variable of the same name has been created. Global variables should be set
using the [Global] tag. The [Variable] tag cannot be used to set a global variable.

Note: See the section below on Asynchronous Access for important tips about how to control concurrent
accesses to global variables.

To retrieve the value of a global variable:

	 •	Use the [Global] tag. In the following example the global variable Administrator_Email which is set above is
retrieved.

[Global: 'Administrator_Email']

�	 administrator@example.com

	 •	If the desired variable has not been overridden by a page variable of the same name then use the
[Variable] tag to retrieve the value of the global variable. In the following example the global variable
Administrator_Email which is set above is retrieved.

[Variable: 'Administrator_Email']

�	 administrator@example.com

To set the value of a global variable:

Either of the two following techniques can be used to set the value of a global variable from a Lasso page. The
first method is preferred.

	 •	Use the [Global] tag to set the value of a global variable. The global variable will be immediately available on
any page executing by Lasso through the [Global] or [Globals] tags.

[Global: 'Administrator_Email' = 'new_administrator@example.com']

Global: [Global: 'Administrator_Email']

�	
Global: new_administrator@example.com

	 •	Set the value of a global variable by reference. In the following example, the variable Administrator_Email has
not been overridden on the current page. Using the $ and = symbols the global variable can be changed.

$Administrator_Email = 'new_administrator@example.com']

Global: [Global: 'Administrator_Email']

�	
Global: new_administrator@example.com

To override the value of a global variable:

Use the [Variable] tag to set a variable of the same name. The global variable will not be modified, but
subsequent uses of the [Variable] tag will return the page variable’s value. The [Global] tag can still be used to
retrieve the value of the global variable.

In the following example the global variable Administrator_Email is overridden by a page variable of the same
name. The values of both the page variable and the global variable are displayed.

[Variable: 'Administrator_Email' = 'page_administrator@example.com']

Page: [Variable: 'Administrator_Email']

Global: [Global: 'Administrator_Email']

2 2 7

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 1 5 – V a r i a b l e s

�	
Page: page_administrator@example.com

Global: administrator@example.com

Local Environment
When a custom tag is executing, variables from the global scope can be accessed using the [Global] tag and
variables from the page scope can be accessed using the [Variable] tag. The $ symbol will reference a global
variable only if a page variable with the same name has not been defined.

Asynchronous Access
Global variables are often used to communicate shared values between different page executions or to store
the state of asynchronous processes. Since globals may be accessed concurrently by multiple processes it is
necessary to use defensive coding techniques in order to ensure that the one global variables is not modified
by one process in a fashion which is incompatible with the other processes that are accessing it.

A simple global such as a string, integer, or decimal value can generally be accessed by multiple threads
without any difficulty (although it may still be desirable to control concurrent access to the global to ensure
proper program logic). Certain operations on arrays or other compound data types should not be performed
without protecting the global from concurrent access for the duration of the operation. These include the
[Array->Sort] tag, [Array->RemoveAll] tag, iterating through an array, and other operations.

The [Thread_Atomic] … [/Thread_Atomic] tags can be used to control concurrent access to a global variable. If
a global can be called from multiple page loads or processes then the latter page loads or processes will
block automatically until the first instance has released control of the global. The opening [Thread_Atomic] tag
requires a single parameter which designates a global variable that will be used to control when the contents
of the container tag can execute.

For example, a global array might be created which contains a list of elements to be processed. These could
be records which need to be updated, POP accounts which need to be checked etc.

[Global: 'Global_Array' = (Array)]

An asynchronous process runs through the global array processing each element and removing it from the
array. The [Thread_Atomic] … [/Thread_Atomic] tags ensure that no elements are added to the array while it is
being processed.

[Thread_Atomic: (Global: 'Global_Array')]
	 [Loop: -From=(Global: 'Global_Array')->Size, -To=1, -By=-1]
		 … Process Current Element …
		 [(Global: 'Global_Array')->(Remove: Loop_Count)]
	 [/Loop]
[/Thread_Atomic]

The code to add an element to the global array also uses [Thread_Atomic] … [/Thread_Atomic] tags. The code
inside these tags will block until the asynchronous process which is emptying the array is finished.

[Thread_Atomic: (Global: 'Global_Array')]
	 [(Global: 'Global_Array')->(Insert: 1003)]
[/Thread_Atomic]

The Threads chapter contains more information about controlling concurrent access to globals using the
atomic tags and other thread tools.

2 2 8

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 1 5 – V a r i a b l e s

Local Variables
Each custom tag and compound expression can create and manipulate its own set of local variables. These
variables are separate from the page variables and are deleted when the custom tag returns. Using local
variables ensures that the custom tag or compound expression does not alter any variables which other
custom tags or the page developer is relying on having a certain value.

Table 4: Local Tags

Tag	 Description	

[Local]	 If called with a string parameter, retrieves the value of a local variable. If called
with a name/value pair sets the value of a local variable.

[Local_Defined]	 Accepts a single string parameter. Returns True if the local variable has been
defined or False otherwise.

[Local_Remove]	 Removes the specifies variable from the locals.

[Local_Reset]	 Resets the specified variable to a new value, detaching any references.

[Locals]	 Returns a map of all local variables that are currently defined.
		

Table 5: Local Variable Symbols

Symbol	 Description	

#	 Returns the value of a local variable.

=	 Assigns a value to a variable: $Variable='NewValue'.

:=	 Assigns a value to a variable and returns the value.
		

For example, many developers will use the variable Temp to store temporary values. If a page developer is
using the variable Temp and then calls a custom tag which also sets the variable Temp, then the value of the
variable will be different than expected.

The solution is for the custom tag author to use a local variable named Temp. The local variable does not
interfere with the page variable of the same name and is automatically deleted when the custom tag returns.
In the following example, a custom tag returns the sum of its parameters, storing the calculated value in Temp.

<?LassoScript
	 Define_Tag: 'Ex_Sum';
		 Local: 'Temp'=0;
		 Loop: (Params)->Size;
			 Local: 'Temp'=(Local: 'Temp') + (Params)->(Get: Loop_Count);
		 /Loop;
		 Return: #Temp;
	 /Define_Tag;
?>

The final reference to the local variable temp is as #Temp. The # symbol works like the $ symbol for page
variables, allowing the variable value to be returned using shorthand syntax.

When this tag is called, it does not interfere with the page variable named Temp.

[Variable: 'Temp' = 'Important value:']
[Variable: 'Sum' = (Ex_Sum: 1, 2, 3, 4, 5)]
['
' + $Temp + ' ' + $Sum + '.']

�	
Important value: 15.

Local Variables and Compound Expressions
A compound expression can be used to temporarily create a local scope. This allows local variables to be used
without modifying any page values. Once the compound expression completes all the local variables will be
deleted. This technique can also be used to avoid creating global variables within code ran at startup.

2 2 9

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 1 5 – V a r i a b l e s

The following example shows a compound expression with a local variable named SecretTemp. The value of
SecretTemp will only be available within the compound expression.

<?LassoScript
	 {
		 Local: 'SecretTemp' = 'MyValue';
		 …
	 }->Run;
?>

References
References in Lasso Professional 8 allow multiple variables to point to the same value or object. When the
shared value or object is changed, all variables that reference that value or object change. A reference can be
created using the [Reference] tag or the @ reference symbol.

An example will serve to illustrate how references can be used in Lasso. The following Lasso code creates two
variables and sets them to default values, then outputs those values. Each variable is independent. Changing
the value of the one variable will not change the value of the other variable.

[Variable: 'Alpha'= 1]
[Variable: 'Beta'= 2]

Alpha: [Variable: 'Alpha']

Beta: [Variable: 'Beta']

�	
Alpha: 1

Beta: 2

However, if we instead define the second variable to be a reference to the first variable then the two variables
will share a single value. In the following example the variable Alpha is set to 3 and the variable Beta is set to
be a reference to the variable Alpha. When output, both variables return 3.

[Variable: 'Alpha'= 3]
[Variable: 'Beta'= (Reference: $Alpha)]

Alpha: [Variable: 'Alpha']

Beta: [Variable: 'Beta']

�	
Alpha: 3

Beta: 3

Now that the two variables are linked, changing either variable will effect a change in both. For example,
setting Alpha to 4 will also result in a change to Beta.

[Variable: 'Alpha'= 4]

Alpha: [Variable: 'Alpha']

Beta: [Variable: 'Beta']

➜	
Alpha: 4

Beta: 4

Similarly, setting Beta to 5 will also result in a change to Alpha.

[Variable: 'Beta' = 5]

Alpha: [Variable: 'Alpha']

Beta: [Variable: 'Beta']

�	
Alpha: 5

Beta: 5

2 3 0

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 1 5 – V a r i a b l e s

A variable can be set to a new value without modifying any of the other variables that might refer to the same
value by reference using the [Var_Reset] tag. This tag sets the variable to a new value and detaches it from any
references. Here the value of Beta is reset to 10, detaching it from Alpha which still has a value of 5.

[Var_Reset: 'Beta' = 10]

Alpha: [Variable: 'Alpha']

Beta: [Variable: 'Beta']

�	
Alpha: 5

Beta: 10

This simple example serves to illustrate the basic principle behind Lasso’s references. The remainder of this
section will provide demonstrations of how references can be used to reduce the amount of memory that
Lasso needs to process complex pages and to increase page processing speed.

It is impossible to have a reference to a reference. Lasso always resolves references back to the original object
so if one variable is set as a reference to a second variable, then a third variable is set as reference to the first
variable, all three variables end up pointing to the same object. A change to any of the three variables results
in the values of all three variables being changed.

References can be detached using the [Null->DetachReference] tag. If a variable is defined as a reference to a value
then calling [Null->DetachReference] will set the variable’s value to Null and detach it from the referenced object.
The variable can then be safely re-assigned without affecting the referenced object.

Types of References
References can be used to refer to any of the following objects within Lasso.

	 •	Variables – A reference to a variable allows the same underlying data to be accessed through two different
names. Changing the value of either of the linked variables will result in the values of both variables being
changed. The data referenced by both variables is only stored once.

[Variable: 'Ref_Variable' = @$First_Variable]

	 •	Local Variables – A reference to a page variable can be made within a custom tag. Rather than copying the
page variable into a local variable, the page variable can be referenced. This prevents duplicating data and
allows any changes made to the local variable to be automatically applied to the page variable.

[Local: 'Local_Variable' = @$First_Variable]

	 •	Array Elements – A reference can be made to an array element. This allows one or more array elements
to be referenced as variables separate from the array. Any changes made to the variables will be reflected in
the array. The [Array->Get] tag is used to identify the array element.

[Variable: 'Ref_Variable' = @($Array_Variable->(Get: 1)]

	 •	Map Elements – A reference can be made to the value of a map element. This allows the values of one or
more map elements to be referenced as variables separate from the map. Any changes made to the variables
will be reflected in the map. The [Map->Find] tag is used to identify the map element.

[Variable: 'Ref_Variable' = @($Map_Variable->(Find: 'Key')]

	 •	Tag Parameters – In a custom tag a reference can be made to a tag parameter rather than copying the
parameter into a local variable. This allows a referenced parameter to be modified in place.

[Local: 'Local_Variable' = @(Params->(Get: 1))]

2 3 1

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 1 5 – V a r i a b l e s

Table 6: Reference Tags and Symbols

Tag / Symbol	 Description	

@	 Creates a reference to an object rather than copying the object. Usually used in a
[Variable] tag to assign a variable as a link to an object.

[Reference]	 Creates a reference to an object rather than copying the object. Equivalent to the
@ symbol.

[Null->DetachReference]	 Can be called on a variable of any data type to detach the variable from the
linked object. The variable ends up with a value of Null.

[Null->RefCount]	 Returns the number of references that refer to a value.
		

To create a custom tag that works on an array directly:

The following example creates a custom tag that works on the elements of an array in place. Using this
principle can greatly speed up the execution speed of Lasso code since Lasso does not have to copy each
element of the array multiple times.

References are used twice in this tag. The first parameter to the tag (which is expected to be an array) is
referenced by a local variable theArray. This prevents the values of the array from being copied into the local
variable. Within the [Loop] …[/Loop] tags. The variable theItem is set to a reference to each element of the tag in
turn.

[Define_Tag: 'Ex_Square']
	 [Local: 'theArray' = @(Params->(Get: 1))]
	 [Loop: #theArray->Size]
		 [Local: 'theItem' = @(#theArray->(Get: Loop_Count))]
		 [#theItem *= #theItem]
	 [/Loop]
[/Define_Tag]

This tag is used as follows to modify the items in an array in place. Note that the tag does not have a [Return]
tag so it does not return any value.

[Variable: 'myArray' = (Array: 1, 2, 3)]
[Ex_Square: $myArray]
[Variable: 'myArray']

�	 (Array: 1, 4, 9)

Lasso automatically uses references when referencing -Required or -Optional tag parameters and when using the
[Iterate]… [/Iterate] tags. It is possible to rewrite the [Ex_Square] tag using these implicit references as follows. This
tag will function identically to the previous example.

[Define_Tag: 'Ex_Square', -Required='theArray']
	 [Iterate: #theArray, (Local: 'theItem')]
		 [#theItem *= #theItem]
	 [/Iterate]
[/Define_Tag]

2 3 2

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 1 5 – V a r i a b l e s

16
Chapter 16

Conditional Logic

Conditional tags allow programming logic to be embedded into Lasso pages. Portions of a page can be
hidden or repeated multiple times. Code can be executed in every repetition of a loop or every several
repetitions. Complex decision trees can be created which execute code only under very specific conditions.

	 •	If Else Conditionals explains how to use the [If] … [/If] tags and [Else] tag to conditionally determine the
results of a page or to execute Lasso code.

	 •	If Else Symbol describes the ? | trinary symbol that allows a conditional to be embedded within an
expression.

	 •	Select Statements explains how to use [Select] … [Case] … [/Select] tags to choose what code to execute based
on the value of a variable.

	 •	Conditional Tags describes tags that can be used as a parameter to another tag performing a conditional
within an expression.

	 •	Loops explains how to use the [Loop] … [/Loop] tags to repeat a portion of the page and documents the
[Loop_Abort] and [Loop_Count] tags used in any repeating container tag.

	 •	Iterations explains how to use the [Iterate] … [/Iterate] tags to perform an action using the value of each
element of a compound data type in turn.

	 •	While Loops explains how to use the [While] … [/While] tags to repeat a portion of a page while a condition is
True.

	 •	Abort Tag explains how to use the [Abort] tag to halt execution of a Lasso page.

	 •	Boolean Data Type describes the [Boolean] tag and boolean symbols which can be used to create complex
conditional expressions.

2 3 3

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 1 6 – C o n d i t i o n a l L o g i c

If Else Conditionals
Code can be conditionally executed and page elements can be conditionally shown by placing them within
[If] … [/If] container tags. The code or other page elements will only be processed if the expression in the
opening [If] tag evaluates to True.

[If: (Variable: 'Test') == True]
	 This text will be shown if the variable Test equals True.
[/If]

The [Else] tag allows for either/or logic to be programmed. If the condition in the [If] tag is True then the
code between the [If] tag and the [Else] tag is processed, otherwise the code between the [Else] tag and the
closing [/If] tag is processed.

[If: (Variable: 'Test') == True]
	 This text will be shown if the variable Test equals True.
[Else]
	 This text will be shown if the variable Test does not equal True.
[/If]

A series of tests can be made and code associated with the first test that returns True can be shown by
specifying expressions within the [Else] tags. The code between the [Else] tag with a conditional expression
and the next [Else] tag will only be shown if the expression returns True. As many [Else] tags as needed can be
specified within a single set of [If] … [/If] container tags.

Note: The [Select] … [Case] … [/Select] tags can be used to perform a similar operation. These tags are discussed in
the next section.

[If: (Variable: 'Test') == (-1)]
	 This text will be shown if the variable Test equals -1.
[Else: (Variable: 'Test') == 2]
	 This text will be shown if the variable Test equals 2.
[Else: (Variable: 'Test') == 3]
	 This text will be shown if the variable Test equals 3.
[/If]

A final [Else] tag without a conditional expression can be included. The code between the [Else] tag and the
closing [/If] tag will only be processed if the expression in the opening [If] tag returns False and the expressions
in all subsequent [Else] tags return False as well.

[If: (Variable: 'Test') == 1]
	 This text will be shown if the variable Test equals 1.
[Else: (Variable: 'Test') == 2]
	 This text will be shown if the variable Test equals 2.
[Else: (Variable: 'Test') == 3]
	 This text will be shown if the variable Test equals 3.
[Else]
	 This text will be shown if the variable Test is not equal to 1, 2, or 3.
[/If]

Table 1: If Else Tags

Tag	 Description	

[If] … [/If]	 Executes the contents of the container only if the expression in the [If] tag
returns True.

[Else]	 Valid only within [If] … [/If] container tags. Executes the remainder of the
container tag only if the expression in the [Else] tag returns True or no expression
is specified.

		

The rules for specifying expressions in the [If] and [Else] tags are presented in full in the following section
entitled Boolean Data Type.

2 3 4

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 1 6 – C o n d i t i o n a l L o g i c

Note: The [If] and [Else] tags will simply output the result of the specified conditional expression parameter if they
are called individually on a page, i.e. not as part of a valid [If] … [Else] … [/If] container tag.

To conditionally execute code within a LassoScript:

Use the [If] tag with an appropriate conditional expression. In the following example, the expression will only
be processed if the current username returned by the [Client_Username] tag is Anonymous.

<?LassoScript
	 If: ((Client_Username) == 'Anonymous');
		 'You are an anonymous user';
	 /If;
?>

To show a different portion of a page if an error occurs:

Errors are reported in Lasso using the [Error_CurrentError] tag. This tag can be compared with many specific
error type tags to check to see if a particular error occurred. In the following example, the current error is
compared to [Error_SecurityError] in order to display an appropriate message.

[If: (Error_CurrentError) == (Error_SecurityError)]
	 You don't have permission to access that resource.
[/If]

Note: See the Error Control chapter for more information about the [Error_…] tags.

Complex Conditionals
There are two methods for creating complex conditionals. Each of these methods can be used interchangeably
depending on what conditions need to be checked and the preference of the Lasso developer.

Examples of complex conditionals

	 •	The conditional expression within the opening [If] tag can be used to check several different conditions. The
conditions are appended using the and && symbol which returns True if both parameters return True or the
or || symbol which returns True if either parameter returns True.

In the following example, two fields from a database are checked to determine what title to put on a
salutation. The Sex field is checked to see if the visitor is Male or Female and the Married field is checked
to see if the visitor is Married or Single. Compound conditional expressions are created to check for the
combination of gender and marriage status for each title.

[If: ((Field: 'Sex') == 'Male')]
	 Dear Mr. [Field: 'First_Name'] [Field: 'Last_Name'],
[Else: ((Field: 'Sex') == 'Female') && ((Field: 'Marriage') == 'Married')]
	 Dear Mrs. [Field: 'First_Name'] [Field: 'Last_Name'],
[Else: ((Field: 'Sex') == 'Female') && ((Field: 'Marriage') == 'Single')]
	 Dear Ms. [Field: 'First_Name'] [Field: 'Last_Name'],
[Else]
	 To whom it may concern,
[/If]

	 •	Nested [If] … [/If] tags can be used to check several conditions in turn. The conditional expression in each
[If] tag is simple, but the nesting establishes that the innermost [If] … [/If] tags are only executed if the
outermost [If] … [/If] tags evaluate their conditional expression to True.

In the following example the [If] … [/If] tags cause the Marriage field to be evaluated if the conditional
expression in the outermost [Else] tag finds that the Sex field contains Female.

2 3 5

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 1 6 – C o n d i t i o n a l L o g i c

[If: ((Field: 'Sex') == 'Male')]
	 Dear Mr. [Field: 'First_Name'] [Field: 'Last_Name'],
[Else: ((Field: 'Sex') == 'Female')]
	 [If: ((Field: 'Marriage') == 'Married')]
		 Dear Mrs. [Field: 'First_Name'] [Field: 'Last_Name'],
	 [Else: ((Field: 'Marriage') == 'Single')]
		 Dear Ms. [Field: 'First_Name'] [Field: 'Last_Name'],
	 [/If]
[/If]

If Else Symbol
Lasso includes an expression that allows a conditional to be executed without using the [If] … [/If] tags. The ?
| symbol allows a conditional to be executed within an expression. The symbol uses the following format:

(Conditional ? True Result | False Result)

If the conditional evaluates to True then the true result is evaluated otherwise the false result is evaluated.
Since only one of the results is evaluated it is possible to use this tag for conditional evaluation of parts of an
expression.

If the | portion of the tag and the false result are omitted and the condition returns false then Null is returned.

Table 2: If Else Symbol

Symbol	 Description	

? |	 If the test before ? evaluates to true then the value after the ? is returned,
otherwise the value after | is returned.
For example (Conditional ? True Result | False Result)

		

Some examples will make the use of the symbol more clear.

	 •	A variable can be set to one of two values based on a conditional using the ? | symbol. In this example the
variable myValue is set to True if the $Test is True or False otherwise.

[Var: 'myValue' = ($Test == True ? 'True' | 'False)]

	 •	An alternate value can be returned for an empty field using the ? | symbol. In this example if the field
First_Name is empty then N/A is returned.

[Encode_HTML: (Field: 'First_Name') == '' ? 'N/A' | (Field: 'First_Name')]

	 •	The value passed into an inline can be decided using the ? | symbol. In this example if a value is equal to
null then an empty string is inserted instead.

[Inline: -Add,
		 …
		 -Op='eq', 'Field_Name'=($Field_Name === null ? '' | $field_name),
		 …
] … [/Inline]

	 •	A tag can be conditionally executed using just the ? symbol. In this example [Loop_Abort] is executed if
[Loop_Count] is greater than 1000.

[(Loop_Count > 1000 ? Loop_Abort]

	 •	A tag can be conditionally executed using the ? | symbol. In this example one or the other URL is included
based on the conditional value, but not both.

[$Conditional ?
	 (Include_URL: 'http://www.lassosoft.com') |
	 (Include_URL: 'http://www.apple.com')]]

2 3 6

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 1 6 – C o n d i t i o n a l L o g i c

Select Statements
Select statements can be used when a variable can take multiple values and a different block of code should
be executed depending on the current value. The variable to be checked is specified in the opening [Select]
tag. A series of [Case] tags follow, each specified with a possible value of the variable. If one of the [Case] tags
matches the value of the variable then the code until the next [Case] tag or the closing [/Select] tag will be
executed.

For example, to return different text depending on value a variable named Test current has the following
[Select] … [/Select] statement could be used.

[Select: (Variable: 'Test')]
	 [Case (-1)]
		 This text will be shown if the variable Test equals -1.
	 [Case: 2]
		 This text will be shown if the variable Test equals 2.
	 [Case: 3]
		 This text will be shown if the variable Test equals 3.
[/Select]

A [Case] tag without any value is used as the default value for the [Select] … [/Select] statement in the event that
no [Case] statement matches the value of the parameter of the opening [Select] tag. The first [Case] tag without
any value is returned as the default value.

[Select: (Variable: 'Test')]
	 [Case (-1)]
		 This text will be shown if the variable Test equals -1.
	 [Case: 2]
		 This text will be shown if the variable Test equals 2.
	 [Case: 3]
		 This text will be shown if the variable Test equals 3.
	 [Case]
		 This text is shown if the variable does not equal any of the values.
[/Select]

Table 3: Select Tags

Tag	 Description	

[Select] … [/Select]	 Takes a single parameter which is used to decide which enclosed [Case] tag to
select. Requires one or more [Case] tags to be specified. Returns the value of
the code between the selected [Case] statement and the next [Case] statement
or the closing [/Select] tag.

[Case]	 Accepts a single parameter which is checked against the parameter of the
enclosing [Select] tag. If no parameter is specified then the tag defines the
default case.

		

To return a different value based on the type of a variable:

Use the [Select] … [Case] … [/Select] tags to return a different value depending on the type of a variable. The
following code outputs the value of a variable named MyVariable that could be of any type. If the variable is
not of any built-in type then the default output is to cast it to string.

2 3 7

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 1 6 – C o n d i t i o n a l L o g i c

[Select: (Variable: 'MyVariable')->Type]
	 [Case: 'Integer']
		
Integer value [Variable: 'MyVariable'].
	 [Case: 'Decimal']
		
Decimal value [Variable: 'MyVariable'].
	 [Case: 'String']
		
String value [Variable: 'MyVariable'].
	 [Case: 'Boolean']
		
Boolean value [Variable: 'MyVariable'].
	 [Case: 'Array']
		
Array value [Variable: 'MyVariable'].
	 [Case: 'Map']
		
Map value [Variable: 'MyVariable'].
	 [Case: 'Pair']
		
Pair value [Variable: 'MyVariable'].
	 [Case]
		
Unknown type value [String: (Variable: 'MyVariable')].
[/Select]

Conditional Tags
Lasso offers a collection of tags that can be used to specify a conditional as a parameter to another tag.

Note: The if else symbol ? | documented earlier in this chapter has several advantages over these tags. Most
notably, it allows conditional execution of either the true or false result of the symbol, while these tags always
evaluate both results before checking the conditional.

Table 4: Conditional Tags

Tag	 Description	

[If_True]	 The first parameter is a conditional statement. If the first parameter is True then
the second parameter is returned. Otherwise the third parameter is returned.

[If_False]	 The first parameter is a conditional statement. If the first parameter is False then
the second parameter is returned. Otherwise the third parameter is returned.

[If_Empty]	 The first parameter should be a value. If it's size is greater than 0 it is returned.
Otherwise, the second parameter is returned.

[If_Null]	 The first parameter should be a value. If it is not equal to Null it is returned.
Otherwise, the second parameter is returned.

		

[If_True] and [If_False] each accept three parameters. The first parameter is a conditional expression that selects
whether the second or third parameter should be returned.

In the following example the variable MyResult is set to the appropriate value depending on whether the
Condition variable is true or false.

[Var: 'MyResult' = (If_True: $Condition, 'Condition is True', 'Condition is False')]

[If_Empty] and [If_Null] each accept two parameters. If the first parameter is non-empty or not equal to Null then
it is returned. Otherwise, the second parameter is returned.

In the following example, a default value is used if the [Cookie_List] tag returns an empty array.

[Var: 'MyCookies' = (If_Empty: Cookie_List, 'No Cookies!')]

Loops
A portion of a page can be repeated a number of times using the [Loop] … [/Loop] tags. The parameters to the
opening [Loop] tag define how many times the portion of the page should be repeated. For example, a message
in a Web page could be repeated five times using the following [Loop] tag.

2 3 8

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 1 6 – C o n d i t i o n a l L o g i c

[Loop: 5]
	
This is repeated five times.
[/Loop]

�	
This is repeated five times.

This is repeated five times.

This is repeated five times.

This is repeated five times.

This is repeated five times.

The basic form of the [Loop] … [/Loop] tags simply repeats the contents of the tags as many times as is specified
by the parameter. The opening [Loop] tag can also accept a number of keyword/value parameters to create
more complex repetitions.

Table 5: [Loop] Tag Parameters

Keyword	 Description	

-From	 Specifies the starting repetition for the [Loop] tag. Can also be specified as -
LoopFrom.

-To	 Specifies the ending repetition for the [Loop] tag. Can also be specified as -
LoopTo.

-By	 Specifies how many repetitions should be skipped on each actual repetition of
the contents of the
[Loop] … [/Loop] tag. Can also be specified as -LoopIncrement.

		

The following example shows a loop that runs backward for five repetitions by setting -From to 5, -To to 1 and
-By to -1. The [Loop_Count] tag shows the number of the current repetition.

[Loop: -From=5, -To=1, -By=-1]
	
This is repetition number [Loop_Count].
[/Loop]

�	
This is repetition number 5.

This is repetition number 4.

This is repetition number 3.

This is repetition number 2.

This is repetition number 1.

Note: The [Loop_Count] tag can be used in any looping container tag within Lasso to return the number of the
current repetition. This includes the [Records] … [/Records] tags.

The [Loop_Abort] tag can be used to halt a [Loop] before it reaches the specified number of repetitions. In the
following example, the [Loop] tag is stopped after the third repetition by checking to see if [Loop_Count] is equal
to 3.

[Loop: 5]
	
This is repeated five times.
	 [If: (Loop_Count) == 3]
		 [Loop_Abort]
	 [/If]
[/Loop]

�	
This is repeated five times.

This is repeated five times.

This is repeated five times.

Note: The [Loop_Abort] tag can be used in any looping container tag within Lasso to abort the loop. This includes
the [Records] … [/Records] tags.

The modulus symbol % can be used in an [If] … [/If] conditional to perform a task on every other repetition (or
every nth repetition). The conditional expression (Loop_Count % 2)==0 returns True for every other repetition of
the loop.

2 3 9

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 1 6 – C o n d i t i o n a l L o g i c

[Loop: 5]
	 [If: (Loop_Count % 2) == 0]
		
This is an Even loop.
	 [Else]
		
This is an Odd loop.
	 [/If]
[/Loop]

�	
This is an odd loop.

This is an even loop.

This is an odd loop.

This is an even loop.

This is an odd loop.

The modulus symbol can be used in any looping container tag within Lasso to show elements in alternate
rows. This includes the [Records] …
[/Records] tags.

Note: The [Repetition] tag from earlier versions of Lasso has been deprecated. It’s use is not recommended. Any
code using the [Repetition] tag should be changed to the modulus operator for dramatically better speed and
future compatibility.

Table 6: Loop Tags

Tag	 Description	

[Loop] … [/Loop]	 Repeats the contents of the container tag a specified number of times.

[Loop_Count]	 Returns the number of the current repetition.

[Loop_Abort]	 Aborts the [Loop] … [/Loop] tag, jumping immediately to the closing tag.

[Loop_Continue]	 Aborts the current repeition of the looping tag, jumping immediately to the next
repetition.

		

To list all the field names for a table:

An [Inline] … [/Inline] with a -Show command tag can be used to get a list of all the field names in a table. The
[Field_Name] tag accepts a -Count parameter that returns how many fields are in the current table or an integer
parameter that returns the name of one of the fields. The following example uses the [Loop] … [/Loop] tags to
display a list of all the field names in a table.

[Inline: -Database='Contacts', -Table='People', -Show]
	 [Loop: (Field_Name: -Count)]
		
[Field_Name: (Loop_Count)]
	 [/Loop]
[/Inline]

�	 ID
First_Name
Last_Name

To loop through the elements of an array:

The elements of an array can be displayed to a site visitor or otherwise manipulated by looping through the
array using the [Loop] … [/Loop] tags. The [Array->Size] tag returns the number of elements in an array and the
[Array->Get] tag returns a specific element by index. The following example shows how to store the names of
the days of the week in an array and then list those elements using [Loop] … [/Loop] tags.

2 4 0

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 1 6 – C o n d i t i o n a l L o g i c

<?LassoScript
	 Encode_Set: -EncodeNone;

	 Variable: 'DaysOfWeek' = (Array: 'Sunday', 'Monday', 'Tuesday',
		 'Wednesday', 'Thursday', 'Friday', 'Saturday');

	 Loop: ($DaysOfWeek->Size);
		 '
' + $DaysOfWeek->(Get: (Loop_Count));
	 /Loop;

	 /Encode_Set;
?>

�	
Sunday

Monday

Tuesday

Wednesday

Thursday

Friday

Saturday

Note: See the Arrays and Maps chapter for more information about the array member tags.

To format a found set in two columns:

The modulus symbol % can be used to format a found set in two columns. In the following example, an
HTML <table> is constructed with one cell for each person found by an [Inline] … [/Inline] based -FindAll action.
The modulus symbol % is used to insert the row tags every other record.

[Inline: -Database='Contacts', -Table='People', -FindAll]
	 <table>
		 <tr>
		 [Records]
			 <td>[Field: 'First_Name'] [Field: 'Last_Name']</td>
			 [If: (Loop_Count % 2) == 0]
				 </tr><tr>
			 [/If]
		 [/Records]
		 </tr>
	 </table>
[/Inline]

�	 <table>
	 <tr>
		 <td>Jane Person</td>
		 <td>John Person</td>
	 </tr><tr>
		 <td>Joe Surname</td>
	 </tr>
</table>

Iterations
The [Iterate] … [/Iterate] tags loop through each element of a complex data type such as an array or a map. A
variable is set to the value of each element of the complex data type in turn. This allows the same operation
to be performed on each element.

Note: The [Iterate] … [/Iterate] tags can be used with built-in array, map, pair, and string data types. It can also be
used with any custom data type that supports the [Type->Size] and [Type->Get] member tags.

2 4 1

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 1 6 – C o n d i t i o n a l L o g i c

For example, to print out each element of an array stored in a variable myArray the following tags could be
used. The opening [Iterate] tag contains the name of the variable storing the array and a definition for the
variable that should be set to each element of the array in turn. In this case a new variable myItem will be
created. The value for myItem is then output within the [Iterate] … [/Iterate] tags.

[Variable: 'myArray' = (Array: 'Winter', 'Spring', 'Summer', 'Autumn')]
[Iterate: (Variable: 'myArray'), (Variable: 'myItem')]
	
The season is: [Variable: 'myItem'].
[/Iterate]

�	
The season is: Winter.

The season is: Spring.

The season is: Summer.

The season is: Autumn.

The [Iterate] … [/Iterate] tags are equivalent to using [Loop] … [/Loop] tags to cycle through each element of a
complex data type, but are significantly easier to use and provide faster operation.

Table 7: Iteration Tags

Tag	 Description	

[Iterate] … [/Iterate]	 Cycles through each element of a compound data type in turn. The opening
tag accepts two parameters. The first is the compound data type to be iterated
through. The second is a reference to a variable which should be set to the value
of each element of the first parameter in turn.

		

Note: The second parameter to the opening [Iterate] tag should either be of the form (Variable: 'NewVariableName') or
should reference an existing variable using $ExistingVariable. The $ symbol cannot be used to create a new variable.

To print out each character of a string:

Use the [Iterate] … [/Iterate] tags to cycle through each character of the string in turn. The following code prints
out each character of a string on a separate line.

[Variable: 'myString'='blue']
[Iterate: $myString, (Variable: 'myCharacter')]
	
[Variable: 'myCharacter']
[/Iterate]

�	
b

l

u

e

While Loops
[While] … [/While] tags allow a portion of a page to repeat while a specified conditional expression returns
True. The expression specified in the opening [While] tag is checked on each pass through the loop and if the
expression returns True then the contents are displayed again.

In the following example, a variable ConditionVariable is set to True. Once the [Loop_Count] is greater than 3 the
variable is set to False, ending the [While] … [/While] loop.

[Variable: 'ConditionVariable' = True]
[While: ($ConditionVariable == True)]
	
This is repetition [Loop_Count]
	 [If: (Loop_Count) >= 3]
		 [Variable: 'ConditionVariable' = False]
	 [/If]
[/While]

2 4 2

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 1 6 – C o n d i t i o n a l L o g i c

�	
This is repetition 1.

This is repetition 2.

This is repetition 3.

Table 8: While Tags

Tag	 Description	

[While] … [/While]	 Repeats the contents of the container tag until the condition specified in the
opening tag returns False.

[Loop_Count]	 Returns the number of the current repetition.

[Loop_Abort]	 Aborts the [While] … [/While] tag, jumping immediately to the closing tag.
		

Abort Tag
The [Abort] tag can be used to abort the execution of the current Lasso page. This can be useful in a situation
where an error has occurred that prevents the rest of the file from executing. An [Abort] could be used after
rewriting the header to perform a redirect so Lasso does not need to process the rest of the page before
sending the redirect to the client. Finally, an [Abort] can be used in a custom error page in order to prevent the
standard error message from being shown at the bottom of the page.

Table 9: Abort Tag

Tag	 Description	

[Abort]	 Aborts the current Lasso page, returning all of the content which has been
created so far to the client.

		

To speed up a redirect:

Use the [Abort] tag immediately after rewriting the header to perform a redirect. All Lasso code after the [Abort]
tag will be ignored so the modification to the HTTP response will be sent to the client immediately.

[Var: 'url' = 'http://www.example.com/otherpage.lasso']
[Content_Header = 'HTTP/1.0 301 REDIRECT\r\nLocation: ' $url '\r\nURI: ' $url]
[Abort]

Note: The built-in [Redirect_URL] tag performs an automatic [Abort].

Boolean Type
The boolean data type simply represents True or False. All comparison symbols and boolean symbols in Lasso
return a value of the boolean data type.

The following values are equivalent to each of the boolean values both when automatically cast and when
explicitly cast using the [Boolean] tag. However, it is recommended that you use True and False whenever
possible to avoid confusion.

	 •	True is equivalent to any positive integer or decimal such as 1, 45, or 100.15, any non-empty string such as
'String', or any non-null data type such as an array, map, or pair.

	 •	False is equivalent to integer 0 or decimal 0.0, the empty string '', or Null.

Note: The string 'True' happens to be equivalent to True, but the string 'False' is not equivalent to False. Always type
the boolean values True and False without quotation marks.

Table 10: Boolean Tag

Tag	 Description	

[Boolean]	 Casts a value to a boolean value.
		

2 4 3

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 1 6 – C o n d i t i o n a l L o g i c

The boolean data type is most commonly associated with conditional expressions such as those specified in
the opening [If] or [While] tags. Any conditional expression which uses a conditional symbol such as ==, !=, <,
<=, >, >=, or >> will return a boolean value. Multiple conditional expressions can be combined using any of
the boolean symbols detailed in the following table.

Table 11: Boolean Symbols

Symbol	 Description	

&&	 And. Returns True if both parameters are True.

|| 	 Or. Returns True if either parameter is True.

!	 Not. Returns False if the parameter following is True.

==	 Equality. Returns True if both parameters are equal.

!=	 Inequality. Returns True if both parameters are different.
		

Note: Single parameter expressions must be surrounded by parentheses if they are used on the right hand side
of a boolean symbol.

To check for two conditions in an [If] tag:

	 •	In order to return True if both conditions are True use the && symbol.

[If: ($Condition1 == True) && ($Condition2 == True)]
	 Both conditions are True.
[/If]

	 •	In order to return True if either of the conditions is True use the || symbol.

[If: ($Condition1 == True) || ($Condition2 == True)]
	 One of the conditions is True.
[/If]

	 •	In order to return True if a condition is False use the ! symbol.

[If: !($Condition1 == True)]
	 The condition is False.
[/If]

	 •	In order to return True if the two conditions are equal (both True or both False) use the == symbol.

[If: ($Condition1 == True) == ($Condition2 == True)]
	 Both conditions are True or both conditions are False.
[/If]

	 •	In order to return True if the two conditions are not equal (one is True and the other is False) use the !=
symbol.

[If: ($Condition1 == True) != ($Condition2 == True)]
	 One condition is True and the other is False.
[/If]

To use single parameter symbols in a comparison:

If expressions using the single-parameter symbols !, -, and + are going to be used as the second parameter to a
comparison symbol, they should be surrounded by parentheses.

	 •	To compare a variable to -1 use parentheses around -1 on the right-hand side of the comparison operator.

[If: ($Variable == (-1))]
	 The variable is equal to -1.
[Else: ($Variable > (-1))]
	 The variable is greater than -1.
[Else: ($Variable < (-1))]
	 The variable is less than -1.
[/If]

2 4 4

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 1 6 – C o n d i t i o n a l L o g i c

	 •	To compare a variable to the negation of an expression, use parentheses around the entire right-hand side
of the comparison operator.

[If: ($Variable == (!True))]
	 The variable is not equal to False.
[/If]

Note: These expressions can usually be rewritten with the opposite comparison symbol or by using the
negation symbol around the entire conditional expression.

2 4 5

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 1 6 – C o n d i t i o n a l L o g i c

17
Chapter 17

Encoding

Lasso can be used to publish data in many different formats. Encoding ensures that only legal characters are
used for the desired output format.

	 •	Overview describes the different formats which Lasso encoding supports.

	 •	Encoding Keywords describes how to use encoding keywords to modify the output of substitution tags.

	 •	Encoding Controls describes how to use the [Encode_Set] … [/Encode_Set] tags to modify the default
encoding for substitution tags.

	 •	Encoding Tags describes the individual substitution tags which can be used to encode values.

Overview
Encoding controls in Lasso allow the developer to specify the format in which data output from substitution
tags should be rendered. Encoding controls ensure that reserved or illegal characters are changed to entities so
that they will display properly in the desired output format. Encoding controls allow for data to be output in
any of the ways described in the Encoding Formats section below.

Encoding Rules
Encoding controls apply to the data output from tags differently depending on how the tags are used.
Substitution tags have default HTML encoding if they output a value to a page. The value output from a
nested substitution tag is not encoded. Substitution tags which contribute to the output of a LassoScript have
default HTML encoding.

	 •	Substitution Tags which output a value to the site visitor have a default encoding of -EncodeHTML. These
tags are usually enclosed in square brackets and do not include nested tags which return values.

The default encoding ensures that any reserved or illegal characters in HTML are converted to HTML
entities so they display properly. The default encoding can be overridden by explicitly including an
encoding keyword in the substitution tag or using the [Encode_Set] … [/Encode_Set] tags described below.

In the following example, some HTML code is output using the [String] substitution tag. By default the
angle brackets in the code are converted to HTML entities so they will display as angle brackets within a
Web browser. If the -EncodeNone keyword is specified in the [String] substitution tag then the angle brackets
remain as text angle brackets and the HTML code will render as Bold Text within the Web browser.

[String: 'Bold Text'] � Bold Text

[String: 'Bold Text', -EncodeNone] � Bold Text

	 •	Nested Substitution Tags are not encoded by default. This ensures that string calculations can be
performed without having to specify any encoding keywords. However, the encoding of a nested
substitution tag can be changed by explicitly including an encoding keyword. Care should be taken so that
values are not encoded multiple times.

2 4 6

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 1 7 – E n c o d i n g

In the following example a string is stored in a variable using explicit HTML encoding. When the variable is
output using the -EncodeNone tag, the value is output to the page with HTML encoding intact.

[Variable: 'HTML_Text' = (Output: 'Bold Text', -EncodeHTML)]

[Variable: 'HTML_Text', -EncodeNone] � Bold Text

	 •	Tags within LassoScripts are encoded using the same rules for substitution tags. Tags which add to the
output of the LassoScript are HTML encoded by default unless an explicit encoding keyword is specified or
the [Encode_Set] … [/Encode_Set] tags are used. Tags which are nested are not encoded by default unless an
explicit encoding keyword is specified.

The following example shows a value output from a LassoScript first with the default HTML encoding, then
with an explicit -EncodeNone keyword specified.

<?LassoScript
	 Output: 'Bold Text';
?>

�	 Bold Text

<?LassoScript
	 Output: 'Bold Text', -EncodeNone;
?>

�	 Bold Text

	 •	Square Bracketed Expressions other than tags are not encoded by default. The use of the [String] tag
or one of the [Encode_…] tags is recommended to ensure that encoding is properly applied to string
expressions. In the following example a string expression is output directly.

['' + 'Bold Text' + '']

�	 Bold Text

Encoding Formats
The encoding controls in Lasso can be used to output data in any of the following formats.

	 •	HTML Encoding is the default output format. Reserved characters in HTML including < > " & are encoded
into HTML entities. Extended-ASCII and foreign language characters are encoded into a numerical HTML
entity for the character &#nnn;. Use the -EncodeHTML keyword or the [Encode_HTML] substitution tag.

	 •	Smart HTML Encoding encodes only extended-ASCII and foreign language characters. The reserved
characters in HTML are not encoded. This allows HTML code to be displayed with the HTML markup intact
and any unsafe characters encoded using HTML entities. Use the -EncodeSmart keyword or the [Encode_Smart]
substitution tag.

	 •	Break Encoding encodes carriage returns and line feeds within the text to HTML
 tags. The remainder
of the text is HTML encoded. Text can be formatted using the -EncodeBreak keyword or the [Encode_Break]
substitution tag.

	 •	XML Encoding encodes reserved characters such as & ' " < > which are used to create the markup of XML
into XML entities. This ensures that text used in XML tag names or attributes does not contain any reserved
characters. Use the -EncodeXML keyword or the [Encode_XML] substitution tag.

	 •	Simple URL Encoding only encodes illegal characters such as < > # % { } ' ` " | \ ^ ~ [] © ® into URL entities
specified as %nn. Simple URL encoding can be used to encode an entire URL without disturbing the basic
structure of the URL. Use the -EncodeURL keyword or the [Encode_URL] substitution tag. The following
example shows a URL encoded with the [Encode_URL] tag.

[Encode_URL: 'http://www.example.com/Action.Lasso?The Name=A Value']

�	 http://www.example.com/Action.Lasso?The%20Name=A%20Value

2 4 7

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 1 7 – E n c o d i n g

	 •	Strict URL Encoding encodes both the illegal characters shown above and the reserved characters in URLs
including ; / ? : @ = &. Strict URL encoding should only be used on the names or values included as name/
value parameters. Use the -EncodeStrictURL keyword or the [Encode_StrictURL] substitution tag. The following
example shows only the name/value parameter of a URL encoded with the [Encode_StrictURL] tag.

http://www.example.com/Action.Lasso?
	 [Encode_StrictURL: 'The Name']=[Encode_StrictURL: 'A Value']

�	 http://www.example.com/Action.Lasso?The%20Name=A%20Value

	 •	SQL Encoding changes any illegal characters in SQL string values into their escaped equivalents. Quote
marks and backslashes are escaped so they don’t interfere with the structure of the SQL statement.

[Encode_SQL: 'A "String" is born.']

�	 A \"String\" is born.

	 •	Base 64 Encoding changes any string value into a string of ASCII characters which can be safely
transmitted through URLs or email. This algorithm is sometimes used to obscure data so it is difficult to
read by a casual passerby without providing any actual security. Base64 is also used to transmit passwords
(essentially as plain-text) to some Web servers.

Deactivate encoding for a substitution tag using the -EncodeNone keyword. By default, nested substitution tags
will not have encoding applied so the -EncodeNone keyword is not required within nested substitution tags.

Encoding Keywords
Encoding keywords can be used within any substitution tag to modify the encoding of the output value
of that tag. Substitution tags which output values to the page default to -EncodeHTML so this keyword does
not need to be specified if HTML encoding is desired. Nested substitution tags are not encoded by default,
specifying -EncodeNone in nested substitution tag is unnecessary.

Only one encoding keyword can be used in a tag. If multiple encodings are desired the [Encode_…] tags
should be used.

Table 1: Encoding Keywords

Keyword	 Description	

-EncodeBreak	 Encodes carriage returns and new line characters into HTML
 breaks. The
remainder of the text is HTML encoded.

-EncodeHTML	 Encodes HTML reserved and illegal characters into HTML entities for highest
fidelity display.

-EncodeNone	 Performs no encoding.

-EncodeSmart	 Encodes HTML illegal characters into HTML entities. Useful for encoding strings
that contain HTML markup.

-EncodeStrictURL	 Encodes all URL reserved and illegal characters into URL entities for highest
fidelity data transmission.

-EncodeURL	 Encodes URL illegal characters into URL entities. Useful for encoding entire
URLs.

-EncodeXML	 Encodes XML reserved and illegal characters into XML entities for highest fidelity
data transmission.

		

Please consult the previous section Encoding Formats for information about what characters each encoding
keyword modifies.

Using the encoding keywords:

The following example shows how text is output from the [String] tag using first the default -EncodeHTML
encoding and then an explicit -EncodeNone encoding.

2 4 8

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 1 7 – E n c o d i n g

[String: 'Bold Text'] � Bold Text

[String: 'Bold Text', -EncodeNone] � Bold Text

Encoding Controls
The default encoding keyword for substitution tags which output values to the Web page being
constructed can be modified using the [Encode_Set] … [/Encode_Set] tags. All square bracketed substitution
tags or tags within a LassoScript that output a value will use the encoding specified in surrounding
[Encode_Set] … [/Encode_Set] tags rather than the default HTML encoding.

The [Encode_Set] tag accepts a single parameter, an encoding keyword. Any of the valid encoding keywords
from Table 1: Encoding Keywords can be used. All substitution tags which output values will behave as if
this encoding keyword were specified within the tag.

Nested substitution tags (sub-tags) will not be affected by the [Encode_Set] … [/Encode_Set] tags. Values from
nested substitution tags are not encoded unless an encoding keyword is specified explicitly within each tag.

Table 2: Encoding Controls

Keyword	 Description	

[Encode_Set] … [/Encode_Set]	 Sets the default encoding for all substitution tags which output values within the
container tag.

		

To change the default encoding for a LassoScript:

Start and end the LassoScript with [Encode_Set] … [/Encode_Set] tags. In the following LassoScript HTML code is
output using [String] tags. The default encoding for all tags is set to -EncodeNone so that the HTML is rendered
properly in the output.

<?LassoScript
	 Encode_Set: -EncodeNone;
		 String: 'HTML Text';
	 /Encode_Set;
?>

�	 Bold Text

Encoding Tags
The encoding substitution tags can be used to explicitly encode any string value. The output of these tags
is the same as the output which would be produced by using the appropriate encoding keyword on a
substitution tag that returned the same value.

Note: The encoding tags do not accept encoding keywords. Use nested encoding tags to perform multiple
encodings.

Table 3: Encoding Tags

Keyword	 Description	

[Decode_Base64]	 Decodes a string which has been encoded using the base 64 algorithm. Accepts
one parameter, a string to be decoded.

[Decode_BHeader]	 Decodes a MIME header which was encoded using the B (binhex) encoding
method.

[Decode_Hex]	 Decodes a binhex encoded string to a byte stream.

[Decode_HTML]	 Decodes HTML by changing HTML entities back into extended ASCII characters.

2 4 9

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 1 7 – E n c o d i n g

[Decode_QHeader]	 Decodes a MIME header which was encoded using the Q (quoted printable)
encoding method.

[Decode_QuotedPrintable]	 Decodes text using the quoted printable algorithm. Accepts two parameters:
the text to be decoded and an optional character set it should be decoded from
(defaults to UTF-8).

[Decode_URL]	 Decodes a URL by changing URL entities back into extended ASCII characters.
Returns a byte stream.

[Encode_Base64]	 Encodes a string using the base 64 algorithm. Accepts one parameter, a string to
be encoded.

[Encode_Break]	 Encodes carriage returns and new line characters into HTML
 breaks. The
remainder of the text is HTML encoded.

[Encode_CRC32]	 Calculates a 32-bit Cyclic Redundancy Checksum for a string. Accepts one
parameter, a string to be encoded.

[Encode_Hex]	 Encodes a byte stream into a binhex encoded string.

[Encode_HTML]	 Encodes HTML reserved and illegal characters into HTML entities for highest
fidelity display.

[Encode_HTMlToXML]	 Converts the encoding of a string from HTML encoding to XML encoding. This
tag can be used on a string which is already HTML encoded but needs to be
used within an XML document that does not allow the HTML-specific entities
such as

[Encode_QHeader]	 Encodes a MIME header which using the Q (quoted printable) encoding method.
Requires a -Name and -Value parameter. Also accepts an optional -CharSet
parameter (defaults to UTF-8).

[Encode_QuotedPrintable]	 Encodes text using the quoted printable algorithm. Accepts two parameters:
the text to be encoded and an optional character set it should be encoded as
(defaults to UTF-8).

[Encode_Smart]	 Encodes HTML illegal characters into HTML entities. Useful for encoding strings
that contain HTML markup.

[Encode_SQL]	 Encodes illegal characters in MySQL string literals by escaping them with
a backslash. Helps to prevent SQL injection attacks and ensures that SQL
statements only contain valid characters. This tag must be used to encode visitor-
supplied values within SQL statements for MySQL data sources.

[Encode_SQL92]	 Encodes illegal characters in SQL string literals by escaping them with a
backslash. Helps to prevent SQL injection attacks and ensures that SQL
statements only contain valid characters. This tag can be used to encode values
for JDBC and most other SQL-compliant data sources.

[Encode_StrictURL]	 Encodes all URL reserved and illegal characters into URL entities for highest
fidelity data transmission.

[Encode_URL]	 Encodes URL illegal characters into URL entities. Useful for encoding entire
URLs.

[Encode_XML]	 Encodes XML reserved and illegal characters into XML entities for highest fidelity
data transmission.

		

Using the encoding tags:

The following example shows how text is output from the [Encode_HTML] tag with all HTML reserved
characters encoded. The same text is then output from an [String] tag with an encoding keyword of -EncodeNone
specified.

[Encode_HTML: 'Bold Text'] � Bold Text

[String: 'Bold Text', -EncodeNone] � Bold Text

2 5 0

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 1 7 – E n c o d i n g

18
Chapter 18

Sessions

This chapter documents sessions and server-side variables.

	 •	Overview describes how sessions operate and how sessions can be used.

	 •	Session Tags describes the tags which can be used to create, manipulate, and delete sessions.

	 •	Session Example describes how to use sessions to store site preferences.

Overview
Sessions allow variables to be created which are persistent from page to page within a Web site. Rather than
passing data from page to page using HTML forms or URLs, data can be stored in ordinary Lasso variables
which are automatically stored and retrieved by Lasso on each page a visitor loads.

Sessions are very easy to use, but the intricacies can be rather difficult to explain. The Session Examples
section later in this chapter presents three examples for how to use sessions to perform common tasks. These
examples should be consulted first to see real world examples of sessions in action before reading through
the tag reference sections.

Ways in which sessions can be used:

	 •	Current State – Sessions can store the current state of a Web site for a given visitor. They can determine
what the last search they performed was, how the data on a results page was sorted, or in what format the
data should be presented.

	 •	Store References to Database Records – Key field values can be stored in a session for quick access
to records associated with a site visitor. These might include records in a user database or shopping cart
database.

	 •	Store Authentication Information – After a visitor has authenticated themselves using a username and
password, that authentication information can be stored in a session and then checked on each page to
ensure that the same visitor is accessing data from page to page.

	 •	Store Data Without Using a Database – Complex data types such as arrays and maps can be stored in
session variables. In a Web site with multiple forms the data from each form can be stored in a session and
only placed in the database once the final form is submitted. Or, a shopping cart can be stored in a session
and only placed in an orders database on checkout.

How Sessions Work
A session has three characteristics: a name, a list of variables that should be stored, and an ID string that
identifies a particular site visitor.

	 •	Name – The session name is defined when the session is created by the [Session_Start] tag. The same session
name must be used on each page in the site which wants to load the session. The name usually represents
what type of data is being stored in the session, e.g. Shopping_Cart or Site_Preferences.

2 5 1

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 1 8 – S e s s i o n s

	 •	Variables – Each session maintains a list of variables which are being stored. Variables can be added to the
session using [Session_AddVariable]. The values for all variables in the session are remembered at the bottom
of each page which loads the session. The last value for each variable is restored when the session is next
loaded.

	 •	ID – Lasso automatically creates an ID string for each site visitor when a session is created. The ID string is
either stored in a cookie or passed from page to page using the -Session command tag. When a session is
loaded the ID of the current visitor is combined with the name of the session to load the particular set of
variables for the current visitor.

Sessions are created and loaded using the [Session_Start] tag. This tag should be used on the top of each page
which needs access to the shared variables. The [Session_Start] either creates a new session or loads an existing
session depending on what session name is specified and the ID for the current visitor.

Sessions can be set to expire after a specified amount of idle time. The default is 15 minutes. If the visitor has
not loaded a page which starts the session within the idle time then the session will be deleted automatically.
Note that the idle timeout restarts every time a page is loaded which starts the session.

Once a variable has been added to a session using the [Session_AddVariable] tag it will be set to its stored value
each time the [Session_Start] tag is called. The variable does not need to be added to the session on each page.
A variable can be removed from a session using the [Session_RemoveVariable] tag. This tag does not alter the
variable’s value on the current page, but prevents the value of the variable from being stored in the session at
the end of the current page.

Session Tags
Each of the session tags is described in Table 1: Session Tags. The parameters for [Session_Start] are described
in more detail in Table 2: [Session_Start] Parameters.

Table 1: Session Tags

Tag	 Description	

[Session_Start]	 Starts a new session or loads an existing session. Accepts four parameters:
-Name is the name of the session to be started. Additional parameters are
described in Table 2: [Session_Start] Parameters.

[Session_ID]	 Returns the current session ID. Accepts a single parameter: -Name is the name
of the session for which the session ID should be returned.

[Session_AddVariable]	 Adds a variable to a specified session. Accepts two parameters: -Name is the
name of the session and a second unnamed parameter is the name of the
variable.

[Session_RemoveVariable]	 Removes a variable from a specified session. Accepts two parameters: -Name is
the name of the session and a second unnamed parameter is the name of the
variable.

[Session_End]	 Deletes the stored information about a named session for the current visitor.
Accepts a single parameter: -Name is the name of the session to be deleted.

[Session_Abort]	 Prevents the session from being stored at the end of the current page. This
allows graceful recovery from an error that would otherwise corrupt data stored in
the session.

[Session_Result]	 When called immediately after the [Session_Start] tag, returns "new", "load", or
"expire" depending on whether a new session was created, an existing session
loaded, or an expired session forced a new session to be created.

[Session_DeleteExpired]	 This tag is used internally by the session manager and does not normally need to
be called directly. It trigers a cleanup routine which deletes expired sessions from
the current session table.

		

2 5 2

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 1 8 – S e s s i o n s

Table 2: [Session_Start] Parameters

Keyword	 Description	

-Name	 The name of the session.

-Expires	 The idle expiration time for the session in minutes.

-ID	 The ID for the current visitor. If no ID is specified then the cookie and link
parameters will be inspected for valid visitor IDs.

-UseCookie	 If specified then site visitors will be tracked by cookie. -UseCookie is the default
unless -UseLink, -UseAuto, or -UseNone is specified.

-UseLink	 If specified then site visitors will be tracked by modifying all the absolute and
relative links in the current Lasso page.

-UseNone	 No links on the current page will be modified and a cookie will not be set. -
UseNone allows custom session tracking to be used.

-UseAuto	 This option automatically uses -UseCookie if cookies are available on the visitor's
browser or -UseLink otherwise.

-CookieExpires	 Optionally sets the expiration in minutes for the session cookie.

-Domain	 Optionally sets the domain for the session cookie.

-Path	 Optionally sets the path for the session cookie.

-Secure	 If set the session cookie will only be sent back to the Web server on requests for
HTTPS secure Web pages. [Session_End] should also be specified with -Secure
if this option is used.

		

Note: -UseCookie is the default for [Session_Start] unless -UseLink is or -UseNone is specified. Use -UseLink to track a
session using only links. Use both -UseLink and -UseCookie to track a session using both links and a cookie.

Starting a Session
The [Session_Start] tag is used to start a new session or to load an existing session. When the [Session_Start] tag
is called with a given -Name parameter it first checks to see whether an ID is defined for the current visitor.
The ID is searched for in the following three locations:

	 •	ID – If the [Session_Start] tag has an -ID parameter then it is used as the ID for the current visitor.

	 •	Cookie – If a session tracker cookie is found for the name of the session then the ID stored in the cookie is
used.

	 •	-Session – If a -Session command tag for the name of the session was specified in the link that loaded the
current page then the parameter of that tag is used as the session ID.

The name of the session and the ID are used to check whether a session has already been created for the
current visitor. If it has then the variables in the session are loaded replacing the values for any variables of
the same name that are defined on the current page.

If no ID can be found, the specified ID is invalid, or if the session identified by the name and ID has expired
then a new session is created.

After the [Session_Start] tag has been called the [Session_ID] tag can be used to retrieve the ID of the current
session. It is guaranteed that either a valid session will be loaded or a new session will be created by the
[Session_Start] tag.

Note: The [Session_Start] tag must be used on each page you want to access session variables.

Session Tracking
The session ID for the current visitor can be tracked using two different methods or a custom tracking system
can be devised. The tracking system depends on what parameters are specified for the [Session_Start] tag.

2 5 3

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 1 8 – S e s s i o n s

	 •	Cookie – The default session tracking method is using a cookie. If no other method is specified when
creating a session then the -UseCookie method is used by default. The cookie will be inspected automatically
when the visitor loads another page in the site which includes a [Session_Start] tag. No additional
programming is required.

The session tracking cookie is of the following form. The name of the cookie includes the words
_Session_Tracker_ followed by the name given to the session in [Session_Start]. The value for the cookie is the
session ID as returned by [Session_ID].

_SessionTracker_SessionName=1234567890abcdefg

	 •	Links – If the -UseLink parameter is specified in the [Session_Start] tag then Lasso will automatically modify
links contained on the current page. The preferences for which links will be modified by Lasso can be
adjusted in the Setup > Global Settings > Sessions section of Lasso Administration. See the Lasso
Professional 8 Setup Guide for more information. No additional programming beyond specifying the
-UseLink parameter is required.

By default, links contained in the href parameter of … and in the action parameter of
<form action="…"> … </form> tags will be modified.

Links are only modified if they reference a file on the same machine as the current Web site. Any links
which start with any of the following strings are not modified.

file://					 ftp://		 http://		 https://
javascript:		 mailto:		 telnet://		 #

Links are modified by adding a -Session command tag to the end of the link parameters. The value of the
command tag is the session name followed by a colon and the session ID as returned by [Session_ID]. For
example, an anchor tag referencing the current file would appear as follows after the -Session tag was added.

 …

	 •	Auto – If the -UseAuto parameter is specified in the [Session_Start] tag then Lasso will check for a cookie
with an appropriate name for the current session. If the cookie is found then -UseCookie will be used to
propagate the session. If the cookie cannot be found then -UseLink will be used to propagate the session.
This allows a site to preferentially use cookies to propagate the session, but to fall back on links if cookies
are disabled in the visitor’s browser.

	 •	None – If the -UseNone parameter is specified in the [Session_Start] tag then Lasso will not attempt to
propagate the session. The techniques described later in this chapter for manually propagating the session
must be used.

To start a session:

A session can be started using the [Session_Start] tag. The optional -Expires parameter specifies how long in
minutes the session should be maintained after the last access by the site visitor. The default is 15 minutes.
The optional -UseLink keyword specifies that absolute and relative links in the current Lasso page should be
modified to contain a reference to the session. The optional -UseCookie keyword specifies that a cookie should
be set in the visitor’s Web browser so that the session can be retrieved in subsequent pages.

The following example starts a session named Site_Preferences with an idle expiration of 24 hours
(1440 minutes). The session will be tracked using both cookies and links.

[Session_Start: -Name='Site_Preferences', -Expires='1440', -UseLink, -UseCookie]

When the [Session_Start] tag is called it restores all stored variables. If a variable by the same name has already
been created on the page then that variable value will be overwritten by the stored variable value.

To add variables to a session:

Use the [Session_AddVariable] tag to add a variable to a session. Once a variable has been added to a session its
value will be remembered at the end of each Lasso page in which the variable is used. Variables included in a
session will be automatically defined when the [Session_Start] tag is called. In the following example a variable
RealName is added to a session named Site_Preferences.

[Session_AddVariable: -Name='Site_Preferences', 'Real_Name']

2 5 4

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 1 8 – S e s s i o n s

Variables will not be created by the [Session_AddVariable] tag. Each [Session_AddVariable] should be accompanied
by a [Variable] tag that defines the starting value for the variable.

To remove variables from a session:

Use the [Session_RemoveVariable] tag to remove a variable from a session. The variable will no longer be stored
with the session and its value will not be restored in subsequent pages. The value of the variable in the
current page will not be affected. In the following example a variable RealName is removed from a session
named Site_Preferences.

[Session_RemoveVariable: -Name='Site_Preferences', 'Real_Name']

To delete a session:

A session can be deleted using the [Session_End] tag with the name of the session. The session will be ended
immediately. None of the variables in the session will be affected in the current page, but their values will not
be restored in subsequent pages. Sessions can also end automatically if the timeout specified by the -Expires
keyword is reached. In the following example the session Site_Preferences is ended.

[Session_End: -Name='Site_Preferences']

To pass a session in an HTML form:

Sessions can be added to URLs automatically using the -UseLink keyword in the [Session_Start] tag. In order to
pass a session using a form a hidden input must be added explicitly. The hidden input should have the name
-Session and the value Session_Name:Session_ID. In the following example, the ID for a session Site_Preferences is
returned using [Session_ID] and passed explicitly in an HTML form.

<form action="repsonse.lasso" method="POST">
	 <input type="hidden" name="-Session"
		 value="Site_Preferences:[Session_ID: -Name='Site_Preferences']">
	 …
	 <input type="submit" name="-Nothing" value="Submit Form">
</form>

To track a session using links only if cookies are disabled:

The following example shows how to start a session using links if cookies are disabled. The -UseAuto
parameter will first try setting a cookie and decorate the links on the current page. On subesequent page
loads if the session cookie is found then it will be used and the links on the page will not be decorated. If the
cookie cannot be found then links will be used to propagate the session.

[Session_Start: -Name=$Session_Name, --UseAuto]

Session Example
This example demonstrates how to use sessions to store site preferences which are persistent from page to
page.

Web sites can be customized for individual visitors using sessions. In this example a site visitor is allowed
to enter certain information about themselves in various forms throughout the Web site. When subsequent
forms are encountered, the Web site should be able to pre-fill any elements that the visitor has already
specified.

Sessions will be used to track the visitors RealName, EmailAddress, and FavoriteColor in three variables.

To create the session:

The following code will be specified at the top of every Web page in the Web site. The session must be started
in every Web page which requires access to or which might modify the stored variables.

	 1	The [Session_Start] tag is used to start a session named Site_Preferences. The expiration of the session is set to
24 hours (1440 minutes). The session will be tracked by both links and cookies.

2 5 5

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 1 8 – S e s s i o n s

[Session_Start: -Name='Site_Preferences', -Expires='1440', -UseLink, -UseCookie]

	 2	The three variables RealName, EmailAddress, and FavoriteColor are added to the session using
[Session_AddVariable].

[Session_AddVariable: -Name='Site_Preferences', 'RealName']
[Session_AddVariable: -Name='Site_Preferences', 'EmailAddress']
[Session_AddVariable: -Name='Site_Preferences', 'FavoriteColor']

	 3	Finally, default values are established for all three variables. RealName and EmailAddress are set to the
empty string if they are not defined. FavoriteColor is set to blue #0000cc if it has not been defined. These
default values will only be set the first time the session is started. In subsequent pages, the variables will
automatically be set to the value stored in the session.

[If: (Variable_Defined: 'RealName') == False]
	 [Variable: 'RealName' = '']
[/If]

[If: (Variable_Defined: 'EmailAddress') == False]
	 [Variable: 'EmailAddress' = '']
[/If]

[If: (Variable_Defined: 'FavoriteColor') == False]
	 [Variable: 'FavoriteColor' = '#0000cc']
[/If]

To use the session variables:

The session variables are used in each page as normal variables. Whatever value they are set to at the end of
the Web page will be the value the variable has the next time the session is started.

	 •	The FavoriteColor variable can be used to set the color of text by using it in an HTML tag. In the
following example, the visitors RealName will be shown in the specified color.

 Welcome [Variable: 'RealName']

	 •	The visitor’s RealName and EmailAddress can be shown in a form by placing the variables in the HTML <input>
tags. The following form allows the visitor to enter their name and email address and to select a favorite
color from a pop-up menu.

<form action="response.lasso" method="POST">
	
Your Name:
		 <input type="text" name="RealName" value="[Variable: 'RealName']">
	
Your Email Address:
		 <input type="text" name="EmailAddress" value="[Variable: 'EmailAddress']">
	
Your Favorite Color:
		 <select name="FavoriteColor">
			 <option value="#0000cc"> Blue </option>
			 <option value="#cc0000"> Red </option>
			 <option value="#009900"> Green </option>
		 </select>
	

		 <input type="submit" name="-Nothing" value="Submit">
</form>

In the response page response.lasso, the form inputs can be retrieved using the [Action_Param] tag and stored
into variables. These new values will now be stored with the session.

[Variable: 'RealName' = (Action_Param: 'RealName')]
[Variable: 'EmailAddress' = (Action_Param: 'EmailAddress')]
[Variable: 'FavoriteColor' = (Action_Param: 'FavoriteColor')]

2 5 6

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 1 8 – S e s s i o n s

19
Chapter 19

Error Control

This chapter documents the methods Lasso uses to report errors and the tags available in Lasso to capture and
respond to errors.

	 •	Overview provides definitions of the types of errors Lasso reports and the methods which can be used to
capture and respond to them.

	 •	Error Reporting documents the built-in error messages in Lasso and how to customize the amount of
information provided to site visitors.

	 •	Custom Error Page explains how to override the built-in error messages for the entire server or a single site
with a custom error page.

	 •	Error Pages documents how to create action specific error pages.

	 •	Error Tags documents the [Error_…] process and substitution tags that can be used to report custom or
standard errors and for basic error handling within a Lasso page.

	 •	Error Handling documents the [Protect], [Fail], and [Handle] tags for advanced error handling within a Lasso
page.

Overview
Responding to errors gracefully is the hallmark of good programming. Errors in Lasso run the gamut from
expected errors such as a database search that returns no records to syntax errors that require fixing before
a page will even process. Lasso provides tools to manage errors at several different levels which can act
redundantly to ensure that no errors will be missed.

The following lists the types of errors that can occur in or are reported by Lasso. This chapter includes
instructions for how to handle each of these types of errors.

Error Types

	 •	Web Server Errors include file not found errors and access violations in realms. These will be reported
with standard HTTP response codes, e.g. 404 for File Not Found.

	 •	Syntax Errors include misspellings of tag names, missing delimiters, and mismatched data types. Lasso
will return an error message rather than the processed Lasso page if it encounters a syntax error.

	 •	Action Errors include misspellings of database names, table names, or field names and other problems
specifying database actions. The database action cannot be performed until the errors are corrected.

	 •	Action Results can be reported as errors by Lasso. For example if no records were found after performing a
search.

	 •	Database Errors are generated by the data source application and include data type mismatches, missing
required field values, and others. Lasso will report the error which was returned from the data source
application without modification.

2 5 7

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 1 9 – E r r o r C o n t r o l

	 •	Logical Errors are problems that cause a page to process unexpectedly even though the syntax of the code
is correct. These include infinite loops, missing cases, and assumptions about the size or composition of a
found set.

	 •	Security Violations are not strictly errors, but are attempts to perform database actions or file accesses
which are not allowed by the permissions set for the current user. These include permissions to perform
database actions, privileges to add users to groups, permissions to use specific tags, and specific
permissions to use the file tags.

	 •	Installation Problems can also result in error messages if a Lasso Web server connector is improperly
configured or Lasso Service is unavailable.

	 •	Operating System Errors can also be reported by Lasso if they occur. Lasso will report the error without
modification.

Some errors are more serious than others. Pages will not be processed at all if they contain syntax errors or if
there are installation problems which prevent Lasso Service from being accessed. Other errors are commonly
encountered in the normal use of a Web site. Most database errors and security violations are handled by
simple means such as showing a No Records Found message or displaying a security dialog box to prompt the
user for a username and password.

There are five mechanisms for handling errors which are detailed in this chapter. These mechanisms can be
used singly or in concert to provide comprehensive error handling.

Error Control Types

	 •	Automatic Error Reporting is performed by Lasso in response to unhandled errors. The amount of detail
provided in these error messages can be customized by setting the error reporting level or by creating a
custom server-wide error.lasso file.

	 •	A Custom Error Page allows the automatic error page to be replaced by a custom page. Custom error
pages are usually created for each site on a server.

	 •	Error Tags allow action and logical errors and security violations to be handled within a Lasso page.

	 •	Error Handling tags allow advanced error handling to be built into Lasso pages. These techniques allow
error handling routines to be built into a page without disrupting the normal processing of a page if no
errors occur.

Error Reporting
For errors that occur while processing a page, Lasso displays error messages differently based on the current
error reporting level. This allows detailed error messages to be displayed while developing a Web site and
then for minimal or generic error messages to be displayed once a site has been deployed.

The default global error reporting level can be set in Lasso Administration in the
Setup > Global > Settings section. The error reporting level can be set to None, Minimal, or Full. Each of these levels
is described in more detail below.

The error reporting level for a particular page can be modified using the [Lasso_ErrorReporting] tag with a
value of None, Minimal, or Full. This will modify the error reporting level only for the current Lasso page and
its includes without affecting the global default. See the section on the [Lasso_ErrorReporting] tag below for
additional details.

No matter what level of error reporting has been specified, the standard built-in error message will be
replaced by a custom error page if one is defined. See the following section Custom Error Page for more
details.

2 5 8

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 1 9 – E r r o r C o n t r o l

Error Levels
This section describes how error messages are formatted at each of the three error reporting levels:

	 •	None – This level provides only a generic error message with no specific information or error code. This
level can be used on a deployment server when it is desirable to provide no specific information to the site
visitor. When the error page is displayed the full error code is logged as a detail error message.

Figure 1: Built-In None Error Message

An error occurred while processing your request.

	 •	Minimal – This level is the default. It provides a minimal error message and error code. No context about
where the error occurred is provided. This level can be used on a deployment server in order to make
troubleshooting problems easier. When the error page is displayed the full error code is logged as a detail
error message.

Figure 2: Built-In Minimal Error Message

An error occurred while processing your request.

Error Information

Error Message: The file include.inc was not found.

Error Code: -9984

	 •	Full – This level provides detailed error messages for debugging and troubleshooting. The path to the
current Lasso page is provided along with information about what files have been included and what
parameters have been passed to them. If a database or action error is reported, the built-in error message
provides information about what database action was performed when the error occurred.

Figure 3: Built-In Full Error Message

An error occurred while processing your request.

Error Information

Error Message: The file include.inc was not found.
at: include with params: 'include.inc'
at: /Library/WebServer/Documents/default.lasso on line: 1 at position: 1

Error Code: -9984

Action: nothing

Database: --

Table/Layout: --

Response: /default.lasso

Client Address: 127.0.0.1

Client IP: 127.0.0.1

Client Type: Mozilla/5.0 (Macintosh; U; PPC Mac OS X; en)

Server Date: Monday, February 23, 2004

Server Time: 03:43:56 PM

Setting the Error Level
The error reporting level can be set for an individual Lasso page by specifying the [Lasso_ErrorReporting] tag
with the desired error level at the top of the page. If the -Local keyword is used within the tag then the error
level will only be changed within the current included file, custom tag, or processed code.

2 5 9

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 1 9 – E r r o r C o n t r o l

Table 1: Error Level Tag

Tag	 Description	

[Lasso_ErrorReporting]	 Sets the error reporting level for the current page to 'None', 'Minimal', or 'Full'.
Defaults to the value set in Lasso Administration. An optional -Local keyword
modifies the error level for only the current context.

		

To set the error reporting level within a Lasso page:

Use the [Lasso_ErrorReporting] tag with the desired error reporting level. For example, the following code sets
the error reporting level to Full so the current Lasso page can be more easily debugged.

[Lasso_ErrorReporting: 'Full']

To set the error reporting level within a local context:

Use the [Lasso_ErrorReporting] tag with the -Local keyword and the desired error reporting level. For example, the
following code sets the error reporting level to None so no errors are reported from the current include. This
error reporting level will only be in effect until the end of the current include, custom tag, or process tag.

[Lasso_ErrorReporting: 'None', -Local]

Other Errors
The simple error message in Figure 2: Lasso Service Error Message is displayed when Lasso Service cannot
be contacted by a Lasso Web server connector. No processing can happen without Lasso Service. This message
will be displayed if Lasso Service is quit or restarted while the Web server application is still running.

Figure 4: Lasso Service Error Message

Lasso Connector could not communicate with Lasso Service.

Lasso Error

Security violations result in an appropriate HTTP response being sent to the Web client to ask the site visitor
for authentication information. An authentication dialog like that shown in Figure 3: Authentication Dialog
is presented to the visitor. If they enter a valid username and password then processing proceeds as normal.
If they enter an invalid username and password then the standard built-in error message will be shown with
details about the security violation.

Figure 5: Authentication Dialog

Custom Error Page
A custom error page can be defined which will be displayed to the site visitor rather than the built-in error
message described in the previous section. The error message displayed on a custom error page will depend
on the error reporting level which is set in Lasso Administration and on the current page. However, the rest of
the information on the custom error page is determined by the LassoScript used to code the page.

2 6 0

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 1 9 – E r r o r C o n t r o l

There are three ways to define a custom error page.:

	 •	Host – The custom error page for a particular host can be modified by creating a file named error.lasso and
placing it in the root of the Web serving folder. Each virtual host which has a distinct Web serving folder
can have a custom error page.

	 •	Site – The site-wide error page is named error.lasso and is located in the Lasso Professional 8 site folder.
Modifying this page will alter the error page for all hosts that map to the site. By modifying this page it is
possible to add logging or even email notification when errors occur on a hosted site.

	 •	Server – The server-wide error page is named error.lasso and is located in the Admin folder in the Lasso
Professional 8 application folder. Modifying this page will alter the error page for all sites that are hosted
on their server. The server-wide error page will only be used for sites that do not have a site-specific error
page defined.

Figure 6: Custom Error Page

Error: No error
Code: 0

Response: /error.lasso
Path: /
Local: ///Library/WebServer/Documents/error.lasso
Realm:
Referrer:

Date: Tuesday, February 5, 2002
Time: 11:30:37 AM
Version: Mac OS X 5.0.0b15

array: (pair: (-nothing)=()), (pair: (-operatorlogical)=(and)), (pair: (-maxrecords)=(50)), (pair: (-skiprecords)=
(0))

Apple Stock: 25.75

Accept: */*
Accept-Language: en
Authorization: Basic YWRtaW5pc3RyYXRvcjouZ3JlZW4u
Connection: Keep-Alive
Extension: Security/Remote-Passphrase
Host: localhost
UA-CPU: PPC
UA-OS: MacOS
User-Agent: Mozilla/4.0 (compatible; MSIE 5.12; Mac_PowerPC)

2/5/02 11:31 AMUntitled

Page 1 of 1http://localhost/error.lasso

To define a custom server-wide error page.

Modify the file error.lasso which is located in the Admin folder of the Lasso Professional 8 application folder.
This file should be kept simple and be thoroughly debugged before it is used on a production server.

To define a custom error page:

	 1	Create a file named error.lasso which includes the default error message to be displayed to site visitors.

	 2	All image links and URLs within the custom error page should be specified as absolute paths from the
root of the Web serving folder. The following tag contains a reference to picture.gif contained in the
images folder.

	 3	Place the error.lasso file in the root of the Web serving folder for the Web site which is being customized.
The file should be accessible by loading the following URL.

http://www.example.com/error.lasso

Note: The built-in error page will not be displayed if a custom error page is defined. The values of
[Error_CurrentError] and [Error_CurrentError: -Errorcode] should be reported in some way by the custom error page.

To test a custom error page:

A properly placed error.lasso file can be tested by loading it with each of the following URLs.

	 •	The first URL loads the page directly. This confirms that the error.lasso file is located in the right folder.

http://www.example.com/error.lasso

	 •	The second URL will cause an error in Lasso that should return the custom error page. A page not found
error will be returned since the file fakepage.lasso is not present on the Web server.

http://www.example.com/Action.Lasso?-response=fakepage.lasso

2 6 1

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 1 9 – E r r o r C o n t r o l

Error Pages
A custom error page can be specified in any HTML form or URL based Lasso action using the
-ResponseAnyError command tag. The -ResponseRequiredFieldMissingError tag can be used to trap for missing values
which are flagged with the -Required command tag. The -ResponseSecurityError can be used to trap for security
permissions violations.

If an error occurs and no -Response… tag is specified then the default error message or a custom error page is
returned as documented in the previous section Custom Error Page. The details of the Lasso action can be
retrieved in the error page and the specific error message which triggered the error page can be returned using
[Error_CurrentError].

Neither of the response command tags function within [Inline] … [/Inline] based Lasso actions. Instead, errors
should be handled directly within the [Inline] … [/Inline] tags using the techniques outlined in the Error Tags
and Error Handling sections that follow.

Table 2: Error Response Tags

Tag	 Description	

-ResponseAnyError	 Specifies the page to return if any error occurs and no specific error page for that
error is specified.

-ResponseReqFieldMissingError	 Specifies the page to return if a name/value pair preceded by a -Required
command tag does not have a value. Synonyms include -ResponseRequiredField
MissingError, -ResponseReqColumnMissingError, and -ResponseRequiredColum
nMissingError.

-ResponseSecurityError	 Specifies the page to return if the current user does not have permission to
perform the requested action.

		

Error Tags
The [Error_…] tags in Lasso allow custom errors to be reported and provide access to the most recent error that
was reported by the code executing in the current Lasso page. This allows the developer to check for specific
errors and respond if necessary with an error message or code to correct the error.

Lasso maintains a single error code and error message that is set by any tag which reports an error. The error
code and error message should be checked immediately after a tag that may report an error. If any intervening
tags report errors then the error code and error message will be lost.

Custom errors can be created using the [Error_SetErrorMessage] and [Error_SetErrorCode] tags. Once set, the
[Error_CurrentError] tag or [Error_Code] and [Error_Msg] tags will return the custom error code and message. A
developer can utilize these tags to incorporate both built-in and custom error codes into the error recovery
mechanisms for a site.

Table 3: Error Tags

Tag	 Description	

[Error_CurrentError]	 Returns the current error message. Optional -ErrorCode parameter returns the
current error code.

[Error_Code]	 Returns the current error code.

[Error_Msg]	 Returns the current error message.

[Error_Push]	 Pushes the current error condition onto a stack and resets the current error code
and error message.

[Error_Pop]	 Restores the last error condition stored using [Error_Push].

[Error_Reset]	 Resets the current error code and error message.

[Error_SetErrorCode]	 Sets the current error code to a custom value.

[Error_SetErrorMessage]	 Sets the current error message to a custom value.
		

2 6 2

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 1 9 – E r r o r C o n t r o l

To display the current error in a Lasso page:

	 •	Use the [Error_Msg] tag and the [Error_Code] tag. The following code will display a short error message.

The current error is [Error_Code]: [Error_Msg].

If the code on the page is executing normally and there is no current error to report then the code will
return.

�	 The current error is 0: No Error.

	 •	Use the [Error_CurrentError] tag with the optional -ErrorCode keyword. The following code will display a short
error message.

The current error is [Error_CurrentError: -ErrorCode]: [Error_CurrentError].

If the code on the page is executing normally and there is no current error to report then the code will
return.

�	 The current error is 0: No Error.

To set the current error in a Lasso page:

	 •	The current error code and message can be set using the [Error_SetErrorCode] and [Error_SetErrorMessage] tags.
These tags will not affect the execution of the current Lasso page, but will simply set the current error so it
will be returned by the [Error_CurrentError] tag or [Error_Code] and [Error_Msg] tags.

In the following example, the error message is set to A custom error occurred and the error code is set to -1.

[Error_SetErrorMessage: 'A custom error occurred']
[Error_SetErrorCode: -1]

The [Error_CurrentError] tag now reports this custom error when it is called later in the page, unless any inter-
vening code changed the error message again.

The current error is [Error_CurrentError: -ErrorCode]: [Error_CurrentError].

�	 The current error is -1: A custom error occurred.

	 •	The current error code and message can also be set using the [Error_Code] and [Error_Msg] tags.

[Error_Msg = 'A custom error occurred']
[Error_Code = -1]

	 •	The built-in error message for an error code can be set by clearing out the error message and setting the
error code to one of the built-in error type tags (listed in the table on the next page). The following code
would set the error code and message to report an “Add Error”.

[Error_SetErrorMessage: '']
[Error_SetErrorCode: -9959]

Or:

[Error_Msg = '']
[Error_Code = -9959]

To reset the current error in a Lasso page:

Use the [Error_Reset] tag. This resets the error message to blank and the error code to 0.

[Error_Reset]

2 6 3

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 1 9 – E r r o r C o n t r o l

To store and restore the current error in a Lasso page:

	 •	Use the [Error_Push] and [Error_Pop] tags. The following code stores the current error code and message before
the [Protect] … [/Protect] block is executed. This allows the protect block to execute without any previous error
on the page bleeding into it and mistakenly triggering the [Handle_Error] … [/Handle_Error] block. Then the
error code and message are restored at the end of the block.

[Error_Push]
[Protect]
	 … Code which might generate an error…
	 [Handle_Error]
		 … Only handle an error generated within the protect block …
	 [/Handle_Error]
[/Protect]
[Error_Pop]

	 •	The [Error_Push] and [Error_Pop] tags can also be used to prevent a custom tag from modifying the current
error condition, while still using error handling code within the tag.. The following code stores the current
error code and message at the beginning of the custom tag definition. The error code and message are
restored just before the custom tag returns a value.

[Define_Tag: 'myCustomTag']
	 [Error_Push]
	 … Code which might generate an error …
	 [Error_Pop]
	 [Return: 'myValue']
[/Define_Tag]

The remainder of the [Error_…] tags provide shortcuts for reporting standard errors or checking what error is
being reported by Lasso so appropriate steps can be taken. The [Error_…] tags available in Lasso are described
in Table 3: Error Type Tag. An example of how to respond to a particular error message follows.

These tags can be used with the [Error_SetErrorCode] and [Error_SetErrorMessage] tags to generate standard
errors. If a page has code which deals with an “Add Error” for example, that code can be triggered by
an [Inline] that reports an “Add Error” or by setting the current error to an “Add Error” explicitly using
the [Error_SetErrrorCode] and [Error_SetErrorMessage] tags as shown in the following code.

[Error_SetErrorCode: (Error_AddError: -ErrorCode)]
[Error_SetErrorMessage: (Error_AddError)]

Table 4: Error Type Tags

Tag	 Description	

[Error_AddError]	 An error occurred during an -Add action.

[Error_DatabaseConnectionUnavailable]	 A connection to the specified Lasso data source connector for the current
database cannot be established.

[Error_DatabaseTimeout]	 The connection to the Lasso data source connector timed out.

[Error_DeleteError]	 An error occurred during a -Delete action such as if an invalid -KeyField or -
KeyValue was specified.

[Error_FieldRestriction]	 An error reported by the Lasso data source connector that a field cannot be
modified. Synonym is [Error_ColumnRestriction].

[Error_FileNotFound]	 The specified file in an [Include] tag or -Response… tag cannot be found.

[Error_InvalidDatabase]	 The specified database is not configured within Lasso Administration.

[Error_InvalidPassword]	 The password for the specified username is invalid.

[Error_InvalidUsername]	 The specified username cannot be found in the users database within Lasso
security.

[Error_NoError]	 The code has been executed successfully. This error code represents the lack of
an error.

[Error_NoPermission]	 The current user does not have permission to perform the requested database
action.

2 6 4

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 1 9 – E r r o r C o n t r o l

[Error_OutOfMemory]	 Lasso encountered an internal out of memory error that prevents the current
page from processing.

[Error_RequiredFieldMissing]	 A value was not specified for an HTML form or URL parameter preceded by a
-Required command tag. Also [Error_RequiredColumnMissing].

[Error_UpdateError]	 An error occurred during an -Update action such as if an invalid -KeyField or -
KeyValue was specified.

		

Note: In prior versions of Lasso an [Error_NoRecordsFound] tag was defined. This tag has been deprecated in favor
of checking whether the [Found_Count] is equal to zero to check if no records were found.

To check for a specific error within [Inline] … [/Inline] tags:

Use a conditional expression in [If] … [/If] tags to compare [Error_CurrentError] with the specific error type tag
you want to check. In the following example, a different message is displayed if no records were found after
a -FindAll action or if the requested database was not found.

[Inline: -Database='Contacts', -Table='People', -FindAll]
	 [If: (Error_CurrentError) == (Error_InvalidDatabase)]
		 The database Contacts is not valid.
	 [Else: (Error_CurrentError) == (Error_NoPermission)]
		 You don't have permission to search Contacts.
	 [Else: (Found_Count) == 0]
		 No records were found in Contacts.
	 [Else]
		 … Display Found Set Here …
	 [/If]
[/Inline]

Error Handling
Lasso includes powerful error handling tags that allow areas of a page to be protected. Error-specific handlers
are called if any errors occur in a protected area of a page. These tags allow comprehensive error handling to
be built into a page without disturbing the code of the page with many conditionals and special cases.

Table 5: Error Handling Tags

Tag	 Description	

[Fail]	 Halts execution of the current page or [Protect] … [/Protect] block. Takes two
parameters: an integer error code and a string error message.

[Fail_If]	 Conditionally halts execution of the current page or [Protect] … [/Protect] block.
Takes three parameters: a conditional expression, an integer error code, and a
string error message.

[Handle] … [/Handle]	 Conditionally executes after the code in the current container tag or Lasso
page is completed or a [Fail] tag is called. Takes a conditional expression as a
parameter.

[Handle_Error] … [/Handle_Error]	 Functions the same as [Handle] … [/Handle] except that the contents are
executed only if an error was reported in the surrounding [Protect] … [/Protect]
tags.

[Protect] … [/Protect]	 Container tag that protects a portion of a page. If code inside the container
throws an error or a [Fail] tag is executed inside the container then the error is
not allowed to propagate outside the protected block.

		

Note: Especially when the [Handle_Error] … [/Handle_Error] tags are used it may be necessary to use [Error_Push] and
[Error_Pop] around a [Protect] … [/Protect] block in order to prevent a preexisting error condition from bleeding into
the protect block and mistakenly triggering the code within the error handler. See the example in the documen-
tation of [Error_Push] and [Error_Pop] earlier in this chapter.

2 6 5

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 1 9 – E r r o r C o n t r o l

Handle Tags
The [Handle] … [/Handle] tags are used to surround a block of code that will be executed after the current code
segment is completed. The opening [Handle] tag takes a single parameter which is a conditional expression. If
the conditional expression returns True then the code in the [Handle] … [/Handle] tags is executed. Every [Handle]
tag is given a chance to execute in the order they were specified so multiple [Handle] … [/Handle] tags can be
executed.

[Handle] … [/Handle] tags will not be executed if a syntax error occurs while Lasso is parsing a page. When Lasso
encounters a syntax error it returns an error page instead of processing the code on a page.

[Handle] … [/Handle] tags will be executed if a logical error occurs while Lasso is processing a page. However,
the result of the page will be an error message rather than the output of the page. Code within the
[Handle] … [/Handle] tags can redirect the user to another page using [Redirect_URL] or can replace the contents of
the page being served.

There are two ways to use [Handle] … [/Handle] tags within a Lasso page:

	 •	When used on their own in a Lasso page, the code inside the [Handle] … [/Handle] tags will be conditionally
executed after all the rest of the code in the Lasso page has completed. [Handle] … [/Handle] tags can be used
to provide post-processing code for a Lasso page.

	 •	When used within any Lasso container tag, the code inside the [Handle] … [/Handle] tags will be conditionally
executed after the closing container tag. [Handle] … [/Handle] tags will most commonly be used within
[Protect] … [/Protect] tags to provide error handling.

To specify code to execute if a Lasso page reports an error:

Place [Handle] … [/Handle] tags with a check for [Error_CurrentError] anywhere in a page, but not inside any other
container tags. In the following example, the opening [Handle] tag checks if [Error_CurrentError] is not equal to
[Error_NoError]. The contents of the page which is being returned to the visitor is replaced by a custom error
message if an error has occurred.

[Handle: (Error_CurrentError) != (Error_NoError)]
	 [Content_Body = '<hr>' +
		 'An error occurred while processing this page:' +
		 (Error_CurrentError: -ErrorCode) + ': ' + (Error_CurrentError) + '.']
[/Handle]

To output debugging messages at the end of a Lasso page:

Place [Handle] … [/Handle] tags throughout a page that check to see if a variable named Debug equals True. The
contents of the [Handle] … [/Handle] tags will only be executed if it does. Note that the [Handle] … [/Handle] tags
can only contain static messages because they do not execute within the flow of the page.

[Var: 'Debug'=True]

[Handle: (Variable: 'Debug') == True]
	 <p>Debugging Message
[/Handle]

Note: If a syntax or logical error occurs while processing the page then this handle code will execute, but the
results may not be visible since the default error page will be returned in place of the processed page contents.

To specify code to post-process a Lasso page:

Place [Handle] … [/Handle] tags with a condition of True anywhere in the Lasso page, but not within any other
container tags. The contents of the [Handle] … [/Handle] will execute after the rest of the Lasso page has executed.

In the following example, the text of the page which will be sent to the site visitor [Content_Body] is modified
using [String_ReplaceRegExp] so that all occurrences of the words LassoSoft are wrapped with tags that
make them blue.

2 6 6

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 1 9 – E r r o r C o n t r o l

<?LassoScript
	 // This LassoScript implements a post-processor that makes all occurrences
	 // of the words LassoSoft within the current Lasso page blue.
	 Handle: True;
		 // Unconditionally execute handler.
		 Content_Body = (String_ReplaceRegExp: Content_Body,
			 -Find='([Ll]asso[Ss]oft)',
			 -Replace='\1');
	 /Handle;
?>

Fail Tags
The [Fail] tag allows an error to be triggered from within Lasso code. The two parameters of the tag are the
integer error code and string error message of the error to be reported. Use of the [Fail] tag immediately halts
execution of the current page and starts execution of any [Handle] … [/Handle] tags contained within.

The [Fail] tag can be used in the following ways:

	 •	To report an unrecoverable error. Just as Lasso automatically halts execution of a Lasso page when a syntax
error or internal error is encountered, Lasso code can use the [Fail] tag to report an error which cannot be
recovered from.

[Fail: -1, 'An unrecoverable error occurred']

	 •	To trigger immediate execution of the page’s [Handle] … [/Handle] tags. If an error is handled by one of the
[Handle] … [/Handle] tags specified in the Lasso page (outside of any other container tags) then the code
within the [Handle] … [/Handle] tags will be executed.

	 •	To trigger immediate execution of a [Protect] … [/Protect] block’s [Handle] … [/Handle] tags. See the next section
Protect Tags for details.

To report a standard Lasso error:

Use the appropriate [Error_…] tag to return the error code and error message for any of Lasso’s standard errors.
In the following example a No Records Found error is triggered.

[Fail: (Error_NoRecordsFound: -ErrorCode), (Error_NoRecordsFound)]

To conditionally execute a [Fail] tag:

[Fail_If] allows conditional execution of a [Fail] without using a full [If] … [/If] tag. The first parameter to [Fail_If] is
a conditional expression. The last two parameters are the same integer error code and string error message as
in the [Fail] tag. In the following example the [Fail_If] tag is only executed if the [Found_Count] is 0.

[Fail_If: (Found_Count == 0),
	 (Error_NoRecordsFound: -ErrorCode), (Error_NoRecordsFound)]

Protect Tags
The [Protect] … [/Protect] tags are used to catch any errors that occur within the code surrounded by the
container tags. They create a protected environment from which errors cannot propagate to the page itself.
Even if an internal error is reported by Lasso it will be caught by the [Protect] … [/Protect] tags allowing the rest
of the page to execute successfully.

Any [Fail] or [Fail_If] tags called within [Protect] … [/Protect] tags will halt execution only if the code is contained
within the [Protect] … [/Protect] tags. Any [Handle] … [/Handle] tags contained within the [Protect] … [/Protect] tags will
be conditionally executed. The Lasso page will continue executing normally after the closing [/Protect] tag.

The [Protect] … [/Protect] tags can be used for the following purposes:

	 •	To protect a portion of a page so that any errors that would normally result in an error message being
displayed to the user are instead handled in the internal [Handle] … [/Handle] tags.

2 6 7

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 1 9 – E r r o r C o n t r o l

	 •	To provide advanced flow control in a page. Code within the [Protect] … [/Protect] tags is executed normally
until a [Fail] tag is encountered. The code then jumps immediately to the internal [Handle] … [/Handle] tags.

To protect a portion of a page from logical errors:

Wrap the portion of the page that needs to be protected in [Protect] … [/Protect] tags. Any internal errors that
Lasso reports will be caught by the [Protect] … [/Protect] tags and not reported to the end user. [Handle] … [/Handle]
should be included to handle the error if necessary.

In the following LassoScript an attempt is made to set the global map [Tags] to Null. This would have the effect
of removing all tags from Lasso so their operation is not allowed. Instead, Lasso reports a logical error. Since
this code is executed within [Protect] … [/Protect] tags no error is reported, but the [Protect] … [/Protect] tags exit
silently and the Lasso page resumes executing after the end of the LassoScript.

<?LassoScript
	 Protect;
		 $Tags = Null;
	 /Protect;
?>

To use the [Protect] … [/Protect] tags with custom errors:

The following example shows [Protect] … [/Protect] tags which surround code that contains several [Fail_If]
statements with custom error codes -1 and -2. A pair of [Handle] … [/Handle] tags inside the [Protect] … [/Protect]
tags are set to intercept either of these custom error codes. These [Handle] … [/Handle] tags will only execute if
one of the [Fail_If] tags executes successfully.

[Protect]
	 …
	 [Fail_If: ($ConditionOne == True), -1, 'Custom error -1']
	 …
	 [Fail_If: ($ConditionTwo == True), -2, 'Custom error -2']
	 …
	 [Handle: ((Error_CurrentError: -ErrorCode) == -1)]
		 … Handle custom error -1 …
	 [/Handle]
	 [Handle: (Error_CurrentError: -ErrorCode) == -2)]
		 … Handle custom error -2 …
	 [/Handle]
[/Protect]

2 6 8

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 1 9 – E r r o r C o n t r o l

IV
Section IV

Upgrading

This section contains detailed instructions for developers who are upgrading solutions developed using a
previous version of Lasso to Lasso.

	 •	Chapter 20: Upgrading From Lasso Professional 8 includes instructions for upgrading solutions that were
built using Lasso Professional 8 or 8.1. This section also includes changes notes for incremental updates to
Lasso Professional 8.5.

	 •	Chapter 21: Upgrading From Lasso Professional 7 includes instructions for upgrading solutions that were
built using any version of Lasso Professional 7. This chapter should be read in concert with the previous
chapter for a complete list of changes between Lasso Professional 8.5 and Lasso Professional 7.

	 •	Chapter 22: Upgrading From Lasso Professional 6 includes instructions for upgrading solutions that were
built using Lasso Professional 6 for compatibility with Lasso Professional .58. This chapter should be read
in concert with the previous chapters for a complete list of changes between Lasso Professional 8.5 and
Lasso Professional 6.

	 •	Chapter 23: Upgrading From Lasso Professional 5 includes instructions for upgrading solutions that were
built using Lasso Professional 5. This chapter should be read in concert with the previous chapters for a
complete lists of changes between Lasso Professional 8.5 and Lasso Professional 5.

	 •	Chapter 24: Upgrading From Lasso WDE 3.x includes instructions for upgrading solutions that were built
using Lasso Web Data Engine 3.x. This chapter should be read in concert with the previous chapters for a
complete list of changes between Lasso Professional 8.5 and Lasso Web Data Engine 3.x

This section should be read in concert the upgrading instructions in the Lasso Setup Guide.

2 6 9

L a s s o 8 . 5 L a n g u a g e G u i d e

20
Chapter 20

Upgrading From Lasso Professional 8

This chapter contains important information for users of Lasso Professional 8 who are upgrading to the latest
version of Lasso Professional 8.5.

If upgrading from an earlier version of Lasso, this chapter should be read in conjunction with the subsequent
chapters on upgrading from Lasso Professional 7, Lasso Professional 6, Lasso Professional 5, or Lasso Web
Data Engine 3.x or earlier.

Topics in this chapter include:

	 •	Introduction includes general information about what has changed in Lasso Professional 8.

	 •	New Data Sources contains information about the compatibility of existing code with new data sources.

	 •	Syntax Changes contains information about what Lasso syntax constructs have changed since Lasso
Professional 8.

	 •	Security Enhancements describes updates to file extensions, Classic Lasso, and file permissions security in
Lasso Professional Server 8.0.1.

	 •	Lasso Professional 8.0.x includes information about incremental changes in the Lasso Professional 8
product updates.

Introduction
All Lasso Professional 8 solutions which were written using preferred syntax should run without
modifications in Lasso Professional 8.5 except for the issues mentioned in this chapter.

Significant effort has been expended to ensure that existing solutions will continue to run in Lasso
Professional 8.5 with few if any modifications required. However, please read through this chapter to learn
about changes that may require modifications to your solutions.

Lasso Studio and Lasso Updater
Lasso Studio includes an Lasso Updater that can be used on code from earlier versions of Lasso to bring
it into compliance with the latest version of Lasso. See the documentation for Lasso Studio for more
information.

2 7 0

L a s s o 8 . 5 L a n g u a g e G u i d e

New Data Sources
Lasso 8.5 introduces many new data sources for Oracle, PostgreSQL, Microsoft SQL Server, and more. These
data sources were previously accessible through JDBC drivers. If a Web site already makes use of one of these
data sources through JDBC it is not recommend to switch to the new built-in connector.

Inlines which make use of Lasso’s database abstraction layer should be cross-compatible from JDBC to the
native connector. That is, inlines which make use of the -Search, -Add, -Update, and -Delete actions. However,
inlines which issue raw -SQL actions may need to be rewritten to use the native SQL implementation of the
data source rather than the JDBC SQL implementation. Careful testing should be performed before switching
the back-end data source of a Web site.

The [Field] tag will return data in Lasso’s native data types when it is used with the new data sources. For
example, a DATE column will return a Lasso [Date] type or numeric columns will return Lasso [Integer] or
[Decimal] types.

Syntax Changes
Lasso Professional 8.5 introduces changes to existing tags from earlier versions of Lasso. Some of these
changes may require you to rewrite portions of your existing Lasso-based solutions for full compatibility with
the latest version. This section describes each change, why it was made and how to update existing Lasso
pages.

Table 1: Syntax Changes

Syntax Change	 Description	

Lasso 8.5.5 Tags	 Lasso 8.5.5 includes several tags including [Image->ColorSpace],
[Image->SetColorSpace], and [MIME_Type]. New comparators include
[Compare_LessThanOrEquals], [Compare_GreaterThanOrEquals], [Compare_
NotBeginsWith], [Compare_NotEndsWith], [Compare_RegExp], and [Compare_
NotRegeExp]. The [Email_Parse->Body] and [Match_Comparator] tags have new
behavior.

FileMaker 9 Complex Queries	 FileMaker 9 data sources support generating complex queries using the -Or and
-Not keywords.

SOAP Post Processing	 Lasso 8.5.4 includes several new SOAP post-processing options including
[Proc_Lasso], [Proc_Find], [Proc_ForEach], [Proc_Join], [Proc_First],
[Proc_Last].

[Email_Send] Date	 The -Date parameter will set when the email message will be sent. This allows
messages to be queued for sending in the future. This parameter was added in
Lasso 8.5.3.

[Integer: Date]	 [Integer: Date] no long returns a UNIX timestamp. However [Date: Integer] will
still cast a UNIX timestamp to a valid Lasso date object. This change was made
in Lasso 8.5.2.

Lasso 8.5.2 Tags	 Lasso 8.5.2 includes a number of new tags including [ChartFX->Data],
[ChartFX_Serve], [ChartFX_Records], [Error_Reset], [Error_Pop] and [Error_
Push], [LJAX_Start], [LJAX_End], and [LJAX_HasTarget]. In addition, LJAX will
now automatically interpret the code included in <script> … <./script> blocks
within dynamic updates, the [NoProcess] … [/NoProcess] tags can be used in
LassoScript with some limitations, the [Redirect_URL] tag allows for 301 MOVED
redirects in addition to standard 302 FOUND redirects, and a new -RecordID
parameter allows the record ID for related records in FileMaker to be returned.

[Encrypt_HMAC]	 The [Encrypt_CramMD5] tag has been deprecated in favor of the new
[Encrypt_HMAC] tag. This new tag allows alternate digests such as SHA1 to be
used and has more flexible byte stream based input and output. This tag was
added in Lasso 8.5.1.

[Encode_URL] Encoding	 The [Encode_URL] tag now encodes strings using the current page encoding
character set. Previous versions of Lasso always encoded URLs using UTF-8.

2 7 1

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 2 0 – U p g r a d i n g F r o m L a s s o P r o f e s s i o n a l 8

[String] Encoding	 The [String] tag now accepts a second parameter when called with a byte stream.
The second parameter specifies what character set should be used to interpret
the byte stream when converting it to a Unicode string.

% and _ Encoding in Database Searches	 The % and _ symbols are now automatically encoded in SQLite and MySQL
searches. This should result in more accurate searches, but could cause
problems if these symbols were being used explicitly to modify searches.

[Found_Count] and -UseLimit	 -Search inlines now use a MySQL method which returns an accurate [Found_
Count] even when a LIMIT is specified.

[File->SetEncoding] and [File->Write]	 The [File->SetEncoding] tag affects how strings are written into files using [File-
>Write], but byte streams are unaffected.

[Net->SetEncoding] and [Net->Write]	 The [Net->SetEncoding tag affects how strings are written to network hosts using
[Net->Write], but byte streams are unaffected.

[Header] … [/Header] Deprecated	 The use of these tags is deprecated in favor of the [Content_Header] tag.

[Set] Positions Do Not Wrap Around	 The positions passed to the [Set->Get], [TreeMap->Get], and other member tags
no longer wrap around from the start of the data type if they are greater than the
size of the data type. This aligns the set and treemap types with the array and
map compound data types.

Inline 'op'='eq' No Longer Supported	 The synonym 'op'='eq' for -Op='eq' is no longer supported. This syntax is a
holdover from Lasso 3.x which has been supported in each version of Lasso prior
to 8.5.	

		

Lasso 8.5.5 Tags
Lasso 8.5.5 includes a number of new and enhanced tags. These tags are noted herre. See the appropriate
chapter for each tag for complete information.

	 •	New [Image->ColorSpace] and [Image->SetColorSpace] tags allow the color space of an image to be inspected or
changed. [Image->ColorSpace] will return the current color space of an image. The response should be RGB,
CMYK, or GRAY. [Image->SetColorSpace] will set the color space of an image. The tag takes one parameter
which should be -RGB, -CMYK, or -GRAY.

	 •	A new tag [MIME_Type] will return the MIME type for a file extension. The tag accepts a file name or a file
extension. For example [MIME_Type: ‘myfile.gif'] will return image.gif. The MIME types are adapated from the
Apache mime.types file Based on data from the Internet media type registry at:

http://www.iana.org/assignments/media-types/

HTML images embedded in a message using the -HTMLImages parameter will now use the proper MIME type
for their file extension. The [File_Serve] tag will now use the proper MIME type for most files based on their
file extension. The [MIME_Type] tag is used to look up the MIME type.

	 •	[Match_Comparator] now accepts any of the standard inline search operators as an abbreviation for the built-
in comparators. For example, [Array->(Find: (Match_Comparator: -bw, ‘J’))] will find all array elements which begin
with the letter J. The built-in comparators include -CN, -NCN, -EQ, -NEQ, -LT, -LTE, -GT, -GTE, -BW, -NBW, -EW,
-NEW, -RX, and -NRX.

	 •	New comparators include [Compare_LessThanOrEquals], [Compare_GreaterThanOrEquals], [Compare_NotBeginsWith],
[Compare_NotEndsWith], [Compare_RegExp], and [Compare_NotRegeExp].

	 •	[Email_Parse->Body] will now return an array of all applicable body parts when the -Array parameter is speci-
fied. For example, [Email_Parse->(Body: -Array, -Type='text/html')] will return all HTML body parts.

FileMaker 9 Complex Queries
The Lasso Connector for FileMaker Server now supports two logical operators when working with FileMaker
Server 9. By default, one logical query is created which finds records that meet all of the criteria specified. If
-Or is specified then a new query is started and any records in the first query or the second query are found. If
-Not is specified then a new query is started and any records in the first query, but not in the second query are
found. As many -Or and -Not keywords can be used as necessary.

2 7 2

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 2 0 – U p g r a d i n g F r o m L a s s o P r o f e s s i o n a l 8

SOAP Post-Processing
Several new SOAP post-processing options have been added including [Proc_Lasso], [Proc_Find], [Proc_ForEach],
[Proc_Join], [Proc_First], [Proc_Last]. See the SOAP chapter for details about these procedures. The procedures
[Proc_Null], [Proc_XML], and [Proc_Convert] can now be specified directly rather than requiring a tag escape (e.g.
\Proc_Null). In addition, [SOAP_DefineTag] now accepts an optional -Username and -Password. If specified these are
used for HTTP authentication on the remote SOAP server.

[Email_Send] Date
If a -Date parameter is specified it will determine both the value for the Date: header in the email message and
the actual date/time when the message will be sent. If a -Date parameter specifies a date/time in the past then
the email message will be sent as soon as possible. If the -Date parameter specifies a date/time in the future
then the email message will be held in the queue until that date/time. Note that the -Date parameter must be
passed an actual date object.

[Integer: Date]
Lasso represents dates internally using an integer. Basically, each date is stored as the number of seconds until
a specific date called the epoch. In versions of Lasso earlier than 8.5.2 the epoch was set to January 1, 1970
and the internal representation of the date corresponded to the standard UNIX timestamp.

In Lasso 8.5.2 the internal library used for the date tags was modified. The new epoch is January 1, 3940. The
tag [Integer: Date] will now return a large negative value representing the number of seconds between the date
and this date far in the future.

The UNIX timestamp for a date can be returned using the following code.

[(Date: ‘1970-1-1 00:00:00 GMT’)->(Difference: Date, -SecondsBetween)] ➜ 1171055428

A UNIX timestamp can be converted into a valid date using the following code:

[Date: 1171055428] ➜ 200-020-09 13:10:28

Lasso 8.5.2 Tags
Lasso 8.5.2 includes a number of new and enhanced tags. These tags are noted herre. See the appropriate
chapter for each tag for complete information.

	 •	New [LJAX_Start] and [LJAX_End] tags which allow the dynamic portion of a page to be identified in a less
obtrusive manner than using [LJAX_Target] ... [/LJAX_Target]. The [LJAX_Start] and [LJAX_End] tags allow you
to mark off what portion of a page should be returned as part of dynamic LJAX updates. Any Lasso code
on your page before [LJAX_Start] or after [LJAX_End] will be processed, but the output of those tags willbe
suppressed.

	 •	New [LJAX_HasTarget] tag makes it easy to test whether a page is being loaded through a dynamic LJAX
update within existing page logic. [LJAX_HasTarget] accepts the same parameters as the opening [LJAX_Target]
tag and returns True if the current page is being loaded through LJAX and the specified target has been
requested.

	 •	<script> blocks within dynamic updates are now executed immediately after the new elements are merged
into the current page. This makes it possible to embed JavaScript into your dynamic updates.

	 •	A new tag [ChartFX->Data] is included which outputs the binary data of a generated chart directly rather than
rendering it into a temporary location. This allows generated charts to be served using [File_Serve] or stored
in a database.

	 •	A new tag [ChartFX_Records] returns a records array which is formatted in the proper format to be passed to
the [ChartFX->SetLassoData] tag. Specifically, the field names are included as the first row of the records array.
If one or more -ReturnField parameters are specified then only those fields will be included in the records
array. If one more -ExcludeField parameters are specified then those fields not be included in the records

2 7 3

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 2 0 – U p g r a d i n g F r o m L a s s o P r o f e s s i o n a l 8

array. -Fields=(Array) can be used to specify an array of alternate field names to use. Finally, if -Inverse is speci-
fied then the arrays are inverted to a format useful for making pie charts.

	 •	A new tag [ChartFX_Serve] accepts a [ChartFX] chart as a parameter and serves the generated PNG file in place
of the current page. Optional parameters include -File to specify the name of the downloaded file and -Type
which defaults to image/png. If -Inline is specified then the image will be served inline in the current respond
rather than as an attachment. See the [File_Serve] tags for more details about these parameters.

	 •	The [Redirect_URL] tag will now generate a 301 MOVED redirect if either -Type='301' or -Type='Moved' is speci-
fied. Previously, the [Redirect_URL] tag would always generate a 302 FOUND redirect. The 301 MOVED redirect
informs the site visitor that the page has been permanently moved to a new location. Some Web browsers
may update their bookmarks based on this information and some Web crawlers will permanently update
their indexes.

[Redirect_URL: 'http://www.lassosoft.com/', -Type='Moved']

	 •	A new [Error_Reset] tag has been added which simply resets the error code to 0 and the error message to
empty.

	 •	A new pair of tags [Error_Push] and [Error_Pop] can be used to store the current error code temporarily and
then restore it later. These tags can be used around a block of code which might change the error code and
message.

	 •	The [NoProcess] ... [/NoProcess] tag can now be used in LassoScript. However, no output will be generated
from this container within LassoScript. Instead, the tags will work essentially the same as the multi-line
comment characters /* … */. The code within these tags will be parsed so must be free from syntax errors.
Note that if you want to output JavaScript from LassoScript it should be output as quoted strings.

<?LassoScript
	 NoProcess;
		 … This code will not be processed …
	 /NoProcess;
	 … This code will be processed …
?>

	 •	The [XML->Transform] tag now accepts, as a second parameter, an optional array of name/value pairs which
are made available to the transformation as parameters.

	 •	The [Field] tag now accepts an optional -RecordID parameter which allows the record ID for a related
FileMaker record to be returned within Lasso. For example, if the tag [Field: 'Calls::Duration'] returned the value
for the Duration field from a related Calls database then the tag [Field: 'Calls::Duration', -RecordID] would return
the record ID for the related record on which that field resides. The record ID can be useful for updating
related records through a portal with a single database request. See the FileMaker chapter for more infor-
mation.

[Encrypt_HMAC]
The new [Encrypt_HMAC] tag in Lasso 8.5.1 is a replacement for the [Encrypt_CramMD5] tag which was available
in prior versions of Lasso. [Encrypt_CramMD5] has been deprecated and should no longer be used. The advan-
tages of [Encrypt_HMAC] are that it supports digests other than MD5 such as SHA1, it supports byte stream input,
and it provides its output either as a byte stream, Base64 encoded value, or as hexadecimal string in several
different formats.

The [Encrypt_HMAC] tag generates a keyed hash message authentication code for a given input and password.
The tag requires a -Password parameter which specifies the key for the hash and a -Token parameter which
specifies the text message which is to be hashed. These parameters should be specified as a string or as a byte
stream.

The digest algorithm used for the hash can be specified using an optional -Digest parameter. The digest algo-
rithm defaults to MD5. SHA1 is another common option. However, any of the digest algorithms returned by
[Cipher_List: -Digest] can be used.

2 7 4

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 2 0 – U p g r a d i n g F r o m L a s s o P r o f e s s i o n a l 8

The output is a byte stream by default. -Base64 specifies the output should be a Base64 encoded string. -Hex
specifies the output should be a hex format string like 0x0123456789abcdef. -Cram specifies the output should be
in a cram hex format like 0123456789ABCDEF.

Existing calls to [Encrypt_CramMD5] can be updated to use [Encrypt_HMAC] by specifying that the -Digest be MD5
and using the optional -Cram output parameter. The following two calls should return identical results.

[Encrypt_CramMD5: -Password='key', -Token='message text']

[Encrypt_HMAC: -Password='key', -Token='message text', -Digest='md5', -Cram]

[Encode_URL] Encoding
The [Encode_URL] tag now encodes strings using the current page encoding character set. Previous versions of
Lasso always encoded URLs using UTF-8. The encoding of byte streams has not been modified. Except in rare
circumstances, this change should not require any modifications to existing solutions.

The current character set can be output using [Content_Encoding]. The character set can be modified using the
[Content_Type] tag. The following code outputs the current encoding character set and the word émigré encoded
using UTF-8.

[Content_Encoding]
[Encode_URL: 'émigré']

➜	 UTF-8
%C3%A9migr%C3%A9

The following code modifies the character set of the page to be ISO-8859-1 and then outputs the current
encoding character set and the word émigré encoded using ISO-8859-1. Note that the accented é’s in émigré are
now encoded using single byte rather than double byte entities.

[Content_Type: 'text/html; charset=iso-8859-1']
[Content_Encoding]
[Encode_URL: 'émigré']

➜	 UTF-8
%E9migr%E9

If a site was relying on all [Encode_URL] tags outputting UTF-8 encoded strings even while the [Content_Type]
specified an alternate character set for the page as a whole then either of the following two strategies can be
used to restore the original behavior.

	 •	Multiple [Content_Type] tags can be used to temporarily modify the page’s character set to be UTF-8 and then
back to the desired character set of the page as a whole. For example, the following code sets the character
set to UTF-8 before the [Encode_URL] tag and then back to ISO-8859-1 after.

[Content_Type: 'text/html; charset=utf-8']
[Encode_URL: 'émigré', 'utf-8']
[Content_Type: 'text/html; charset=iso-8859-1']

➜	 %C3%A9migr%C3%A9

	 •	The [Bytes] tag can be used to modify each individual [Encode_URL] tag to use the proper character set. For
example, the following tag would always output the parameter string using UTF-8 encoding even though
the page as a whole uses ISO-8859-1 encoding.

[Content_Type: 'text/html; charset=iso-8859-1']
[Encode_URL: (Bytes: 'émigré', 'utf-8')]

➜	 %C3%A9migr%C3%A9

2 7 5

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 2 0 – U p g r a d i n g F r o m L a s s o P r o f e s s i o n a l 8

[String] Encoding
The [String] tag now accepts a second parameter when it is called with a byte stream. The second parameter
specifies what character set should be used to interpret the byte stream when converting it to a Unicode
string. This change should not require any modification to existing solutions.

For example, the following [String] tag will convert the passed byte stream assuming it was encoded with the
ISO-8859-1 character set.

[String: $myByteStream, ‘iso-8859-1’]

This conversion is identical that that which would be performed by [Bytes->ExportString] with the same char-
acter set parameter. Note that [String] and [Bytes] can now be used symmetrically to convert a byte stream from
one character set to another. The following code should read in input.txt in the ISO-8859-1 character set and
write its contents into output.txt in the Macintosh character set.

File_Create: ‘output.txt’;
File_Write: ‘output.txt’, (Bytes: (String: (File_Read: ‘input.txt’), ‘iso-8859-1’), ‘mac’);

% and _ Encoding in Database Searches
The percent % and underscore _ symbols are now automatically encoded when performing searches in the
SQLite or MySQL data sources. This should result in more accurate searches, but may cause problem if these
symbols were being used explicitly to modify searches.

For example, a search for tags in the Lasso Reference whose name began with [String_ in Lasso 8.1 would
return both [String_Replace] and [String->Replace] (among others) since the underscore _ symbol was interpreted
as a single character wildcard matching either an actual underscore _ or any other character including a
hyphen -. In Lasso 8.5 that search will only return [String_Replace] and the other string substitution tags.

This change can cause issues if the % sign was being used explicitly to modify searches. For example, the
following inline would perform the equivalent of a begins with search in Lasso 8.1. In Lasso 8.5 this code
will only return records where the first name actually starts with J% (the letter J and a percent %).

[Inline: -Search, -Database='Contacts', -Table='People', -Op='eq', 'First_Name'='J%'] … [/Inline]

The fix is to modify the inline to explicitly use the desired search operator. The following code will work iden-
tically in Lasso 8.5 and earlier versions of Lasso (and with data sources that do not use the same wild card
characters).

[Inline: -Search, -Database='Contacts', -Table='People', -Op='bw', 'First_Name'='J'] … [/Inline]

[Found_Count] and -UseLimit
The MySQL data source connector now uses a more efficient method of returning the found count from
-Search inlines. The MySQL command SQL_CALC_FOUND_ROWS is used to ask MySQL to return the proper
found count while only returning data for a limited number of records. The result should be identical to that
provided by prior versions of Lasso. However, the actual SQL statement generated has changed.

For example, this inline performs a search for all records within the specified database, returning the first ten
records.

[Inline: -FindAll, -Database='Contacts', -Table='People', -MaxRecords=10]
	 [Action_Statement]
[/Inline]

In prior versions of Lasso this would have generated the following SQL statement. Internal MySQL API tools
were used to limit the number of records returned to Lasso.

SELECT * FROM Contacts.People

In Lasso 8.5 the following SQL statement is generated. The LIMIT is specified explicitly and
SQL_CALC_FOUND_ROWS is used so that actual [Found_Count] can be reported.

SELECT SQL_CALC_FOUND_ROWS * FROM Contacts.People LIMIT 0,50

2 7 6

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 2 0 – U p g r a d i n g F r o m L a s s o P r o f e s s i o n a l 8

If -UseLimit is specified then the SQL statement will be generated with a LIMIT the same as it was in prior
versions of Lasso. Also, if Lasso detects that it is connecting to a version of MySQL earlier than 4.0 it will
default to the older MySQL 3.x compatible behavior.

[File->SetEncoding] and [File->Write]
The [File->SetEncoding] tag can now be used to set the character set for a file which is being accessed through
Lasso. When [File->SetEncoding] is used then the new [File->ReadString] tag can be used to read data from the
file in the specified character set. The data is returned as a standard Lasso string rather than as a byte stream.
[File->Read] can still be used to return a byte stream if necessary.

The [File->Write] tag behaves the same in Lasso 8.5 as in prior version of Lasso when it is passed a byte stream
value. However, if [File->SetEncoding] is used and a string value is passed to [File->Write] then that string will be
automatically converted to the specified character set before it is written to the file.

This change should not require any modifications to existing code since the behavior in the absence of the
[File->SetEncoding] tag is exactly the same across all versions of Lasso 8.x. However, care should be taken when
adding a [File->SetEncoding] tag to existing code to ensure that writes are still occurring in the desired character
set.

[Net->SetEncoding] and [Net->Write]
The changes to [Net->SetEncoding] and [Net->Write] are analogous to the changes to [File->SetEncoding] and
[File->Write] described above.

[Header] … [/Header] Deprecated
The use of the [Header] … [/Header] tags to modify the HTTP header which will be returned by Lasso has been
deprecated. Instead, the new [Content_Header] tag should be used to replace the current header or append
header lines to the current header.

For example, the following [Header] … [/Header] tags perform an automatic redirect.

[Header]
HTTP/1.0 302 FOUND
Location: http://www.example.com/default.lasso
URI: http://www.example.com/default.lasso
Server: Lasso Professional 8

[/Header]

In Lasso 8.5 the same code can be written using the [Content_Header] tag as follows.

[Conten_Header = 'HTTP/1.0 302 FOUND\r\n' +
		 'Location: http://www.example.com/default.lasso\r\n' +
		 'URI: http://www.example.com/default.lasso\r\n
		 'Server: Lasso Professional 8\r\n']

[Set] and [TreeMap] Positions Do Not Wrap Around
The positions passed to the [Set->Get], and other member tags no longer wrap around from the start of the
data type if they are greater than the size of the data type. Positions less than 0 will now return an error rather
than counting from the end of the elements. This aligns the set and treemap types with the array and map
data types.

For example, the following code would work in earlier versions of Lasso 8.x, but each line would return an
error in Lasso 8.5.

[Var: ‘myWeek’ = (Set: ‘Sunday’, ‘Monday’, ‘Tuesday’, ‘Wednesday’, ‘Thursday’, ‘Friday’, ‘Saturday’)]

2 7 7

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 2 0 – U p g r a d i n g F r o m L a s s o P r o f e s s i o n a l 8

[$myWeek->(Get: 8)] ➜ Error
[$myWeek->(Get: 30)] ➜ Error
[$myWeek->(Get: -1)] ➜ Error

Code must perform bounds checking or use [Protect] … [/Protect] tags and rely on a failure in order to halt oper-
ation. The solution is to always use proper bounds checking before performing compound data type opera-
tions. The following code shows three different methods of doing bounds checking.

[if: $myWeek->Size >= 7]
	 [Var: 'myDay' = $myWeek->(Get: 7)]
[/If]

[Var: 'myDay' = ($myWeek->Size >= 7 ? $myWeek->(Get: 7) ? 'Error')]

[Protect]
	 [Fail_If: $myWeek->Size < 7, -1, 'The $myWeek array is too small']
	 …
[/Protect]

Inline 'op'='eq' No Longer Supported
The synonym 'op'='eq' for -Op='eq' is no longer supported. This syntax is a holdover from Lasso 3.x which has
been supported in each version of Lasso prior to 8.5. This could cause a backward compatibility issue for old
Web sites which are still making use of the old syntax style.

The following inline uses the old style syntax.

[Inline: -Search, -Database='Contacts', -Table='People', 'op'='cn', 'City'='Port', -MaxRecords='all']
	 …
[/Inline]

It can be rewritten as follows in order to be compliant with Lasso 8.5.

[Inline: -Search, -Database='Contacts', -Table='People', -Op='cn', 'City'='Port', -MaxRecords='all']
	 …
[/Inline]

Security Enhancements
Lasso Professional 8.0.1 introduced a number of security enhancements that are described here.

	 •	Lasso Page Extensions – The allowed extensions have been split into two sets. Lasso Page Extensions now
controls what files Lasso will execute through URLs and the [Include] and [Library] tags. File Tags Extensions
controls what files Lasso can manipulate through the file tags, image tags, PDF tags, and [Include_Raw].
Both sets of extensions can be controlled through the Setup > Site > File Extensions section of Site
Administration.

By default the Lasso page extensions are .lasso .lassoapp .las .htm .html .inc .incl. By default the file tags
extensions are .bmp .cmyk .gif .jpg .pdf .png .psd .rgb .text .tif .txt .uld .wsdl .xml .xsd. For best security these two sets
of extensions should remain mutually exclusive. Adding .* to either set will allow all file extensions for that
set.

Upgraded servers will start with the default set of Lasso page extensions. The file tag extensions will be set
to the complete list of Lasso page extensions that were already set. For best results the file tag extensions
should be reset using Reset Extensions in Site Admin.

This update may require some changes to your Lasso pages if you allow third parties to upload .lasso or
.html files or if you use -Response to return image, PDF, or XML files. The best solution is to change your
code so that users only upload files in the file tags extensions (and aren’t allowed to upload any files
through Lasso which can be executed by Lasso). Any URL that uses -Response to reference an image, PDF,
or XML file can be rewritten to use a straight URL referencing the appropriate file.

2 7 8

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 2 0 – U p g r a d i n g F r o m L a s s o P r o f e s s i o n a l 8

	 •	Classic Lasso – Classic Lasso now has three options to determine whether it is enabled or not. Enabled
means that all Classic Lasso URL parameters can be used including database actions. Minimal means that
database actions are disabled, but -Response and -Error parameters can still be used in URLs. Disabled means
that no Classic Lasso URL parameters can be used and that even -Response and the -Error tags are disabled.
The new options can be controlled through the Setup > Site > Settings section of Site Administration.

	 •	File Permissions – File Permissions now has an option to allow users in a group to access files with any
file extension. This permission must be turned on explicitly and will not be automatically set on upgrades.
This permission does not allow access to files outside of root, but only to files that are contained within
the specified File Root (which can be set to /// or e.g. C:// to allow access to all files on a server). The new

Lasso Professional 8.0.x
This section summarizes the changes that have been made to Lasso in each product update for Lasso
Professional 8. Summaries are provided for each version followed by detailed descriptions and upgrade
advice for many of the features.

Lasso Professional 8.1.0
The following changes were introduced in Lasso Professional 8.1.0:

	 •	MySQL 4.1 Character Sets – A new setting instructs the MySQL data source connector to use the
character set established at the table level when connecting to MySQL 4.1 data sources. This setting can be
changed in Lasso Site Administration on the Setup > Data Sources > Hosts section. The setting is set to
No for existing MySQL hosts and Yes for new MySQL hosts.

When the Use MySQL 4.1 Character Sets setting is set to Yes data stored in a MySQL 4.1 database can be
retrieved through other MySQL clients in the proper character set. For best results the character set of each
table (set using the new batch change option or in the Setup > Data Sources > Tables section) should be
set to UTF-8. A -Table parameter should be used in each inline with a -SQL action so that this character set is
used.

In prior versions of Lasso Professional 8 all communication with MySQL data sources was performed using
the ISO-8859-1 character set. Lasso could store and retrieve data in other character sets like UTF-8, but this
data would not be retrievable through other MySQL clients.

If a table has already been filled with data using an older version of Lasso it may be necessary to correct the
encoding of the data within the database before switching this setting. This upgrade procedure would only
be required on data sources that store characters in a character set other than ISO-8859-1.

	 •	Table Batch Change – Lasso Site Administration now has a table batch change option in the Setup >
Data Sources > Hosts and Databases sections which allows the encoding of all tables in the current host
or database to be set to the same value. This batch change does not affect the encoding of additional tables
which are added to the host or database after the change is made so it may be necessary to adjust the
encoding of new tables individually or to perform anotherr batch change after adding new tables.

	 •	Sessions – A number of changes have been introduced to improve the speed of sessions:

The built-in SQLite session driver now uses memory for immediate storage of session data and periodically
writes those sessions to the SQLite sessions table.

Several session tuning parameters are available from the Setup > Site > Sessions section of Lasso Site
Administration. These include options to control when automatic deletion of expired sessions occur, and a
setting for the maximum expiration time for new sessions.

Session data is stored in a new format in Lasso 8.1. This format is not compatible with earlier versions of
Lasso 8 or with Lasso 7. If a shared MySQL table is used for session storage then it can be set to the use the
new Lasso 8.1 session storage format (for best performance) or the older Lasso 7/8 session storage format
(for best compatibility).

2 7 9

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 2 0 – U p g r a d i n g F r o m L a s s o P r o f e s s i o n a l 8

A new tag [Session_DeleteExpired] triggers the deletion of any sessions that have expired but are still stored
within the sessions table. This tag is normally called automatically based on the sechedule determined by
the session tuning parameters. Use of this tag allows a custom schedule to be determined if necessary.

	 •	Email Tags – A number of changes have been introduced to improve the speed and compatibility of the
email tags:

The [Email_POP] tags no longer keep track of server commands and responses. This reduces the amount of
memory the tags require and improves their performance. The [Email_POP->Errors] and [Email_POP->Results]
tags will only return the last error and server response. The original behavior can be restored by specifying
-Debug in the [Email_POP] tag.

The [Email_Parse] tag now considers any text before the first boundary in multi-part messages to be outside
of the content of the message. Formerly this preamble was returned as the first part of the multi-part
message. Now it can be returned only using [Email_Parse->(Body: -Preamble)].

The body of parsed messages will no longer have white-space trimmed from the beginning and end, but
the body of soft-wrapped messages will have embedded return characters removed automatically.

A new [Email_Parse->Recipients] tag returns an array of recipients for the email. The [Email_Parse->To/CC/BCC]
tags now accept -Comment, -Extract, and -SafeEmail parameters which function identically to those for the
[Email_Parse->Header] tag. These tags automatically join their output, but will return an array instead if
-Join=Null is specified.

	 •	[Include_URL] SSL Certificates – The [Include_URL] tag can be used with custom SSL certificates.
See the HTTP/HTML Content and Controls chapter for details about the new -SSLCert, -SSLCertType,
-SSLKey, SSLKeyType, and -SSLKeyPasswd parameters.

	 •	[Include_URL] Timeouts – The [Include_URL] tag now supports custom timeouts for data transfer and initial
connection. The -Timeout parameter specifies a custom timeout value for all data transfer operations in
seconds. A -ConnectTimeout parameter specifies a custom timeout value for the initial connection only. See
the HTTP/HTML Content and Controls chapter for details.

	 •	New Cache Tags – New [Cache_Delete] tag works like [Cache_Empty] but completely deletes the specified
cache as if it had never been set. New [Cache_Exists] tag accepts the same parameters as the opening [Cache]
tag and returns True if the cached contents would be returned or False if new content would be generated.

	 •	PDF Tags – A set of new members tags for [PDF_Read] allow existing PDF files to be manipulated. The
[PDF_Doc] tag accepts parameters which allow the PDF to be created with encryption. The [PDF_Doc->Rect],
[PDF_Doc->Arc], and [PDF_Doc->Circle] tags accept an optional -Fill parameter that draws the shape filled with
the current fill color. See the Portable Document Format chapter for more information.

	 •	New Tags – In addition to the new tags listed above, a new tag [Encode_CRC32] has been added which
calculates the 32-bit CRC checksum for a value.

	 •	Administration Tags Authentication – It is now possible to authenticate many [Admin_…] tags using an
optional -Username and -Password parameter. See the full description below for a list of tags this applies to.

	 •	-Response=Field:fieldname – This ability to use a field as the response to a Classic Lasso database action
is no longer supported in Lasso Professional 8. This functionality was deprecated with Classic Lasso syntax
in a prior version of Lasso and has never been supported with the Inline method. This functionality will no
longer work even if Classic Lasso support is turned on in Lasso Site Administration.

Lasso Professional 8.0.4
The following changes were introduced in Lasso Professional 8.0.4:

	 •	Memory Session Driver – Sessions can now be stored entirely in memory rather than in a database table.
In-memory sessions are very fast, but do not persist between server restarts. Each site in Lasso Professional
8 can choose one session driver so one site could use in-memory sessions and another could use SQLite or
MySQL sessions.

	 •	Email Tags – New [Email_Result] and [Email_Status] tags allow the status of an email message to be checked
programmatically. The [Email_Send] tag accepts a new parameter -Immediate which instructs it to bypass the
email queue and send the email directly to the SMTP server.

2 8 0

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 2 0 – U p g r a d i n g F r o m L a s s o P r o f e s s i o n a l 8

	 •	New Tags – Several new tags have been added to Lasso. These include: [String_FindBlocks] which can be used
to extract multiple text blocks from a string. [Decode_BHeader] which accepts a MIME header encoded using
binhex and decodes it into a Lasso string. [PDF_Doc->GetVerticalPosition] which returns the current vertical
position where text will next be inserted on the page.

	 •	-FormContentType in Forms – If a hidden input is named -FormContentType in an HTML form then all of
the parameters in the form will be imported into Lasso encoded using the specified characters set. See the
section below for code examples. See also the addition of the -ContentType parameter below.

Lasso Professional 8.0.2
The following changes were introduced in Lasso Professional 8.0.2:

	 •	File Security – The security model for the [File] tags has been modified. The paths available to each site
administrator are now determined by the server administrator. The site administrator can assign permission
to the site’s groups for only the paths that have been assigned to the site. All users now have read
permission for files in the Web server root.

	 •	[Bytes] Tag – The [Bytes] tag now accepts an optional second parameter which specifies in what character
set the string should be imported. See the section below for code examples.

	 •	Accept-Charset Header – Lasso will now obey the Accept-Charset header which is sent by most browsers.
Lasso will use this header and any included quality parameters to determine the ideal character set for the
current page.

	 •	Content-Type Header in Forms – Lasso will now obey the charset parameter in the Content-Type header
of a form submission if specifed. Most browsers do not currently send this header, but Lasso will obey it
if it is present. In the future this will help to guarantee that Lasso reads incoming form data in the proper
character set.

	 •	-ContentType in Forms – If a hidden input is named -ContentType in an HTML form then the subsequent
parameter will be imported into Lasso encoded using the specified characters set. See the section below for
code examples.

	 •	Storing Bytes in SQLite – Lasso now allows byte streams to be stored in the internal SQLite data source.
See the note that follows for full details about to format a -SQL statement to store bytes. The [Encode_Hex]
and [Decode_Hex] tags were added to facilitate this ability.

	 •	Email Tags – [Email_Parse->RawHeaders] will return the raw headers from an email message. [Email_Parse]
now returns a simple version of the email message when cast to string. [Decode_QuotedPrintable] and
[Decode_QHeader] tags have been added. [Email_Extract] and [Email_SafeEmail] tags have been added to extract
the data or comment from email headers and to return obscured email addresses.

Lasso Professional 8.0.1
The following changes were introduced in Lasso Professional 8.0.1:

	 •	Quoted Inline Parameters – The -ReturnField , -SortField, and -KeyField inline parameters are now added to
the generated SQL statement using quotes. In addition, field names that contain certain characters such as
--, #, or ` will be quoted. This makes SQL injection attacks more difficult, but also prevents the specification
of SQL functions as return values without using a -SQL parameter.

	 •	File Extensions – Lasso’s file extensions settings have been split into two sets. One set controls which files
Lasso will execute as Lasso pages. The second set controls which files can be accessed through Lasso’s file
tags.

	 •	Classic Lasso – Lasso now has an option to completely disable Classic Lasso syntax including the -
Response and -Error pages. A new minimal setting allows a minimal set of non-database related Classic
Lasso tags to be used.

	 •	File Permissions – Lasso now has a permissions to allow files with any file extensions to be manipulated
using the file extensions. This permissions can be assigned on a per-group basis within a given file root.

2 8 1

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 2 0 – U p g r a d i n g F r o m L a s s o P r o f e s s i o n a l 8

Administration Tags Authentication
The following tags now accept an optional -Username and -Password parameter for authentication. Previously
these tags could only be called on a page that was authenticated using one of the [Auth_…] tags. This change
allows them to be called on any page provided that the username and password of a group administrator (or
the site or server administrator) is specified within the tag itself.

[Admin_CreateUser]			 [Admin_GroupRemoveUser]
[Admin_GroupAssignUser]		 [Admin_ListGroups]
[Admin-GroupListUsers]		 [Admin_UserListGroups]

These tags cannot be used within [Inline] … [/Inline] tags that authenticate as an administrator.

Memory Session Driver
Lasso’s built-in session manager uses a session driver to determine how session data is stored. Previous
versions of Lasso could store sessions in either the internal SQLite data source or in an external MySQL data
source. Lasso Professional 8.0.4 adds the option to store sessions entirely in memory.

Storing session data in memory is very fast, however sessions will only persist until the current site is
restarted. The memory session driver is suitable for sites that do not need long term tracking of visitors and
require high performance from the session implementation.

The memory session driver can be selected on a per-site basis from the Setup > Site > Sessions section of Lasso
Site Administration. More information can be found in the Setting Site Preferences chapter of the Lasso
Professional 8 Setup Guide.

File Security
Several changes have been made to the file security model for Lasso Professional 8.0.2. These changes were
made in order to restrict the access that site administrators and users had to files outside of their own Web
server root.

	 •	Server administration has been modified with a new Setup > Sites > File Paths section that allows file
paths to be assigned to a site. The site administrator will only be able to modify files contained in a path
assigned to the site.

	 •	New sites will have the Web server root / and the file uploads path assigned by default. This allows site
administrators to access and assign permissions for only the files within their Web server root and for them
to access uploaded files. Additional paths can be assigned to the site if necessary.

	 •	Existing Lasso Professional 8/8.0.1 sites which are upgraded to 8.0.2 will have permission to the file system
root assigned to them. This will allow existing code to run on upgraded sites even if it accessed paths
outside of the Web server root. If access to files outside of the Web server root is not desired then the paths
should be modified in the Setup > Sites > File Paths section of server administration after upgrading.

	 •	Site administrators formerly had access to any files in the file system. After upgrading to Lasso Professional
8.0.2 each site administrator will only have access to files within the file paths assigned to them in servera
dministration. Site administrators will still have access to files with any (or no) file extensions.

	 •	The Setup > Security > Files section of site administration has been modified to only allow those paths that
have been assigned to the site to be modifed. Permissions can be assigned for a group to the existing file
paths, but new file paths cannot be designated.

	 •	Default permission has been granted to all users to read or inspect files within the Web server root. Since
files were already accessible through the [Include_Raw] tag it did not make sense to disallow the use of the
[File] tags to read the same files.

2 8 2

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 2 0 – U p g r a d i n g F r o m L a s s o P r o f e s s i o n a l 8

[Bytes] Tag
The [Bytes] tag now accepts an optional second parameter which specifies in what character set the string
should be imported. For example, the following tag will result in a byte stream that contains the example
string encoded in the iso-8859-1 character set.

[Bytes: 'testing emigré', 'iso-8859-1']

This can be useful for using different encoding styles with the [Encode_URL] tag. The following tag outputs a
Unicode representation of the example string. Notice that the é character ends up as a two byte sequence.
(The space is encoded using a single space since it is part of the base ASCII set common to most Western
character sets).

[Encode_URL: 'testing emigré'] ➜ testing%20emigr%C3%A9

However, if the [Bytes] tag is used the URL can be encoded using iso-8859-1 single byte encoding instead. Now
the é character is represented by a single byte sequence. This can be useful for communicating with servers
that have not been updated to recognize Unicode encoding.

[Encode_URL: (Bytes: 'testing emigré', 'iso-8859-1')] ➜ testing%20emigr%E9

Prior to Lasso Professional 8.0.2 the following code can be used to import a string into a byte stream
similarly. For example this code results in the same output as the example immediatly above.

[Var: 'Bytes' = (Bytes)]
[$Bytes->(ImportString: 'testing emigré', 'iso-8859-1')]
[Encode_URL: $Bytes]

Accept-Charset Header
Lasso will now obey the Accept-Charset header which is sent by most browsers with HTTP Web requests. An
example of this header is shown below. This header specifies that UTF-8 encoding is preferred, followed by
ISO-8859-1 encoding, or any encoding.

Accept-Encoding: utf-8;q=1.0, iso-8859-1;q=0.5, *;q=0

Lasso processes all of its pages in Unicode internally and decides what character set to translate a page to just
before it is served. Lasso will now send the page using the highest quality requested character set which it
supports.

If a [Content_Type] tag is included in a page it will override the browsers Accept-Charset header field. Otherwise,
the default if no character set is preferred (which is the case in the vast majority of Web requests) is to use the
character set specified in Lasso Site Administration. Lasso defaults to UTF-8 encoding if no other character set
has been specified.

Note: Lasso will not encode pages using gzip or deflate encoding even if those encodings are listed as preferred in
the Accept-Encoding header.

Accept-Encoding: gzip, deflate;q=1.0, *;q=0

Content-Type Headers in Forms
Lasso will now interpret incoming form data according to an included Content-Type header with a charset
parameter. Lasso translates all incoming form data to Unicode for internal processing. This header will allow
Lasso to use the proper character set even if it differs from Lasso’s default.

In the absence of a Content-Type header Lasso will interpret all incoming form data according to the default
character set which is set in Lasso Site Administration. This character set is set to UTF-8 by default so incoming
form data will generally be interpreted as UTF-8 if the setting has not been changed.

See also the -ContentType parameter described in the next section that can be specified explicitly to over-ride
the character set for individual form element.

2 8 3

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 2 0 – U p g r a d i n g F r o m L a s s o P r o f e s s i o n a l 8

Note: Most browsers do not currently set the Content-Type header so most incoming forms will be interpreted
using the default character set.

-FormContentType and -ContentType in Forms
Lasso reads data which is posted in forms according to the default character set that is set in Lasso
Administration (or in the character set included in the Content-Type header). However, Web browsers usually
send forms using the same encoding with which the enclosing page was sent. If these character sets are not
matched (for example if the [Content_Type] tag is used to override the default encoding for a particular page)
then Lasso can misinterpret the data being posted by a Web client.

Lasso Professional 8.0.2 introduces a new hidden input named -ContentType. If a hidden input is named
-ContentType in an HTML form then the subsequent parameter will be imported into Lasso encoded using the
specified characters set.

Lasso Professional 8.0.4 introduces a new hidden input named -FormContentType. If a hidden input is named
-FormContentType in an HTML form then all of the parameters in the form will be imported into Lasso encoded
using the specified characters set (unless a specific -ContentType parameter override the character set for a
specific input).

The value for -ContentType should be specified as charset=iso-8859-1 (or any other valid character set) as shown
in the example below. The charset= part is required. It is not sufficient to just put the character set in as the
value.

<input type="hidden" name="-FormContentType" value="charset=utf-8" />
<input type="hidden" name="-ContentType" value="charset=iso-8859-1" />
<input type="hidden" name="Field Name" value="testing emigré" />

This will result in the Field Name input being imported into Lasso using the iso-8859-1 character set. All other
inputs in the form will use the UTF-8 character set.

Note: The value from [Action_Param] and [Action_Params] will be returned using the proper character set. However,
the values from [Client_GetParams] and [Client_GetParams] (and the args equivalents) will use the default character set.

Storing Bytes in SQLite
The internal SQLite data source allows binary data to be stored in any field using the following syntax. This
syntax can only be specified within a SQL statement. The data is expected to be encoded in hexadecimal
using the [Encode_Hex] tag.

INSERT INTO table (field) VALUES (x" … HEX DATA …");

When Lasso retrieves data from the field it will be automatically decoded into a byte stream. It is not
necessary to use [Decode_Hex] on the return value from the [Field] tag.

For example, the following [Inline] would insert a byte stream into a SQLite table.

[Var: 'bytes' = (Bytes: ' … Byte Stream … ')]
[Inline: -Database='Example', -Table='Example',
		 -SQL='INSERT INTO example (field) VALUES (x"' + (Encode_Hex: $bytes) + '");']
[/Inline]

Then the following code can be used to retrieve the value from the database. The result in the variable $bytes
will be a byte stream that exactly matches the value that was stored.

[Inline: -Database='Example', -Table='Example', -FindAll]
	 [Var: 'bytes' = (Field: 'field')]
[/Inline]

[Var: 'bytes'] ➜ … Byte Stream …

2 8 4

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 2 0 – U p g r a d i n g F r o m L a s s o P r o f e s s i o n a l 8

Email Tags
A number of new tags have been added to facilitate parsing and displaying email messages.

	 •	New [Email_Result] and [Email_Status] tags allow the status of an email message to be checked
programmatically. The [Email_Result] tag can be called immediately after [Email_Send] to fetch the unique ID
of the email message that was just queued. The [Email_Status] tag can then be passed the unique ID and will
return the status of the message: sent, queued, or error.

	 •	The [Email_Send] tag accepts a new parameter -Immediate which instructs it to bypass the email queue and
send the email directly to the SMTP server. This parameter is not recommended for general use since the
email queue is very efficient and is the most reliable way to ensure that messages are sent.

	 •	[Email_Parse] is not a new tag, but now returns a simple version of the email message when cast to string.
This makes it easier to display downloaded email messages in a simple format. Email messages are
formatted with the headers shown in the following example followed by the default body. Any headers that
are empty are not included. The To, Cc, and From headers are displayed using the [Email_SafeEmail] tag.

Date: 3/11/2005 12:34:56
From: example
To: example
Cc: example
Subject: This is an example email message
Content-Type: multipart/alternative
Content-Transfer-Encoding: 8bit
Content-Disposition: Attachment
Parts: 4

	 •	 [Email_Parse->RawHeaders] will return the raw headers from an email message. This allows the unparsed
headers to be fetched without manually parsing the raw source of the email message.

	 •	 [Decode_QuotedPrintable] is a new tag that decodes data which is encoded in quoted-printable format. This
tag is used internally by the [Email_Parse] type to decode the bodies of messages.

	 •	 [Decode_QHeader] is a new tag that decodes email headers which are encoded in Q (quoted-printable)
format. This tag is used internally by the [Email_parse] tag to decode the headers of messages.

	 •	 [Email_Extract] is a new tag which allows the different parts of email headers to be extracted. Email headers
which contain email addresses are often formatted in one of the three formats below.

john@example.com
"John Doe" <john@example.com>
john@example.com (John Doe)

In all three of these cases the [Email_Extract] tag will return john@example.com. The angle brackets in the
second example identify the email address as the important part of the header. The parentheses in the third
example identify that portion of the header as a comment.

If [Email_Extract] is called with the optional -Comment parameter then it will return john@example.com for the
first example and John Doe for the two following examples.

Note: The [Email_Parse->Header] tag accepts a -Extract parameter to return just the email address portion of a
header or a -Comment parameter to return the comment portion of a header.

	 •	 [Email_SafeEmail] is a new tag which returns an obscured email address. This tag can be used to safely display
email headers on the Web without attracting email address harvesters.

If the input contains a comment then it is returned. Otherwise, the full header is returned. In either case, if
the output contains an @ symbol then only the portion of the address before the symbol is returned. This
would result in the following output for the example headers above.

➜	 john
John Doe
John Doe

Note: The [Email_Parse->Header] tag accepts a -SafeEmail parameter that automatically applies the
[Email_SafeEmail] tag to the returned header.

2 8 5

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 2 0 – U p g r a d i n g F r o m L a s s o P r o f e s s i o n a l 8

Quoted Inline Parameters
To enhance security, column names are now automatically quoted in all non-SQL [Inline] … [/inline] operations
to MySQL datasources. In addition, column names containing --, #, or ` will end at those strings. This
change affects the following inline parameters: -KeyField, -ReturnField, and -SortField, as well as their synonyms.
Additionally, column names specified in the inline, for adding, updating and searching will be affected.

Note: This change was introduced in Lasso Professional 8.0.1.

File Extensions
The allowed extensions have been split into two sets. Lasso Page Extensions now controls what files Lasso
will execute through URLs and the [Include] and [Library] tags. File Tags Extensions controls what files Lasso can
manipulate through the file tags, image tags, PDF tags, and [Include_Raw]. Both sets of extensions can be
controlled through the Setup > Site > File Extensions section of Site Administration.

By default the Lasso page extensions are (.lasso .lassoapp .las .htm .html .inc .incl). By default the file tags
extensions are (.bmp .cmyk .gif .jpg .pdf .png .psd .rgb .text .tif .txt .uld .wsdl .xml .xsd). For best security these two sets
of extensions should remain mutually exclusive. Adding .* to either set will allow all file extensions for that
set.

Upgraded servers will start with the default set of Lasso page extensions. The file tag extensions will be set to
the complete list of Lasso page extensions that were already set. For best results the file tag extensions should
be reset using Reset Extensions in Site Admin.

This update may require some changes to your Lasso pages if you allow third parties to upload .lasso or .html
files or if you use -Response to return image, PDF, or XML files. The best solution is to change your code so
that users only upload files in the file tags extensions (and aren’t allowed to upload any files through Lasso
which can be executed by Lasso). Any URL that uses -Response to reference an image, PDF, or XML file can be
rewritten to use a straight URL referencing the appropriate file.

Classic Lasso
Classic Lasso now has three options to determine whether it is enabled or not.

	 •	Enabled means that all Classic Lasso URL parameters can be used including database actions. This setting
can be used for compatibility with earlier versions of Lasso, but is not recommended for new code.

	 •	Minimal means that database actions are disabled, but -Response and -Error parameters can still be used in
URLs. This setting is the equivalent of “disabling” Classic Lasso in earlier versions of Lasso.

	 •	Disabled means that no Classic Lasso URL parameters can be used and that even -Response and the -Error
tags are disabled. This is the preferred setting for new Lasso installations.

The new options can be controlled through the Setup > Site > Settings section of Site Administration.

File Permissions
File Permissions now has an option to allow users in a group to access files with any file extension. This
permission must be turned on explicitly and will not be automatically set on upgrades. This permission
does not allow access to files outside of root, but only to files that are contained within the specified File
Root (which can be set to /// or e.g. C:// to allow access to all files on a server). The new permission can be
controlled through the Setup > Security > Files section of Site Administration.

2 8 6

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 2 0 – U p g r a d i n g F r o m L a s s o P r o f e s s i o n a l 8

21
Chapter 21

Upgrading From Lasso Professional 7

This chapter contains important information for users of Lasso Professional 7 who are upgrading to the latest
version of Lasso Professional 8.5.

If upgrading from an earlier version of Lasso, this chapter should be read in conjunction with the subsequent
chapters on upgrading from Lasso Professional 6, Lasso Professional 5, or Lasso Web Data Engine 3.x or
earlier.

Topics in this chapter include:

	 •	Introduction includes general information about what has changed in Lasso Professional 8.

	 •	SQLite introduces the built-in SQLite data source.

	 •	Multi-Site introduces the new multi-site features.

	 •	Digest Authentication introduces the new digest authentication for Web browsers.

	 •	On-Demand LassoApps explains how the files from the Lasso folder in the Web server root are now served
on-demand instead.

	 •	Syntax Changes contains information about what Lasso syntax constructs have changed since Lasso
Professional 7.

	 •	Tag Name Changes details the tag names which have been changed in Lasso 8 since Lasso 7.

Introduction
All Lasso Professional 7 solutions which were written using preferred syntax should run without
modifications in Lasso Professional 8 except for the issues mentioned in this chapter.

Significant effort has been expended to ensure that existing solutions will continue to run in Lasso
Professional 8 with few if any modifications required. However, please read through this chapter to learn
about changes that may require modifications to your solutions.

Lasso Studio and Lasso Updater
Lasso Studio includes an Lasso Updater that can be used on code from earlier versions of Lasso to bring
it into compliance with the latest version of Lasso. See the documentation for Lasso Studio for more
information.

SQLite
The internal data source in Lasso Professional 8 has been changed from Lasso MySQL to SQLite. This change
has several ramifications for developers who are upgrading to Lasso Professional 8.

2 8 7

L a s s o 8 . 5 L a n g u a g e G u i d e

	 •	Solution Databases – Any solution databases which were hosted by Lasso MySQL should be moved to an
external installation of MySQL. This is the best way to ensure that the solutions continue to run without
any modifications. It is nor recommended that any solution databases be converted to SQLite.

	 •	Internal Databases – All of the internal databases of Lasso have been converted to SQLite including
Lasso_Internal, Lasso_Site_1 (also known as Site), Lasso_Admin, and LDML8_Reference. Any solutions which
reference these databases to modify Lasso’s internal settings may need to be updated for compatibility
with SQLite. Non-SQL inlines will require few modifications, but -SQL inlines will need to use SQLite
compatible statements.

The names and schema of some of the internal tables have changed. The _errors table from Lasso
Professional 7 is now named errors. The SMTP queue table has been completely modified for the new SMTP
sending implementation.

All of the internal functionality which makes use of the internal data source including Lasso security, the
email queue, scheduled events, sessions, etc. have been rewritten to use SQLite. No modification to any code
that makes use of these features should be required.

Multi-Site
Lasso Professional 8 has an entirely new multi-site architecture. All solution code is run within a site that is
automatically spawned by Lasso Service. Each site has its own site level folder that contains duplicates of the
folders at the master level.

Lasso Professional 8 is installed with a single default site. The easiest transition from Lasso Professional 7
is to use this default site for all of the Web hosts on the server. Once the Lasso Professional 8 transition has
been made additional sites can be added if needed.

The structure of the Lasso Professional 8 application folder appears below in abbreviated form. When Lasso is
loading or needs a resource it checks both the site level and the master level. In general, the folders at the site
level are checked first and if the resource is not found then the master level is checked.

Lasso Professional 8/
	 LassoAdmin/
	 LassoModules/
	 LassoStartup/
	 SQLiteDBs
	 …

	 LassoSites/
		 default-1/
			 LassoAdmin/
			 LassoModules/
			 LassoStartup/
			 SQLiteDBs
			 …
		 …

Note: The appropriate installation chapter of the Lasso Professional Server 8 Setup Guide has a more complete
listing of all installed files.

	 •	LassoAdmin – Items stored by Site Administration can be found in the site level LassoAdmin folder. This
includes backups, exports, built LassoApps, etc. This folder was called Admin in prior versions of Lasso.

	 •	LassoModules – Modules are loaded from both the site and master levels when LassoService starts up. The
same rule applies for JDBCDrivers and JavaLibraries.

	 •	LassoStartup – All Lasso pages and LassoApps in both the site and master level LassoStartup folders are
loaded when Lasso starts up. However, only one copy of Startup.LassoApp is loaded (from the site level if it
exists or the master level otherwise).

	 •	SQLiteDBs – Each site uses its own set of site level SQLite databases. Individual sites do not have access to
the master level SQLite databases.

2 8 8

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 2 1 – U p g r a d i n g f r o m L a s s o P r o f e s s i o n a l 7

	 •	[Admin_LassoServicePath] – This tag reports the location of the site level folder rather than the location
of the Lasso Professional 8 folder. For example:

///Applications/Lasso Professional 8/LassoSites/default-1/

When upgrading a server from Lasso Professional 7, any third-party modules or JDBC drivers can be moved
into the master level. They will be available to the default site and to any sites that are defined on the server.

Namespaces
Lasso Professional 8’s namespace support should be transparent to most users of Lasso. However, there are a
couple situations where updates may be needed.

	 •	Replacing Built-In Tags – When replacing a built-in tag in Lasso Professional 8 using
[Define_Tag] … [/Define_Tag] and -Priority='Replace' the tag definition must reference the proper namespace using
the -Namespace parameter. Any existing code which attempts to replace built-in tags will need to be updated
with the proper -Namespace parameter.

Note: Custom tag definitions which are not redefining built-in tags do not require any modifications to work with
Lasso Professional 8.

	 •	On-Demand Libraries – Many built-in tags have been moved to on-demand loading from the LassoLibraries
folder. This should not require any code modifications.

	 •	Custom Tag Names – No changes are required to custom tags in Lasso Professional 8. Custom tag
definitions will work fine without the -Namespace parameter and all the same rules for tag naming apply as
for previous versions of Lasso.

[Define_Tag: 'Ex_MyTag_TagName'] … [/Define_Tag]

However, if the -Namespace parameter is added to custom tag definitions then the new rules for tag naming
must be followed. The tag name itself must not contain any underscores. The portion of the original tag
name before the last underscore should be used as the namespace for the tag. The namespace must not
contain a double underscore.

[Define_Tag: 'TagName', -Namespace='Ex_MyTag_'] … [/Define_Tag]

Digest Authentication
Lasso Professional 8 supports digest authentication as a Web browser authentication method. Digest
authentication is more secure than the basic authentication supported by earlier versions of Lasso since
passwords are only sent after they have been encrypted using a one-way hash algorithm.

Digest authentication is supported by all modern Web browsers. Lasso can send both digest and basic
authentication challenges. An older browser that does not recognize digest authentication should fall back on
basic authentications. Digest authentication can be turned on and off in the Setup > Site > Syntax section of
Site Administration.

One important advantage of digest authentication is that the realm name is significant. A site visitor can
be authenticated against several different realm names with different usernames and passwords for each.
However, this can present a problem is a site uses many different realm names that were previously ignored.
The best solution is to modify all the realm names to be the same or to use Lasso’s default realm name of
Lasso Security.

In order to support digest authentication Lasso must have the password for each user in the security_user table
stored in plain text. In prior versions of Lasso all passwords were stored as MD5 hashes. Digest authentication
will only work for users created or modified with Lasso Professional 8 so the plaintext password is stored
properly. Lasso will fall back on basic authentication for users who do not have a plaintext password.

The [Client_Authorization] tag can be used to see what type of authentication is being used for the current site
visitor.

2 8 9

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 2 1 – U p g r a d i n g f r o m L a s s o P r o f e s s i o n a l 7

On-Demand LassoApps
All of Lasso’s built-in LassoApps are now provided as on-demand LassoApps which load from the LassoApps
folder in the Lasso Professional 8 application folder. The /Lasso/ folder is no longer required in the Web server
root. This means that the traditional URLs to load Lasso Administration will not necessarily work any more.
Instead, the following URLs should be used.

Server Administration – http://www.example.com/ServerAdmin.LassoApp

Site Administration – http://www.example.com/SiteAdmin.LassoApp

Database Browser – http://www.example.com/DatabaseBrowser.LassoApp

Group Administration – http://www.example.com/GroupAdmin.LassoApp

Lasso 8 Reference – http://www.example.com/LDMLReference.LassoApp

XML-RPC / SOAP – http://www.example.com/RPC.LassoApp

Lasso Studio – http://www.example.com/LassoStudio.LassoApp

If the Web server requires it (e.g. Apache on Mac OS X) a /Lasso/ folder can be created in the Web server root
so that the URLs from prior versions of Lasso will work. Simply creating an empty folder will allow Lasso to
load its on-demand LassoApps from the Lasso Professional 8 application folder.

Syntax Changes
None of the syntax changes in Lasso Professional 8 should require modifications to existing sites. All of these
changes are fully backward compatible.

	 •	Parentheses Syntax – Parentheses syntax in Lasso Professional 8 is backward compatible with Lasso
Professional 7. Sites written using parentheses syntax in Lasso Professional 8 should run fine in Lasso
Professional 7 (but not in earlier versions of Lasso).

	 •	BlowFish Encryption – Lasso now includes a BlowFish2 encryption algorithm which should be
compatible with most third-party implementations of BlowFish.

Parentheses Syntax
Lasso now supports parentheses syntax in which a tag name is followed by parentheses that include the
parameters of the tag.

Tag_Name(-Param, -Name=Value);

The syntax of prior versions of Lasso is called colon syntax and is also fully supported in Lasso Professional 8.
There are no plans to deprecate colon syntax.

Tag_Name: -Param, -Name=Value;

The two syntax methods can be used interchangeably, even in the same expression. No modification of
existing sites should be required.

Note: Partial support for parentheses syntax was provided in Lasso Professional 7. Some sites written using
parentheses syntax will run fine in Lasso Professional 7 or Lasso Professional 8. However, the use of parentheses
syntax in Lasso Professional 7 is not fully supported.

BlowFish Encryption
Earlier versions of Lasso included a BlowFish implementation that was not compatible with most third-party
BlowFish implementations. This could make it difficult to transmit data to other Web application servers, Java
applets, etc. using a secure BlowFish channel.

2 9 0

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 2 1 – U p g r a d i n g f r o m L a s s o P r o f e s s i o n a l 7

A new BlowFish2 algorithm is now provided which uses an industry standard implementation. The
[Encrypt_BlowFish2] and [Decrypt_BlowFish2] tags are the preferred tags to use when performing BlowFish
encryption and should always be used when communicating with another software product using BlowFish.

However, the original [Encrypt_BlowFish] and [Decrypt_BlowFish] tags are still provided for backward
compatibility. These tags are safe to use for existing solutions and are recommended for a solution that needs
to be able to share data with older versions of Lasso or for communication with older versions of Lasso.

Tag Name Changes
The table below summarizes the names of all the tags that have changed since Lasso Professional 7. The old
tag name is still supported in Lasso Professional 8, but future development should use the new tag name.

Table 1: Tag Name Changes

Old Name	 New Name	

[Array->FindIndex]	 [Array->FindPosition]

[Lasso_SiteID]	 [Site_ID]

[Lasso_SiteName]	 [Site_Name]

[Lasso_SiteRestart]	 [Site_Restart]

[Lasso_SiteIsRunning]	 [Server_SiteIsRunning]

[Lasso_SiteStart]	 [Server_SiteStart]

[Lasso_SiteStop]	 [Server_SiteStop]
		

Lasso uses positions to reference elements within compound data types. Positions run from 1 to the size
of the compound data type. The [Array->FindIndex] tag has been renamed [Array->FindPosition] to reflect this
terminology.

The [Lasso_Site…] tags were renamed in Lasso Professional 8.1.0 in order to separate them into tags which
could be called from within each site and tags which could only be called within Server Administration.

2 9 1

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 2 1 – U p g r a d i n g f r o m L a s s o P r o f e s s i o n a l 7

22
Chapter 22

Upgrading From
Lasso Professional 6

This chapter contains important information for users of Lasso Professional 6 who are upgrading to Lasso
Professional 8. Please read through this chapter before attempting to run solutions in Lasso Professional 8
that were originally developed for an earlier version of Lasso.

The upgrading chapters are cumulative so this chapter should also be read by users of Lasso Professional 5 or
earlier who are upgrading to Lasso Professional 8.

Topics in this chapter include:

	 •	Introduction includes general information about what has changed in Lasso Professional 8.

	 •	Error Reporting describes the new error reporting customization features.

	 •	Unicode Support describes how Lasso uses Unicode internally and how Lasso translated to and from other
character encodings automatically.

	 •	Bytes Type describes the bytes type, lists the tags that return data in the bytes type, and compares the bytes
type to the string type.

	 •	Syntax Changes contains information about what Lasso syntax constructs have changed since Lasso
Professional 6.

	 •	Tag Name Changes details the tag names which have been changed since Lasso 6.

Introduction
This chapter includes the upgrading instructions from Lasso Professional 6 to Lasso Professional 7. Lasso
Professional implements all of the features of Lasso Professional 7. If a site is being upgraded from Lasso
Professional 6 the items in this chapter should be applied first, then the items in the prior chapter about
upgrading from Lasso Professional 7.

In general, most sites that are written using preferred Lasso Professional 6 syntax should run with few
modifications in Lasso Professional 8.

Lasso Studio and Lasso Updater
Lasso Studio includes an Lasso Updater that can be used on code from earlier versions of Lasso to bring
it into compliance with the latest version of Lasso. See the documentation for Lasso Studio for more
information.

2 9 2

L a s s o 8 . 5 L a n g u a g e G u i d e

Error Reporting
Lasso Professional 7.0.2 introduces some important enhancements to how syntax errors and logical errors are
reported by Lasso. Each of these enhancements is discussed in this section and additional details are provided
within the Error Controls chapter.

	 •	The error reporting level can now be adjusted in Lasso Administration and overridden on individual pages.
The error reporting level controls whether the built-in error page provides full troubleshooting details,
minimal error messages, or no error details at all.

	 •	The built-in error page can now be modified in order to provide a custom server-wide error page for all
sites hosted on a server. This page can work in concert with the site-specific custom error pages to provide
an appropriate amount of information to every site visitor.

Error Reporting Level
For errors that occur while processing a page, Lasso displays error messages differently based on the current
error reporting level. This allows detailed error messages to be displayed while developing a Web site and
then for minimal or generic error messages to be displayed once a site has been deployed.

The default global error reporting level can be set in Lasso Administration in the
Setup > Global > Settings section. The error reporting level can be set to None, Minimal, or Full. The default is
Minimal. Each of these levels is described in more detail below.

The error reporting level for a particular page can be modified using the [Lasso_ErrorReporting] tag. This will
modify the error reporting level only for the current Lasso page and its includes without affecting the global
default. See the section on the [Lasso_ErrorReporting] tag in the Error Controls chapter for additional details.

	 •	None – This level provides only a generic error message with no specific details or error code. This level
can be used on a deployment server when it is desirable to provide no specific information to site visitors.

	 •	Minimal – This level is the default. It provides a minimal error message and error code. No context about
where the error occurred is provided. This level can be used on a deployment server in order to make
troubleshooting problems easier.

	 •	Full – This level provides detailed error messages for debugging and troubleshooting. The path to the
current Lasso page is provided along with information about what files have been included and what
parameters have been passed to them. If a database or action error is reported the built-in error message
provides information about what database action was performed when the error occurred.

It is recommended that the global error reporting level on a production Web server be set to the default of
Minimal or to None. This will ensure that site visitors are not given detailed error messages intended for the
developer of the Web site. On a page by page basis the [Lasso_ErrorReporting] tag can then be used to set the
error level to Full in order to make debugging a site in development easier.

The [Lasso_ErrorReporting] tag can also be used with the -Local keyword to set the error reporting level to
None within sensitive custom tags or include files in order to suppress error messages from select portions of a
site.

Custom Server-Wide Error Page
The server-wide error page is now stored in the file error.lasso within the Admin folder in the Lasso Professional
8 application folder. By customizing this file the default error page for all sites hosted on the server can be
modified.

This file can be customized for any of the following purposes:

	 •	To customize the appearance of the error page. For example, a professional hosting service could provide
an error page that provides information for their clients about how to handle the error.

	 •	To provide an appropriate amount of information to site visitors. The built-in page provides different
information depending on the current error reporting level. The same levels can be used to provide either
more or less information depending on level.

2 9 3

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 2 2 – U p g r a d i n g F r o m L a s s o P r o f e s s i o n a l 6

	 •	To provide logging or notification. Logging tags can be added to the error page in order to keep track of
what errors have occurred. Email notification could be used to alert the site administrator that an error has
occurred.

The customized error.lasso page should be thoroughly debugged prior to being made active, especially on a
production Web server. It can be very difficult to troubleshoot problems which are occurring on a server if
there is a problem with the error reporting page.

The server-wide error.lasso page will only be displayed if no site-specific error.lasso file is present or if there is an
error within a site-specific error.lasso file.

Unicode Support
Lasso Professional 8 introduces Unicode support throughout Lasso Service, the database connectors, and
LassoScript. This is a significant architectural change that alters how all string and binary data is processed by
Lasso.

The Unicode standard defines a universal character set which includes characters for just about every language
on the planet. The transition to a full Unicode workflow should make it easier to transfer data that contains
characters which formerly required special-purpose encodings between different applications.

Unicode is rapidly achieving dominance as the standard encoding for data on the Internet, in leading
operating systems, and in database products. Recently, Mac OS X and Windows have both implemented
native support for Unicode. All current leading Web browsers support Unicode data. Many text editors have
recently introduced native support for Unicode. And, current database offerings from MySQL and other
database vendors offer full support for Unicode encoding.

Every effort has been made to make the change to Unicode transparent to the Lasso developer. However,
these architectural changes may require modification of some Lasso Professional 6 sites and may require
some additional planning and coding in order to work with Web browsers and databases that do not yet
support Unicode.

The following list includes details about how Unicode is supported in Lasso Professional 8 and also includes
details about backwards compatibility.

Note: Please also read the following section on the new Bytes Type for details about how binary and string data
is handled using Lasso tags.

	 •	Lasso Pages – If a Lasso page contains a valid byte-order mark it is read using the UTF-8 character
encoding. If no byte-order mark is read then the Lasso page is assumed to be encoded in the Macintosh
(or Mac-Roman) character set on Mac OS X or the Latin-1 character set (also known as ISO 8859-1) on
Windows or Linux.

Popular text editors can encode text files using UTF-8 and will insert the proper byte-order mark that Lasso
needs to identify the character set of the Lasso page. Consult the documentation for the text editor for
more information.

All existing Lasso pages will be read using the Macintosh or Latin-1 (ISO 8859-1) character sets which
Lasso Professional 6 used. New Lasso pages which need to take advantage of the extended character set that
Unicode offers should be encoded as UTF-8 and include a proper byte-order mark.

Note: Lasso does not support Lasso pages encoded using the UTF-16 or UTF-32 character sets.

	 •	Web Browser – By default all files sent to the Web browser by Lasso Professional 8 will be encoded
using UTF-8. The default page encoding option in the Settings > Global > Syntax section of Lasso
Administration can be used to change the default encoding to the Lasso 6 (pre-Unicode) standard Latin-1
character set (also known as ISO 8859-1).

If encoding different from the default is needed for a given Lasso page the [Content_Type] tag can be used
to instruct Lasso to encode the returned page using a different character set. For example the following tag
instructs Lasso to use the Latin-1 (ISO 8859-1) character set.

[Content_Type: 'text/html;charset=iso-8859-1']

2 9 4

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 2 2 – U p g r a d i n g F r o m L a s s o P r o f e s s i o n a l 6

The [Content_Type] tag sets the page variable __encoding__ to the desired character set. Modifying this variable
will also change the character set that will be used to return the page to the client’s Web browser.

	 •	Forms – Most Web browsers return data from HTML forms using the same encoding that was used to
transmit the Web page to them. Lasso assumes that all incoming form data is going to use the default page
encoding which is set in Lasso Administration in the Settings > Global > Syntax section. This means that
all incoming form data must use either UTF-8 or Latin-1 (ISO 8859-1) encoding.

It is recommended to use UTF-8 as the default page encoding since this is the emerging Internet standard.
However, if forms are being submitted to Lasso from Web pages that do not use UTF-8 (or from pre-
Unicode browsers) it may be necessary to change the default page encoding so data in the forms will be
interpreted properly.

	 •	Database Connector – Lasso communicates with each database using the character set specified in the
table settings in Lasso Administration. The character set for MySQL databases can be set to either UTF-8 or
Latin-1 (ISO 8859-1).

By default, the Lasso Connectors for MySQL communicate with existing databases using the Latin-1 (ISO
8859-1) character set. If desired, the character set for each table can be changed to UTF-8 in the Setup >
Data Sources > Tables section of Lasso Administration.

SQL statements sent using the -SQL parameter are encoded similarly. If the -Table parameter is specified then
the character set for that table will be used. If no -Table parameter is specified then the SQL statement will
be encoded using the Latin-1 (ISO 8859-1) character set.

The Lasso Connector for FileMaker Pro uses Latin-1 (ISO 8859-1) encoding by default on Windows and
Linux. Macintosh (or Mac-Roman) encoding is used by default on Mac OS X. If required, the character
set for each database can be changed in the Setup > Data Sources > Databases section of Lasso
Administration.

The Lasso Connector for JDBC always uses UTF-8 on any platform.

Since the default character set encoding for each database connector is the same as that used in Lasso
Professional 6, no changes should be required to existing solutions. However, any database containing
extended characters must continue to use the same character encoding or stored data may not be
interpreted properly when it is retrieved from the database.

	 •	Lasso tags – All Lasso tags process string data as double-byte Unicode strings. Character encoding is only
performed when data is imported into Lasso or exported according to the rules specified above. The bytes
type can be used to process binary data and to perform low-level character set translation if required.

See the following section for details of what Lasso tags return data in the bytes type and how it compares
with the string type.

Bytes Type
Since all string data is now processed using double-byte Unicode strings it is necessary to introduce a new
data type that stores single-byte binary data strings. This new data type in Lasso Professional is called the
bytes type and is manipulated using the [Bytes] tag and associated member tags. Data in the bytes type is often
referred to as a byte stream.

The bytes type adds two important abilities to Lasso Professional 8. Binary data can be treated separately
from string data and data can be converted between single-byte character sets directly within Lasso. The bytes
type is fully documented in the Extending Lasso Guide. Please see that manual for additional details about
the bytes type and the member tags that it supports.

The bytes type is used to return any strings in Lasso that will potentially contain binary data. Many
substitution tags always return byte streams or do so under certain circumstances. These tags are listed in the
following Table 1: Tags That Return the Bytes Type.

2 9 5

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 2 2 – U p g r a d i n g F r o m L a s s o P r o f e s s i o n a l 6

Table 1: Tags That Return the Bytes Type

Tag	 Description	

[Bytes]	 Used to create a new bytes buffer or to cast a string to the bytes type. Many of
the member tags of the bytes type also return byte streams.

[Decompress]	 Always returns a byte stream.

[Decrypt_BlowFish]	 Always returns a byte stream.

[Encode_Base64]	 Always returns a byte stream.

[Encrypt_BlowFish]	 Always returns a byte stream.

[Field]	 Returns a byte stream only for MySQL fields of type BLOB.

[Field_Read]	 Always returns a byte stream.

[File_ReadLine]	 Always returns a byte stream.

[File->Read]	 Always returns a byte stream.

[Include_Raw]	 Always returns a byte stream.

[Include_URL]	 Always returns a byte stream.

[Net->Read]	 Always returns a byte stream.

[Net->ReadFrom]	 Always returns a byte stream.

[String_ReplaceRegExp]	 Returns a byte stream if the input is a byte stream, otherwise returns a string.

Other Tags	 Many tags in Lasso such as [Array->Get] or [Map->Find] return data in the same
type it was stored. These tags may also return data in the bytes type.

		

Bytes and Strings
The bytes type and the string type support many of the same member tags. These member tags can be used
on either byte streams or strings without worrying about the underlying data type. The shared member tags
are listed in Table 2: Byte and String Shared Member Tags.

In addition to these tags both the bytes type and the string type support the standard comparison operators
==, !=, >>, !>>, ===, and !==. The bytes type also supports the + and += symbol for appending data to the end of
the stream.

Table 2: Byte and String Shared Member Tags

Tag	 Description	

[Bytes->Append]	 Appends the specified characters onto the end of the byte stream.

[Bytes->BeginsWith]	 Returns true if the byte stream begins with the specified characters. Case
sensitive.

[Bytes->Contains]	 Returns true if the byte stream contains the specified characters. Case sensitive.

[Bytes->EndsWith]	 Returns true if the byte stream ends with the specified characters. Case
sensitive.

[Bytes->Find]	 Returns the position of the specified characters within the byte stream. Case
sensitive.

[Bytes->Get]	 Returns a specified character from the byte stream.

[Bytes->Length]	 Returns the length of the byte stream in bytes.

[Bytes->RemoveLeading]	 Removes the specified characters from the beginning of the byte stream. Case
sensitive.

[Bytes->RemoveTrailing]	 Removes the specified characters from the end of the byte stream. Case
sensitive.

[Bytes->Replace]	 Replaces the specified characters in the byte stream with the specified
replacement. Case sensitive.

[Bytes->Size]	 Returns the length of the byte stream in bytes.

[Bytes->Split]	 Splits the byte stream on the specified character. Case sensitive.

2 9 6

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 2 2 – U p g r a d i n g F r o m L a s s o P r o f e s s i o n a l 6

[Bytes->Trim]	 Trims ASCII white space characters from the start and end of the byte stream.
Removes spaces, tabs, return characters, and newline characters.

		

The table above includes all of the most commonly used string member tags. These tags help to make the
string and bytes types generally interchangeable. However, there are a significant number of string member
tags that are not supported by the bytes type. These are listed in Table 3: Unsupported String Member Tags.

In order to use any of these member tags on byte streams the data must first be converted to a string.
Information on how to convert data to and from the bytes type and string type is included in the next
section.

Table 3: Unsupported String Member Tags

Tag	 Description	

Character Tags	 Tags which fetch information about the characters in a string including [String-
>CharDigitValue], [String->CharName], and [String->CharType].

Comparison Tags	 Tags which compare strings with case sensitivity. [String->Compare] and [String-
>CompareCodePointOrder]

Case Tags	 Tags which report the case of a string including [String->FoldCase], [String-
>LowerCase], [String->TitleCase], and [String->UpperCase].

Case Modification Tags	 Tags which change the case of a string including [String->ToLower], [String-
>ToTitle], and [String->ToUpper].

Character Is Tags	 Tags which report information about the characters within a string including all
tags starting with [String->Is…].

Miscellaneous Tags	 The following tags are also not supported by the bytes type: [String->Digit],
[String->Merge], [String->PadLeading], [String->PadTrailing], [String->Remove],
[String->Reverse], [String->Substring], and [String->Unescape].

		

Converting From Bytes to Strings
Data can be converted from byte streams to strings easily, but the method differs depending on what
character set the byte stream is encoded in and how the data is going to be used.

	 •	Automatic Casting – When a byte stream is passed to a substitution or process tag that is expecting a
string value it is automatically cast to type string. For example, the [String_…] substitution tags automatically
cast their parameters to strings.

	 •	Explicit Casting – The [String] tag can be used to explicitly cast a byte stream to a string. The byte stream
will be converted by assuming it is encoded using the UTF-8 character set. Explicit casting is appropriate for
data read in using the [Include_URL] or [Net->Read] tags since most communication on the Internet is encoded
using this character set.

	 •	Converting Character Sets – The [Bytes->ExportString] tag can be used to convert a byte stream that is
encoded using a character set other than UTF-8 into a string. The tag accepts a single parameter which
specifies what character set the byte stream is encoded in and returns a string (encoded in the default
Unicode double-byte encoding that Lasso uses internally for all strings.

For example, a file can be read in the Mac-Roman character set and converted to a string using this code.

[Var: 'myfile' = (File_Read: 'myfile.txt')]
[Var: 'mystring' = $myfile->(ExportString: 'macintosh')]

Similar methods can be used to convert strings into byte streams. Tags that expect a byte stream as a
parameter automatically cast strings to byte streams. These tags include [File_Write], [File_WriteLine], [File->Write],
[Net->Write], etc. The [Bytes] tag explicitly casts strings to a byte stream. The [Bytes-ImportString] tag with a string
parameter and an encoding parameter can be used to import a string into a byte stream converting it to any
desired character encoding.

2 9 7

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 2 2 – U p g r a d i n g F r o m L a s s o P r o f e s s i o n a l 6

Bytes Member Tags
The bytes type supports a number of additional member tags which are documented in full in the Extending
Lasso Guide. Please see that manual for more information.

Updating Existing Sites
In order to promote backwards compatibility the bytes type supports the core member tags of the string type
and Lasso performs automatic conversions between the two types when necessary.

However, there are a couple situations which will require Lasso Professional 6 sites to be updated in order to
work properly with Lasso Professional 8. These situations are detailed below.

	 •	Checking for String Type – Byte streams are of type bytes so explicit checks for type string will fail. For
example, the following code reads a file into a variable and then checks the type of the variable.

[Var: 'myfile' = (File_Read: 'myfile.txt')]
[If: $myfile->type == 'string']
	 …
[/If]

The conditional will fail since the variable myfile is of type bytes rather than type string. The conditional can
be changed to the following to create code that works in either Lasso Professional 6 or 7.

[Var: 'myfile' = (File_Read: 'myfile.txt')]
[If: ($myfile->type == 'string') || ($myfile->type == 'bytes')]
	 …
[/If]

	 •	String Member Tags – If any string member tags are used on a byte stream which are not supported
by the bytes type then an error will occur. For example, this code to read in a file and then convert it to
uppercase will fail in Lasso Professional 8 since the tag [String->toUpper] is not implemented for the bytes
type.

[Var: 'myfile' = (File_Read: 'myfile.txt')]
[$myfile->toUpper]

There are two solutions to this issue. The easiest is to cast the output of [File_Read] to a string before storing
it in a variable. This solution can be applied across a site by doing a search for each of the tags that return
byte streams and adding an explicit cast using the [String] tag.

[Var: 'myfile' = (String: (File_Read: 'myfile.txt'))]
[$myfile->toUpper]

Another possibility is to use a substitution tag rather than a member tag to perform the string conversion.
The substitution tag will automatically cast the byte stream to a string and will return a string value.

[Var: 'myfile' = (File_Read: 'myfile.txt')]
[Var: 'myfile' = (String_UpperCase: $myfile)]

Syntax Changes
Lasso Professional 8 introduces changes to some of the core syntax rules of LassoScript. Most of these changes
were made to improve the reliability and error reporting of Lasso Professional 8. Some of these changes
may require you to rewrite portions of your existing Lasso-based solutions for full compatibility with Lasso
Professional 8. This section describes each change, why it was made and how to update existing Lasso pages.

Table 4: Syntax Changes

Syntax Change	 Description	

File Tags	 The file tags have been modified to provide more consistent behavior. The ../ path
is now supported to move up a directory. Updated in 7.0.2 release.

2 9 8

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 2 2 – U p g r a d i n g F r o m L a s s o P r o f e s s i o n a l 6

Strict Syntax	 Strict syntax is now required: all parameter keywords must be preceded by a
hyphen, all string literals must be surrounded by quote marks, and all tag names
must be defined before being called.

Recursion Limit	 A limit can be configured on the depth of nested [Include] and [LIbrary] tags
allowed. By default the limit is a depth of 50.

Lasso Page Execution Time Limit
A limit can be configured on the maximum amount of time that a Lasso page will
be allowed to execute. By default the limit is 10 minutes.

Internal Tags	 Many tags are now implemented as part of the Lasso parser in order to prove
better performance.

Iterate Enhancement	 The [Loop_Count] and [Loop_Abort] tags can now be used within [Iterate] …
[/Iterate] tags.

Custom Tags Enhancement	 Database results can now be retrieved from within custom tags.

Miscellaneous Shortcuts	 A number of syntax shortcuts have been introduced. See the full description
below for details.

Unicode Support	 All strings are now processed using double-byte Unicode and output in UTF-8
format by default. See also the discussions of Unicode Support and the Bytes
Type which precede this section.

Classic Lasso	 Classic Lasso support is disabled by default and its use has been deprecated.
Solutions relying on Classic Lasso should be transition to Inline-based
methodology.

-Email… Command Tags	 The -Email… commands are no longer supported in Lasso 8. The [Email_Send]
tag must be used instead.

Decimal Precision	 Decimal numbers are output using the fewest number of significant digits
possible.

Member Tags and Parentheses	 Member tags which have multiple parameters must be surrounded by
parentheses.

PDF -Top Parameter	 The -Top parameter in various PDF tags always measures from the top margin of
a document.

Global Variables	 Use the [Global] tag rather than the [Variable] tag to reference global variables.

[NSLookup]	 Due to changes in Mac OS X 10.3 reverse lookups may not work with all DNS
servers.

[Repetition] Tag	 The [Repetition] tag has been deprecated. Rewriting pages to use the modulus
symbol % will result in better performance.

[TCP_…] Tags	 The [TCP_…] tags have been deprecated in favor of the new [Net] type and its
member tags.	

[Else:If] and [Else_If]	 These tags are no longer supported. Use [Else] instead.

[LoopCount] and [LoopAbort]	 These tags are no longer supported. Use [Loop_Count] and [Loop_Abort]
instead.

Container Tags	 Container tags must be defined within LassoStartup. Container tags cannot be
defined on-the-fly. New keywords allow both looping and simple container tags to
be created.

Custom Tags	 Parameters and return values are now passed by reference. [PreCondition] and
[PostCondition] are no longer supported. Asynchronous tag update.

XML Tags	 The XML tags have been re-implemented. Some modifications to existing sites
may be required.

[Encode_ISOtoMac]	 This tag and [Encode_MacToISO] have been deleted. Their functionality can be
replicated using the new [Bytes] type.

		

File Tags
The behavior of the file tags when moving, copying, or renaming files has been made more consistent. The
following rules will be used.

2 9 9

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 2 2 – U p g r a d i n g F r o m L a s s o P r o f e s s i o n a l 6

	 •	If a file is being operated on and the destination is a file name then the file will be moved or copied to that
file name. For example, the following code will rename the file example.txt to renamed.txt.

[File_Move: 'example.txt', 'rename.txt']

	 •	If a file is being operated on and the destination is a directory then the file will be moved or copied into
the directory. For example, the following code will move the file example.txt into the /directory/.

[File_Move: 'example.txt', '/directory/']

	 •	If a directory is being operated on and the destination is a directory then the source directory will replace
the destination directory. For example, the following code will replace the directory /destination/ with the
directory /source/.

[File_Move: '/source/', '/destination/']

In addition, the ../ path can now be used within all file tags and include tags in order to move up one
directory. The effective path will be computed and then the security settings will be checked to confirm that
the current user has permission to access the specified directory.

Strict Syntax
Lasso Professional 6 introduced the option to use strict syntax checking. This option was on by default, but
could be turned off for better backwards compatibility with Lasso Professional 5 and earlier.

In Lasso Professional 8, strict syntax checking is now required. It can no longer be deactivated.

With strict syntax the following rules are enforced:

	 •	All keyword parameters to built-in and custom tags must include a hyphen. This helps to find unknown tag
parameters and to catch other common syntax errors.

	 •	All string literals must be surrounded by quotes. This helps to prevent accidental calls to tags, to identify
undefined variables, and to catch other common syntax errors.

	 •	All tag calls must be defined. Unknown tags will no longer simply return the tag value as a string.

With strict syntax any of the errors above will be reported when a page is first loaded. They must be corrected
before the code on the page will be executed. When upgrading to Lasso Professional 8 it is advisable to first
try existing Lasso Professional 6 sites and correct any errors that are reported.

To update existing sites for strict syntax:

If a site is relatively small then the easiest method is to load each Web page and see if any errors are reported.
The following tips can be used for a more methodical search.

	 •	Check that all string literals are surrounded by quotes. Quotes are not necessary around integers or decimal
numbers, hyphenated keyword parameters, tag names, or variable names when used with the & or #
symbols.

	 •	Check that all keywords in tag calls are preceded by a hyphen. Keyword and keyword/value parameters
must be preceded by a hyphen, but do not need to be quoted. Name/value parameters should include
quotes around both the name and value (unless they are numbers).

	 •	Check that all command tags used within opening [Inline] tags are preceded by a hyphen. Quotes are not
necessary around command tags, even when they are specified within an array.

	 •	Check that all client-side JavaScript is formatted properly. JavaScript should either be included
in [NoProcess] … [/NoProcess] tags or HTML comment tags <!-- … --> which ensure that no Lasso code within is
processed. Or, any square brackets which are required within the JavaScript should be output from a [String]
tag.

[String: '[array[4]]']

�	 [array[4]]

3 0 0

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 2 2 – U p g r a d i n g F r o m L a s s o P r o f e s s i o n a l 6

Recursion Limit
Lasso includes a limit on the depth of recursive include files. This limit can help prevent errors or crashes
caused by some common coding mistakes. The limit sets the maximum depth of nested [Include] and [Library]
tags that can be used. If the depth is exceeded then a critical error is returned and logged.

The recursion limit is set to 50 by default and can be modified or turned off in the Setup > Global >
Settings section of Lasso Admin.

Note that the limit does not apply to the number of [Include] and [Library] tags within a single file, but to the
depth reached using an [Include] tag to include a file that itself uses an [Include] tag to include another file and
so on.

Lasso Page Execution Time Limit
Lasso includes a limit on the length of time that a Lasso page will be allowed to execute. This limit can help
prevent errors or crashes caused by infinite loops or other common coding mistakes. If a Lasso page runs for
longer than the time limit then it is killed and a critical error is returned and logged.

The execution time limit is set to 10 minutes (600 seconds) by default and can be modified or turned off
in the Setup > Global > Settings section of Lasso Admin. The execution time limit cannot be set below 60
seconds.

The limit can be overridden on a case by case basis by including the [Lasso_ExecutionTimeLimit] tag at the top
of a Lasso page. This tag can set the time limit higher or lower for the current page allowing it to exceed the
default time limit. Using [Lasso_ExecutionTimeLimit: 0] will deactivate the time limit for the current Lasso page
altogether.

On servers where the time limit should be strictly enforced, access to the [Lasso_ExecutionTimeLimit] tag can be
restricted in the Setup > Global > Tags and Security > Groups > Tags sections of Lasso Admin.

Asynchronous tags and compound expressions are not affected by the execution time limit. These processes
run in a separate thread from the main Lasso page execution. If a time limit is desired in an asynchronous tag
the [Lasso_ExecutionTimeLimit] tag can be used to set one.

Note: When the execution time limit is exceeded the thread that is processing the current Lasso page will be
killed. If there are any outstanding database requests or network connections open there is a potential for some
memory to be leaked. The offending page should be reprogrammed to run faster or exempted from the time
limit using [Lasso_ExecutionTimeLimit: 0]. Restarting Lasso Service will reclaim any lost memory.

Internal Tags
Many Lasso tags are now implemented directly in the Lasso parser in order to provide better performance.
Since the new versions of these tags implement the same functionality as the old version of these tags no
changes to existing solutions are required. However, the [Lasso_TagExists] tag will report False for all of the
internal tags.

The internal tags include:

[Abort], [Define_Tag] … [/Define_Tag], [Define_Type] … [/Define_Type], [Encode_Set] … [/Encode_Set], [Fail], [Fail_If],
[False], [Handle] … [/Handle], [Handle_Error] … [/Handle_Error], [If] … [Else] … [/If], [Iterate] … [/Iterate], [Lasso_Abort],
[Loop] … [/Loop], [Loop_Abort], [Loop_Count], [NoProcess], [Params], [Protect] … [/Protect], [Return], [Run_Children],
[Select] … [Case] … [/Select], [Self], [True], and [While] … [/While].

Iterate Enhancement
In Lasso Professional 6 the [Iterate] … [/Iterate] tags did not support the use of the [Loop_Count] or [Loop_Abort]
tags. These tags have been rewritten in Lasso Professional 8 so that all looping container tags now function
identically.

In the following example the [Loop_Count] is output on each iteration and the iteration is stopped after the
item Beta is seen.

3 0 1

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 2 2 – U p g r a d i n g F r o m L a s s o P r o f e s s i o n a l 6

[Iterate: (Array: 'Alpha', 'Beta', 'Gamma'), (Var: 'Temp')]
	
[Loop_Count]: [Var: 'Temp']
	 [If: $Temp == 'Beta']
		 [Loop_Abort]
	 [/If]
[/Iterate]

�	
1: Alpha

2: Beta

For more information about the [Iterate] … [/Iterate] tags see the Conditional Logic chapter.

Custom Tags Enhancement
In Lasso Professional 6 it was not possible to get to the results of a database action from within a custom tag.
In Lasso Professional 8 this limitation has been removed. It is now possible to write custom tags which work
directly with [Field] data, the [Found_Count], [Action_Params], or any other values.

As a demonstration of this new ability the [Link_…] tags have all been rewritten as custom tags.

In the following example, a custom tag returns a string describing the results of a database action.

[Define_Tag: 'Ex_Results']
	 [Return: 'Showing ' + (Shown_Count) + ' records of ' + (Found_Count) + ' found.']
[/Define_Tag]

This tag can be used as follows.

[Inline: -Findall, -Database='Contacts', -Table='People', -MaxRecords=4]
	 [Ex_Results]
[/Inline]

�	 Showing 4 records out of 8 found.

For more information about the [Define_Tag] tag and custom tags see the Custom Tags chapter.

Miscellaneous Shortcuts
A number of shortcuts have been introduced in Lasso Professional 8 which will make coding Web sites even
easier. There is no need to use any of these shortcuts. The equivalent syntax from earlier versions of Lasso will
work fine.

	 •	Not Contains Symbol – The negation of the contains symbol >> is now available as !>>. This makes it easy
to check that a substring is not contained in a given string. The following example confirms that Green is
not a part of Blue World.

[('Blue World' !>> 'Green')]

�	 True

	 •	Equivalence Symbol – The equals symbol == checks that two values are equal by casting them to the same
data type. The new equivalence symbol === checks that two values are equal in both value and data type.
The following example shows four expressions that are True using the equals symbol ==.

[('Alpha' == 'Alpha')] � True
[('100' == 100)] � True
[(3.00 == 3] � True
[(True == 1)] � True

When the equivalency symbol === is used instead only the first expression is True. The rest of the expressions are
False since the data types of the two operands are different. The second expression compares a string to an integer.
The third expression compares a decimal to an integer. And, the fourth expression compares a boolean to an integer.

3 0 2

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 2 2 – U p g r a d i n g F r o m L a s s o P r o f e s s i o n a l 6

[('Alpha' === 'Alpha')] � True
[('100' === 100)] � False
[(3.00 === 3] � False
[(True === 1)] � False

	 •	String Concatenation – Strings are now concatenated together without using the + symbol. In the
following example database results are formatted without using the + symbol.

['Showing ' (Shown_Count) ' records of ' (Found_Count) ' found.']

�	 Showing 4 records out of 8 found.

	 •	Array Creation – The : symbol can be used for array creation. Basically Array: is equivalent to simply :.

[: 'Alpha', 'Beta', 'Gamma']

�	 (Array: 'Alpha', 'Beta', 'Gamma')

	 •	Tag References – The \ symbol can be used to reference a tag object based on its name. This allows the
descriptions of tags to be fetched or for tags to be called with programmatically defined parameters. The
following example shows what the output might be for the [Field] tag.

[Var: 'myTag' = \Field]

[$myTag->Description]

[$myTag->(Run: -Name='Field', -Params='First_Name')]

�	
A tag that returns a field value.

John

See the Advanced Programming Topics chapter for more information.

Unicode Support
All strings in Lasso Professional 8 are represented internally by double-byte Unicode values. This makes it
efficient to work with extended characters in a platform neutral fashion. All output from Lasso, whether to
the client’s Web browser or into a database, is formatted in UTF-8 by default.

UTF-8 is a Unicode standard that is backwards compatible with common 8-bit ASCII character sets. Any
extended Unicode characters are encoded using an entity like E26; where 4E26 is a hexadecimal number
representing the Unicode value for the character.

Classic Lasso
Classic Lasso refers to the ability of Lasso to interpret command tags which are included in URLs or HTML
forms and process the action described by those command tags before a Lasso page is loaded.

In prior versions of Lasso this was the sole means of performing database actions. Since Lasso WDE 3.x it has
been possible to perform database operation using the [Inline] … [/Inline] tags instead. It is preferable to use this
inline methodology for the following reasons.

	 •	The database, table, and field names which are being accessed need never be revealed to the client.

	 •	It is impossible for clients to create new URLs or HTML forms that perform unintended actions.

	 •	The amount of data passed in URLs to and from the client can be greatly reduced. This can provide easier
to read and easier to bookmark URLs.

	 •	[Inline] … [/Inline] tags support a number of advanced features like named inlines and accepting arrays of
parameters which make it easier to separate the logic of a Web site from the presentation.

	 •	Some actions such as issuing SQL statements to Lasso MySQL require using [Inline] … [/Inline] functionality
already. 

Note: It is possible to enable Classic Lasso syntax in the Setup > Global > Syntax section of Lasso
Administration, however since this functionality has been deprecated it will not be supported in a future version
of Lasso. It is recommended that sites be transitioned over to inline methodology when used with Lasso
Professional 8.

3 0 3

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 2 2 – U p g r a d i n g F r o m L a s s o P r o f e s s i o n a l 6

To update existing sites:

The [Action_Params] tag can be used to pass all parameters from the URL or HTML form that loaded the current
page to an opening [Inline] … [/Inline] tag.

In the result page, surround the part of the page that references database results with [Inline] … [/Inline] tags. The
opening [Inline] tag should have a single parameter of [Action_Params]. Often, the [Inline] … [/Inline] tags can simply
surround the entire page contents.

[Inline: (Action_Params)]
	 … Page Contents and Database Action Results … 
[/Inline]

The [Inline] … [/Inline] tags must not be contained within any other [Inline] … [/Inline] tags. The [Inline] … [/Inline] tags
must surround all [Records] … [/Records], [Field], [Found_Count], [Link_…], [Error_CurrentError] and other tags that will
return the database results.

In order to enhance security, command tags such as the -Database, -Table, and action can be added as
parameters to the opening [Inline] tag. These parameters should be placed after the [Action_Params] parameter
and will override any conflicting parameters from the URL or HTML form that loads the result page.

For example, the following [Inline] will always perform a -Search action on the People table of the
Contacts database even if a -FindAll or -Delete action is specified in the URL.

[Inline: (Action_Params),
		 -Search
		 -Database='Contacts',
		 -Table='People',
		 -KeyField='ID']
	 … Page Contents and Database Action Results … 
[/Inline]

Now that the -Database, -Table, and action are specified in the opening [Inline] tag they can be removed from the
URL or HTML form that loads the response page. Any command tags or name/value parameters which will
be specified by the client should be left in the URL or HTML form, but static command tags can be moved as
parameters into the opening [Inline] tag.

-Email… Command Tags
The -Email… commands are no longer supported in Lasso 8. Enabling Classic Lasso syntax will not enable this
functionality. The only way to send email through Lasso Professional 8 is to use the [Email_Send] tag.

To update existing sites:

	 •	If emails are being sent using the [Inline] … [/Inline] tags they can be modified to use the [Email_Send] tag as
follows. The following shows the old approach based on -Email… command tags.

[Inline: -Email.Host='mail.example.com',
		 -Email.To='me@example.com',
		 -Email.From='me@exmaple.com',
		 -Email.Subject='An Example Email Message',
		 -Email.Format='email_format.lasso']
[/Inline]

The syntax for [Email_Send] is very similar. Notice that -Email.Format has been changed to -Body=(Include: …).
This is the preferred method of including another Lasso page as the body of an email message.

[Email_Send: -Host='mail.example.com',
		 -To='me@example.com',
		 -From='me@exmaple.com',
		 -Subject='An Example Email Message',
		 -Body=(Include: 'email_format.lasso')]

	 •	If the inline performs a database search in addition to sending an email message the two functions must be
factored out as follows. The following example performs a search and sends a single email message.

3 0 4

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 2 2 – U p g r a d i n g F r o m L a s s o P r o f e s s i o n a l 6

[Inline: -FindAll,
		 -Database='Contacts',
		 -Table='People',
		 -Email.Host='mail.example.com',
		 -Email.To='me@example.com',
		 -Email.From='me@exmaple.com',
		 -Email.Subject='An Example Email Message',
		 -Email.Format='email_format.lasso']
	 [Records]
		 …
	 [/Records]
[/Inline]

In the replacement the -Email… tags are removed from the opening [Inline] tag and the [Email_Send] tag is
placed within the [Inline] … [/Inline] tags, but not within the [Records] … [/Records] tags. If [Email_Send] is placed
in the [Records] … [/Records] tags then one email for each found record will be sent.

[Inline: -FindAll,
		 -Database='Contacts',
		 -Table='People'']
	 [Email_Send: -Host='mail.example.com',
			 -To='me@example.com',
			 -From='me@exmaple.com',
			 -Subject='An Example Email Message',
			 -Body=(Include: 'email_format.lasso')]
	 [Records]
		 …
	 [/Records]
[/Inline]

	 •	If emails are being sent using command tags in a URL they can be modified to use the [Email_Send] tag as
follows.

<a href="default.lasso?-Email.Host=mail.example.com&
		 -Email.To=me@example.com&-Email.From='me@exmaple.com&
		 -Email.Subject='An Example Email Message&
		 -Email.Format=email_format.lasso"> Send Email

The URL should be simplified to contain just the name of the Lasso page.

 Send Email

The file default.lasso then must be augmented with the [Email_Send] tag. Notice that -Email.Format has been
changed to -Body=(Include: …). This is the preferred method of including another Lasso page as the body of
an email message.

[Email_Send: -Host='mail.example.com',
		 -To='me@example.com',
		 -.From='me@exmaple.com',
		 -.Subject='An Example Email Message',
		 -Body=(Include: 'email_format.lasso')]

The same technique can be used to modify an HTML form. Simply remove the -Email… command tags from
the form and place an [Email_Send] tag on the response file.

Decimal Precision
Decimal numbers are output using the fewest number of significant digits required. In prior versions of Lasso
decimal numbers were always output by default using six significant digits. For example, the following math
calculation outputs only two significant digits.

[2.02 + 2.0400] � 4.06

3 0 5

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 2 2 – U p g r a d i n g F r o m L a s s o P r o f e s s i o n a l 6

In general the output from Lasso Professional 8 should be more readable than the output from Lasso
Professional 6 so no changes to existing code should be required. In order to modify the number of
significant digits that Lasso outputs the [Decimal->SetFormat] tag should be used.

Member Tags and Parentheses
Member tags which have multiple parameters must be surrounded by parentheses. Earlier versions of Lasso
allowed some non-recommended syntax constructs to work. The new parser in Lasso Professional 8 is more
strict about when parentheses are required around tag calls.

Specifically, the following syntax worked in Lasso Professional 6, but is no longer supported in Lasso
Professional 8.

[((Date: '2003-12-01') -> Difference: (Date), -Hour)]

The code should be changed to the following. The parentheses around the [Date->Difference] tag clarify to
which tag the -Hour parameter belongs.

[((Date: '2003-12-01') -> (Difference: (Date), -Hour))]

For best results any nested tags or member tags which require two or more parameters should be surrounded
by parentheses.

PDF -Top Parameter
The -Top parameter in all PDF tags now always measures from the top margin of a document. In Lasso
Professional 6 some of the PDF tags measured from the bottom of the page. See the Lasso 8 Reference and
the PDF chapter for additional details and a complete list of tags that have changed.

Global Variables
In Lasso Professional 8 global variables should always be manipulated using the [Global] tag rather than the
[Variable] tag. The $ symbol can be used to refer to either global variables or page variables. If both a page
variable and a global variable are defined with the same name then the $ symbol will return the value of the
page variable.

Sites which do not use global variables do not require any modifications. The only sites that will require
updates are those that used the [Variable] tag to refer to previously created global variables. These sites should
be updated to use the [Global] tag instead.

[NSLookup]
Due to changes in Mac OS X 10.3 the [NSLookup] tag may not be able to perform reverse DNS lookups (from
IP address to host name) on all DNS servers. Normal DNS lookups (from host name to IP address) should
continue to work fine. This issue affects both Lasso Professional 6 and Lasso Professional 8 running on Mac
OS X 10.3.

[NSLookup: '127.0.0.1']

[Repetition] Tag
The [Repetition] tag is deprecated in Lasso Professional 8 and will not be supported in the next version of Lasso.
Converting loops that use the [Repetition] tag to use the modulus symbol % instead will result in faster code
execution.

To update existing sites:

Replace the [Repetition: 2] tag with (Loop_Count % 2 == 0). The second operand of the % symbol should be
whatever number was specified as a parameter to the [Repetition] tag.

3 0 6

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 2 2 – U p g r a d i n g F r o m L a s s o P r o f e s s i o n a l 6

For example, the following loop which makes use of [Repetition: 5] to display a message every fifth time
through the loop.

[Loop: 100]
	 [If: (Repetition: 5)]
		 [Loop_Count] is divisible by 5!
	 [/If]
[/Loop]

This loop can be rewritten using the modulus operator % as follows.

[Loop: 100]
	 [If: (Loop_Count % 5 == 0)]
		 [Loop_Count] is divisible by 5!
	 [/If]
[/Loop]

The second loop will have exactly the same output as the first loop, but will run much faster.

[TCP_…] Tags
The [TCP_…] tags have been deprecated in favor of the new [Net] type and its member tags. Consult the
Advanced Programming Topics chapter for details about the new tags.

[Else:If] and [Else_If]
The [Else] tag supports the functionality that was provided by the dedicated [Else:If] and [Else_If] tags in prior
versions of Lasso. In order to streamline the language and provide faster code processing only the [Else] tag is
supported in Lasso Professional 8.

For example, in the following code the [Else] tag is used to check several condition. Without a conditional
parameter the [Else] tag is the default value for the [If] … [/If] tags and always returns its value.

[If: $Condition == 'Alpha']
	 … Alpha …
[Else: $Condition == 'Beta']
	 … Beta …
[Else: $Condition == 'Gamma']
	 … Gamma …
[Else]
	 … Default …
[/If]

To update existing sites:

Change all [Else:If] and [Else_If] tags to [Else].

[LoopCount] and [LoopAbort]
In order to streamline the language and provide faster code processing the synonyms [LoopCount] for
[Loop_Count] and [LoopAbort] for [Loop_Abort] are no longer supported in Lasso Professional 8.

To update existing sites:

Change all [LoopCount] tags to [Loop_Count] and all [LoopAbort] tags to [Loop_Abort].

Container Tags
In order to provide more efficient code execution it is now necessary for all container tags to be defined in
LassoStartup. Any container tags which are defined within included files or library files will no longer function
properly.

3 0 7

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 2 2 – U p g r a d i n g F r o m L a s s o P r o f e s s i o n a l 6

The [Define_Tag] tag now accepts two parameters for creating container tags. If the -Container keyword is used
then a simple, non-looping container tag will be created. If the -Looping keyword is used then a looping
container tag will be created. The only difference is that the [Loop_Count] will only be modified in looping
container tags.

See the Custom Tags chapter for more details about defining custom container tags.

Custom Tags
All parameters and return values are now passed to custom tags by reference. Existing custom tags may need
to be updated so that they do not cause any unwanted side effects or cause syntax errors.

The [PreCondition] and [PostCondition] tags are no longer supported. The -Type and -ReturnType parameters should
be used in a custom tag definition in order to restrict the parameter types and return type for a custom tag.

Asynchronous custom tags do not have access to page variables from the page that called the custom tag. The
documentation for Lasso Professional 6 was not clear on this point. Any variables which are required within
the custom tag should be stored as globals or passed into the custom tag as parameters.

A number of other enhancements have been made to custom tags as well. See the Custom Tags chapter for
more details about defining custom tags.

To update existing sites for parameter passed by reference:

Use different names for locals defined within a custom tag and for the parameters of the tag. For example, the
following tag will cause a syntax error since it is not possible to modify the incoming literal changing its type
from an integer into a string.

[Define_Tag: 'Ex_UpperCase', -Required='Value']
	 [Local: 'Value' = (String_UpperCase: 'Value')]
	 [Return: #Value]
[/Define_Tag]

[Ex_UpperCase: 1] � Syntax Error

Instead, use a different name for the local variable within the tag. This code will work fine in Lasso
Professional 8 and in Lasso Professional 6. By prefixing the local variables name with L_ there is no conflict
with the incoming parameter names.

[Define_Tag: 'Ex_UpperCase', -Required='Value']
	 [Local: 'L_Value' = (String_UpperCase: 'Value')]
	 [Return: #L_Value]
[/Define_Tag]

[Ex_UpperCase: 1] � 1

To update existing sites to remove pre- and post-conditions:

Use the -Type and -ReturnType parameters to specify the types for each parameter of a custom tag and the
return type for the tag. Additional error checking can be performed with the custom tag itself.

For example, the following custom tag definition uses [PreCondition] and [PostCondition] to check that all of the
tag’s parameters and the tag’s return value are strings.

Define_Tag: 'Ex_Concatenate',
		 -Required='Param1',
		 -Required='Param2';
	 PreCondition: #Param1->Type == 'string';
	 PreCondition: #Param2->Type == 'string';
	 PostCondition: Return_Value == 'string';
	 Return: #Param1 + #Param2;
/Define_Tag;

3 0 8

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 2 2 – U p g r a d i n g F r o m L a s s o P r o f e s s i o n a l 6

In Lasso Professional 8 this tag can be rewritten as the following. The -Type parameters specify the required
type for the preceding -Required parameter. The -ReturnType parameter specifies the required type for the return
value. If the parameters or return type are not of the proper type then an error will be returned.

Define_Tag: 'Ex_Concatenate',
		 -Required='Param1', -Type='string',
		 -Required='Param2', -Type='string',
		 -ReturnType='string';
	 Return: #Param1 + #Param2;
/Define_Tag;

XML Tags
The XML tags in Lasso Professional 8 have been re-implemented using native C/C++ libraries for greater
speed and functionality. The behavior of some of the XML tags has changed and some modifications to
existing sites may be required for full compatibility.

	 •	[XML->Children], [XML->Attributes], and [XML->Contents] are now read-only. In Lasso Professional 6 these tags
could be used to inspect or modify the XML data. In Lasso Professional 8 these tags can only be used to
inspect XML data.

	 •	[XML_Extract] – The [XML_Extract] tag will interpret some -XPath parameters differently. In particular, the new
XML libraries interpret the XPath / to refer to the root of the XML data rather than the root tag in that data.
/* can be used to refer to the root tag. The new [XML->Extract] tag is the preferred method of performing
XPaths on XML data and uses the same XPath syntax as [XML_Extract].

	 •	[XML->Children] – The [XML->Children] tag now includes additional text children for many XML tags. These
children represent the text on either side of embedded tags. For example, the following <a> tag has three
children some, the tag, and text.

 Some Embedded Text

Lasso Professional 6 would not provide access to these text children so the behavior of Lasso Professional
8 is preferred. The text children all have a name of text and may be empty if no text is specified between the
various tags.

[Encode_ISOtoMac] and [Encode_MacToISO]
The [Encode_ISOtoMac] and [Encode_MacToISO] tags are not compatible with the Unicode strings that Lasso now
uses to store strings. These tags must be modified in order for sites that use them to work properly with Lasso
Professional 8.

To Update Existing Sites:

The output of the [Include_Raw], [File_Read], and other tags that might return data in a native character set have
all been changed to the bytes type. The bytes type preserves the character set of the underlying data.

Note: See the earlier section on the Bytes Type for a full discussion of this new data type.

In Lasso Professional 6 a [File_Read] operation which read a Latin-1 (ISO 8859-1) file may have appeared like
this. This code would translate the file from its native character set to Mac-Roman encoding.

[Variable: 'myFile' = (File_Read: 'myfile.text')]
[Variable: 'myString' = (Encode_ISOtoMac: $myFile)]

In Lasso Professional 8 the following code would be used. This code reads in the file as a byte stream and
then uses [Bytes->ExportString] to convert the Latin-1 (ISO 8859-1) characters to the native Unicode-based
double-byte strings that Lasso Professional 8 uses for character data.

[Variable: 'myFile' = (File_Read: 'myfile.text')]
[Variable: 'myString' = $myFile->(ExportString: 'iso8859-1')]

With this change the remainder of the code should not need to be changed since the end result has the same
practical value, a natively encoded string.

3 0 9

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 2 2 – U p g r a d i n g F r o m L a s s o P r o f e s s i o n a l 6

Tag Name Changes
All tags from Lasso Professional 6 are supported in Lasso Professional 8 except for those listed in the table
below. There are also a number of tag names which have changed or been deprecated in favor of new tags or
methodologies in Lasso Professional 8.

The following table lists tags that are not supported in Lasso Professional 8. These tags must be replaced in
order for sites to work properly in Lasso Professional 8.

Table 5: Unsupported Tags

Lasso 6 Tag	 Lasso 8 Tag Equivalent	

[Encode_MacToISO]	 [Bytes->ExportString]

[Encode_ISOtoMac]	 [Bytes->ExportString]
		

The following table lists the tag names that have been changed in Lasso Professional 8 since the release of
Lasso Professional 6. The old versions of each tag will continue to work, but their use has been deprecated.
Any new development in Lasso Professional 8 should use the new versions of the tag names.

Table 6: Tag Name Changes

Lasso 6 Tag	 Lasso 8 Tag Equivalent	

[Null->Up]	 [Null->Parent]

[String->Length]	 [String->Size]
		

The following table lists the tags from Lasso Professional 6 which have been deprecated in Lasso Professional
8 and what code equivalent should be used. The deprecated versions of these tags will continue to work,
but any new development in Lasso Professional 8 should use the suggested code equivalent rather than the
deprecated tags.

Table 7: Deprecated Tags

Lasso 6 Tag	 Lasso 8 Tag Equivalent	

[Date_GetCurrentDate]	 [Date]

[Date_GetDay]	 [Date->Day]

[Date_GetDayOfWeek]	 [Date->DayOfWeek]

[Date_GetHour]	 [Date->Hour]

[Date_GetMinute]	 [Date->Minute]

[Date_GetMonth]	 [Date->Month]

[Date_GetSecond]	 [Date->Second]

[Date_GetYear]	 [Date->Year]

[Error_NoRecordsFound]	 Check for whether [Found_Count] is zero.

[PostCondition]	 -ReturnType in [Define_Tag]

[PreCondition]	 -Type or -Criteria in [Define_Tag]

[Repetition]	 Modulus Symbol %

[TCP_Close]	 [Net->Close]

[TCP_Open]	 [Net->Connect]

[TCP_Send]	 [Net->Read], [Net->Write]
		

3 1 0

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 2 2 – U p g r a d i n g F r o m L a s s o P r o f e s s i o n a l 6

23
Chapter 23

Upgrading From
Lasso Professional 5

This chapter contains important information for users of Lasso Professional 5 who are upgrading to Lasso
Professional 8. Please read through this chapter before attempting to run solutions in Lasso Professional 8
that were originally developed for an earlier version of Lasso.

The upgrading chapters are cumulative so this chapter should be read in conjunction with the preceding
chapters for full information about changes to Lasso.

Topics in this chapter include:

	 •	Introduction includes general information about what has changed in Lasso Professional 8.

	 •	Tag Name Changes details the tag names which have been changed.

	 •	Syntax Changes contains information about what Lasso syntax constructs have changed.

	 •	Lasso MySQL contains information about changes made to the Lasso Connector for Lasso MySQL.

Introduction
This chapter includes the upgrading instructions from Lasso Professional 5 to Lasso Professional 8. If a site
is being upgraded from Lasso Professional 5 the items in this chapter should be applied first, followed by
the items in the prior chapter about upgrading from Lasso Professional 6, and then the items in the chapter
about upgrading from Lasso Professional 7.

Lasso Studio and Lasso Updater
Lasso Studio includes a Lasso Updater that can be used on code from earlier versions of Lasso to bring it into
compliance with the latest version of Lasso. See the documentation for Lasso Studio for more information.

Tag Name Changes
All tags from Lasso Professional 5 are supported in Lasso Professional 8 except for those listed in the table
below. There are also a number of tag names which have changed or been deprecated in favor of new tags or
methodologies in Lasso Professional 8.

The following table lists tags that are not supported in Lasso Professional 8. These tags must be replaced in
order for sites to work properly in Lasso Professional 8.

3 1 1

L a s s o 8 . 5 L a n g u a g e G u i d e

Table 1: Unsupported Tags

Lasso 5 Tag	 Lasso 8 Tag Equivalent	

[Encode_MacToISO]	 [Bytes->ExportString]

[Encode_ISOtoMac]	 [Bytes->ExportString]
		

The following table lists the tag names that have been changed in Lasso Professional 8 since the release of
Lasso Professional 5. The old versions of each tag will continue to work, but their use has been deprecated.
Any new development in Lasso Professional 8 should use the new versions of the tag names.

Table 2: Tag Name Changes

Lasso 5 Tag	 Lasso 8 Tag Equivalent	

[Null->Up]	 [Null->Parent]

[String->Length]	 [String->Size]
		

The following table lists the tags from Lasso Professional 5 which have been deprecated in Lasso Professional
8 and what code equivalent should be used. The deprecated versions of these tags will continue to work,
but any new development in Lasso Professional 8 should use the suggested code equivalent rather than the
deprecated tags.

Table 3: Deprecated Tags

Lasso 5 Tag	 Lasso 8 Tag Equivalent	

[Date_GetCurrentDate]	 [Date]

[Date_GetDay]	 [Date->Day]

[Date_GetDayOfWeek]	 [Date->DayOfWeek]

[Date_GetHour]	 [Date->Hour]

[Date_GetMinute]	 [Date->Minute]

[Date_GetMonth]	 [Date->Month]

[Date_GetSecond]	 [Date->Second]

[Date_GetYear]	 [Date->Year]

[Error_NoRecordsFound]	 Check for whether [Found_Count] is zero.

[PostCondition]	 -ReturnType in [Define_Tag]

[PreCondition]	 -Type or -Criteria in [Define_Tag]

[Repetition]	 Modulus Symbol %

[TCP_Close]	 [Net->Close]

[TCP_Open]	 [Net->Connect]

[TCP_Send]	 [Net->Read], [Net->Write]
		

3 1 2

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 2 3 – U p g r a d i n g F r o m L a s s o P r o f e s s i o n a l 5

Syntax Changes
Lasso Professional 7 introduces changes to some of the core syntax rules of Lasso. Most of these changes
were made to improve the reliability and error reporting of Lasso. Some of these changes may require you to
rewrite portions of your existing Lasso-based solutions for full compatibility with Lasso Professional 8. This
section describes each change, why it was made and how to update existing Lasso pages.

Table 4: Syntax Changes

Syntax Change	 Description	

No Process Tags	 New [NoProcess] … [/NoProcess] tags allow a portion of a page to be passed to
the browser without being processed.

Strict Syntax	 A strict syntax option allows errors such as non-hyphenated parameters, non-
quoted variables, and undefined tags to be reported as syntax errors.

Date Data Type	 Date operations have been converted to a new date data type. Lasso 5 date tags
have some modifications.

Integer Rounding	 The [Integer] tag now rounds to the nearest integer instead of truncating.

No Records Found	 The [Error_NoRecordsFound] tag has been deprecated. Check whether [Found_
Count] equals zero instead.

		

No Process Tags
Lasso Professional 8 includes a container tag [NoProcess] … [/NoProcess] that instructs the Lasso parser to
ignore its contents. This allows code from other programming languages to be passed through to the browser
without any processing by Lasso. These new tags do not require any changes to existing Lasso Web sites, but
may make transitioning from older versions of Lasso easier.

The [NoProcess] … [/NoProcess] tags must be embedded in a page exactly as written with no extra spaces or
parameters within the square brackets. They cannot be used within LassoScript.

To instruct Lasso to ignore a portion of a page:

Use the [NoProcess] … [/NoProcess] tags. In the following example, the entire contents of a JavaScript code block
is ignored by Lasso. Any array references within the JavaScript will not be interpreted by Lasso as square
bracketed tags.

[NoProcess]
	 <script language="JavaScript">
		 … JavaScript Expressions …
	 </script>
[/NoProcess]

Strict Syntax
With strict syntax the following rules are enforced:

	 •	All keyword parameters to built-in and custom tags must include a hyphen. This helps to find unknown tag
parameters and to catch other common syntax errors.

	 •	All string literals must be surrounded by quotes. This helps to prevent accidental calls to tags, to identify
undefined variables, and to catch other common syntax errors.

	 •	All tag calls must be defined. Unknown tags will no longer simply return the tag value as a string.

With strict syntax any of the errors above will be reported when a page is first loaded. They must be corrected
before the code on the page will be executed. When upgrading to Lasso Professional 8 it is advisable to first
try existing Lasso Professional 5 sites and correct any errors that are reported.

3 1 3

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 2 3 – U p g r a d i n g F r o m L a s s o P r o f e s s i o n a l 5

To update existing sites for strict syntax:

If a site is relatively small then the easiest method is to load each Web page and see if any errors are reported.
The following tips can be used for a more methodical search.

	 •	Check that all string literals are surrounded by quotes. Quotes are not necessary around integers or decimal
numbers, hyphenated keyword parameters, tag names, or variable names when used with the & or #
symbols.

	 •	Check that all keywords in tag calls are preceded by a hyphen. Keyword and keyword/value parameters
must be preceded by a hyphen, but do not need to be quoted. Name/value parameters should include
quotes around both the name and value (unless they are numbers).

	 •	Check that all command tags used within opening [Inline] tags are preceded by a hyphen. Quotes are not
necessary around command tags, even when they are specified within an array.

	 •	 Check that all client-side JavaScript is formatted properly. JavaScript should either be included
in [NoProcess] … [/NoProcess] tags or HTML comment tags <!-- … --> which ensure that no Lasso code within
is processed. Or, any square brackets which are required within the JavaScript should be output from an
[String] tag.

[String: '[array[4]]']

�	 [array[4]]

Date Data Type
The date tags from Lasso 5 have been replaced by new date and duration data types in Lasso 7. This change
should not require any changes to existing code, but many Lasso 5 tags have been deprecated and many other
operations are significantly easier using the new tags. See the Date and Time Operations chapter for full
documentation of the new date and duration data types.

Some highlights of the new date and duration data types include:

	 •	The [Date] tag can be used in place of [Date_GetCurrent] date to return the current date and time.

	 •	The [Date] tag now recognizes MySQL date formats natively as well as United States date formats.

	 •	The [Date_Get…] tags have been replaced by member tags which perform equivalent functions. [Date->Day]
returns the current day of the month and [Date->Year] returns the current 4-digit year.

	 •	The week number can be output using [Date->Week] and the current day of the year can be output using
[Date->DayOfYear].

	 •	The duration between two dates can be output using the subtraction symbol [(Date) - (Date: 3/4/1984')] or a
duration can be added to a date using the addition symbol [(Date) + (Duration: -Hour=1)].

	 •	The output format for all date tags on a Lasso page can be set using [Date_SetFormat]. For example,
[Date_SetFormat: '%Q %T'] will set all dates to output in MySQL date format.

	 •	Individual dates can be formatted using [Date->Format]. For example [Date->(Format: '%Q %T')] will output the
current date in MySQL date format.

	 •	Upon casting a date type, Lasso 7 automatically adjusts invalid dates to be a valid equivalent, where
Lasso 5 returns a null value instead of an invalid date. For example, 9/31/2002 is an invalid date because
there are not 31 days in September. The expression [Date:'9/31/2002'] returns 10/1/2002 in Lasso 7, whereas
[Date:'9/31/2002'] returns no value in Lasso 5.

Integer Rounding
The [Integer] tag now rounds decimal values to the nearest integer. In Lasso Professional 5 the [Integer] tag
instead truncated decimal values to the next lowest integer. The new process yields a more accurate result. In
general, no changes to existing sites should be necessary.

To update existing sites:

Use the [Math_Floor] tag to return the next lowest integer rather than using the [Integer] tag.

3 1 4

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 2 3 – U p g r a d i n g F r o m L a s s o P r o f e s s i o n a l 5

No Records Found
The [Error_NoRecordsFound] tag has been deprecated. This tag will continue to work with the Lasso Connector
for FileMaker Pro, but may not work with MySQL databases or with third party data source connectors.

To update existing sites:

Change any code which uses [Error_NoRecordsFound] to instead check whether [Found_Count] is equal to zero. For
example, the following code from Lasso 5:

[If: (Error_CurrentError) == (Error_NoRecordsFound)]
	 No records were found!
[/If]

Can be written as follows in Lasso 7:

[If: (Found_Count) == 0]
	 No records were found!
[/If]

Lasso MySQL
A number of changes have been made to the Lasso Connector for Lasso MySQL in order to make its behavior
match that of the Lasso Connector for FileMaker Pro. These changes will not in general require any changes
to existing Lasso Professional 5 sites.

Table 5: Lasso MySQL Syntax Changes

Syntax Change	 Description	

-Add and -Update	 The -Add and -Update actions now return the record which was just added to the
database or updated within the database by default.

Full Text Searching	 The ft operator allows full text indices to be searched. Lasso Administration
allows full text indices to be created.

Random Sorting	 The -SortRandom keyword can be used to return MySQL results in random order.

Regular Expression Searching	 The rx and nrx operators allow regular expression searches to be performed and
all records which match or do not match the results to be returned.

Searching for Distinct Values	 The -Distinct keyword allows only distinct records from search results to be
returned.

Searching for Null Values	 The inline tag now recognizes Null as a value distinct from the empty string
allowing Null values in databases to be found.

Using LIMIT Options	 The -UseLimit keyword instructs Lasso to use LIMIT options to select the found
records to show rather than using native methods. This can result in better
performance on large databases with large found sets.	

Value Lists	 Values lists are now supported for ENUM and SET data types within MySQL
databases.

		

See the MySQL Data Sources for complete documentation of these changes.

3 1 5

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 2 3 – U p g r a d i n g F r o m L a s s o P r o f e s s i o n a l 5

24
Chapter 24

Upgrading From
Lasso WDE 3.x

This chapter contains important information for users of Lasso Web Data Engine 3.x who are upgrading
to Lasso Professional 8. Please read through this chapter before attempting to run solutions in Lasso
Professional 8 that were originally developed for an earlier version of Lasso.

The upgrading chapters are cumulative so this chapter should be read in conjunction with the preceding
chapters for full information about changes to Lasso.

Topics in this chapter include:

	 •	Introduction includes general information about what has changed in Lasso Professional 8.

	 •	Syntax Changes contains information about what Lasso syntax constructs have changed since Lasso WDE
3.x and how to update Lasso pages which use those syntax constructs.

	 •	Tag Name Changes details the tag names which have been changed in Lasso 8 since Lasso 3.

	 •	Unsupported Tags lists the Lasso 3 tags that are no longer supported in Lasso Professional 8.

	 •	FileMaker Pro contains information about how to update a solution which depended on the Apple Event
based FileMaker Pro data source module to the new Lasso Connector for FileMaker Pro.

This chapter does not attempt to cover every issue that users of versions of Lasso prior to Lasso Web Data
Engine 3.x may encounter.

Introduction
This chapter includes the upgrading instructions from Lasso Web Data Engine 3.x to Lasso Professional 5. If a
site is being upgraded from Lasso Web Data Engine 3.x the items in this chapter should be applied first, then
the items in the preceding upgrading chapters.

Sites that are upgraded from Lasso Web Data Engine 3.x to Lasso Professional 8 will in general require
significant modifications.

Lasso Studio and Lasso Updater
Lasso Studio includes a Lasso Updater that can be used on code from earlier versions of Lasso to bring it into
compliance with the latest version of Lasso. See the documentation for Lasso Studio for more information.

Syntax Changes
Lasso Professional 8 introduces changes to some of the core syntax rules of Lasso. Some of these changes may
require you to rewrite portions of your existing Lasso-based solutions. This section describes each change,
why it was made and how to update existing Lasso pages.

3 1 6

L a s s o 8 . 5 L a n g u a g e G u i d e

Table 1: Syntax Changes

Syntax Change	 Description	

Square Brackets	 All expressions in square brackets are now interpreted.

Commas	 Commas are no longer allowed after tag names.

Keywords	 Keyword names now always begin with a hyphen.

Encoding Keywords	 The default is to HTML encode outermost substitution tags and apply no
encoding to nested sub-tags.

Else If 	 The [Else:If] tag is no longer supported. The [Else] tag has been enhanced to
provide the same functionality.

Include	 The [Include] tag now returns an error if the specified file does not exist.

Post Inline	 The [Post_Inline] tag has been replaced by a new scheduling facility accessed
through the [Event_Schedule] tag.

SQL Inline	 The [SQL_Inline] tag has been replaced by a new -SQL command tag which can
be used in a normal [Inline] tag.

File Tags and Logging	 The new distributed architecture means these tags work only on files accessible
by Lasso Service.

Line Endings	 The default line endings on Mac OS X are different from those for Mac OS 9.

JavaScript	 Special care must be taken to ensure that array references in JavaScript are not
interpreted by Lasso.

Macros	 Macros are no longer supported. Much of their functionality can be achieved
through custom tags.

Numeric Literals	 Numeric literals must not be written with quotes. The conversion of strings to
numeric values has changed.

Mathematical Precision	 Precision is handled automatically by the new mathematical expressions and
symbols and can be set explicitly using [Decimal->SetFormat] tag.

Double Quotes	 Single quotes are preferred for designating string literals.

Restrictions	 Restrictions on maximum values for math operations and looping tags have been
eased.

		

Square Brackets
In earlier versions of Lasso, only tag names which were recognized by Lasso would be interpreted. In Lasso
Professional 8, all square bracketed expressions are interpreted whether they contain a valid Lasso tag or not.
This allows expressions and member tags to be used within square brackets and allows custom tags to be
used.

For example, the following expressions would all have been ignored in earlier versions of Lasso, but will be
interpreted as indicated by Lasso Professional 8.

[45] � 45
[1 + 2] � 3
[blue] � blue
['aqua' + 'marine'] � aquamarine

If square brackets are used decoratively on a page, e.g. to surround link names, they will be stripped out by
Lasso Professional 8.

Note: See the section on JavaScript that follows for tips on using square brackets within client-side JavaScript
contained in a Lasso page.

To update existing sites:

There are several options to update existing sites depending on how the square brackets are being used on a
page.

	 •	Use the HTML entities for square brackets. These include [for [and] for]. The following example
would display a link name surrounded by square brackets.

3 1 7

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 2 4 – U p g r a d i n g F r o m L a s s o W DE 3 . x

 [Home]

	 •	Use the Lasso [String] tag to output an expression that includes square brackets. Lasso will not interpret
the output of Lasso tags so square brackets can be safely displayed on a page in this way. The following
example would display a link name surrounded by square brackets.

 [String: '[Home]']

The expression can also be written without the [String] tag.

 ['[Home]']

Note: Any string literals which are output in this way should always be surrounded by single quotes,
otherwise there is a danger that they might be interpreted as a tag.

	 •	Create a custom tag that outputs text surrounded by square brackets. The following simple [Define_Tag] can
be placed at the top of any page that requires it.

[Define_Tag: 'Bracket']
	 [Return: (Params->(Get: 1)]
[/Define_Tag]

This tag can then be called to display a link name surrounded by square brackets.

 [Bracket: 'Home']

Commas
In earlier versions of Lasso, commas could optionally be used following the tag name, before any parameters
of the tag. Although this syntax hasn’t been recommended for some time there are still examples of it in the
Lasso Web Data Engine 3.x documentation and in some Lasso-based Web sites. The following example shows
the tag construct with a comma following the tag name.

[Tag_Name, Parameters]			 (No longer supported)

This syntax was particularly common with tags that took only a single keyword. For example, both of the
following tags were commonly written with a comma following the tag name.

[Server_Date, Short]				 (No longer supported)
[Error_CurrentError, ErrorCode]			 (No longer supported)

Using a colon after the tag name is now mandatory in Lasso Professional 8. This change was made in order to
facilitate parsing of more complex expressions. The tag examples above must now be written as follows with
a colon after the tag name. The following example also demonstrates the new method of specifying keyword
names with a leading hyphen.

[Server_Date: -Short]
[Error_CurrentError: -ErrorCode]

To update existing sites:

Use a regular expression to correct Lasso pages that contain the older comma syntax. Most text editors and
Web authoring environments can perform a find/replace using regular expressions.

	 1	Search for the following regular expression pattern to find tags in square brackets which have a comma
after the tag name:

\[([A-Za-z_]+),([^\]]*)\]

Use this pattern as the replacement value:

[\1:\2]

	 2	Search for the following regular expression pattern to find sub-tags in parentheses which have a comma
after the tag name:

\(([A-Za-z_]+),([^\)]*)\)

3 1 8

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 2 4 – U p g r a d i n g F r o m L a s s o W DE 3 . x

Use this pattern as the replacement value:

(\1:\2)

What the first regular expression does is search for a square bracket followed by a tag name, a comma, then
any characters up until the closing square bracket. The replacement pattern inserts an opening square bracket,
the tag name, a colon, the contents after the comma, and a final closing square bracket. The second regular
expression performs the same steps with parentheses instead of square brackets.

Keywords
All keywords and keyword/value parameters (formerly named parameters) start with a hyphen in Lasso 8.
This used to be an option for command tags used within the [Inline] tag in Lasso Web Data Engine 3.x, but
is now required for all tags. Most tags which were supported in Lasso Web Data Engine 3.x will continue
to accept keywords without the leading hyphen so Lasso Web Data Engine 3.x solutions do not need to
be rewritten. However, all keyword names without leading hyphens have been deprecated and are not
guaranteed to work in future versions of Lasso.

This change was made so that Lasso keywords can be clearly differentiated from user-defined name/value
parameters and from tag names. This becomes especially important as users start to create custom tags which
might have the same name as the keywords of existing tags.

To update existing sites:

	 1	Locate all keyword names that do not begin with a hyphen. For example, the following [Server_Date] tag
contains both a tag-specific keyword and an encoding keyword, neither of which has been written with a
hyphen:

[Server_Date: Short, EncodeNone]

The following [Inline] tag contains several command tags or keyword/value parameter that have not been
written with hyphens:

[Inline:
	 Database='Contacts',
	 Table='People',
	 'State'='WA',
	 Search]

	 2	Change the keywords so their names start with a hyphen. The [Server_Date] tag is changed to the following
with each keyword name beginning with a hyphen:

[Server_Date: -Short, -EncodeNone]

The [Inline] tag is changed to the following with each command tag and keyword/value parameter written
with a hyphen:

[Inline:
	 -Database='Contacts',
	 -Table='People',
	 'State'='WA',
	 -Search]

	 3	Do not change user-defined name/value parameters. In the preceding example 'State'='WA' is not changed
when updating the tag for compliance with Lasso Professional 8.

Note: The name ‘State’ has quotes around it in the preceding examples. All string literals should be specified
with single quotes. This ensures that they will not be misidentified as a sub-tag or a keyword.

3 1 9

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 2 4 – U p g r a d i n g F r o m L a s s o W DE 3 . x

Encoding Keywords
The use of encoding keywords in substitution tags has been altered in Lasso Professional 8. All substitution
tags which are used as sub-tags now have a default encoding of -EncodeNone. Only the outermost substitution
tag (i.e. a tag in square brackets) has a default encoding of -EncodeHTML. This change was made in order to
make Lasso easier to use for new users and to reduce the length of nested tag expressions.

The following example demonstrates the benefits of the new Lasso Professional 8 syntax. In Lasso 3, the
following [String_Concatenate] tag contains many sub-tag parameters which all have EncodeNone specified.

[String_Concatenate:
	 (Field: 'First_Name', EncodeNone), ' ',
	 (Field: 'Middle_Name', EncodeNone), ' ',
	 (Field: 'Last_Name', EncodeNone)]

The preceding tag can be written as follows in Lasso 8. Since the default encoding of each of the sub-tags is
-EncodeNone the encoding keyword can be omitted. The resulting code is considerably shorter and easier to
read.

[String_Concatenate: (Field: 'First Name'), ' ',
	 (Field: 'Middle Name'), ' ', (Field: 'Last Name')]

The default encoding for the outermost tag in Lasso 8 is still -EncodeHTML in order to maintain the security
of sites powered by Lasso Professional 8. If a field is placed on a page without encoding then any JavaScript
or HTML that the code contains will be live on the Web page. Only HTML from trusted sources should be
allowed on your Web site.

Lasso 8 includes additional encoding enhancements. Please see the Encoding chapter for full details of how
[Encode_Set] can be used to change the default encoding of a page and more.

Note: -EncodeHTML is now a valid encoding keyword which performs the same encoding as that which is
performed if no encoding keyword is specified in an outermost substitution tag.

To update existing sites:

Encoding keywords still work as they did in Lasso Web Data Engine 3.x if they are specified in every tag.
Existing code will generally work after an upgrade to Lasso Professional 8. However, the following use of
encoding keywords will need to be rewritten.

	 1	Locate tags where the outermost tag has an EncodeNone encoding keyword and the sub-tags do not have any
encoding keywords. For example, the following [String_Concatenate] tag has an EncodeNone keyword and the
two [Field] tags do not have any encoding keywords.

[String_Concatenate: EncodeNone, (Field: 'First Name'), ' ', (Field: 'Last Name')]

	 2	Rewrite the tag by removing the EncodeNone keyword from the outermost tag. In the resulting Lasso 8 code,
no encoding keywords are required.

[String_Concatenate: (Field: 'First Name'), ' ', (Field: 'Last Name')]

Note: In the Lasso 3 code, the [Field] sub-tags were automatically HTML encoded. The EncodeNone keyword in
the outermost [String_Concatenate] tag ensured that double encoding was not applied. Since Lasso 7 does not
encode sub-tags by default, the encoding keyword is no longer needed.

Else If
The [Else:If:] tag has been eliminated as a distinct tag, but the concept is still supported. [Else:If: Condition] is now
syntactically equivalent to [Else: (If: Condition)] and the [Else] and [If] tags have been enhanced so that much of
the old behavior of the [Else:If:] tag is preserved.

The following [Else:If:] tag will not work as expected in Lasso Professional 8 because the condition will be
misinterpreted:

[Else:If: 'abc' == 'abc']

The condition will be interpreted as if the following tag had been written:

3 2 0

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 2 4 – U p g r a d i n g F r o m L a s s o W DE 3 . x

[Else: (If: 'abc') == 'abc']

The (If: 'abc') expression will return True and this will be compared to 'abc'. Since True is not equal to 'abc' this
clause in the conditional will not be executed.

Note: If called individually, the [If] and [Else] tags will return the value of the specified conditional expressions
parameter rather than returning an error about an unclosed container tag.

To update existing sites:

	 •	Use parentheses around all conditional expressions. The following [Else:If] tag will work correctly in either
Lasso Professional 8 or Lasso Web Data Engine 3.x:

[Else:If: ('abc' == 'abc')]

	 •	Change the [Else:If] tag to [Else]. Lasso 7’s [Else] tag has been enhanced so that it now works like the old
[Else:If] tag if a condition is specified, but is still the marker for the default clause of the conditional if no
condition is specified. The following tag will work in Lasso Professional 8, but not in Lasso Web Data
Engine 3.x:

[Else: 'abc' == 'abc']

Include
The [Include] tag now validates whether the specified file exists and returns an error if an invalid file path is
specified. This means that programmatically constructed [Include] statements need to take a precaution so
errors won’t be shown to the site visitor.

To update existing sites:

The [Protect] … [/Protect] tags can be used to suppress the error that is reported by the [Include] tag. The following
code will not return an error, even though the file fake.lasso does not exist.

[Protect]
	 [Include: 'fake.lasso']
[/Protect]

Post Inline
The [Post_Inline] tag is no longer supported in Lasso Professional 8. This tag relied on access to files which
Lasso Service might not be able to locate because they could be on a separate machine. The replacement for
[Post_Inline] is called [Event_Schedule] and has the following format:

[Event_Schedule:
	 -Start=(Date, Defaults to Today),
	 -End=(Date, Defaults to Never),
	 -URL=(URL to Execute, Required)
	 -Repeat=(True/False, Defaults to True if -Delay is set and False otherwise),
	 -Restart=(True/False, Defaults to True),
	 -Delay=(Minutes, Required if -Repeat is True),
	 -Username=(Username for Authentication, Optional),
	 -Password=(Password for Authentication, Optional)]

This tag schedules the execution of the response URL at a specific start date and time. The URL is fetched
just as if a client had visited it through a Web browser. After the task is performed, it is optionally repeated a
specified number of minutes later until the end date and time is reached. If the restart parameter is set to True
then the repeating task will be rescheduled even after server restarts. Please see the Control Tags chapter for
complete documentation of the syntax of [Event_Schedule].

To update existing sites:

Sites that rely on [Post_Inline] tags will need to be rewritten. The following steps must be taken:

3 2 1

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 2 4 – U p g r a d i n g F r o m L a s s o W DE 3 . x

	 1	Determine the URL of the post-inline response page you were calling.

	 2	Change the initial [Post_Inline] tag to the equivalent [Event_Schedule] tag using date calculations if necessary to
determine the start date and time.

	 3	If the [Post_Inline] tag rescheduled itself in the response page then either the rescheduling call must be
changed to an equivalent [Event_Schedule] tag or the automatic repeat feature of [Event_Schedule] can be used
in its place.

SQL Inline
The [SQL_Inline] tag is no longer supported in Lasso Professional 8. This tag has been replaced by a more
versatile -SQL command tag that can be used as the database action within any [Inline] tag.

[Inline: -SQL='…SQL Statement…]
	 … Inline Results …
[/Inline]

The -SQL command tag can be used to issue SQL statements to the included Lasso MySQL data source or to
any MySQL data source accessed through the Lasso Connector for MySQL. The -SQL command tag may also
be supported by third party data source connectors. Please see the MySQL Data Sources chapter for more
information about using this tag.

To update existing sites:

Sites that rely on [SQL_Inline] tags will need to be rewritten. The following steps must be taken:

	 1	Change the opening and closing [SQL_Inline] … [/SQL_Inline] tags to [Inline] … [/Inline] tags. For example,
following is a [SQL_Inline] that searches the People table of the Contacts database.

[SQL_Inline: Datasource='Contacts',
		 SQLStatement='SELECT First_Name, Last_Name from People']
	 …
[/SQL_Inline]

The first step is to change this to the following [Inline] … [/Inline] tags, then to perform the remainder of the
steps to complete the transformation.

[Inline: Datasource='Contacts',
		 SQLStatement='SELECT First_Name, Last_Name from People']
	 …
[/Inline]

	 2	Change the Datasource parameter to a -Database keyword/value parameter. Ensure that the database name is
valid in the current Lasso Professional 8 setup.

[Inline: -Database='Contacts',
		 SQLStatement='SELECT First_Name, Last_Name from People']
	 …
[/Inline]

Note: The ODBC data source module is not provided with Lasso Professional 8. Data sources must be
available through the included Lasso Connector for MySQL or a third-party data source connector.

	 3	Change the SQLStatement parameter to a -SQL command tag. Change any table references within the SQL
statement so they reference both the database and table name, not just the table name.

[Inline: -Database='Contacts',
		 -SQL='SELECT First_Name, Last_Name from Contacts.People']
	 …
[/Inline]

	 4	If Lasso tags are used within the SQL statement then they will need to be changed to expressions. In the
following example, the name of the table is stored in a variable named MyTable and referenced using a
square bracketed expression within the SQLStatement. This is no longer valid syntax.

3 2 2

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 2 4 – U p g r a d i n g F r o m L a s s o W DE 3 . x

[Var_Set: 'MyTable'='People']
[SQL_Inline: Datasource='Contacts',
		 SQLStatement='SELECT First_Name, Last_Name from [Var: 'MyTable']']
	 …
[/SQL_Inline]

In Lasso Professional 8, this is changed to the following string expression that concatenates the value of the
variable to the SQL statement explicitly.

[Variable: 'MyTable'='Contacts.Table']
[Inline: -Database='Contacts',
		 -SQL='SELECT First_Name, Last_Name from ' + (Variable: 'MyTable')]
	 …
[/Inline]

Please see the MySQL Data Sources chapter for more examples of creating SQL statements for use with the
-SQL command tag and for information about how to display the results within the [Inline] … [/Inline] tags.

File Tags and Logging
Lasso Professional 8 features a distributed architecture where Lasso Service can run on a different machine
from the Web server on which Lasso Connector for IIS or Lasso Connector for Apache is installed. The file
tags and logging tags can only manipulate files on the machine which is hosting Lasso Service. They have no
access to the machine which is hosting a Lasso Web server connector.

If you are running both Lasso Service and your Web serving software on a single machine then no changes
to existing file and logging tags should be necessary when you upgrade to Lasso Professional 8. Otherwise,
please consult the Files and Logging chapter for more information about how to access files in a two
machine system.

Note: In contrast to the file and logging tags, the [Include] tag works exclusively with files from the Web serving
machine. No changes should be necessary to your sites which use the [Include] tag unless you are using it to
access log files or files which have been manipulated by the file tags. Use the [File_Read] tag for these situations.

Line Endings
Files created in Mac OS X, Windows 2000, or versions of the Mac OS 9 and earlier each have a different
standard for line endings. This can cause confusion when moving files from one platform to another or from
an earlier version of the Mac OS to Mac OS X. Table 11: Line Endings summarizes the different standards.

Table 2: Line Endings

Tag	 Description	

Mac OS X	 Line feed: \n. Each line is ended with a single line feed character.

Mac OS 9 and Earlier	 Carriage return: \r. Each line is ended with a single carriage return character.

Windows 2000	 Line feed and carriage return: \r\n. Each line is ended with both a line feed and a
carriage return character.

		

Line ending differences are handled automatically by Web servers and Web browsers so are generally only
a concern when reading and writing files using the [File_…] tags. The following tips make working with files
from different platforms easier.

	 •	The default line endings used by the [File_LineCount] and [File_ReadLine] tags match the platform default. They
are \n in Mac OS X and \r\n in Windows 2000. The default for Lasso Web Date Engine 3.x’s file tags on Mac
OS 9 and earlier was \r.

	 •	Specify line endings explicitly in the [File_LineCount] and [File_ReadLine] tags. For example, the following tag
could be used to get the line count for a file that was originally created on Mac OS 9.

[File_LineCount: 'FileName.txt', -FileEndOfLine='\r']

3 2 3

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 2 4 – U p g r a d i n g F r o m L a s s o W DE 3 . x

Or, the following tag could be used to get the line count for a file that was originally created on Windows
2000.

[File_LineCount: 'FileName.txt', -FileEndOfLine='\r\n']

	 •	Many FTP clients and Web browsers will automatically translate line endings when uploading or
downloading files. Always check the characters which are actually used to end lines in a file. Don’t assume
that they will automatically be set to the standard of either the current platform or the platform from
which they originated.

	 •	A text editor can be used to change the line endings in a file from one standard to another explicitly.

JavaScript
Since Lasso will interpret any expressions contained within square brackets special care must be taken to
ensure that square brackets which are used for array accesses within client-side JavaScripts are not interpreted.

	 •	Use the [NoProcess] … [/NoProcess] tags to instruct Lasso not to interpret any of the code contained therein.

[NoProcess]
	 <script language="JavaScript">
		 … JavaScript Expressions …
	 </script>
[/NoProcess]

	 •	Lasso will not interpret any expressions that are contained within HTML comments. The following
common method of surrounding a JavaScript with HTML comments ensures that neither Lasso nor older
Web browsers will interpret the contents of the JavaScript.

<script language="JavaScript">
	 <!--
		 … JavaScript Expressions …
	 // -->
</script>

The opening <!-- expression is ignored by the JavaScript interpreter. The closing --> expression is formatted
as part of a JavaScript comment by including it on a line starting with the JavaScript comment characters //.

	 •	If Lasso tags need to be used within a client-side JavaScript then the HTML comment can be opened and
closed in order to allow Lasso to process portions of the JavaScript, but not others.

<script language="JavaScript">
	 <!--
		 … JavaScript Expressions …
	 // -->
	 var VariableName='[… Lasso Expression …]';
	 <!--
		 … JavaScript Expressions …
	 // -->
</script>

	 •	The Lasso [String] tag can be used to output short JavaScript segments that need to make use of square
brackets. This technique is useful for JavaScript that is contained within the attributes of HTML tags or for
JavaScripts that contain only a few square brackets.

In the following example, a select statement contains an [String] tag in its onChange handler that returns a
JavaScript expression containing square brackets to report which option was selected.

<select name="Select" multiple size="4"
		 onChange="[String: 'alert(this.options[this.selectedIndex])']">
	 <option value="Value"> Value </option>
	 …
</select>

3 2 4

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 2 4 – U p g r a d i n g F r o m L a s s o W DE 3 . x

Macros
Macros are not supported in Lasso Professional 8. See the Extending Lasso Guide for information about
rewriting macros as custom tags using the new [Define_Tag] tag in Lasso 8.

Numeric Literals
In Lasso 8 there is a distinction between number values and string values. This distinction makes advanced
data type specific member tags and expression symbols possible. Strings are always enclosed in single quotes.
Numbers are never enclosed in quotes. If you use quotes around a numeric literal then symbols which are
used to manipulate that literal may assume it is a string.

For example, the following code specifies a mathematical operation, the numerical addition of 1 and 2:

[1 + 2] � 3

In contrast, the following code specifies a string operation, the string concatenation of the string '1' and the
string '2', because the numbers are contained in quotes:

['1' + '2'] � 12

The legacy math and string tags from Lasso Web Data Engine 3.x still perform automatic type conversions
on their arguments. This ensures that existing sites will not need to be rewritten. Both of the following tags
return the same result despite the fact that the parameters are specified without quotes in one and with
quotes in the other:

[Math_Add: 1, 2] � 3
[Math_Add: '1', '2'] � 3

When a string is converted into an integer or a decimal, only a number at the beginning of the string will be
converted. For example, in the following conversion only the number 800 from the phone number will be
output.

[Integer: '800-555-1212'] � 800

In earlier versions of Lasso all the numbers would have been extracted from the string yielding 8005551212 as
the value. Existing sites may require modifications if this behavior was being counted on.

Note: Negative literals must be surrounded by parentheses when used on the right-hand side of two-operator
symbols. For example, (1 + (-2)) or ($Variable == (-4)).

Mathematical Precision
Mathematical symbols in Lasso 8 do not have the same rounding behavior as math tags in Lasso 3. For
example, the following [Math_Div] tag returns a result with the Lasso 8 standard of six significant digits instead
of the maximum precision of its two parameters which it would have had in Lasso 3.

[Math_Div: 10, 3.000] � 3.333333

In Lasso 8 the mathematical symbols perform an integer operation if both parameters of the expression are
integers. For example, the following division is performed and an integer result is returned:

[10 / 3] � 3

In Lasso 8 the mathematical symbols perform a decimal operation if either of the parameters of the
expression are a decimal value. Decimal results are always returned with at least six significant digits. For
example, the following expressions return six significant digits of the result since one of the parameters is
specified with a decimal point:

[10.0 / 3] � 3.333333
[10 / 3.0] � 3.333333

3 2 5

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 2 4 – U p g r a d i n g F r o m L a s s o W DE 3 . x

Existing sites should be modified to use the [Math_Round] tag or the [Decimal->SetFormat] tag to format results
from mathematical expressions if less than six significant digits is desired.

The following example shows how to use [Math_Round] to reduce a division expression to three significant
digits:

[Math_Round: (10.0 / 3.0), 1.000] � 3.333

The following example shows how to set a variable so it will always display three significant digits using the
[Decimal->SetFormat] tag.

[Variable: 'Result' = (10.0 / 3.0)]
[(Variable: 'Result')->(SetFormat: -Precision=3)]
[Variable: 'Result']

�	 3.333

See the Math Operations chapter for more information.

Double Quotes
Single quotes are preferred when specifying string literals. Double quotes are still supported, but have been
deprecated. Double quotes are not guaranteed to work in the future. No changes to existing sites should be
required, but all future development should use single quotes exclusively.

Restrictions
Some restrictions have been removed in Lasso 8. Your site may need to be rewritten if it relied on one of
these pre-defined restrictions. The following restrictions have been removed in Lasso 8:

	 •	Integer math now uses 64-bit values for greater precision. Lasso 8 should support integer values up to
18,446,744,073,709,551,616. Decimal math and date calculation are also performed using 64-bit values.

	 •	The [Loop] tag limit of 1000 iterations has been removed. It is now possible for infinite loops to occur in
Lasso so you may want to place your own upper limit on loop iterations as in the following code:

[Loop: 1000000]
	 [If: (Loop_Count) > 1000][Loop_Abort][/If]
	 … Loop Contents …
[/Loop]

Tag Name Changes
In order to promote consistency in Lasso 8 many tag names from Lasso 3 had to be changed. The following
chart details the tag names which have changed. Please consult the appropriate chapters in this book for
more information about each individual tag name.

For the most part, these tag name changes will not require modifications to existing Lasso Web Data
Engine 3.x sites. The old tag name is still supported in Lasso 8. However, support for these old tag names
is deprecated. They are not guaranteed to be supported in a future version of Lasso. All new development
should take place using the new tag names.

Table 12: Command Tag Name Changes details the command tags which have changed in Lasso 8. Table
9: Substitution, Process, and Container Tag Name Changes details the substitution, process, and container
tags which have changed in Lasso 8.

Table 3: Command Tag Name Changes

Lasso 3 Tag	 Lasso 8 Tag Equivalent	

-AddError	 -ResponseAddError

-AddResponse	 -ResponseAdd

3 2 6

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 2 4 – U p g r a d i n g F r o m L a s s o W DE 3 . x

-AnyError	 -ResponseAnyError

-AnyResponse	 -ResponseAny

-ClientPassword	 -Password

-ClientUsername	 -Username

-DeleteResponse	 -ResponseDelete

-DoScript	 -FMScript

-DoScript.Post	 -FMScriptPost

-DoScript.Pre	 -FMScriptPre

-DoScript.PreSort	 -FMScriptPreSort

-DuplicateResponse	 -ResponseDuplicate

-LogicalOperator	 -OperatorLogical

-NoResultsError	 -ResponseNoResultsError

-RequiredFieldMissingError	 -ResponseRequiredFieldMissingError

-SecurityError	 -ResponseSecurityError

-UpdateError	 -ResponseUpdateError

-UpdateResponse	 -ResponseUpdate
		

Table 4: Substitution, Process, and Container Tag Name Changes

Lasso 3 Tag	 Lasso 8 Tag Equivalent	

[Choice_List]	 [Value_List]

[ChoiceListItem]	 [Value_ListItem]

[DB_NameItem]	 [Database_NameItem]

[DB_Names]	 [Database_Names]

[DB_LayoutNameItem]	 [Database_TableNameItem]

[DB_LayoutNames]	 [Database_TableNames]

[Encode_Breaks]	 [Encode_Break]

[File_LineCount]	 [File_GetLineCount]

[Lasso_Abort]	 [Abort]

[Lasso_Comment]	 [Output_None]

[Lasso_Process]	 [Process]

[Lasso_SessionID]	 [Lasso_UniqueID]

[Link_Detail]	 [Link_DetailURL]

[Logical_OperatorValue]	 [Operator_LogicalValue]

[LoopAbort]	 [Loop_Abort]

[LoopCount]	 [Loop_Count]

[RandomNumber]	 [Math_Random]

[RepeatingValueItem]	 [Repeating_ValueItem]

[Roman]	 [Math_Roman]

[SearchFieldItem]	 [Search_FieldItem]

[SearchOpItem]	 [Search_OpItem]

[SearchValueItem]	 [Search_ValueItem]

[Shown_NextGroup]	 [Link_NextGroup]

[Shown_NextGroupURL]	 [Link_NextGroupURL]

[Shown_PrevGroup]	 [Link_PrevGroup]

[Shown_PrevGroupURL]	 [Link_PrevGroupURL]

[SortFieldItem]	 [Sort_FieldItem]

[SortOrderItem]	 [Sort_OrderItem]

[String_ToDecimal]	 [Decimal]

3 2 7

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 2 4 – U p g r a d i n g F r o m L a s s o W DE 3 . x

[String_ToInteger]	 [Integer]

[ValueListItem]	 [Value_ListItem]
		

Unsupported Tags
The following tags are no longer supported in Lasso 8. If any of these tags are used in a Web site that was
built for Lasso Web Data Engine 3.x they will need to be replaced before that Web site can be served by
Lasso Professional 8. Table 14: Unsupported Tags is a complete list of tags that are not supported in
Lasso 8 including notes on how to update a Web site that relies on those tags for compatibility with Lasso
Professional 8.

Table 5: Unsupported Tags

Lasso 3 Tag	 Notes	

[4D_RefreshCache]	 The 4D data source module is no longer provided.

[Apple_Event], [AE_…]	 The Apple Event tags are no longer supported.

-DoScript.….Back	 The -DoScript tags with a Back argument are no longer supported. Use the
appropriate -FMScript… tag instead.

[Lasso_DatasourceIs4D]	 The 4D data source module is no longer provided.

[Lasso_DatasourceIsODBC]	 The ODBC data source module is no longer provided.

[Macro_…], -Macro	 All macro tags are no longer supported. See the Extending Lasso Guide for
information about custom tags.

[Post_Inline]	 See the Post Inline section in this chapter for more information about how to
convert [Post_Inline] calls to the [Event_Schedule] tag.

[Relation]	 The [Relation] tag was equivalent to an [Inline] that performed a search in the
related table.

-Scripts	 This command tag only worked with the Apple Event based FileMaker Pro data
source module. Use any command tag which performs a database action instead
(e.g. -FindAll).

-Timeout	 This command tag only worked with the Apple Event based FileMaker Pro data
source module.

[Win_Exec]	 This tag is no longer supported.
		

CDML Compatibility

Lasso Web Data Engine 3.x supported a number of CDML tags for compatibility with Web sites that were
created for FileMaker Pro’s Web Companion. These tags are no longer supported in Lasso Professional 8.

Early Lasso Compatibility

Lasso Web Data Engine 3.x supported a number of tags from earlier versions of Lasso for compatibility
with sites that were created using the earlier versions of Lasso. These tags are no longer supported in Lasso
Professional 8.

FileMaker Pro
Lasso Professional 8 includes Lasso Connector for FileMaker Pro which is the equivalent of the Lasso Web
Data Engine 3.x FileMaker Pro Remote data source module. The functionality of the Apple Event based
FileMaker Pro data source module is no longer supported since it was Mac specific and reliant upon the use
of Apple Events.

If you were using the FileMaker Pro Remote data source module then no changes to your site should be
required when you move the site over to Lasso Professional 8.

3 2 8

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 2 4 – U p g r a d i n g F r o m L a s s o W DE 3 . x

If you were not previously using the FileMaker Pro Remote data source module, some changes may be
necessary. Lasso Connector for FileMaker Pro does not support the following features of the Apple Event
based FileMaker Pro data source module from Lasso Web Data Engine 3.x.

	 •	Field-Level Search Operators are not supported. The -OperatorBegin and -OperatorEnd tags cannot be used
to create complex queries with a FileMaker Pro database.

	 •	Automatic Image Conversion is not supported for PICT images stored in FileMaker Pro container field.
However, GIFs and JPEGs stored in container field can be retrieved. The parameters of the [Image_URL] tag
are ignored and images are served in the format stored in the database.

	 •	Certain Script Command Tags are not supported including -DoScript.Back,
-DoScript.Post.Back, -DoScript.PreSort.Back, -DoScript.Pre.Back. These tags all instruct FileMaker Pro to send itself
to the background after the script is completed. Use the -FMScript commands without the Back argument
instead.

	 •	FileMaker Pro 3 is no longer supported since this version does not provide the Web Companion necessary
to make a remote connection to FileMaker Pro.

However, in exchange for the omissions there are some advantages to using Lasso Connector for FileMaker
Pro.

	 •	FileMaker Pro can be accessed via TCP/IP on the same machine or on a different machine.

	 •	Multiple FileMaker Pro applications running on different machines can be accessed from a single
installation of Lasso Professional 8.

	 •	The -ReturnField tag allows you to limit the fields that are returned from a search or other database action.

	 •	GIFs and JPEGs can be stored in FileMaker Pro container fields and served directly without any conversion.

Upgrading FileMaker Pro Based Sites
If a site was created using the FileMaker Remote data source module then no changes should be necessary
when moving the site to Lasso Professional 8. Simply follow the instructions in the Upgrading chapter in
the Lasso Professional 8 Setup Guide in order to configure Lasso Connector for FileMaker Pro to point to the
appropriate FileMaker Pro Web Companion.

If a site was created using the Apple Event based FileMaker Pro data source module or relied on FileMaker
Pro 3.x then the following changes will need to be made in order to ensure that the site is compatible with
Lasso Professional 8.

To upgrade a FileMaker Pro based site:

	 1	A site that relies on FileMaker Pro 3 will need to be upgraded to FileMaker Pro 4.x or FileMaker Pro
Unlimited 5.x.

	 2	Configure FileMaker Pro Web Companion according to the instructions inn the Data Sources chapter of
the Lasso Professional 8 Setup Guide. The Web Companion needs to be activated and all databases that are
to be shared need to have their Sharing… settings established.

	 3	Modify any database searches that relied on the -OperatorBegin and -OperatorEnd command tags so that they
no longer reference these tags.

	 4	Modify any calls to -DoScript… to call one of the new -FMScript… equivalents. Any database action that relies
on the -Scripts command tag needs to be rewritten with a database action such as -FindAll.

	 5	Ensure that the images stored in container fields are either GIFs or JPEGs. These images will be served
directly by the Web Companion.

3 2 9

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 2 4 – U p g r a d i n g F r o m L a s s o W DE 3 . x

V
Section V

Data Types

This section includes an introduction to the fundamental data types of Lasso 8 including strings, byte streams,
integers and decimals, dates, compound data types, files, images, networking, xml, PDF, and JavaBeans.

	 •	Chapter 25: String Operations includes information about strings including symbols and tags for string
manipulations.

	 •	Chapter 26: Regular Expressions includes information about regular expression search/replace tags in
Lasso.

	 •	Chapter 27: Bytes includes information about byte streams.

	 •	Chapter 28: Math Operations includes information about integers and decimals including symbols and
tags for mathematical calculations.

	 •	Chapter 29: Date and Time Operations includes information about the date and duration data types for
date and time calculations.

	 •	Chapter 30: Arrays, Maps, and Compound Data Types includes information about arrays, lists, maps,
pairs, priority queues, queues, sets, stacks, and tree maps.

	 •	Chapter 31: Files includes information about reading and writing files.

	 •	Chapter 32: Images and Multimedia includes information about manipulating and serving images and
multimedia files.

	 •	Chapter 33: Networking includes information about communicating with remote servers using TCP or
UDP protocols.

	 •	Chapter 34: XML includes information about parsing and creating XML files including using XPaths and
XSLT style sheets.

	 •	Chapter 35: PDF includes information about creating PDF files using Lasso’s built-in PDF tags.

	 •	Chapter 36: JavaBeans includes information about loading, using, and creating JavaBeans.

	 •	Chapter 37: iCalendar includes information about how industry standard iCalendar documents can be
parsed, manipulated, and created using Lasso.

	 •	Chapter 38: Process and Shell Support includes information about how shell scripts and native processes
can be accessed through Lasso.

	 •	Chapter 39: LDAP includes information about querying Lightweight Directory Access Protocol (LDAP)
servers.

3 3 0

L a s s o 8 . 5 L a n g u a g e G u i d e

25
Chapter 25

String Operations

Text in Lasso is stored and manipulated using the string data type or the [String] tags. This chapter details the
symbols and tags that can be used to manipulate string values.

	 •	Overview provides an introduction to the string data type and how to cast values to and from other data
types.

	 •	String Symbols details the symbols that can be used to create string expressions.

	 •	String Manipulation Tags describe the member and substitution tags that can be used to modify string
values.

	 •	String Conversion Tags describes the member and substitution tags that can be used to convert the case of
string values.

	 •	String Validation Tags describes the member and substitution tags that can be used to compare strings.

	 •	String Information Tags describes the member and substitution tags that can be used to get information
about strings and characters.

	 •	String Casting Tags describes the [String->Split] tag which can be used to cast a string to an array value.

Information about regular expression can be found in the Regular Expressions chapter which follows. The
string type is often used in conjunction with the bytes type to convert binary data between different character
encodings (UTF-8, ISO-8859-1). See the Bytes chapter for more information about the bytes type.

Overview
Many Lasso tags are dedicated to outputting and manipulating text. Lasso is used to format text-based HTML
pages or XML data for output. Lasso is also used to process and manipulate text-based HTML form inputs and
URLs. Text processing is a central function of Lasso.

As a result of this focus on text processing, the string data type is the primary data type in Lasso. When
necessary, all values are cast to string before subsequent tag or symbol processing occurs. All values are cast to
string before they are output into the HTML page or XML data which will be served to the site visitor.

There are three types of operations that can be performed directly on strings.

	 •	Symbols can be used to perform string calculations within Lasso tags or to perform assignment operations
within LassoScripts.

['The' + ' ' + 'String'] � The String

	 •	Member tags can be used to manipulate string values or to output portions of a string.

['The String'->(Substring: 4, 6)] � String

	 •	Substitution tags can be used to test the attributes of strings or to modify string values.

[String_LowerCase: 'The String'] � the string

3 3 1

L a s s o 8 . 5 L a n g u a g e G u i d e

Each of these methods is described in detail in the sections that follow. This guide contains a description of
every symbol and tag and many examples of their use. The Lasso Reference is the primary documentation
source for Lasso symbols and tags. It contains a full description of each symbol and tag including details
about each parameter.

Unicode Characters
Lasso Professional 8 supports the processing of Unicode characters in all string tags. The escape sequence
\u… can be used with 4, or 8 hexadecimal characters to embed a Unicode character in a string. For example
\u002F reprsents a / character, \u0020 represents a space, and \u0042 represents a capital letter B. The same type
of escape sequence can be used to embed any Unicode character \u4E26 represents the Traditional Chinese
character .

Lasso also supports common escape sequences including \r for a return character, \n for a new-line character,
\r\n for a Windows return/new-line, \f for a form-feed character, \t for a tab, and \v for a vertical-tab.

Casting Values to Strings
Values can be cast to the string data type automatically in many situations or they can be cast explicitly using
the [String] tag.

Table 1: String Tag

Tag	 Description	

[String]	 Casts a value to type string. Requires one value which is the data to be cast to
a string. An optional second parameter can be used when casting byte streams
to a string and specified what character set should be used to translate the byte
stream (defaults to UTF-8).

		

Examples of automatic string casting:

	 •	Integer and decimal values are cast to strings automatically if they are used as a parameter to a string
symbol. If either of the parameters to the symbol is a string then the other parameter is cast to a string
automatically. The following example shows how the integer 123 is automatically cast to a string because
the other parameter of the + symbol is the string String.

['String ' + 123] � String 123

The following example shows how a variable that contains the integer 123 is automatically cast to a string.

[Variable: 'Number' = 123]
['String ' + (Variable: 'Number')] � String 123

	 •	Array, map, and pair values are cast to strings automatically when they are output to a Web page. The value
they return is intended for the developer to be able to see the contents of the complex data type and is not
intended to be displayed to site visitors.

[(Array: 'One', 'Two', 'Three')]

�	 (Array: (One), (Two), (Three))

[(Map: 'Key1'='Value1', 'Key2'='Value2')]

�	 (Map: (Key1)=(Value1), (Key2)=(Value2))

[(Pair: 'Name'='Value')]

�	 (Pair: (Name)=(Value))

More information can be found in the Arrays and Maps chapter.

3 3 2

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 2 5 – S t r i n g O p e r a t i o n s

	 •	The parameters for string substitution tags are automatically cast to strings. The following example shows
how to use the [String_Length] substitution tag on a numeric value from a field.

[Field: 'Age'] � 21
[String_Length: (Field: 'Age')] � 2

To explicitly cast a value to the string data type:

	 •	Integer and decimal values can be cast to type string using the [String] tag. The value of the string is the same
as the value of the integer or decimal value when it is output using the [Variable] tag.

The following example shows a math calculation and the integer operation result 579. The next line shows
the same calculation with string parameters and the string symbol result 123456.

[123 + 456] � 579
[(String: 123) + (String: 456)] � 123456

	 •	Boolean values can be cast to type string using the [String] tag. The value will always either be True or False.
The following example shows a conditional result cast to type string.

[(String: ('dog' == 'cat'))] � false

	 •	String member tags can be used on any value by first casting that value to a string using the [String] tag. The
following example shows how to use the [String->Size] member tag on a numeric value from a field by first
casting the field value to type string.

[Field: 'Age'] � 21
[(String: (Field: 'Age'))->Size] � 2

	 •	Byte streams can be cast to strings including the character set which should be used to export the data
in the byte stream. By default byte streams are assumed to contain UTF-8 character data. For example,
the following code would translate a byte stream contained in a variable by interpreting it as ISO-8859-1
character data. This is analogous to using the [Bytes->ExportString] tag which is described in more detail in the
following chapter on Bytes.

[String: $myByteStream, 'iso-8859-1']

String Symbols
The easiest way to manipulate values of the string data type is to use the string symbols. Table 2: String
Symbols details all the symbols that can be used with string values.

Table 2: String Symbols

Symbol	 Description	

+	 Concatenates two strings. This symbol should always be separated from its
parameters by a space.

-	 Deletes a substring. The first occurrence of the right parameter is deleted from
the left parameter. This symbol should always be separated from its parameters
by a space.

*	 Repeats a string. The right parameter should be a number.

=	 Assigns the right parameter to the variable designated by the left parameter.

+=	 Concatenates the right parameter to the value of the left parameter and assigns
the result to the variable designated by the left parameter.

-=	 Deletes the right parameter from the value of the left parameter and assigns the
result to the variable designated by the left parameter.

*=	 Repeats the value of the left parameter and assigns the result to the variable
designated by the left parameter.

>>	 Returns True if the left parameter contains the right parameter as a substring.

3 3 3

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 2 5 – S t r i n g O p e r a t i o n s

!>>	 Returns True if the left parameter does not contain the right parameter as a
substring.

==	 Returns True if the parameters are equal.

!=	 Returns True if the parameters are not equal.

<	 Returns True if the left parameter comes before the right parameter
alphabetically.

<=	 Returns True if the left parameter comes before the right parameter alphabetically
or if the parameters are equal.

>	 Returns True if the left parameter comes after the right parameter alphabetically.

>=	 Returns True if the left parameter comes after the right parameter alphabetically
or if the parameters are equal.

===	 Returns True if the parameters are equal and both are of type string. No casting
is performed.

		

Each of the string symbols takes two parameters. One of the parameters must be a string value in order for
the symbol to perform the designated string operation. Many of the symbols can also be used to perform
integer or decimal operations. If both parameters are integer or decimal values then the mathematical
operation defined by the symbol will be performed rather than the string operation.

As long as one of the parameters of the symbol is a string the other parameter will be auto-cast to a string
value before the operation defined by the symbol is performed. The two exceptions to this are the * and *=
symbols which must have an integer as the right parameter.

Note: Full documentation and examples for each of the string symbols can be found in the Lasso Reference.

Examples of using the string symbols:

	 •	Two strings can be concatenated using the + symbol. Note that the symbol is separated from its parameters
using spaces.

['Alpha ' + 'Beta'] � Alpha Beta

	 •	A string and an integer can be concatenated using the + symbol. The integer will be automatically cast to a
string. Note that the symbol is separated from its parameters using spaces.

['Alpha ' + 1000] � Alpha 1000

	 •	A substring can be deleted from a string using the - symbol. The following example shows how to
remove the substrings and from a string of HTML text. Note that the symbol is separated from its
parameters using spaces.

['Bold Text' - '' - ''] � Bold Text

	 •	A string can be repeated using the * symbol. The following example shows how to repeat the word
Lasso three times.

['Lasso ' * 3] � Lasso Lasso Lasso

	 •	Strings will be automatically concatenated even if the + symbol is omitted. This makes concatenating long
sets of strings easier.

['Alpha ' 'Beta'] � Alpha Beta

Examples of using the string assignment symbols:

	 •	A string variable can be assigned a new value using the = symbol. The following example shows how to
define a string symbol and then set it to a new value. The new value is output.

<?LassoScript
	 Variable: 'StringVariable' = 'The String Value';
	 $StringVariable = 'New String Value';
	 $StringVariable;
?>

3 3 4

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 2 5 – S t r i n g O p e r a t i o n s

�	 New String Variable

	 •	A string variable can be used as a collector by concatenating new values to it in place using the += symbol.
The following example shows how to define a string symbol and then concatenate several values to it. The
final value is output.

<?LassoScript
	 Variable: 'StringVariable' = 'The ';
	 $StringVariable += 'String ';
	 $StringVariable += 'Variable';
	 $StringVariable;
?>

�	 The String Variable

Examples of using the string comparison symbols:

	 •	Two strings can be compared for equality using the == symbol and != symbol. The result is a boolean True or
False.

['Alpha ' == 'Beta'] � False
['Alpha ' != 'Beta'] � True

	 •	Strings can be ordered alphabetically using the <, <=, >, and <= symbols. The result is a boolean True or
False.

['Alpha ' > 'Beta'] � False
['Alpha ' < 'Beta'] � True

	 •	A string can be checked to see if it contains a particular substring using the >> symbol. The result is a
boolean True or False.

[''Bold Text' >> ''] � True

String Manipulation Tags
The string data type includes many tags that can be used to manipulate string values. The available member
tags are listed in Table 3: String Manipulation Member Tags and the available substitution tags are listed in
Table 4: String Manipulation Tags.

In addition to the tags in this section, the tags in the following section on String Conversion Tags can be
used to modify the case of a string and the tags in the section on Regular Expression Tags can be used for
more powerful string manipulations using regular expressions.

The member tags in this section all modify the base string in place and do not return a value. For example,
the [String->Append] tag works like the += symbol. In order to see the values that were appended to the string,
the variable containing the string must be output.

[Variable: 'myString' = 'Test']
[$myString->(Append: ' string.')]
[$myString] � Test string.

In contrast, the substitution tags return the modified string directly.

[String_Concatenate: 'Test', ' string.'] � Test string.

The member tags should be used when multiple modifications need to be made to a string that is stored in
a variable. The substitution tags, or string symbols, can be used when the value is required immediately for
output.

3 3 5

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 2 5 – S t r i n g O p e r a t i o n s

Table 3: String Manipulation Member Tags

Tag	 Description	

[String->Append]	 Casts the parameters to strings and appends them to the string. Modifies the
string and returns no value. Requires one string parameter.

[String->Merge]	 Inserts a merge string into the string. Requires two parameters, the location at
which to insert the merge string and the string to insert. Optional third and fourth
parameters specify an offset into the merge string and number of characters of
the merge string to insert.

[String->PadLeading]	 Pads the front of a string to a specified length with a pad character. Modifies the
string and returns no value. Requires a length to pad the string. Optional second
parameter is the padding character (defaults to space).

[String->PadTrailing]	 Pads the end of a string to a specified length with a pad character. Modifies the
string and returns no value. Requires a length to pad the string. Optional second
parameter is the padding character (defaults to space).

[String->Remove]	 Removes a substring from the string. The first parameter is the offset at which to
start removing characters. The second parameter is the number of characters to
remove. Defaults to removing to the end of the string.

[String->RemoveLeading]	 Removes all instances of the parameter from the beginning of the string. Modifies
the string and returns no value. Requires a single string parameter.

[String->RemoveTrailing]	 Removes all instances of the parameter from the end of the string. Modifies the
string and returns no value. Requires a single string parameter.

[String->Replace]	 Replaces every occurence of a substring. Requires two parameters, the substring
to find and the replacement string. Modifies the string and returns no value.
Optional third parameter specifies the maximum number of replacements to
perform.

[String->Reverse]	 Reverses the string. Optional parameters specify a character offset and length
for a substring to be reversed. Defaults to reversing the entire string. Modifies the
string and returns no value.

[String->Trim]	 Removes all white space from the start and end of the string. Modifies the string
in place and returns no value.

		

Note: Full documentation and examples for each of the string member tags can be found in the Lasso
Reference.

To replace a substring:

Use the [String->Replace] tag. The following example replaces every instance of and within the string to or.

[Variable: 'myString' = 'Red and Yellow and Blue']
[$myString->(Replace: 'and','or')]
[$myString]

� Red or Yellow or Blue

To remove white space from the start and end of a string:

Use the [String->Trim] tag. The following example removes all the white space from the start and end of the
string leaving just the relevant content.

[Variable: 'myString' = '         Green and Purple          ']
[$myString->(Trim)]
[$myString]

� Green and Purple

3 3 6

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 2 5 – S t r i n g O p e r a t i o n s

Table 4: String Manipulation Tags

Tag	 Description	

[String_Concatenate]	 Concatenates all of its parameters into a single string.

[String_Insert]	 Takes three parameters: a string, a -Text keyword/value parameter which defines
the text to be inserted, and a -Position parameter which defines the offset into
the string at which to insert the text. Returns a new string with the specified text
inserted at the specified location.

[String_Remove]	 Takes three parameters: a string, a -StartPosition keyword/value parameter, and a
-EndPosition keyword/value parameter. Returns the string with the substring from
-StartPosition to -EndPosition removed.

[String_RemoveLeading]	 Takes two parameters: a string and a -Pattern keyword/value parameter. Returns
the string with any occurrences of the pattern removed from the start.

[String_RemoveTrailing]	 Takes two parameters: a string and a -Pattern keyword/value parameter. Returns
the string with any occurrences of the pattern removed from the end.

[String_Replace]	 Takes three parameters: a string, a -Find keyword/value parameter, and a -
Replace keyword/value parameter. Returns the string with the first instance of the
-Find parameter replaced by the -Replace parameter.

		

Note: Full documentation and examples for each of the string tags can be found in the Lasso Reference.

Examples of using string manipulation tags:

	 •	The [String_Extract] tag can be used to return a portion of a string. In the following example five characters of
the string A Short String are returned

[String_Extract: 'A Short String', -StartPosition=3, -EndPosition=8] � Short

	 •	The [String_Remove] tag is similar, but rather than returning a portion of a string, it removes a portion of
the string and returns the remainder. In the following example five characters of the string A Short String are
removed and the remainder is returned.

[String_Remove: 'A Short String', -StartPosition=3, -EndPosition=8] � A String

	 •	The [String_RemoveLeading] and [String_RemoveTrailing] tags can be used to remove a repeating character from
the start or end of a string. In the following example asterisks are removed from a string *A Short String*.

[String_RemoveLeading: -Pattern='*',
	 (String_RemoveTrailing: -Pattern='*', '*A Short String*')]

� A Short String

	 •	The [String_Replace] tag can be used to replace a portion of a string with new characters. In the following
example the word Short is replaced by the word Long.

[String_Replace: 'A Short String', -Find='Short', -Replace='Long'] � A Long String

Note: For more powerful string manipulation see the Regular Expressions section below.

String Conversion Tags
The string data type includes many tags that can be used to change the case of string values. The available
member tags are listed in Table 5: String Conversion Member Tags and the available substitution tags are
listed in Table 6: String Conversion Tags.

The member tags in this section all modify the base string in place and do not return a value. In order to see
the converted string, the variable containing the string must be output.

[Variable: 'myString' = 'Test']
[$myString->(UpperCase)]
[$myString] � TEST

3 3 7

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 2 5 – S t r i n g O p e r a t i o n s

In contrast, the substitution tags return the modified string directly.

[String_UpperCase: 'Test'] � TEST

The member tags should be used when multiple modifications need to be made to a string that is stored in a
variable. The substitution tags can be used when the value is required immediately for output.

Table 5: String Conversion Member Tags

Tag	 Description	

[String->Foldcase]	 Converts all characters in the string for a case-insensitive comparison. Modifies
the string and returns no value.

[String->Lowercase]	 Converts all characters in the string to lowercase. Modifies the string in place and
returns no value. Accepts an optional locale/country code for Unicode conversion.

[String->Titlecase]	 Converts the string to titlecase with the first character of each word capatilized.
Modifies the string in place and returns no value. Accepts an optional locale/
country code for Unicode conversion.

[String->toLower]	 Converts a character of the string to lowercase. Requires the position of the
character to be modifed. Modifies the string in place and returns no value.

[String->toUpper]	 Converts a character of the string to uppercase. Requires the position of the
character to be modifed. Modifies the string in place and returns no value.

[String->toTitle]	 Converts a character of the string to titlecase. Requires the position of the
character to be modifed. Modifies the string in place and returns no value.

[String->Unescape]	 Converts a string from the hexadecimal URL encoding.

[String->Uppercase]	 Converts all characters in the string to uppercase. Modifies the string in place and
returns no value. Accepts an optional locale/country code for Unicode conversion.

		

Note: Full documentation and examples for each of the string member tags can be found in the Lasso
Reference.

Table 6: String Conversion Tags

Tag	 Description	

[String_LowerCase]	 Returns the concatenation of all of its parameters in lowercase.

[String_UpperCase]	 Returns the concatenation of all of its parameters in lowercase.
		

Examples of using string conversion tags:

The [String_UpperCase] and [String_Lowercase] tags can be used to alter the case of a string. The following
example shows the result after using these tags on the string A Short String.

[String_UpperCase: 'A Short String'] � A SHORT STRING
[String_LowerCase: 'A Short String'] � a short string

String Validation Tags
The string data type includes many tags that can be used to compare and validate string values. The available
member tags are listed in Table 7: String Validation Member Tags and the available substitution tags are
listed in Table 8: String Validation Tags.

All of these tags return a boolean value True or False depending on whether the test succeeds or not.

Table 7: String Validation Member Tags

Tag	 Description	

[String->BeginsWith]	 Returns True if the string begins with the parameter. Comparison is case
insensitive. Requires a single string parameter.

3 3 8

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 2 5 – S t r i n g O p e r a t i o n s

[String->Compare]	 This tag has three forms. In the first, it returns 0 if the parameter is equal to the
string, 1 if the characters in the string are bitwise greater than the parameter,
and -1 if the characters in the string are bitwise less than the parameter.
Comparison is case insensitive by default. An optional -Case parameter makes
the comparison case sensitive. Requires a single string parameter.

	 The second form requires three parameters. The first two parameters are
an offset and length into the third string parameter. The comparison is only
performed with this parameter substring.

	 The third form requires two additional parameters. The fourth and fifth parametres
are an offset and length into the base string. The comparison is only performed
between the base and parameter substrings.	

	 [String->CompareCodePointOrder] accepts the same parameters as [String-
>Compare], but provides accurate comparisons for Unicode characters with code
points U+10000 and above.

[String->Contains]	 Returns True if the string contains the parameter as a substring. Comparison is
case insensitive. Requires a single string parameter.

[String->EndsWith]	 Returns True if the string ends with the parameter. Comparison is case
insensitive. Requires a single string parameter.

[String->Equals]	 Returns True if the parameter of the tag is equal to the string. Comparison is
case insensitive. Equivalent to the == symbol.

		

Note: Full documentation and examples for each of the string member tags can be found in the Lasso
Reference.

To compare two strings:

Use the string comparison member tags. The following code checks whether a string stored in a variable is
equal to or contains another string.

[Variable: 'testString' = 'A short string']

[$testString->(BeginsWith: 'a')] � True
[$testString->(BeginsWith: 'A short')] � True
[$testString->(BeginsWith: 'string')] � False
[$testString->(EndsWith: 'string')] � True
[$testString->(Contains: 'short')] � True
[$testString->(Equals: 'a short string')] � True
[$testString->(Compare: 'a short string', -Case)] � False
[$testString->(Compare: 3, 5, 'short')] � True
[$testString->(Compare: 3, 5, 'x short other', 3, 5)] � True

Table 8: String Validation Tags

Tag	 Description	

[String_EndsWith]	 Returns boolean True if the string ends with the string specified in the -Find
parameter. Takes two parameters: a string value and a -Find keyword/value
parameter.

		

Note: Full documentation and examples for each of the string tags can be found in the Lasso Reference.

3 3 9

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 2 5 – S t r i n g O p e r a t i o n s

String Information Tags
The string data type includes many tags that can be used to get information about string and character
values. The available member tags are listed in Table 9: String Information Member Tags and the available
substitution tags are listed in Table 10: String Information Tags. In addition, tags which are specific to
getting information about characters in a string are listed in Table 11: Character Information Member Tags.

These tags return different data types depending on what information is being retrieved about the string.
Those tags that return a character position or require a character position as a parameter all number
characters starting from 1 for the first character in the string.

Table 9: String Information Member Tags

Tag	 Description	

[String->Find]	 Returns the position at which the first parameter is found within the string or
0 if the first parameter is not found within the string. Requires a single string
parameter.

[String->Get]	 Returns a specific character from the string. Requires a single integer parameter.

[String->Size]	 Returns the number of characters in the string.[String->Length] is a synonym.

[String->SubString]	 Returns a substring. The start of the substring is defined by the first parameter
and the length of the substring is defined by the second parameter. Requires two
integer parameters.

		

Note: Full documentation and examples for each of the string member tags can be found in the Lasso
Reference.

To return the length of a string:

	 •	The length of a string can be returned using the [String->Size] tag.

['Alpha'->Size] � 5

	 •	The length of a [Variable] value, [Field] value or any value returned by a Lasso tag can be returned using
the [String->Size] tag.

[$StringVariable + ' ' + $StringVariable->Size] � Alpha 5
[(Field: 'First_Name') + ' ' + (Field: 'First_Name')->Size] � Joe 3

To return a portion of a string:

	 •	A specific character from a string can be returned using the [String->Get] tag. In the following example, the
third character of Alpha is returned.

['Alpha'->(Get: 3)] � p

	 •	A specific range of characters from a string can be returned using the [String->Substring] tag. In the following
example, six characters are returned from the string, starting at the third character.

['A String Value'->(Substring: 3, 6)] � String

	 •	The start of a string can be returned using the [String->Substring] tag with the first parameter set to 1.
The second parameter will define how many characters are returned from the start of the string. In the
following example, the first eight characters of the string are returned.

['A String Value'->(Substring: 1, 8)] � A String

	 •	The end of a string can be returned using the [String->Substring] tag with the second parameter omitted. The
following example returns the portion of the string after the tenth character.

['A String Value'->(Substring: 10)] � Value

3 4 0

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 2 5 – S t r i n g O p e r a t i o n s

Table 10: String Information Tags

Tag	 Description	

[String_Extract]	 Takes three parameters: a string, a -StartPosition keyword/value parameter, and a
-EndPosition keyword/value parameter. Returns a substring from -StartPosition to
-EndPosition.

[String_FindBlocks]	 Requires three parameters: the source string, -Begin to specify the start of
the block, and -End to specify the end of the block. The result is an array
of strings contained within the specified delimiters. The optional parameter -
IgnoreComments will allow you to ignore comment lines. The default comment
character # can be changed with -CommentChar.

[String_FindPosition]	 Takes two parameters: a string value and a -Find keyword/value parameter.
Returns the location of the -Find parameter in the string parameter.

[String_IsAlpha]	 Returns boolean True if the string contains only alphabetic characters (including
a-z as well as foreign characters and characters with accents).

[String_IsAlphaNumeric]	 Returns boolean True if the string contains only alphabetic characters or
numerals (including a-z as well as foreign characters and characters with
accents).

[String_IsDigit]	 Returns boolean True if the string contains only numerals (0-9).

[String_IsHexDigit]	 Returns boolean True if the string contains only hexadecimal numerals (0-9 and
a-f).

[String_IsLower]	 Returns boolean True if the string contains only lowercase alphabetic characters
(including a-z as well as foreign characters and characters with accents).

[String_IsNumeric]	 Returns boolean True if the string contains only numerals, hyphens, or periods.

[String_IsPunctuation]	 Returns boolean True if the string contains only punctuation characters.

[String_IsSpace]	 Returns boolean True if the string contains only white space.

[String_IsUpper]	 Returns boolean True if the string contains only uppercase alphabetic characters
(including a-z as well as foreign characters and characters with accents).

[String_Length]	 Returns the number of characters in the string.
		

Example of using [String_Length] tag:

The [String_Length] tag can be used to return the number of characters in a string. This tag returns the same
results as the [String->Size] tag except the method of calling the tag is somewhat different.

The following example shows how to return the length of the string A Short String using both the [String_Length]
tag and the [String->Size] tag. The result in both cases is 14.

[String_Length: 'A Short String'] � 14
['A Short String'->Size] � 14

Examples of using string validation tags:

The characters in a string can be checked to see if they meet certain criteria using the [String_Is…] tags. Each
character in the string is checked to see if it meets the criteria of the tag. If any single character does not meet
the criteria then False is returned.

	 •	In the following example a string word is checked to see which validation strings it passes. The string is in
lowercase and consists entirely of alphabetic characters. It is not in uppercase and does not consist entirely
of numeric characters.

[String_IsAlpha: 'word'] � True
[String_IsAlphaNumeric: 'word'] � True
[String_IsLower: 'word'] � True
[String_IsNumeric: 'word'] � False
[String_IsUpper: 'word'] � False

	 •	In the following example a string 2468 is checked to see which validation strings it passes. The string
consists entirely of numeric characters. It does not consist entirely of alphabetic characters.

3 4 1

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 2 5 – S t r i n g O p e r a t i o n s

[String_IsAlpha: '2468'] � False
[String_IsAlphaNumeric: '2468'] � True
[String_IsNumeric: '2468'] � True

	 •	Some of the validation tags are intended to be used on individual characters. The following example shows
how each of these tags can be used.

[String_IsDigit: '9'] � True
[String_IsHexDigit: 'a'] � True
[String_IsPunctuation: '.'] � True
[String_IsSpace: ' '] � True

Table 11: Character Information Member Tags

Tag	 Description	

[String->CharDigitValue]	 Returns the integer value of a character or -1 if the character is alphabetic.
Requires a single parameter that specifies the location of the character to be
inspected.

[String->CharName]	 Returns the Unicode name of a character. Requires a single parameter that
specifies the location of the character to be inspected.

[String->CharType]	 Returns the Unicode type of a character. Requires a single parameter that
specifies the location of the character to be inspected.

[String->Digit]	 Returns the integer value of a character according to a particular radix. Requires
two parameters. The first specifies the location of the character to be inspected.
The second specifies the radix of the result (e.g. 16 for hexadecimal).

[String->GetNumericValue]	 Returns the decimal value of a character or a negative number of the character
is alphabetic. Requires a single parameter that specifies the location of the
character to be inspected.

[String->IsAlnum]	 Returns True if the character is alphanumeric. Requires a single parameter that
specifies the location of the character to be inspected.

[String->IsAlpha]	 Returns True if the character is alphabetic. Requires a single parameter that
specifies the location of the character to be inspected.

[String->IsBase]	 Returns True if the character is part of the base characters of Unicode. Requires
a single parameter that specifies the location of the character to be inspected.

[String->IsCntrl]	 Returns True if the character is a control character. Requires a single parameter
that specifies the location of the character to be inspected.

[String->IsDigit]	 Returns True if the character is numeric. Requires a single parameter that
specifies the location of the character to be inspected.

[String->IsLower]	 Returns True if the character is lowercase. Requires a single parameter that
specifies the location of the character to be inspected.

[String->IsPrint]	 Returns True if the character is printable (i.e. not a control character). Requires a
single parameter that specifies the location of the character to be inspected.

[String->IsSpace]	 Returns True if the character is a space. Requires a single parameter that
specifies the location of the character to be inspected.

[String->IsTitle]	 Returns True if the character is titlecase. Requires a single parameter that
specifies the location of the character to be inspected.

[String->IsUpper]	 Returns True if the character is uppercase. Requires a single parameter that
specifies the location of the character to be inspected.

[String->IsWhitespace]	 Returns True if the character is white space. Requires a single parameter that
specifies the location of the character to be inspected.

[String->IsUAlphabetic]	 Returns True if the character has the Unicode alphabetic attribute. Requires a
single parameter that specifies the location of the character to be inspected.

[String->IsULowercase]	 Returns True if the character has the Unicode lowercase attribute. Requires a
single parameter that specifies the location of the character to be inspected.

[String->IsUUppercase]	 Returns True if the character has the Unicode uppercase attribute. Requires a
single parameter that specifies the location of the character to be inspected.

3 4 2

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 2 5 – S t r i n g O p e r a t i o n s

[String->IsUWhiteSpace]	 Returns True if the character has the Unicode white space attribute. Requires a
single parameter that specifies the location of the character to be inspected.

		

Note: Full documentation and examples for each of the string member tags can be found in the Lasso
Reference.

To inspect the Unicode properties of a string:

Use the character information member tags. The following example shows the information that is provided
for a standard ASCII character b. The character name and type are provided according to the Unicode
standard. The [String->Integer] tag returns the decimal ASCII value for the character. The [String->Digit] tag with a
radix of 16 returns the hexadecimal value for the character.

['b'->(CharName: 1)] � LATIN SMALL LETTER B
['b'->(CharType: 1)] � LOWERCASE_LETTER
['b'->(IsLower: 1)] � True
['b'->(IsUpper: 1)] � False
['b'->(IsWhiteSpace: 1)] � False
['b'->(Integer: 1)] � 98
['b'->(Digit: 1, 16)] � 11

The information tags can be used on any Unicode characters. The following example shows the tags being
used on a Traditional Chinese character that roughly translates to “and”. The character is neither uppercase
nor lowercase and is identified by the Unicode reference 4E26.

[' '->(CharName: 1)] � CJK UNIFIED IDEOGRAPH-4E26
[' '->(CharType: 1)] � OTHER_LETTER
[' '->(IsLower: 1)] � False
[' '->(IsUpper: 1)] � False
[' '->(IsWhiteSpace: 1)] � False

Note: The character can be represented in a string by \u4E26 or in HTML as the entity 並.

Table 12: Unicode Tags

Tag	 Description	

[String_GetUnicodeVersion]	 Returns the version of the Unicode standard which Lasso supports.

[String_CharFromName]	 Returns the character corresponding to the specified Unicode character name.
		

String Casting Tags
The string data type includes many tags which can be used to cast a value to or from the string data
type. These tags are documented in the Casting Values to Strings section earlier in this chapter and in
corresponding sections in the chapters for each data type.

In addition, the [String->Split] tag can be used to cast a string into an array. This tag is described in Table 13:
String Casting Member Tags.

Table 13: String Casting Member Tags

Tag	 Description	

[String->Split]	 Splits the string into an array of strings based on the delimiter specified in the
first parameter. This tag does not modify the string, but returns the new array.
Requires a single string parameter.

		

3 4 3

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 2 5 – S t r i n g O p e r a t i o n s

To convert a string into an array:

A string can be converted into an array using the [String->Split] tag. A single parameter defines what character
should be used to split the string into the multiple elements of the array. The following example splits a
string on the space character, returning an array of words from the string.

['A String Value'->(Split: ' ')]

�	 (Array: (A), (String), (Value))

3 4 4

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 2 5 – S t r i n g O p e r a t i o n s

26
Chapter 26

Regular Expressions

The regular expression data type in Lasso allows for powerful search and replace operations on strings and
byte streams. This chapter details how the regular expression data type works and other Lasso tags which can
use regular expressions.

	 •	Overview provides an introduction to regular expressions.

	 •	Regular Expression Type documents the [RegExp] type and how it can be used to create reusable regular
expressions.

	 •	String Tags documents a number of string tags which also allow the use of regular expressions.

Overview
A regular expression is a pattern that describes a sequence of characters which you would like to find in a
target (or input) string. Regular expressions consist of letters or numbers which simply match themselves,
wild cards which match any character in a class such as whitespace, and combining symbols which expand
wild cards to match several characters rather than just one.

The remainder of the overview discusses regular expressions in four parts.

	 •	Wild Cards explains how individual characters and wild cards can be used to create simple regular expres-
soins.

	 •	Combining Symbols explains how combining symbols can be used to expand wild cards.

	 •	Groupings explains how more complex sub-patterns can be created and how parts of a pattern can be
designated for replacement.

	 •	Replacements explains how placeholders can be used in replacement expressions.

	 •	Advanced Expressions lists a number of advanced concepts including word boundaries, assertions,
comments, and more.

Note: Full documentation of regular expression methodology is outside the scope of this manual. Consult a
standard reference on regular expressions for more information about how to use this flexible technology.

Wild Cards
The simplest regular expression is just a word containing letters or numbers. The regular expression bird is
said to match the string “bird”. The regular expression 123 matches the string “123”. The regular expression is
matched against an input string by comparing each character in the regular expression to each character in
the input string one after another. Regular expressions are normally case sensitive so the regular expression
John would not match the string “john”.

Unicode characters within a regular expression work the same as any other character. The escape sequence
\u2FB0 with the four-digit hex value for a Unicode character can also be used in place of any actual character
(within regular expressions or any Lasso strings). The escape sequence \u2FB0 represents a Chinese character.

3 4 5

L a s s o 8 . 5 L a n g u a g e G u i d e

Regular expressions can also match part of a string. The regular expression bird is found starting at position 3
in the string “A bird in the hand.”

A regular expression can contain wild cards which match one of a set of characters. [Jj] is a wild card which
matches either an upper case J or a lower case j. The regular expression [Jj]ohn will match either the string
“John” or the string “john”. The wild card [aeiou] matches any vowel. The wild card [a-z] matches any lower
case roman letter. The wild card [1-9] matches any number. The wild card [a-zA-Z] matches any upper or
lower case roman letter. If a Unicode character is used in a character range then any characters between the
hex value for the two characters are matched. The wild card [\u2FB0-\u2FBF] will match 16 different Chinese
characters.

The period . is a special wild card that matches any single character. The regular expression .. would match
any two character string including “be”, “12”, or even “ “. The period will match any ASCII or Unicode
character including punctuation or most white space characters. It will not match return or new-line
characters.

A number of predefined wild cards are available. The predefined wild cards are all preceded by a double
backslash \\. This differs from some regular expression implementation where the wild cards are preceded
by only a single backslash. The predefined wild cards all come in pairs. The wild card \\s matches any white
space character including tabs, spaces, returns, or new lines. The wild card \\S matches any non-white space
character. The wild card \\w matches any alphanumeric character or underscore. The “w” is said to stand for
“word” since these are all characters that may appear within a word. The wild card \\W matches non-word
characters. The wild card \\d matches any number and the wild card \\D matches any non-number.

For example, the regular expression \\w\\w\\w would match any three character word such as “cat” or “dog”. The
regular expression \\d\\d\\d-\\d\\d\\d\\d-\\d\\d\\d\\d would match a standard United States phone number “360-555-
1212”.

The predefined wild cards only work on standard ASCII strings. There is a special pair of wildcards \\p and \\P
which allow different characters in a Unicode string to be matched. The wild card is specified as \\p{Property}.
The full list of properties can be found in the table below. For example the wild card \\p{L} matches any
Unicode letter character, the wild card \\p{N} matches any Unicode number, and the wild card \\p{P} matches
any Unicode punctuation characters. The \\P{Property} wild card is the opposite. \\P{L} matches any Unicode
character which is not a letter.

The standard string entities for returns \r, new-lines \n, tabs \t, and quotes \' or \" all match themselves when
used in a regular expression. These string entities only require a single backslash.

Many characters have special meanings in regular expressions including [] () { } . * + ? ^ $ | / \. In order to match
one of these character literally it is necessary to use two backslashes in front of it. For example \\[matches a
literal opening square bracket rather than starting a character range.

3 4 6

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 2 6 – R e g u l a r E x p r e s s i o n s

Table 1: Regular Expression Wild Cards

Symbol	 Description	

a-z A-Z 0-9	 Alphanumeric characters (and any other characters not defined as symbols)
match the specified character. Case sensitive.

.	 Period matches any single character.

[…]	 Character class. Matches any character contained within the square brackets.

[^…]	 Character exception class. Matches any character which is not contained within
the square brackets.

[a-z]	 Lower case character range. Matches any character between the two specified.

[A-Z] 	 Upper case character range.

[a-zA-Z] 	 Combination character range.

[0-9]	 Numeric character range.

[a-zA-Z0-9_]	 Complex character range matches any letter, number, or underscore.

\t	 Matches a tab character.

\r	 Matches a return character.

\n	 Matches a new-line character.

\"	 Matches a double quote.

\'	 Matches a single quote.

\u####	 Matches a single Unicode character. The number signs should be replaced with
the 4-digit hex value for the Unicode character.

\p{…}	 Matches a single Unicode character with the stated property. The available
properties are listed in the next table.

\\P{…}	 Matches a single Unicode character which does not have the stated property. The
available properties are listed in the next table.

\\w 	 Matches an alphanumeric 'word' character (underscore included). Does not
match Unicode characters.

\\W	 Matches a non-alphanumeric character (whitespace or punctuation).

\\s	 Matches a blank, whitespace character (space, tab, carriage return, etc.).

\\S	 Matches a non-blank, non-whitespace character.

\\d	 Matches a digit character (0-9).

\\D	 Matches a non-digit character.

\\…	 Escapes the next character. This allows any symbol to be specified as a matching
character including the reserved characters [] () { } . * + ? ^ $ | / \.

		

Note: Other than the built-in escaped characters \n, \r, \t, \", and \' all other escaped characters in regular
expressions should be preceded by two backslashes.

3 4 7

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 2 6 – R e g u l a r E x p r e s s i o n s

The following table contains all of the properties which can be used with the \\p and \\P wild cards. The main
symbol, e.g. \\p{L} will match all of the characters that are matched by each of the variations.

Table 2: Unicode Properties

Symbol	 Description	

L	 Matches a single letter. Variations include: Lu - Uppercase Letter, Ll - Lowercase
Letter, Lt - Titlecase Letter, Lm - Modifier Letter, and Lo - Other Letter.

N	 Matches a single number. Variations include: Nd - Decimal Digit Number,
Nl - Letter Number, and No - Other Number.

P	 Matches a single punctuation character. Variations include: Pc - Connector
Punctuation, Pd - Dash Punctuation, Ps - Open Punctuation, Pe - Close
Punctuation, Pi - Initial Punctuation, Pf - Final Punctuation, and Po - Other
Punctuation.

S	 Matches a single symbol. Variations include: Sm - Math Symbol, Sc - Currency
Symbol, Sk - Modifier Symbol, and So - Other Symbol.

Z	 Matches a single separator (usually a white space character). Variations include:
Zs - Space Separator, Zl - Line Separator, and Zp - Paragraph Separator.

M	 Matches a single mark. Variations include: Mn - Non-Spacing Mark,
Mc - Spacing Combining Mark, and Me - Enclosing Mark.

C	 Matches a single "other" character. Variations include: Cc - Control, Cf - Format,
Cs - Surrogate, Co - Private Use, and Cn - Not Assigned.

		

Combining Symbols
Combining symbols allow wild cards to be expanded to match entire sub strings rather than individual
characters. For example, the wild card [a-z] matches one lower case letter and needs to be repeated three times
to match a three letter word [a-z][a-z][a-z]. Instead, the combining symbol {3} can be used to specify that the
preceding wild card should be repeated three times [a-z]{3}.

The combining symbol + matches one or more repetitions of the preceding wild card. The expression [a-z]+
matches any string of lower case letters. This expression matches the strings “a”, “green”, or “international”. It
does not match “my dog spot” because that string contains characters other than lower case letters (namely
spaces).

The combining symbol + can be used with the . wild card to match any string of one or more characters .+,
with the wild card \\w to match any word \\w+, or with the wild card \\s to match one or more whitespace
characters \\s+. The + symbol can also be used with a simple letter to match one or more repetitions of the
letter. The regular expression Me+t matches both the string “Met” and the string “Meet”, not to mention
“Meeeeeet”.

The combining symbol * matches zero or more repetitions of the preceding wild card. The * symbol can
be used with the generic wild card . to match any string of characters .*. The * symbol can be used with the
whitespace wildcard \\w to match a string of whitespace characters. For example, the expression \\w*cat\\w* will
match the string “cat”, but also the string “ cat “.

Braces are used to designate a specific number of repetitions of the preceding wild card. When the braces
contain a single number they designate that the preceding wild card should be matched exactly that number
of times. [a-z]{3} matches any three lower case letters. When the braces contain two numbers they allow for
any number of repetitions from the lower number to the upper number. [a-z]{3,5} matches any three to five
lower case letters. If the second number is omitted then the braces function similarly to a +. [a-z]{3,} matches
any string of lower case letters longer than three.

The symbol ? on its own makes the preceding wild card optional. For example, the expression mee?t will
match either the string “met” or “meet” since the second “e” is optional.

3 4 8

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 2 6 – R e g u l a r E x p r e s s i o n s

When used after a +, *, or braces the ? makes the match non-greedy. Normally, a sub-expression will match
as much of the input string as possible. The expression <.*> will match a string which begins and ends with
angle brackets. It will match entire string “Bold Text”. With the greedy option the expression <.*?>
will match the shortest string possible. It will now match just the first part of the string “” and a second
application of the expression will match the last part of the string “”.

Table 3: Regular Expression Combination Symbols

Symbol	 Description	

+	 Plus. Matches 1 or more repetitions of the preceding symbol.

*	 Asterisk. Matches 0 or more repetitions of the preceding symbol.

?	 Question Mark. Makes the preceding symbol optional.

{n}	 Braces. Matches n repetitions of the preceding symbol.

{n,}	 Matches at least n repetitions of the preceding symbol.

{n,m}	 Matches at least n, but no more than m repetitions of the preceding symbol.

+?	 Non-greedy variant of the plus sign, matches the shortest string possible.

*?	 Non-greedy variant of the asterisk, matches the shortest string possible.

{…}?	 Non-greedy variant of braces, matches the shortest string possible.
		

Groupings
Groupings are used for two purposes in regular expression. They allow portions of a regular expression to
be designated as groups which can be used in a replacement pattern. And, they allow more complex regular
expressions to be built up from simple regular expressions.

Parentheses are used to designate a portion of a regular expression as a replacement group. Most regular
expressions are used to perform find/replace operations so this is an essential part of designing a pattern.
Note that if parentheses are meant to be a literal part of the pattern then they need to be escaped as \\(and \\).

The regular expression (.*?) matches an HTML bold tag. The contents of the tag are designated as a
group. If this regular expression is applied to the string “Bold Text” then the pattern matches the
entire string and “Bold Text” is designated as the first group.

Similarly, a phone number could be matched by the regular expression \\((\\d{3})\\) (\\d{3})-(\\d{4}) with three
groups. The first group represents the area code (note that the parentheses appear in both escaped form \\(\\)
to match a literal opening parenthesis and normal form () to designated a grouping). The second group
represents the prefix and the third group the subscriber number. When the regular expression is applied to
the string “(360) 555-1212” then the pattern matches the entire string and generates the groups “360”, “555”,
and “1212”.

Parentheses can also be used to create a sub-expression which does not generate a replacement group using
(?:). This form can be used to create sub-expressions which function much like very complex wild cards. For
example, the expression (?:blue)+ will match one or more repetitions of the sub-expression blue. It will match
the strings “blue”, “blueblue” or “blueblueblueblue”.

The | symbol can be used to specify alternation. It is most useful when used with sub-expressions. The expres-
sion (?:blue)|(?:red) will match either the word “blue” or the word “red”.

Table 4: Regular Expression Grouping Symbols

Symbol	 Description	

()	 Grouping for output. Defines a named group for output. Nine groups can be
defined.

(?:)	 Grouping without output. Can be used to create a logical grouping that should not
be assigned to an output.

|	 Alternation. Matches either the character before or the character after the symbol.
		

3 4 9

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 2 6 – R e g u l a r E x p r e s s i o n s

Replacement Expressions
When regular expressions are used for find/replace operations the replacement expression can contain place
holders into which the defined groups from the search expression are placed. The place holder \\0 represents
the entire matched string. The place holders \\1 through \\9 represent the first nine groupings as defined by
parentheses in the regular expression.

The regular expression (.*?) from above matches an HTML bold tag with the contents of the tag
designated as a group. The replacement expression \\1 will essentially replace the bold tags with
emphasis tags, without disrupting the contents of the tags. For example the string “Bold Text” would
result in “Bold Text” after a find/replace operation.

The phone number expression \\((\\d{3})\\) (\\d{3})-(\\d{4}) from above matches a phone number and creates three
groups for the parts of the phone number. The replacement expression \\1-\\2-\\3 would rewrite the phone
number to be in a more standard format. For example, the string “(360) 555-1212” would result in “360-555-
1212” after a find/replace operation.

Table 5: Regular Expression Replacement Symbols

Symbol	 Description	

\\0 … \\9	 Names a group in the replace string. \\0 represents the entire matched string.
Up to nine groups can be specified using the numerals 1 through 9.

		

Note: Other than the built-in escaped characters \n, \r, \t, \", and \' all other escaped characters in regular
expressions should be preceded by two backslashes.

Note: The [RegExp] type also supports $0 and $1 through $9 as replacement symbols. In order to place a literal $ in
a replacement string it is necessary to escape it as \\$.

3 5 0

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 2 6 – R e g u l a r E x p r e s s i o n s

Advanced Expressions
Lasso supports a number of more advanced symbols for special purposes. Some of these symbols are listed
in the following table, but a reference on regular expressions should be consulted for full documentation of
these symbols and other advanced concepts.

Table 6: Regular Expression Advanced Symbols

Symbol	 Description	

(#)	 Regular expression comment. The contents are not interpreted as part of the
regular expression.

(?i)	 Sets the remainder of the regular expression to be case insensitive. Similar to
specifying -IgnoreCase.

(?-i)	 Sets the remainder of the regular expression to be case sensitive (the default).

(?i:)	 The contents of this group will be matched case insensitive and the group will not
be added to the output.

(?-i:)	 The contents of this group will be matched case sensitive and the group will not
be added to the output.

(?=)	 Positive look ahead assertion. The contents are matched following the current
position, but not added to the output pattern.

(?!)	 Negative look ahead assertion. The same as above, but the content must not
match following the current position.

(?<=)	 Positive look behind assertion. The contents are matched preceding the current
position, but not added to the output pattern.

(?<!)	 Negative look behind assertion. The same as above, but the contents must not
match preceding the current position.

\\b	 Matches the boundary between a word and a space. Does not properly interpret
Unicode characters. The transition between any regular ASCII character
(matched by \\w) and a Unicode character is seen as a word boundary.

\\B	 Matches a boundary not between a word and a space.

^	 Circumflex matches the beginning of a line.

$	 Dollar sign matches the end of a line.
		

Regular Expression Type
The regular expression type allows a regular expression to be defined once and then re-used many times. It
facilitates simple search operations, splitting strings, and interactive find/replace operations.

The [RegExp] type has some advantages over the string tags which perform regular expression operations.
Performance can be increased by compiling a regular expression once and then reusing it multiple times. The
regular expression type also allows for much more complex find/replace operations.

The regular expression type has a number of member tags which allow access to the stored regular
expressions and input and output strings, perform find/replace operations, or act as components in an
interactive find/replace operation. These are described in the following table and additional tables in the
sections about Simple Find/Replace and Split Operations and Interactive Find/Replace Operations.

Creating a Regular Expression
The [RegExp] tag creates a reusable regular expression. The regular expression type must be initialized with
a -Find pattern. The type will also store a -Replace pattern, and -Input string. These can be overrided when
particular member tags of the type are used. The type also has an -IgnoreCase option which controls whether
regular expressions are applied with case sensitivity or not.

3 5 1

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 2 6 – R e g u l a r E x p r e s s i o n s

Table 7: Regular Expression Type

Tag	 Description	

[RegExp]	 Creates a regular expression. Accepts the following parameters.

-Find	 The find regular expression. Required.

-Replace	 Replacement expression. Optional.

-Input	 Input string. Optional.

-IgnoreCase	 If specified then regular expressions will be applied without case sensitivity.
Optional.

		

A regular expression can be created which explicitly specifies the -Find pattern, -Replace pattern, -Input, and
-IgnoreCase option. Using a fully qualified regular expression which is output on the page (rather than being
stored in a variable) is an easy way to perform a quick find/replace operation.

[RegExp: -Find='[aeiou]', -Replace='x', -Input='The quick brown fox jumped over the lazy dog.', -IgnoreCase]

�	 Thx qxxck brxwn fxx jxmpxd xvxr thx lxzy dxg

However, usually a regular expression will be stored in a variable and then run later against an input string.
The following code stores a regular expression with a find and replace pattern into the variable $MyRegExp.
The following section on Simple Find/Replace and Split Operations will show how this regular expression
can be applied to strings.

[Var: 'MyRegExp' = (RegExp: -Find='[aeiou]', -Replace='x', -IgnoreCase)]

The tags in the followin table allow the stored patterns and input/output strings of a regular expression to be
inspected and modified.

Table 8: Regular Expression Accessors

Tag	 Description	

[RegExp->FindPattern]	 Returns the find pattern. With a parameter sets a new find pattern and resets the
type.

[RegExp->ReplacePattern]	 Returns the replacemen pattern. With a parameter sets a new replacement
parameter.

[RegExp->Input]	 Returns the input string. With a parameter sets a new input string.

[RegExp->IgnoreCase]	 Returns True or False. With a boolean parameters sets or clears the ignore case
option.

[RegExp->GroupCount]	 Returns an integer specifying how many groups were found in the find pattern.

[RegExp->Output]	 Returns the output string.
		

For example, the regular expression above can be inspected by the following code. The group count is 0 since
the find expression does not contain any parentheses.

FindPattern: [$MyRegExp->FindPattern]
ReplacePattern: [$MyRegExp->ReplacePattern]
IgnoreCase: [$MyRegExp->IgnoreCase]
GroupCount: [$MyRegExp->GroupCount]

�	 FindPattern: [aeiou]
ReplacePattern: x
IgnoreCase: True
GroupCount: 0

3 5 2

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 2 6 – R e g u l a r E x p r e s s i o n s

Simple Find/Replace and Split Operations
The regular expression type provides two member tags which perform a find/replace on an input string and
one tag which splits an input string into an array. These tags are documented in the following table and
examples of their use follows. These tags are short cuts for longer operations which can be performed using
the interactive tags described in the following section.

Table 9: Regular Expression Convenience Tags

Tag	 Description	

[RegExp->ReplaceAll]	 Replaces all occurrences of the current find pattern with the current replacement
pattern. The -Input parameter specifies what string should be operated on.
If no input is provided then the input stored in the regular expression object is
used. If desired, new -Find and -Replace patterns can also be specified within
this tag.

[RegExp->ReplaceFirst]	 Replaces the first occurence of the current find pattern with the current
replacement pattern. Uses the same parameters as [RegExp->ReplaceAll].

[RegExp->Split]	 Splits the string using the regular expression as a delimiter and returns an array
of substrings. The -Input parameter specifies what string should be operated on.
If no input is provided then the input stored in the regular expression object is
used. If desired, a new -Find pattern can also be specified within this tag.

		

To use the same regular expression on multiple inputs:

The same regular expression can be used on multiple inputs by first compiling the regular expression using
the [RegExp] tag and then calling [RegExp->ReplaceAll] with a new -Input as many times as necessary. Since
the regular expression is only compiled once this technique can be considerably faster than using the
[String_ReplaceRegExp] tag repeatedly.

[Var: 'MyRegExp' = (RegExp: -Find='[aeiou]', -Replace='x', -IgnoreCase)]
[Encode_HTML: $MyRegExp->(ReplaceAll: -Input='The quick brown fox jumped over the lazy dog.')]
[Encode_HTML: $MyRegExp->(ReplaceAll: -Input='Lasso Professional 8.5')]

�	 Thx qxxck brxwn fxx jxmpxd xvxr thx lxzy dxg.
Lxssx Prxfxssxxnxl 8.5

The replace pattern can also be changed if necessary. The following code changes both the input and replace
patterns each time the regular expression is used.

[Var: 'MyRegExp' = (RegExp: -Find='[aeiou]', -Replace='x', -IgnoreCase)]
[Encode_HTML: $MyRegExp->(ReplaceAll: -Input='The quick brown fox jumped over the lazy dog.', -Replace='y')]
[Encode_HTML: $MyRegExp->(ReplaceAll: -Input='Lasso Professional 8.5', -Replace='z')]

�	 Thy qyyck brywn fyy jympyd yvyr thy lyzy dyg.
Lzssz Przfzsszznzl 8.5

The replacement pattern can reference groups from the input using \\1 through \\9. The following example
uses a regular expression to clean up telephone numbers. The regular expression is run on several different
phone numbers.

[Var: 'MyRegExp' = (RegExp: -Find='\\((\\d{3})\\) (\\d{3})-(\\d{4})', -Replace='\\1-\\2-\\3’, -IgnoreCase)]
[Encode_HTML: $MyRegExp->(ReplaceAll: -Input='(360) 555-1212')]
[Encode_HTML: $MyRegExp->(ReplaceAll: -Input='(800) 555-1212')]

�	 360-555-1212
800-555-1212

3 5 3

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 2 6 – R e g u l a r E x p r e s s i o n s

To split a string using a regular expression:

The [RegExp->Split] tag can be used to split a string using a regular expression as the delimiter. This allows
strings to be split into parts using sophisticated criteria. For example, rather than splitting a string on a
comma, the “and” before the last item can be taken into account. Or, rather than splitting a string on space,
the string can be split into words taking punctuation and other whitespace into account.

The same regular expression from the example above can be used to split a string into sub-strings. In this case
the string will be split on vowels generating an array with elements which contain only consonants or spaces.

[Var: 'MyRegExp' = (RegExp: -Find='[aeiou]', -Replace='x', -IgnoreCase)]
[Encode_HTML: $MyRegExp->(Split: -Input='The quick brown fox jumped over the lazy dog.')]

�	 array: (Th), (q), (), (ck br), (wn f), (x j), (mp), (d), (v), (r th), (l), (zy d), (g.)

The -Find can be modified within the [RegExp->Split] tag to split the string on a different regular expression.
In this example the string is split on any run of one or more non-word characters. This splits the string into
words not including any whitespace or punctuation.

[Encode_HTML: $MyRegExp->(Split: -Find='\\W+', -Input='The quick brown fox jumped over the lazy dog.')]

�	 array: (The), (quick), (brown), (fox), (jumped), (over), (the), (lazy), (dog)

If the -Find expression contains groups then they will be returned in the array in between the split elements.
For example, surrounding the -Find pattern above with parentheses will result in an array of alternating word
elements and whitespace/puncuation elements.

[Encode_HTML: $MyRegExp->(Split: -Find='(\\W+)', -Input='The quick brown fox jumped over the lazy dog.')]

�	 array:(The), (), (quick), (), (brown), (), (fox), (), (jumped), (), (over), (), (the), (), (lazy), (), (dog), (.)

Interactive Find/Replace Operations
The regular expression type provides a collection of member tags which make interactive find/replace opera-
tions possible. Interactive in this case means that Lasso code can intervene in each replacement as it happens.
Rather than performing a simple one shot find/replace like those shown in the last section, it is possible to
programmatically determine the replacement strings using database searches or any LassoScript logic.

The order of operations of an interactive find/replace operation is as follows:

	 1	The regular expression type is initialized with a -Find pattern and -Input string. In this example the find
pattern will match each word in the input string in turn.

[Var: 'MyRegExp' = (RegExp: -Find='\\w+', -Input='The quick brown fox jumped over the lazy dog.', -IgnoreCase)]

	 2	A [While] … [/While] loop is used to advance the regular expression match with [RegExp->Find]. Each time
through the loop the pattern is advanced one match forward. If there are no further matches then the loop
is exited automatically.

[While: $MyRegExp->Find]
	 …
[/While]

	 3	Within the [While] … [/While] loop the [RegExp->MatchString] tag is used to inspect the current match. If
the find pattern had groups then they could be inspected here by passing an integer parameter to
[RegExp->MatchString].

	 [Var: 'MyMatch' = $MyRegExp->MatchString]

	 4	The match is manipulated. For this example the match string will be reversed using the [String->Reverse] tag.
This will reverse the word “lazy” to be “yzal”.

	 [$MyMatch->Reverse]

3 5 4

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 2 6 – R e g u l a r E x p r e s s i o n s

	 5	The modified match string is now appended to the output string using the [RegExp->AppendReplacement] tag.
This tag will automatically append any parts of the input string which weren’t matched (the spaces between
the words).

	 [$MyRegExp->(AppendReplacement: $MyMatch)]

	 6	After the [While] … [/While] loop the [RegExp->AppendTail] tag is used to append the unmatched end of the input
string to the output (the period at the end of the input).

[$MyRegExp->AppendTail]

	 7	Finally, the output string from the regular expression object is displayed.

[Encode_HTML: $MyRegExp->Output]

�	 ehT kciuq nworb xof depmuj revo eht yzal god.

This same basic order of operation is used for any interactive find/replace operation. The power of this meth-
odology comes in the fourth step where the replacement string can be generated using any code necessary,
rather than needing to be a simple replacement pattern.

Table 10: Regular Expression Interactive Tags

Tag	 Description	

[RegExp->Find]	 Advances the regular expression one match in the input string. Returns True if
the regular expression was able to find another match. Defaults to checking from
the start of the input string (or from the end of the most recent match).Optional
-StartPos parameter sets the position in the input string at which to start the
search.

[RegExp->MatchString]	 Returns a string containing the last pattern match. Optional -GroupNumber
parameter specifies a group from the find pattern to return (defaults to returning
the entire pattern match).

[RegExp->MatchPosition]	 Returns a pair containing the start position and length of the last pattern match.
Optional -GroupNumber parameter specifies a group from the find pattern to
return (defaults to returning information about the entire pattern match).

[RegExp->AppendReplacement]	 Performs a replace operation on the previous pattern match and appends
the result onto the output string. Requires a single parameter which specifies
the replacement pattern including group placeholders \\0 … \\9. Automatically
appends any unmatched runs from the input string.

[RegExp->AppendTail]	 The final step in an interactive find/replace operation. This tag appends the final
unmatched run from the input string onto the output string.

[RegExp->Reset]	 Resets the type. If called with no parameters, the input string is set to the output
string. Acceptions optional -Find, -Replace, -Input, and -IgnoreCase parameters.

[RegExp->Matches]	 Returns True if the pattern matches the entire input string. Optional -StartPos
parameter sets the position in the input string at which to start the search.

[RegExp->MatchesStart]	 Returns True if the pattern matches a substring of the input string. Defaults
to checking the start of the input string. Optional -StartPos parameter sets the
position in the input string at which to start the search.

		

To perform an interactive find/replace operation:

This example searches for variable names with a dollar sign in an input string and replaces them with vari-
able values. An interactive find/replace operation is used so that the existence of each variable can be checked
dynamically as the string is processed.

The string has several words replaced by variable references and each variable is defined with a replacement
word.

Var: 'MyString' = 'The quick $brown fox $verb over the lazy $animal.';
Var: 'color' = 'red';
Var: 'verb' = 'soared';
Var: 'animal' = 'ocelot';

3 5 5

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 2 6 – R e g u l a r E x p r e s s i o n s

A regular expression is initialized with the input string and a pattern that looks for words which begin
with a dollar sign. The word itself is defined as a group within the find pattern. A [While] … [/While] loop uses
[RegExp->Find] to advance through all the matches in the input string. The tag [RegExp->MatchString] with a
parameter of 1 returns the variable name for each match. If this variable exists then its value is substituted
back into output string using [RegExp->AppendReplacement], otherwise, the full match is substituted back into
the output string with the replacement pattern \\0. Finally, any remaining unmatched input string is appended
to the end of the output string using [RegExp->AppendTail].

Var: 'MyRegExp' = (RegExp: -Find='\\$(\\w+)', -Input=$MyString, -IgnoreCase);
While: $MyRegExp->Find;
	 Var: 'temp' = $MyRegExp->(MatchString: 1);
	 If: (Var_Defined: $Temp);
		 $MyRegExp->(AppendReplacement: (Var: $Temp));
	 Else;
		 $MyRegExp->(AppendReplacement: '\\0');
	 /If;
/While;
$myregexp->AppendTail;

After the operation has completed the output string is displayed.

Encode_HTML: $MyRegExp->Output;

�	 The quick red fox soared over the lazy ocelot.

String Tags
The [String_FindRegExp] and [String_ReplaceRegExp] tags can be used to perform regular expressions find and
replace routines on text strings.

Table 11: Regular Expression String Tags

Tag	 Description	

[String_FindRegExp]	 Takes two parameters: a string value and a -Find keyword/value parameter.
Returns an array with each instance of the -Find regular expression in the string
parameter. Optional -IgnoreCase parameter uses case insensitive patterns.
Optional -MatchLimit sets the recursive match limit for the tag (defaults to
100,000).

[String_ReplaceRegExp]	 Takes three parameters: a string value, a -Find keyword/value parameter, and a
-Replace keyword/value parameter. Returns an array with each instance of the
-Find regular expression replaced by the value of the -Replace regular expression
the string parameter. Optional -IgnoreCase parameter uses case insensitive
parameters. Optional -ReplaceOnlyOne parameter replaces only the first pattern
match. Optional -MatchLimit sets the recursive match limit for the tag (defaults to
100,000).

		

Note: By default Lasso uses a recursive match limit depth of 100,000. The -MatchLimit parameter can be used in
either the [String_FindRegexp] or [String_ReplaceRegExp] tag to modify the match limit if Lasso reports an error when
using these tags.

Examples of using [String_ReplaceRegExp]:

The [String_ReplaceRegExp] tag works much like [String_Replace] except that both the -Find parameter and the
-Replace can be regular expressions.

3 5 6

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 2 6 – R e g u l a r E x p r e s s i o n s

	 •	In the following example, every occurrence of the world Blue in the string is replaced by the HTML code
Blue so that the word Blue appears in blue on the Web page. The -Find parameter is
specified so either a lowercase or uppercase b will be matched. The -Replace parameter references \\1 to insert
the actual value matched into the output.

[String_ReplaceRegExp: 'Blue Lake sure is blue today.',
	 -Find='([Bb]lue)',
	 -Replace='\\1', -EncodeNone]

�	 Blue lake sure is blue today.

	 •	In the following example, every email address is replaced by an HTML anchor tag that links to the same
email address. The \\w symbol is used to match any alphanumeric characters or underscores. The at sign @
matches itself. The period must be escaped \\. in order to match an actual period and not just any character.
This pattern matches any email address of the type name@example.com.

[String_ReplaceRegExp: 'Send email to documentation@lassosoft.com.',
	 -Find='(\\w+@\\w+\\.\\w+)',
	 -Replace='\\1', -EncodeNone]

�	 Send email to
documentation@lassosoft.com

Examples of using [String_FindRegExp]:

The [String_FindRegExp] tag returns an array of items which match the specified regular expression within
the string. The array contains the full matched string in the first element, followed by each of the matched
subexpressions in subsequent elements.

	 •	In the following example, every email address in a string is returned in an array.

[String_FindRegExp: 'Send email to documentation@lassosoft.com.',
	 -Find='\\w+@\\w+\\.\\w+']

�	 (Array: (documentation@lassosoft.com))

	 •	In the following example, every email address in a string is returned in an array and sub-expressions are
used to divide the username and domain name portions of the email address. The result is an array with
the entire match string, then each of the sub-expressions.

[String_FindRegExp: 'Send email to documentation@lassosoft.com.',
	 -Find='(\\w+)@(\\w+\\.\\w+)']

�	 (Array: (documentation@lassosoft.com), (documentation), (lassosoft.com))

	 •	In the following example, every word in the source is returned in an array. The first character of each word
is separated as a sub-expression. The returned array contains 16 elements, one for each word in the source
string and one for the first character sub-expression of each word in the source string.

[String_FindRegExp: 'The quick brown fox jumped over a lazy dog.',
	 -Find='(\\w)\\w*']

�	 (Array: (The), (T), (quick), (q), (brown), (b), (fox), (f), (jumped), (j),
	 (over), (o), (a), (a), (lazy), (l), (dog), (d))

The resulting array can be divided into two arrays using the following code. This code loops through the
array (stored in Result_Array) and places the odd elements in the array Word_Array and the even elements in
the array Char_Array using the [Repetition] tag.

3 5 7

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 2 6 – R e g u l a r E x p r e s s i o n s

[Variable: 'Word_Array' = (Array), 'Char_Array'=(Array)]
[Variable: 'Result_Array' = (String_FindRegExp:
	 'The quick brown fox jumped over a lazy dog.', -Find='(\\w)\\w*')]
[Loop: $Result_Array->Size]
	 [If: (Repetition) == 2]
		 [$Char_Array->(Insert: $Result_Array->(Get: (Loop_Count)))]
	 [Else]
		 [$Word_Array->(Insert: $Result_Array->(Get: (Loop_Count)))]
	 [/If]
[Loop]

[Output:$Word_Array]

[$Char_Array]

�	
(Array: (The), (quick), (brown), (fox), (jumped), (over), (a), (lazy), (dog))

(Array: (T), (q), (b), (f), (j), (o), (a), (l), (d))

	 •	In the following example, every phone number in a string is returned in an array. The \\d symbol is used
to match individual digits and the {3} symbol is used to specify that three repetitions must be present. The
parentheses are escaped \\(and \\) so they aren’t treated as grouping characters.

[String_FindRegExp: 'Phone (800) 555-1212 for information.'
	 -Find='\\(\\d{3}\\) \\d{3}-\\d{4}']

�	 (Array: ((800) 555-1212))

	 •	In the following example, only words contained within HTML bold tags …  are returned. Positive
look ahead and look bind assertions are used to find the contents of the tags without the tags themselves.
Note that the pattern inside the assertions uses a non-greedy modifier.

[String_FindRegExp: 'This is some sample text!'
	 -Find='(?<=).+?(?=)']

�	 (Array: (sample text))

3 5 8

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 2 6 – R e g u l a r E x p r e s s i o n s

27
Chapter 27

Bytes

Binary data in Lasso is stored and manipulated using the bytes data type or the [Byte] tags. This chapter details
the symbols and tags that can be used to manipulate binary data.

	 •	Bytes Type describes the data type which Lasso uses for binary data.

Note: The bytes type is often used in conjunction with the string type to convert binary data between different
character encodings (UTF-8, ISO-8859-1). See the previous chapter for more information about the string type.

Bytes Type
All string data in Lasso is processed as double-byte Unicode characters. The [Bytes] type is used to represent
strings of single-byte binary data. The [Bytes] type is often referred to as a byte-stream or binary data.

Lasso tags return data in the [Bytes] type in the following situations.

	 •	The [Field] tag returns a byte stream from MySQL BLOB fields.

	 •	When the -Binary encoding type is used on any tag.

	 •	The [Bytes] tag can be used to allocate a new byte stream.

	 •	Other tags that return binary data. See the Lasso Reference for a complete list.

Table 1: Byte Stream Tag

Tag	 Description	

[Bytes]	 Allocates a byte stream. Can be used to cast a string data type as a bytes type,
or to instantiate a new bytes instance. Accepts two optional parameters. The first
is the initial size in bytes for the stream. The second is the increment to use to
grow the stream when data is stored that goes beyond the current allocation.

		

Byte streams are similar to strings and support many of the same member tags. In addition, byte streams
support a number of member tags that make it easier to deal with binary data. These tags are listed in the
Byte Stream Member Tags table.

Table 2: Byte Stream Member Tags

Tag	 Description	

[Bytes->Size]	 Returns the number of bytes contained in the bytes stream object.

[Bytes->Get]	 Returns a single byte from the stream. Requires a parameter which specifies
which byte to fetch.

[Bytes->SetSize]	 Sets the byte stream to the specified number of bytes.

[Bytes->GetRange]	 Gets a range of bytes from the byte stream. Requires a single parameter which is
the byte position to start from. An optional second parameter specifies how many
bytes to return.

3 5 9

L a s s o 8 . 5 L a n g u a g e G u i d e

[Bytes->SetRange]	 Sets a range of characters within a byte stream. Requires two parameters:
An integer offset into the base stream, and the binary data to be inserted. An
optional third and fourth parameter specify the offset and length of the binary
data to be inserted.

[Bytes->Find]	 Returns the position of the beginning of the parameter sequence within the bytes
instance, or 0 if the sequence is not contained within the instance. Four optional
integer parameters (offset, length, parameter offset, parameter length) indicate
position and length limits that can be applied to the instance and the parameter
sequence.

[Bytes->Replace]	 Replaces all instances of a value within a bytes stream with a new value.
Requires two parameters. The first parameter is the value to find, and the second
parameter is the value to replace the first parameter with.

[Bytes->Contains]	 Returns true if the instance contains the parameter sequence.

[Bytes->BeginsWith]	 Returns true if the instance begins with the parameter sequence.

[Bytes->EndsWith]	 Returns true if the instance ends with the parameter sequence.

[Bytes->Split]	 Splits the instance into an array of bytes instances using the parameter sequence
as the delimiter. If the delimiter is not provided, the instance is split, byte for byte,
into an array of byte instances.

[Bytes->Remove]	 Removes bytes form a byte stream. Requires an offset into the byte stream.
Optionally accepts a number of bytes to remove.

[Bytes->RemoveLeading]	 Removes all occurrances of the parameter sequence from the beginning of the
instance. Requires one parameter which is the data to be removed.

[Bytes->RemoveTrailing]	 Removes all occurrances of the parameter sequence from the end of the
instance. Requires one parameter which is the data to be removed.

[Bytes->Append]	 Appends the specified data to the end of the bytes instance. Requires one
parameter which is the data to append.

[Bytes->Trim]	 Removes all whitespace ASCII characters from the beginning and the end of the
instance.

[Bytes->Position]	 Returns the current position at which imports will occur in the byte stream.

[Bytes->SetPosition]	 Sets the current position within the byte stream. Requires a single integer
parameter.

[Bytes->ExportString]	 Returns a string represeting the byte stream. Accepts a single parameter which is
the character encoding (e.g. ISO-8859-1, UTF-8) for the export. A parameter of
'Binary' will perform a byte for byte export of the stream.

[Bytes->Export8bits]	 Returns the first byte as an integer.

[Bytes->Export16bits]	 Returns the first 2 bytes as an integer.

[Bytes->Export32bits]	 Returns the first 4 bytes as an integer.

[Bytes->Export64bits]	 Returns the first 8 bytes as an integer.

[Bytes->ImportString]	 Imports a string parameter. A second parameter specifies the encoding (e.g. ISO-
8859-1, UTF-8) to use for the import. A second parameter of 'Binary' will perform
a byte for byte import of the string.

[Bytes->Import8Bits]	 Imports the first byte of an integer parameter.

[Bytes->Import16Bits]	 Imports the first 2 bytes of an integer parameter.

[Bytes->Import32Bits]	 Imports the first 4 bytes of an integer parameter.

[Bytes->Import64Bits]	 Imports the first 8 bytes of an integer parameter.

[Bytes->SwapBytes]	 Swaps each two bytes with each other.
		

To cast string data as a bytes object:

Use the [Bytes] tag. The following example converts a string to a bytes variable.

[Var:'Object'=(Bytes: 'This is some text')]

3 6 0

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 2 7 – B y t e s

To instantiate a new bytes object:

Use the [Bytes] tag. The example below creates an empty bytes object with a size of 1024 bytes and a growth
increment of 16 bytes.

[Var:'Object'=(Bytes: 1024, 16)]

To return the size of a byte stream:

Use the [Bytes->Size] tag. The example below uses a [Field] tag that has been converted to a bytes type using the
-Binary parameter.

[Var:'Bytes'=(Field:'Name', -Binary)]
[$Bytes->Size]

To return a single byte from a byte stream:

Use the [Bytes->Get] tag. An integer parameter specifies the order number of the byte to return. Note that this
tag returns a byte, not a fragment of the orignial data (such as a string character).

[Var:'Bytes'=(Field:'Name', -Binary)]
[$Bytes->(Get: 1)]

To find a value within a byte stream:

Use the [Bytes->Find] tag. The example below returns the starting byte number of the value LassoSoft, which is
contained within the byte stream.

[Var:'Bytes'=(Field:'Name', -Binary)]
[$Bytes->(Find: 'LassoSoft')]

To determine if a value is contained within a byte stream:

Use the [Bytes->Contains] tag. The example below returns True if the value LassoSoft is contained within the byte
stream.

[Var:'Bytes'=(Field:'Name', -Binary)]
[$Bytes->(Contains: 'LassoSoft')]

To add a string to a byte stream:

Use the [Bytes->Append] tag. The following example adds the string I am to the end of a bytes stream.

[Var:'Bytes'=(Field:'Name', -Binary)]
[$Bytes->(Append: 'I am')]

To find and replace values in a byte stream:

Use the [Bytes->Replace] tag. The following example finds the string Blue and replaces with the string Green
within the bytes stream.

[Var:'Bytes'=(Bytes: 'Blue Red Yellow')]
[$Bytes->(Replace: 'Blue', 'Green')]

To export a string from a bytes stream:

Use the [Bytes->ExportString] tag. The following example exports a string using UTF-8 encoding.

[Var:'Bytes'=(Bytes: 'This is a string')]
[$Bytes->(ExportString: 'UTF-8')]

To import a string into a bytes stream:

Use the [Bytes->ImportString] tag. The following example imports a string using ISO-8859-1 encoding.

[Var:'Bytes'=(Bytes: 'This is a string')]
[$Bytes->(ImportString: 'This is some more string', 'ISO-8859-1')]

3 6 1

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 2 7 – B y t e s

3 6 2

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 2 7 – B y t e s

28
Chapter 28

Math Operations

Numbers in Lasso are stored and manipulated using the decimal and integer data types. This chapter
details the symbols and tags that can be used to manipulate decimal and integer values and to perform
mathematical operations.

	 •	Overview provides an introduction to the decimal and integer data types and how to cast values to and
from other data types.

	 •	Math Symbols describes the symbols that can be used to create mathematical expressions.

	 •	Decimal Member Tags describes the member tags that can be used with the decimal data type.

	 •	Integer Member Tags describes the member tags that can be used with the integer data type.

	 •	Math Tags describes the substitution and process tags that can be used with numeric values.

Overview
Mathematical operations and number formatting can be performed in Lasso using a variety of different
methods on integer and decimal values. There are three types of operations that can be performed:

	 •	Symbols can be used to perform mathematical calculations within Lasso tags or to perform assignment
operations within LassoScripts.

	 •	Member Tags can be used to format decimal or integer values or to perform bit manipulations.

	 •	Substitution Tags can be used to perform advanced calculations.

Each of these methods is described in detail in the sections that follow. This guide contains a description of
every symbol and tag and many examples of their use. The Lasso Reference is the primary documentation
source for Lasso symbols and tags. It contains a full description of each symbol and tag including details
about each parameter.

Integer Data Type
The integer data type represents whole number values. Basically, any positive or negative number which does
not contain a decimal point is an integer value in Lasso. Examples include -123 or 456. Integer values may also
contain hexadecimal values such as 0x1A or 0xff.

Spaces must be specified between the + and - symbols and the parameters, otherwise the second parameter of
the symbol might be mistaken for an integer literal.

Table 1: Integer Tag

Tag	 Description	

[Integer]	 Casts a value to type integer.
		

3 6 3

L a s s o 8 . 5 L a n g u a g e G u i d e

Examples of explicit integer casting:

	 •	Strings which contain numeric data can be cast to the integer data type using the [Integer] tag. The string
must start with a numeric value. In the following examples the number 123 is the result of each explicit
casting. Only the first integer found in the string 123 and then 456 is recognized.

[Integer: '123'] � 123
[Integer: '123 and then 456'] � 123

	 •	Decimals which are cast to the integer data type are rounded to the nearest integer.

[Integer: 123.0] � 123
[Integer: 123.999] � 124

Decimal Data Type
The decimal data type represents real or floating point numbers. Basically, any positive or negative number
which contains a decimal point is a decimal value in Lasso. Examples include -123.0 and 456.789. Decimal
values can also be written in exponential notation as in 1.23e2 which is equivalent to 1.23 times 102 or 123.0.

Spaces must be specified between the + and - symbols and the parameters, otherwise the second parameter of
the symbol might be mistaken for a decimal literal.

Table 2: Decimal Tag

Tag	 Description	

[Decimal]	 Casts a value to type decimal.
		

The precision of decimal numbers is always displayed as six decimal places even though the actual precision
of the number may vary based on the size of the number and its internal representation. The output precision
of decimal numbers can be controlled using the [Decimal->Format] tag described later in this chapter.

Examples of implicit decimal casting:

	 •	Integer values are cast to decimal values automatically if they are used as a parameter to a mathematical
symbol. If either of the parameters to the symbol is a decimal value then the other parameter is cast to a
decimal value automatically. The following example shows how the integer 123 is automatically cast to a
decimal value because the other parameter of the + symbol is the decimal value 456.0.

[456.0 + 123] � 579.0

The following example shows how a variable with a value of 123 is automatically cast to a decimal value.

[Variable: 'Number'=123]
[456.0 + (Variable: 'Number')] � 579.0

Examples of explicit decimal casting:

	 •	Strings which contain numeric data can be cast to the decimal data type using the [Decimal] tag. The string
must start with a numeric value. In the following examples the number 123.0 is the result of each explicit
casting. Only the first decimal value found in the string 123 and then 456 is recognized.

[Decimal: '123'] � 123.0
[Decimal: '123.0'] � 123.0
[Decimal: '123 and then 456'] � 123.0

	 •	Integers which are cast to the decimal data type simply have a decimal point appended. The value of the
number does not change.

[Decimal: 123] � 123.0

3 6 4

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 2 8 – M a t h O p e r a t i o n s

Mathematical Symbols
The easiest way to manipulate integer and decimal values is to use the mathematical symbols. Table 3:
Mathematical Symbols details all the symbols that can be used with integer and decimal values.

Table 3: Mathematical Symbols

Symbol	 Description	

+	 Adds two numbers. This symbol should always be separated from its parameters
by a space.

-	 Subtracts the right parameter from the left parameter. This symbol should always
be separated from its parameters by a space.

*	 Multiplies two numbers.

/	 Divides the left parameter by the right parameter.

%	 Modulus. Calculates the left parameter modulo the right number. Both parameters
must be integers.

		

Each of the mathematical symbols takes two parameters. If either of the parameters is a decimal value then
the result will be a decimal value. Many of the symbols can also be used to perform string operations. If
either of the parameters is a string value then the string operation defined by the symbol will be performed
rather than the mathematical operation.

Note: Full documentation and examples for each of the mathematical symbols can be found in the Lasso
Reference.

Examples of using the mathematical symbols:

	 •	Two numbers can be added using the + symbol. The output will be a decimal value if either of the
parameters are a decimal value. Note that the symbol + is separated from its parameters by spaces and
negative values used as the second parameter should be surrounded by parentheses.

[100 + 50] � 150
[100 + (-12.5)] � 87.5

	 •	The difference between numbers can be calculated using the - symbol. The output will be a decimal value if
either of the parameters are a decimal value.

[100 - 50] � 50
[100 - (-12.5)] � 112.5

	 •	Two numbers can be multiplied using the * symbol. The output will be a decimal value if either of the
parameters are a decimal value.

[100 * 50] � 5000
[100 * (-12.5)] � -1250.0

3 6 5

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 2 8 – M a t h O p e r a t i o n s

Table 4: Mathematical Assignment Symbols

Symbol	 Description	

=	 Assigns the right parameter to the variable designated by the left parameter.

+=	 Adds the right parameter to the value of the left parameter and assigns the result
to the variable designated by the left parameter.

-=	 Subtracts the right parameter from the value of the left parameter and assigns
the result to the variable designated by the left parameter.

*=	 Multiplies the value of the left parameter by the value of the right parameter and
assigns the result to the variable designated by the left parameter.

/=	 Divides the value of the left parameter by the value of the right parameter and
assigns the result to the variable designated by the left parameter.

%=	 Modulus. Assigns the value of the left parameter modulo the right parameter to
the left parameter. Both parameters must be integers.

		

Each of the symbols takes two parameters. The first parameter must be a variable that holds an integer or
decimal value. The second parameter can be any integer or decimal value. The result of the operation is
calculated and then stored back in the variable specified as the first operator.

Note: Full documentation and examples for each of the mathematical symbols can be found in the Lasso
Reference.

Examples of using the mathematical assignment symbols:

	 •	A variable can be assigned a new value using the = symbol. The following example shows how to define an
integer variable and then set it to a new value. The new value is output.

<?LassoScript
	 Variable: 'IntegerVariable'= 100;
	 $IntegerVariable = 123456;
	 $IntegerVariable;
?>

�	 123456

	 •	A variable can be used as a collector by adding new values using the += symbol. The following example
shows how to define an integer variable and then add several values to it. The final value is output.

<?LassoScript
	 Variable: 'IntegerVariab'e= 0;
	 $IntegerVariable += 123;
	 $IntegerVariable += (-456);
	 $IntegerVariable;
?>

�	 -333

Table 5: Mathematical Comparison Symbols

Symbol	 Description	

==	 Returns True if the parameters are equal.

!=	 Returns True if the parameters are not equal.

<	 Returns True if the left parameter is less than the right parameter.

<=	 Returns True if the left parameter is less than or equal to the right parameter.

>	 Returns True if the left parameter is greater than the right parameter.

>=	 Returns True if the left parameter is greater than or equal to the right parameter.
		

3 6 6

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 2 8 – M a t h O p e r a t i o n s

Each of the mathematical symbols takes two parameters. If either of the parameters is a decimal value then
the result will be a decimal value. Many of the symbols can also be used to perform string operations. If
either of the parameters is a string value then the string operation defined by the symbol will be performed
rather than the mathematical operation.

Note: Full documentation and examples for each of the mathematical symbols can be found in the Lasso
Reference.

Examples of using the mathematical comparison symbols:

	 •	Two numbers can be compared for equality using the == symbol and != symbol. The result is a boolean
True or False. Integers are automatically cast to decimal values when compared.

[100 == 123] � False
[100.0 != (-123.0)] � True
[100 ==100.0] � True
[100.0 != (-123)] � False

	 •	Numbers can be ordered using the <, <=, >, and <= symbols. The result is a boolean True or False.

[-37 > 0] � False
[100 < 1000.0] � True

Decimal Member Tags
The decimal data type includes one member tag that can be used to format decimal values.

Table 6: Decimal Member Tag

Tag	 Description	

[Decimal->SetFormat]	 Specifies the format in which the decimal value will be output when cast to string
or displayed to a visitor.

		

Note: Full documentation and examples for this tag can be found in the Lasso Reference.

Decimal Format
The [Decimal->SetFormat] tag can be used to change the output format of a variable. When the variable is next
cast to data type string or output to the Lasso page it will be formatted according to the preferences set in
the last call to [Decimal->SetFormat] for the variable. If the [Decimal->SetFormat] tag is called with no parameters it
resets the formatting to the default. The tag takes the following parameters.

Table 7: [Decimal->SetFormat] Parameters

Keyword	 Description	

-Precision	 The number of decimal points of precision that should be output. Defaults to 6.

-DecimalChar	 The character which should be used for the decimal point. Defaults to a period.

-GroupChar	 The character which should be used for thousands grouping. Defaults to empty.

-Scientific	 Set to True to force output in exponential notation. Defaults to False so decimals
are only output in exponential notation if required.

-Padding	 Specifies the desired length for the output. If the formatted number is less than
this length then the number is padded.

-PadChar	 Specifies the character that will be inserted if padding is required. Defaults to a
space.

-PadRight	 Set to True to pad the right side of the output. By default, padding is appended to
the left side of the output.

		

3 6 7

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 2 8 – M a t h O p e r a t i o n s

To format a decimal number as US currency:

Create a variable that will hold the dollar amount, DollarVariable. Use [Decimal->SetFormat] to set the -Precision to
2 and the -GroupChar to comma.

[Variable: 'DollarVariable' = 0.0]
[$DollarVariable->(SetFormat: -Precision=2, -GroupChar=',')]

$[$DollarVariable]

[Variable: 'DollarVariable' = $DollarVariable + 1000]
[$DollarVariable->(SetFormat: -Precision=2, -GroupChar=',')]

$[$DollarVariable]

[Variable: 'DollarVariable' = $DollarVariable / 8]
[$DollarVariable->(SetFormat: -Precision=2, -GroupChar=',')]

$[$DollarVariable]

�	
$0.00

$1,000.00

$12.50

Integer Member Tags
The integer data type includes many member tags that can be used to format or perform bit operations on
integer values. The available member tags are listed in Table 8: Integer Member Tags.

Table 8: Integer Member Tags

Tag	 Description	

[Integer->SetFormat]	 Specifies the format in which the integer value will be output when cast to string
or displayed to a visitor.

[Integer->BitAnd]	 Performs a bitwise And operation between each bit in the base integer and the
integer parameter.

[Integer->BitOr]	 Performs a bitwise Or operation between each bit in the base integer and the
integer parameter.

[Integer->BitXOr]	 Performs a bitwise Exclusive-Or operation between each bit in the base integer
and the integer parameter.

[Integer->BitNot]	 Flips every bit in the base integer.

[Integer->BitShiftLeft]	 Shifts the bits in the base integer left by the number specified in the integer
parameter.

[Integer->BitShiftRight]	 Shifts the bits in the base integer right by the number specified in the integer
parameter.

[Integer->BitClear]	 Clears the bit specified in the integer parameter.

[Integer->BitFlip]	 Flips the bit specified in the integer parameter.

[Integer->BitSet]	 Sets the bit specified in the integer parameter.

[Integer->BitTest]	 Returns true if the bit specified in the integer parameter is true.
		

Note: Full documentation and examples for each of the integer member tags can be found in the Lasso
Reference.

Integer Format
The [Integer->SetFormat] tag can be used to change the output format of a variable. When the variable is next
cast to data type string or output to the Lasso page it will be formatted according to the preferences set in the
last call to [Integer->SetFormat] for the variable. If the [Integer->SetFormat] tag is called with no parameters it resets
the formatting to the default. The tag takes the following parameters.

3 6 8

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 2 8 – M a t h O p e r a t i o n s

Table 9: [Integer->SetFormat] Parameters

Keyword	 Description	

-Hexadecimal	 If set to True, the integer will output in hexadecimal notation.

-Padding	 Specifies the desired length for the output. If the formatted number is less than
this length then the number is padded.

-PadChar	 Specifies the character that will be inserted if padding is required. Defaults to a
space.

-PadRight	 Set to True to pad the right side of the output. By default, padding is appended to
the left side of the output.

		

To format an integer as a hexadecimal value:

Create a variable that will hold the value, HexVariable. Use [Integer->SetFormat] to set -Hexadecimal to True.

[Variable: 'HexVariable' = 255]
[$HexVariable->(SetFormat: -Hexadecimal=True)]

[$HexVariable]

[Variable: 'HexVariable' = $HexVariable / 5]
[$HexVariable->(SetFormat: -Hexadecimal=True)]

[$HexVariable]

�	
0xff

0x33

Bit Operations
Bit operations can be performed within Lasso’s 64-bit integer values. These operations can be used to
examine and manipulate binary data. They can also be used for general purpose binary set operations.

Integer literals in Lasso can be specified using hexadecimal notation. This can greatly aid in constructing
literals for use with the bit operation. For example, 0xff is the integer literal 255. The [Integer->SetFormat] tag with
a parameter of -Hexadecimal=True can be used to output hexadecimal values.

The bit operations are divided into three categories.

	 •	The [Integer->BitAnd], [Integer->BitOr], and [Integer->BitXOr] tags are used to combine two integer values using the
specified boolean operation. In the following example the boolean Or of 0x02 and 0x04 is calculated and
returned in hexadecimal notation.

[Var: 'BitSet'=0x02]
[$BitSet->(SetFormat: -Hexadecimal=True]
[$BitSet->(BitOr: 0x04]
[$BitSet]

�	 0x06

	 •	The [Integer->BitShiftLeft], [Integer->BitShiftRight], and [Integer->BitNot] tags are used to modify the base integer
value in place. In the following example, 0x02 is shifted left by three places and output in hexadecimal
notation.

[Var: 'BitSet'=0x02]
[$BitSet->(SetFormat: -Hexadecimal=True]
[$BitSet->(BitShift: 3]
[$BitSet]

�	 0x10

	 •	The [Integer->BitSet], [Integer->BitClear], [Integer->BitFlip], and [Integer->BitTest] tags are used to manipulate or test
individual bits from an integer value. In the following example, the second bit an integer is set and then
tested.

3 6 9

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 2 8 – M a t h O p e r a t i o n s

[Var: 'BitSet'=0]
[$BitSet->(BitSet: 2)]
[$BitSet->(BitTest 2)]

�	 True

Math Tags
Lasso contains many substitution tags that can be used to perform mathematical functions. The functionality
of many of these tags overlaps the functionality of the mathematical symbols. It is recommended that you use
the equivalent symbol when one is available.

Additional tags detailed in the section on Trigonometry and Advanced Math.

Table 10: Math Tags

Tag	 Description	

[Math_Abs]	 Absolute value. Requires one parameter.

[Math_Add]	 Addition. Returns sum of multiple parameters.

[Math_Ceil]	 Ceiling. Returns the next higher integer. Requires one parameter.

[Math_ConvertEuro]	 Converts between the Euro and other European Union currencies.

[Math_Div]	 Division. Divides each of multiple parameters in order from left to right.

[Math_Floor]	 Floor. Returns the next lower integer. Requires one parameter.

[Math_Max]	 Maximum of all parameters.

[Math_Min]	 Minimum of all parameters.

[Math_Mod]	 Modulo. Requires two parameters. Returns the value of the first parameter
modulo the second parameter.

[Math_Mult]	 Multiplication. Returns the value of multiple parameters multiplied together.

[Math_Random]	 Returns a random number.

[Math_RInt]	 Rounds to nearest integer. Requires one parameter

[Math_Roman]	 Converts a number into roman numerals. Requires one positive integer
parameter.

[Math_Round]	 Rounds a number with specified precision. Requires two parameters. The first
value is rounded to the same precision as the second value.

[Math_Sub]	 Subtraction. Subtracts each of multiple parameters in order from left to right.
		

Note: Full documentation and examples for each of the math tags can be found in the Lasso Reference.

If all the parameters to a mathematical substitution tag are integers then the result will be an integer. If any of
the parameter to a mathematical substitution tag is a decimal then the result will be a decimal value and will
be returned with six decimal points of precision.

In the following example the same calculation is performed with integer and decimal parameters to show
how the results vary. The integer example returns 0 since 0.125 rounds down to zero when cast to an integer.

[Math_Div: 1, 8] � 0
[Math_Div: 1.0, 8] � 0.125000

Examples of using math substitution tags:

The following are all examples of using math substitution tags to calculate the results of various mathematical
operations.

3 7 0

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 2 8 – M a t h O p e r a t i o n s

[Math_Add: 1, 2, 3, 4, 5] � 15
[Math_Add: 1.0, 100.0] � 101.0
[Math_Sub: 10, 5] � 5
[Math_Div: 10, 9] � 11
[Math_Div: 10, 8.0] � 12.5
[Math_Max: 100, 200] � 200

Rounding Numbers
Lasso provides a number of different methods for rounding numbers:

	 •	Numbers can be rounded to integer using the [Math_RInt] tag to round to the nearest integer, the [Math_Floor]
tag to round to the next lowest integer, or the [Math_Ceil] tag to found to the next highest integer.

[Math_RInt: 37.6] � 38
[Math_Floor: 37.6] � 37
[Math_Ceil: 37.6] � 38

	 •	Numbers can be rounded to arbitrary precision using the [Math_Round] tag with a decimal parameter. The
second parameter should be of the form 0.01, 0.0001, 0.000001, etc.

[Math_Round: 3.1415926, 0.0001] � 3.1416
[Math_Round: 3.1415926, 0.001] � 3.142
[Math_Round: 3.1415926, 0.01] � 3.14
[Math_Round: 3.1415926, 0.1] � 3.1

	 •	Numbers can be rounded to an even multiple of another number using the [Math_Round] tag with an integer
parameter. The integer parameter should be an even power of 10.

[Math_Round: 1463, 1000] � 1000
[Math_Round: 1463, 100] � 1500
[Math_Round: 1463, 10] � 1460

	 •	If a rounded result needs to be shown to the user, but the actual value stored in a variable does not need
to be rounded then either the [Integer->SetFormat] or [Decimal->SetFormat] tags can be used to alter how the
number is displayed. See the documentation of these tags earlier in the chapter for more information.

Random Numbers
The [Math_Random] tag can be used to return a random number in a given range. The result can optionally be
returned in hexadecimal notation (for use in HTML color variables).

Note: When returning integer values [Math_Random] will return a maximum 32-bit value. The range of returned
integers is approximately between +/- 2,000,000,000.

Table 11: [Math_Random] Parameters

Keyword	 Description	

-Min	 Minimum value to be returned.

-Max	 Maximum value to be returned. For integer results should be one greater than
maximum desired value.

-Hex	 If specified, returns the result in hexadecimal notation.
		

To return a random integer value:

In the following example a random number between 1 and 99 is returned. The random number will be
different each time the page is loaded.

[Math_Random: -Min=1, -Max=100]

�	 55

3 7 1

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 2 8 – M a t h O p e r a t i o n s

To return a random decimal value:

In the following example a random decimal number between 0.0 and 1.0 is returned. The random number
will be different each time the page is loaded.

[Math_Random: -Min=0.0, -Max=1.0]

�	 0.55342

To return a random color value:

In the following example a random hexadecimal color code is returned. The random number will be different
each time the page is loaded. The range is from 16 to 256 to return two-digit hexadecimal values between 10
and FF.

<font color="#[Math_Random: -Min=16, -Max=256, -Hex][Math_Random: -Min=16, -Max=256, -Hex][Math_Random: -Min=16,
-Max=256, -Hex]">Color

�	 Color

Trigonometry and Advanced Math
Lasso provides a number of tags for performing trigonometric functions, square roots, logarighthms, and
calculating exponents.

Table 12: Trigonmetric and Advanced Math Tags

Tag	 Description	

[Math_ACos]	 Arc Cosine. Requires one parameter. The return value is in radians between 0
and .

[Math_ASin]	 Arc Sine. Requires one parameter. The return value is in radians between -2/
and 2/.

[Math_ATan]	 Arc Tangent. Requires one parameter. The return value is in radians between -2/
and 2/.

[Math_ATan2]	 Arc Tangent of a Quotient. Requires two parameters. The return value is in
radians between - and .

[Math_Cos]	 Cosine. Requires one parameter.

[Math_Exp]	 Natural Exponent. Requires one parameter. Returns e raised to the specified
power.

[Math_Ln]	 Natural Logarithm. Requires one parameter. Also [Math_Log].

[Math_Log10]	 Base 10 Logarithm. Requires one parameter.

[Math_Pow]	 Exponent. Requires two parameters: a base and an exponent. Returns the base
raised to the exponent.

[Math_Sin]	 Sine. Requires one parameter.

[Math_Sqrt]	 Square Root. Requires one positive parameter.

[Math_Tan]	 Tangent. Requires one parameter.
		

Examples of using advanced math substitution tags:

The following are all examples of using math substitution tags to calculate the results of various mathematical
operations.

[Math_Pow: 3, 3] � 27
[Math_Sqrt: 100.0] � 10.0

3 7 2

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 2 8 – M a t h O p e r a t i o n s

Locale Formatting
Lasso can format currency, percentages, and scientific values according to the rules of any country or locale.
The tags in Table 13: Locale Formatting Tags are used for this purpose. Each tag accepts an optional
language code and country code which specifies the locale to use for the formatting.

The default is language en for English and country US for the United States. A list of valid language and
country codes can be found linked from the ICU reference Web site:

http://www.icu-project.org/userguide/locale.html

Table 13: Locale Formatting Tags

Tag	 Description	

[Currency]	 Formats a number as currency. Requires one parameter, the currency amount
to format. The second parameter specifies the language and the third paramter
specifies the country for the desired locale.

[Percent]	 Formats a number as a percentage. Requires one parameter, the currency
amount to format. The second parameter specifies the language and the third
paramter specifies the country for the desired locale.

[Scientific]	 Formats a number using scientific notation. Requires one parameter, the currency
amount to format. The second parameter specifies the language and the third
paramter specifies the country for the desired locale.

[Locale_Format]	 Formats a number. Requires one parameter, the decimal amount to format. The
second parameter specifies the language and the third paramter specifies the
country for the desired locale.

		

3 7 3

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 2 8 – M a t h O p e r a t i o n s

29
Chapter 29

Date and Time Operations

Dates and times in Lasso can be stored and manipulated as special date and duration data types. This chapter
describes the tags that can be used to manipulate dates and times.

	 •	Overview provides an introduction to using the Lasso date and duration data types.

	 •	Date Tags describes the substitution and member tags that can be used to cast, format, and display dates
and times.

	 •	Duration Tags describes the substitution and member tags that can be used to cast, format, and display
durations.

	 •	Date and Duration Math describes the tags that are used to perform calculations using both dates and
durations.

Overview
This chapter introduces the date and the duration data types in Lasso 8. Dates are a data type that represent a
calendar date and/or clock time. Durations are a data type that represents a length of time in hours, minutes,
and seconds. Date and duration data types can be manipulated in a similar manner as integer data types, and
operations can be performed to determine date differences, time differences, and more. Date data types may
also be formatted and converted to a number of predefined or custom formats, and specific information may
be extrapolated from a date data type (day of week, name of month, etc.).

Since dates and durations can take many forms, values that represent a date or a duration must be explicitly
cast as date or duration data types using the [Date] and [Duration] tags. For example, a value of 01/01/2002 12:30:00
will be treated as a string data type until it is cast as a date data type using the [Date] tag:

[Date:'01/01/2002 12:30:00']

Once a value is cast as a date or duration data type, special tags, accessors, conversion operations, and math
operations may then be used.

Internal Date Libraries
When performing date operations, Lasso uses internal date libraries to automatically adjust for leap years and
daylight saving time for the local time zone in all applicable regions of the world (not all regions recognize
daylight saving time). The current time and time zone are based on that of the Web server.

Daylight Saving Time Note: Lasso extracts daylight saving time information from the operating system, and
can only support daylight saving time conversions between the years 1970 and 2038. For information on special
exceptions with date calculations during daylight saving time, see all the Date and Duration Math section.

3 7 4

L a s s o 8 . 5 L a n g u a g e G u i d e

Date Tags
For Lasso to recognize a string as a date data type, the string must be explicitly cast as a date data type using
the [Date] tag.

[Date: '5/22/2002 12:30:00']

When casting as a date data type using the [Date] tag, the following date formats are automatically recognized
as valid date strings by Lasso: These automatically recognized date formats are U.S. or MySQL dates with a
four digit year followed by an optional 24-hour time with seconds. The “/”, “-”, and “:” characters are the only
punctuation marks recognized in valid date strings by Lasso when used in the formats shown below.

1/25/2002
1/25/2002 12:34
1/25/2002 12:34:56
1/25/2002 12:34:56 GMT

2002-01-25
2002-01-25 12:34:56
2002-01-25 12:34:56 GMT

Lasso also recognizes a number of special purpose date formats which are shown below. These are useful
when working with HTTP headers or email message headers.

20020125123456
20020125T12:34:56
Tue, Dec 17 2002 12:34:56 -0800
Tue Dec 17 12:34:56 PST 2002

The date formats which contain time zone information (e.g. -0800 or PST) will be recognized as GMT dates.
The time zone will be used to automatically adjust the date/time to the equivalent GMT date/time.

If using a date format not listed above, custom date formats can be defined as date data types using the
[Date] tag with the -Format parameter.

The following variations of the automatically recognized date formats are valid without using the -Format
parameter.

	 •	If the [Date] tag is used without a parameter then the current date and time are returned. Milliseconds are
rounded to the nearest second.

	 •	If the time is not specified then it is assumed to be 00:00:00, midnight on the specified date.

mm/dd/yyyy � mm/dd/yyyy 00:00:00

	 •	If the seconds are not specified then the time is assumed to be even on the minute.

mm/dd/yyyy hh:mm � mm/dd/yyyy hh:mm:00

	 •	An optional GMT designator can be used to specify Greenwich Mean Time rather than local time.

mm/dd/yyyy hh:mm:ss GMT

	 •	Two digit years are assumed to be in the 21st century if they are less than 40 or in the 20th century if they
are greater than or equal to 40. Two digit years range from 1940 to 2039. For best results, always use four
digit years.

mm/dd/00 � mm/dd/2000
mm/dd/39 � mm/dd/2039
mm/dd/40 � mm/dd/1940
mm/dd/99 � mm/dd/1999

	 •	Days and months can be specified with or without leading 0s. The following are all valid Lasso date strings.

3 7 5

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 2 9 – D a t e a n d T i m e O p e r a t i o n s

1/1/02							 01/01/02
1/1/2002						 01/01/2002
1/1/2002 16:35			 01/01/2002 16:35
1/1/2002 16:35:45			 01/01/2002 16:35:45
1/1/2002 12:35:45 GMT		 01/01/2002 12:35:45 GMT

To cast a value as a date data type:

If the value is in a recognized string format described previously, simply use the [Date] tag.

[Date: '05/22/2002'] � 05/22/2002 00:00:00
[Date: '05/22/2002 12:30:00'] � 05/22/2002 12:30:00
[Date: '2002-22-05'] � 2002-22-05 00:00:00

If the value is not in a string format described previously, use the [Date] tag with the -Format parameter. For
information on how to use the -Format parameter, see the Formatting Dates section later in this chapter.

[Date: '5.22.02 12:30', -Format='%m.%d.%y %H%M'] � 5.22.02 12:30
[Date: '20020522123000', -Format='%Y%m%d%H%M'] � 200205221230

Date values which are stored in database fields or variables can be cast to the date data type using the date
tag. The format of the date stored in the field or variable should be in one of the format described above or
the -Format parameter must be used to explicitly specify the format.

[Date: (Variable: 'myDate')]
[Date: (Field: 'Modified_Date')]
[Date: (Action_Param: 'Birth_Date')]

Date Tags
Lasso contains date substitution tags that can be used to cast date strings as date data types, format date data
types, and perform date/time conversions.

Table 1: Date Substitution Tags

Tag	 Description	

[Date]	 Used to cast values to date data types when used with a valid date string as a
parameter. An optional -Format parameter with a date format string may be used
to explicitly cast an unknown date format. When no parameter is used, it returns
the current date and time. An optional -DateGMT keyword/value parameter
returns GMT date and time. Also accepts parameters for -Second, -Minute, -Hour,
-Day, -Month, -Year, and -DateGMT for constructing and outputting dates.

[Date_Format]	 Changes the output format of a Lasso date. Requires a Lasso date data type or
valid Lasso date string as a parameter (auto-recognizes the same formats as the
[Date] tag). The -Format keyword/value parameter defines how the date should
be reformatted. See the Formatting Dates section below for more information.

[Date_SetFormat]	 Sets a date format for output using the [Date] tag for an entire Lasso page. The
-Format parameter uses a format string. An optional -TimeOptional parameter
causes the output to not return 00:00:00 if there is no time value.

[Date_GMTToLocal]	 Converts a date/time from Greenwich Mean Time to local time of the machine
running Lasso Service.

[Date_LocalToGMT]	 Converts a date/time from local time to Greenwich Mean Time.

[Date_GetLocalTimeZone]	 Returns the current time zone of the machine running Lasso Service as a
standard GMT offset string (e.g. -0700). Optional -Long parameter shows the
name of the time zone (e.g. PDT).

[Date_Minimum]	 Returns the minimum possible date recognized by a Date data type in Lasso.

[Date_Maximum]	 Returns the maximum possible date recognized as a Date data type in Lasso.

[Date_Msec]	 Returns an integer representing the number of milliseconds recorded on the
machine's internal clock. Can be used for precise timing of code execution.

		

3 7 6

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 2 9 – D a t e a n d T i m e O p e r a t i o n s

To display date values:

	 •	The current date/time can be displayed with [Date]. The example below assumes a current date of
5/22/2002 14:02:05.

[Date] � 5/22/2002 14:02:05

	 •	The [Date] tag can be used to assemble a date from individual parameters. The following tag assembles a
valid Lasso date string by specifying each part of the date separately. Since the time is not specified it is
assumed to be midnight on the specified day.

[Date: -Year=2002, -Month=5, -Day=22] � 5/22/2002 00:00:00

To convert date values to and from GMT:

Any date data type can instantly be converted to and from Greenwich Mean Time using the [Date_GMTToLocal]
and [Date_LocalToGMT] tags. These tags will only convert the current time zone of the machine running Lasso
Service. The following example uses Pacific Time (PDT) as the current time zone.

[Date_GMTToLocal: (Date: '5/22/2002 14:02:05')] � 5/22/2002 09:02:05
[Date_LocalToGMT: (Date: '5/22/2002 14:02:05')] � 5/22/2002 07:02:05

To show the current time zone for the server running Lasso Service:

The [Date_GetLocalTimeZone] tag displays the current time zone of the machine running Lasso Service. The
following example uses Pacific Time (PDT) as the current time zone.

[Date_GetLocalTimeZone] � 0700
[Date_GetLocalTimeZone: -Long] � PDT

To time a section of Lasso code:

Call the [Date_Msec] tag to get a clock value before and after the code has executed. The different in times
represents the number of milliseconds which have elapsed. Note that the [Date_Msec] value may occasionally
roll back around to zero so any negative times reported by this code should be disregarded.

<?LassoScript
	 Var: 'start' = Date_Msec;
	 … The code to time …
	 'The code took ' + (Date_Msec - $start) + ' milliseconds to process.';
?>	

Formatting Dates
The [Date] tag and the [Date_Format] tag each have a -Format parameter which accepts a string of symbols that
define the format of the date which should be parsed in the case of the [Date] tag or formatted in the case of
the [Date_Format] tag. The symbols which can be used in the -Format parameter are detailed in the following
table.

Table 2: Date Format Symbols

Symbol	 Description	

%D	 U.S. date format (mm/dd/yyyy).

%Q	 MySQL date format (yyyy-mm-dd).

%q	 MySQL timestamp format (yyyymmddhhmmss)

%r	 12-hour time format (hh:mm:ss [AM/PM]).

%T	 24-hour time format (hh:mm:ss).

%Y	 4-digit year.

%y	 2-digit year.

%m	 Month number (01=January, 12=December).

%B	 Full English month name (e.g. "January").

3 7 7

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 2 9 – D a t e a n d T i m e O p e r a t i o n s

%b	 Abbreviated English month name (e.g. "Jan").

%d	 Day of month (01-31).

%w	 Day of week (01=Sunday, 07=Saturday).

%W	 Week of year.

%A	 Full English weekday name (e.g. "Wednesday").

%a	 Abbreviated English weekday name (e.g. "Wed").

%H	 24-hour time hour (0-23).

%h	 12-hour time hour (1-12).

%M	 Minute (0-59).

%S	 Second (0-59).

%p	 AM/PM for 12-hour time.

%G	 GMT time zone indicator.

%z	 Time zone offset in relation to GMT (e.g. +0100, -0800).

%Z	 Time zone designator (e.g. PST, GMT-1, GMT+12)
		

Each of the date format symbols that returns a number automatically pads that number with 0 so all values
returned by the tag are the same length.

	 •	An optional underscore _ between the percent sign % and the letter designating the symbol specifies that
space should be used instead of 0 for the padding character (e.g. %_m returns the month number with
space padding).

	 •	An optional hyphen - between the percent sign % and the letter designating the symbol specifies that no
padding should be performed (e.g. %-m returns the month number with no padding).

	 •	A literal percent sign can be inserted using %%.

Note: If the %z or %Z symbols are used when parsing a date, the resulting Lasso date object will represent the
equivalent GMT date/time.

To convert Lasso date data types to various formats:

The following examples show how to convert either Lasso date data types or valid Lasso date strings to
alternate formats.

[Date_Format: '06/14/2001', -Format='%A, %B %d'] � Thursday, June 14
[Date_Format: '06/14/2001', -Format='%a, %b %d'] � Thu, Jun 14
[Date_Format: '2001-06-14', -Format='%Y%m%d%H%M'] � 200106140000

[Date_Format: (Date:'1/4/2002'), -Format='%m.%d.%y'] � 01.04.02
[Date_Format: (Date:'1/4/2002 02:30:00'), -Format='%B, %Y '] � January, 2002
[Date_Format: (Date:'1/4/2002 02:30:00'), -Format='%r'] � 2:30 AM

To import and export dates from MySQL:

A common conversion in Lasso is converting MySQL dates to and from U.S. dates. Dates are stored in MySQL
in the following format yyyy-mm-dd. The following example shows how to import a date in this format to a
U.S. date format using the [Date_Format] tag with an appropriate -Format parameter.

[Date_Format: '2001-05-22', -Format='%D'] � 5/22/2001
[Date_Format: '5/22/2001', -Format='%Q'] � 2001-05-22

[Date_Format: (Date:'2001-05-22'), -Format='%D'] � 5/22/2001
[Date_Format: (Date:'5/22/2001'), -Format='%Q'] � 2001-05-22

To set a custom Lasso date format for a file:

Use the [Date_SetFormat] tag. This allows all date data types on a page to be output in a custom format without
the use of the [Date_Format] tag. The format specified is only valid for Lasso code contained in the same file
below the [Date_SetFormat] tag.

3 7 8

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 2 9 – D a t e a n d T i m e O p e r a t i o n s

[Date_SetFormat: -Format='%m%d%y']

The example above allows the following Lasso date to be output in a custom format without the [Date_Format]
tag.

[Date:'01/01/2002'] � 010102

Date Format Member Tags
In addtion to [Date_Format] and [Date_SetFormat], Lasso 8 also offers the [Date->Format] member tags for
performing format conversions on date data types.

Table 3: Date Format Member Tags

Symbol	 Description	

[Date->Format]	 Changes the output format of a Lasso date data type. May only be used with
Lasso date data types. Requires a date format string as a parameter.

[Date->SetFormat]	 Sets a date output format for a particular Lasso date data type object. Requires
a date format string as a parameter. An optional -TimeOptional parameter causes
the output to not return 00:00:00 if there is no time value.

[Date->Set]	 Sets one or more elements of the date to a new value. Accepts the same
parameters as the [Date] tag including -Year, -Month, -Day, -Hour, -Minute,
Second.

		

To convert Lasso date data types to various formats:

The following examples show how to convert Lasso date data types to alternate formats using the
[Date->Format] tag.

[Var:'MyDate'=(Date:'2002-06-14 00:00:00')]
[$MyDate->Format: '%A, %B %d'] � Tuesday, June 14, 2002

[Var:'MyDate'=(Date:'06/14/2002 09:00:00')]
[$MyDate->Format: '%Y%m%d%H%M'] � 200206140900

[Var:'MyDate'=(Date:'01/31/2002')]
[$MyDate->Format: '%d.%m.%y'] � 31.01.02

[Var:'MyDate'=(Date:'09/01/2002')]
[$MyDate->Format: '%B, %Y '] � September, 2002

To set an output format for a specific date data type:

Use the [Date->SetFormat] tag. This causes all instances of a particular date data type object to be output in a
specified format.

[Var:'MyDate'=(Date:'01/01/2002')]
[$MyDate->(SetFormat: '%m%d%y')]

The example above causes all instances of [Var:'MyDate'] in the current Lasso page to be output in a custom
format without the [Date_Format] or [Date->Format] tag.

[Var:'MyDate'] � 010102

Date Accessors
A date accessor function returns a specific integer or string value from a date data type, such as the name of
the current month or the seconds of the current time. All date accessor tags in Lasso 8 are defined in Table 4:
Date Accessor Tags.

3 7 9

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 2 9 – D a t e a n d T i m e O p e r a t i o n s

Table 4: Date Accessor Tags

Tag	 Description	

[Date->Year]	 Returns a four-digit integer representing the year for a specified date. An optional
-Days parameter returns the number of days in the current year (e.g. 365).

[Date->Month]	 Returns the number of the month (1=January, 12=December) for a specified
date (defaults to current date). Optional -Long returns the full English month
name (e.g. "January") or -Short returns an abbreviated English month name (e.g.
"Jan"). An optional -Days parameter returns the number of days in the current
month (e.g. 31).

[Date->Day]	 Returns the integer day of the month (e.g. 15).

[Date->DayofYear]	 Returns integer day of year (out of 365). Will work with leap years as well (out of
366).

[Date->DayofWeek]	 Returns the number of the day of the week (1=Sunday, 7=Saturday) for a
specified date. Optional -Short returns an abbreviated English day name (e.g.
"Sun") and -Long returns the full English day name (e.g. "Sunday").

[Date->Week]	 Returns the integer week number for the year of the specified date (out of 52).
The -Sunday parameter returns the integer week of year starting from Sunday
(default). A -Monday parameter returns integer week of year starting from
Monday.

[Date->Hour]	 Returns the hour for a specified date/time. An optional -Short parameter returns
integer hour from 1 to 12 instead of 1 to 24.

[Date->Minute]	 Returns integer minutes from 0 to 59 for a specified date/time.

[Date->Second]	 Returns integer seconds from 0 to 59 for the specified date/time.

[Date->Millisecond]	 Returns the current integer milliseconds of the current date/time only.

[Date->Time]	 Returns the time of a specified date/time.

[Date->GMT]	 Returns whether the specified date is in local or GMT time Returns True for GMT
time and False for local time.

[Date->DST]	 Returns whether the specified date is in daylight saving time or not. Returns 1 for
daylight saving time, 0 for standard time, and -1 for indeterminate.

		

To use date accessors:

	 •	The individual parts of the current date/time can be displayed using the [Date->…] tags.

[(Date:'5/22/2002 14:02:05')->Year] � 2002
[(Date:'5/22/2002 14:02:05')->Month] � 5
[(Date:'2/22/2002 14:02:05')->(Month: -Long)] � February
[(Date:'5/22/2002 14:02:05')->Day] � 22
[(Date:'5/22/2002 14:02:05')->(DayOfWeek: -Short)] � Wed
[(Date:'5/22/2002 14:02:05')->Time] � 14:02:05
[(Date:'5/22/2002 14:02:05')->Hour] � 14
[(Date:'5/22/2002 14:02:05')->Minute] � 02
[(Date:'5/22/2002 14:02:05')->Second] � 05

	 •	The [Date->Millisecond] tag can only return the current number of millisecond value (as related to the clock
time) for the machine running Lasso Service.

[Date->Millisecond] � 957

Duration Tags
A duration is a special data type that represents a length of time. A duration is not a 24-hour clock time, and
may represent any number of hours, minutes, or seconds.

Similar to dates, durations must be cast as duration data types before they can be manipulated. This is done
using the [Duration] tag. Durations may be cast in an hours:minutes:seconds format, or just as seconds.

3 8 0

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 2 9 – D a t e a n d T i m e O p e r a t i o n s

[Duration:'1:00:00'] � 1:00:00
[Duration:'3600'] � 1:00:00

Once a value has been cast as a duration data type, duration calculations and accessors may then be used.
Durations are especially useful for calculating lengths of time under 24 hours, although they can be utilized
for any lengths of time. Durations are independent of calendar months and years, and durations that equal a
length of time longer that one month are only estimates based on the average length of years and months (i.e.
365.2425 days per years, 30.4375 days per month). Duration tags in Lasso 8 are summarized in Table 5: Duration
Tags.

Table 5: Duration Tags

Tag	 Description	

[Duration]	 Casts values as a duration data type. Accepts a duration string for hours:
minutes:seconds, or an integer number of seconds. An optional -Week parameter
automatically adds a specified number of weeks to the duration. Optional -Day,
-Hour, -Minute, and -Second parameters may also be used for automatically adding
day, hour, minute, and time increments to the duration.

[Duration->Year]	 Returns the integer number of years in a duration (based on an average of 365.25
days per year).

[Duration->Month]	 Returns the integer number of months in a duration (based on an average of
30.4375 days per month).

[Duration->Week]	 Returns the integer number of weeks in the duration.

[Duration->Day]	 Returns the integer number of days in the duration.

[Duration->Hour]	 Returns the integer number of hours in the duration.

[Duration->Minute]	 Returns the integer number of minutes in the duration.

[Duration->Second]	 Returns the integer number of seconds in the duration.
		

To cast and display durations:

	 •	Durations can be created using the [Duration] tag with the -Week, -Day, 	 -Hour, -Minute, and -Second parameters.
This always returns durations in hours:minutes:seconds format.

[Duration: -Week=5, -Day=3, -Hour=12] � 924:00:00
[Duration: -Day=4, -Hour=2, -Minute=30] � 98:30:00
[Duration: -Hour=12, -Minute=45, -Second=50] � 12:45:50
[Duration: -Hour=3, -Minute=30] � 03:30:00
[Duration: -Minute=15, -Second=30] � 00:15:30
[Duration: -Second=30] � 00:00:30

	 •	The -Week, -Day, -Hour, -Minute, and -Second parameters of the [Duration] tag may also be combined with a base
duration for ease of use when setting a duration value. This always returns durations in hours:minutes:seconds
format.

[Duration:'5:30:30', -Week=5, -Day=3, -Hour=12] � 929:30:30
[Duration:'1:00:00', -Day=4, -Hour=2, -Minute=30] � 99:30:00
[Duration:'3600', -Hour=12, -Minute=45, -Second=50] � 13:45:50

	 •	Specific increments of time can be returned from a duration using the [Duration->…] tags.

[(Duration:'8766:30:45')->Year] � 1
[(Duration:'8766:30:45')->Month] � 12
[(Duration:'8766:30:45')->Week] � 52
[(Duration:'8766:30:45')->Day] � 365
[(Duration:'8766:30:45')->Hour] � 8767
[(Duration:'8766:30:45')->Minute] � 525991
[(Duration:'8766:30:45')->Second] � 31559445

3 8 1

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 2 9 – D a t e a n d T i m e O p e r a t i o n s

Date and Duration Math
Date calculations in Lasso can be performed by using special date math tags, durations tags, and math
symbols in Lasso 8. Date calculations that can be performed include adding or subtracting year, month, week,
day, and time increments to and from dates, and calculating time durations. Durations are a new data type
that represent a length of time in seconds and are introduced in the preceding Duration Tags section.

Daylight Saving Time Note: Lasso does not account for changes to and from daylight saving time when
performing date math and duration calculations. One should take this into consideration when performing a date
or duration calculation across dates that encompass a change to or from daylight saving time (resulting date may
be off by one hour).

Date Math Tags
Lasso 8 provides two date math substitution tags for performing date calculations. These tags are generally
used for adding increments of time to a date, and output a Lasso date in the format specified. These tags are
summarized in Table 6: Date Math Tags.

Table 6: Date Math Tags

Tag	 Description	

[Date_Add]	 Adds a specified amount of time to a Lasso date data type or valid Lasso date
string. First parameter is a Lasso date. Keyword/value parameters define what
should be added to the first parameter: -Millisecond, -Second, -Minute, -Hour,
-Day, -Week, -Month, or -Year.

[Date_Subtract]	 Subtracts a specified amount of time from a Lasso date data type or valid Lasso
date string. First parameter is a Lasso date. Keyword/value parameters define
what should be subtracted from the first parameter: -Millisecond, -Second, -
Minute, -Hour, -Day, -Week, -Month, or -Year.

[Date_Difference]	 Returns the time difference between two specified dates. A duration is the default
return value. Optional parameters may be used to ouput a specific integer time
value instead of a duration: -Millisecond, -Second, -Minute, -Hour, -Day, -Week,
-Month, -Year. Lasso rounds to the nearest integer when using these optional
parameters.

		

To add time to a date:

A specified number of hours, minutes, seconds, days, or weeks can be added to a date data type or valid
date string using the [Date_Add] tag. The following examples show the result of adding different values to the
current date 5/22/2002 14:02:05.

[Date_Add: (Date), -Second=15] � 5/22/2002 14:02:20
[Date_Add: (Date), -Minute=15] � 5/22/2002 14:17:05
[Date_Add: (Date), -Hour=15] � 5/23/2002 05:02:05
[Date_Add: (Date), -Day=15] � 6/6/2002 14:02:05
[Date_Add: (Date), -Week=15] � 9/4/2002 14:02:05
[Date_Add: (Date), -Month=6] � 11/22/2002 14:02:05
[Date_Add: (Date), -Year=1] � 5/22/2003 14:02:05

To subtract time from a date:

A specified number of hours, minutes, seconds, days, or weeks can be subtracted from a date data type or
valid date string using the [Date_Subtract] tag. The following examples show the result of subtracting different
values from the date 5/22/2001 14:02:05.

3 8 2

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 2 9 – D a t e a n d T i m e O p e r a t i o n s

[Date_Subtract: (Date: '5/22/2001 14:02:05'), -Second=15] � 5/22/2001 14:01:50
[Date_Subtract: (Date:'5/22/2001 14:02:05'), -Minute=15] � 5/22/2001 13:47:05
[Date_Subtract: (Date:'5/22/2001 14:02:05'), -Hour=15] � 5/21/2001 23:02:05
[Date_Subtract: '5/22/2001 14:02:05', -Day=15] � 5/7/2001 14:02:05
[Date_Subtract: '5/22/2001 14:02:05', -Week=15] � 2/6/2001 14:02:05

To determine the time difference between two dates:

Use the [Date_Difference] tag. The following examples show how to calculate the time difference between two
date data types or valid date strings.

[Date_Difference: (Date: '5/23/2002'), (Date:'5/22/2002')] � 24:00:00
[Date_Difference: (Date:'5/23/2002'), (Date:'5/22/2002'), -Second] � 86400
[Date_Difference: (Date:'5/23/2002'), '5/22/2002', -Minute] � 3600
[Date_Difference: (Date: '5/23/2002'), '5/22/2002', -Hour] � 24
[Date_Difference: '5/23/2002', (Date:'5/22/2002'), -Day] � 1
[Date_Difference: '5/23/2002', (Date:'5/30/2002'), -Week] � 1
[Date_Difference: '5/23/2002', '6/23/2002', -Month] � 1
[Date_Difference: '5/23/2002', '5/23/2001', -Year] � 1

Date and Duration Math Tags
Lasso 8 provides three member tags that perform date math operations requiring both date and duration data
types. These tags are used for adding durations to dates, subtracting a duration from a date, and determining
a duration between two dates. These tags are summarized in Table 7: Date and Duration Math Tags.

Table 7: Date and Duration Math Tags

Tag	 Description	

[Date->Add]	 Adds a duration to a Lasso date data type. Optional keyword/value parameters
may be used in place of a duration to define what should be added to the first
parameter: -Millisecond, -Second, -Minute, -Hour, -Day, -Week.

[Date->Subtract]	 Subtracts a duration from a Lasso date data type. Optional keyword/value
parameters may be used in place of a duration to define what should be
subtracted from the first parameter: -Millisecond, -Second, -Minute, -Hour, -Day,
-Week.

[Date->Difference]	 Calculates the duration between two date data types. The second parameter is
subtracted from the first parameter to deteremine a duration. Optional parameters
may be used to ouput a specified integer time value instead of a duration: -
Millisecond, -Second, -Minute, -Hour, -Day, -Week, -Month, -Year. Lasso rounds to
the nearest integer when using these optional parameters.

		

Note: The [Date->Add] and [Date->Subtract] tags do not directly output values, but can be used to change the values
of variables that conatin date or duration data types.

To add a duration to a date:

Use the [Date->Add] tag. The following examples show how to add a duration to a date and return a date.

[Var_Set:'MyDate'=(Date: '5/22/2002')]
[$MyDate->(Add:(Duration:'24:00:00'))]
[$MyDate] � 5/23/2002 00:00:00

[Var_Set:'MyDate'=(Date: '5/22/2002')]
[$MyDate->(Add:(Duration:'3600'))]
[$MyDate] � 5/22/2002 12:30:00

[Var_Set:'MyDate'=(Date: '5/22/2002')]
[$MyDate->(Add: -Week=1)]
[$MyDate] � 5/29/2002 00:00:00

3 8 3

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 2 9 – D a t e a n d T i m e O p e r a t i o n s

To subtract a duration from a date:

Use the [Date->Subtract] tag. The following examples show how to subtract a duration from a date and return a
date.

[Var_Set:'MyDate'=(Date: '5/22/2002')]
[$MyDate->(Subtract:(Duration:'24:00:00'))]
[$MyDate] � 5/21/2002

[Var:'MyDate'=(Date: '5/22/2002')]
[$MyDate->(Subtract:(Duration:'7200'))]
[$MyDate] � 5/22/2002 9:30:00

[Var:'MyDate'=(Date: '5/22/2002')]
[$MyDate->(Subtract: -Day=3)]
[$MyDate] � 5/19/2002 00:00:00

To determine the duration between two dates:

Use the [Date->Difference] tag. The following examples show how to calculate the time difference between two
dates and return a duration.

[Var_Set:'MyDate'=(Date: '5/22/2002')]
[$MyDate->(Difference:(Date:'5/15/2002 01:30:00'))] � 169:30:00

[Var:'MyDate'=(Date: '5/22/2002')]
[$MyDate->(Difference:(Date:'5/15/2002'), -Day)] � 7

Using Math Symbols
In Lasso 8, one has the ability to perform date and duration calculations using math symbols (similar to
integer data types). If a date or duration appears to the left of a math symbol then the appropriate math
operation will be performed and the result will be a date or duration as appropriate. All math symbols that
can be used with dates or durations are shown in Table 8: Date Math Symbols.

Table 8: Date Math Symbols

Tag	 Description	

+	 Used for adding a date and a duration, or adding two durations.

-	 Used for subtracting a duration from a date, subtracting a duration from a
duration, or determining the duration between two dates.

*	 Used for multiplying durations by an interger value.

/	 Used for dividing durations by an integer or duration value.
		

To add or subtract dates and durations:

The following examples show addition and subtraction operations using dates and durations.

[(Date: '5/22/2002') + (Duration:'24:00:00')] � 5/23/2002
[(Date: '5/22/2002') - (Duration:'48:00:00')] � 5/20/2002

To determine the duration between two dates:

The following calculates the duration between two dates using the minus symbol (-) .

[(Date: '5/22/2002') - (Date:'5/15/2002')] � 168:00:00

To add one day to the current date:

The following example adds one day to the current date.

[(Date) + (Duration: -Day=1)]

3 8 4

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 2 9 – D a t e a n d T i m e O p e r a t i o n s

To multiply or divide a durations by an integer:

The following examples show multiplication and division operations using durations and integers.

[(Duration: -Minute=10) * 12] � 02:00:00
[(Duration: '60') * 10] � 00:10:00
[(Duration: -Hour=1) / 2] � 00:30:00
[(Duration: '00:30:00') / 10] � 00:03:00

To divide a duration by a duration:

The following examples show division of durations by durations. The resulting value is a decimal data type.

[(Duration: -Hour=24) / (Duration: -Hour=6)] � 4.0
[(Duration: '05:00:00') / (Duration: '00:30:00')] � 10.0

To return the duration between the current date and a day in the future:

The following example returns the duration between the current date and 12/31/2004.

[(Date: '12/31/2004') - (Date)]

3 8 5

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 2 9 – D a t e a n d T i m e O p e r a t i o n s

30
Chapter 30

Arrays, Maps, and Compound Data
Types

This chapter describes the array, map, and other compound data types in Lasso that allow sets of data to be
stored and manipulated.

	 •	Overview provides an introduction to the compound data types available in Lasso including tips for
deciding which data type to use.

	 •	Arrays describes the array data type and its member tags.

	 •	Lists describes the list data type and its member tags.

	 •	Maps describes the map data type and its member tags.

	 •	Pair describes the pair data type and its member tags.

	 •	Priority Queues describes the priority queue data type and its member tags.

	 •	Queues describes the queue data type and its member tags.

	 •	Series describes the series data type.

	 •	Sets describes the set data type and its member tags.

	 •	Stacks describes the stack data type and its member tags.

	 •	Tree Maps describes the tree map data type and its member tags.

	 •	Comparators describes tags that can be used to sort the elements within a compound data type.

	 •	Iterators describes tags that can be used to cycle through all the elements in a compound data type.

	 •	Matchers describe tags that can be used to find elements within a compound data type.

Overview
Lasso includes a large number of compound data types that allow many values to be stored in a single
variable. The different data types share many common tags, but also have unique tags which make specific
tasks easier. Each is suited to storing a different type of structured data.

	 •	Arrays are the most general compound data type and are used to store a sequence of values. Arrays support
random access. Values are stored and retrieved based on position. The order of values within the array is
preserved and arrays can contain duplicate values. Arrays can contain elements of any data type. Operations
on the last element in the array happen in constant time. Operations on other elements of the array
happen in linear time.

	 •	Lists are used to store a sequence of values. Lists generally allow elements at the start and end to be
manipulated. Lists do not allow random access to elements. Elements can be inserted into the middle of a
list using an iterator.

3 8 6

L a s s o 8 . 5 L a n g u a g e G u i d e

	 •	Maps are used to store and retrieve values based on a string key. A map only stores one value per key. The
order of keys within the map are not preserved. Retrieving a value by key from a map is fast, but iterating
through a map is not.

	 •	Pairs are used to store two values in an ordered pair. Either the first or second value can be retrieved. Pairs
are most commonly used as values within an array or when retrieving parameters in custom tags.

	 •	Priority Queues are used to store a sequence of values in sorted order. When a priority queue is created it
is given a comparator. Every item that is inserted is automatically sorted based on this comparator. The first
item in the list is always the greatest value as determined by the comparator. Only the first item in the list
can be examined or removed.

	 •	Queues provide first-in first-out behavior. Elements can only be added to the end of the queue. Elements
can only be examined and removed from the front of the queue.

	 •	Series contain a series of sequential values. Series usually contain integers, but can store a sequence of any
data type that supports the ++ symbol.

	 •	Sets only contain unique values. All elements in a set are stored sorted in ascending order. Sets do not
support random access to elements. Sets support several logical operations including difference, union, and
intersection.

	 •	Stacks provide last-in first-out behavior. Elements can only be added to the front of the stack and elements
can only be examined and removed from the front of the stack.

	 •	Tree Maps are used to store and retrieve values based on a key of any data type. A map only stores one
value per key. The order of keys within the map is determined by a comparator specified when the tree
map is created. The tree map should be used when the types of keys must be preserved.

How to Select a Data Type
Selecting the proper compound data type for a job can greatly reduce the amount of time and overhead that
Lasso requires to execute code. Each data type is optimized for a different task.

	 •	The array is the most general storage type that Lasso offers. It should be used whenever there is no strong
preference for one of the more specific data types. Lasso uses maps internally to store [Action_Params] and
uses arrays as the return value from many tags.

	 •	The map should be used when values need to be stored and looked up by a key. A map can be thought of
as similar to a database record with named fields. Lasso uses maps internally to store page variables which
are looked up by name.

	 •	If a collection of values need to be operated on in sorted order then a priority queue should be used. As
each item is added to a priority queue it is automatically sorted according to a criteria. The highest value
can always be retrieved from the queue.

	 •	If a series of values need to be operated on in order then a queue can be used. New values are stored in the
end of the queue and the oldest value can be fetched from the beginning of the queue. For example, this
can be useful for storing a series of actions that need to take place and then executing them in order.

	 •	The state of a hierarchical or recursive operation can be stored in a stack. Values can be pushed onto the
stack and the most recent value can be popped off the stack. For example, this can be useful for recording
the current directory within a recursive file operation.

	 •	A collection of unique values can be stored in a set. Any duplicate values will be discarded. Intersections,
unions, and differences between multiple sets can be calculated. For example, a collection of categories
could be stored in a set without any duplicates.

	 •	If random access is not required in a collection of values then a list should be used. Adding and removing
values from a list is more efficient than performing the same operations on an array or a set.

	 •	If values need to be stored and looked up by non-string keys then a tree map should be used. A tree map is
not as efficient as a map, but allows the type of each key to be considered when looking up values.

	 •	A series is a shortcut to create an array that contains sequential values.

3 8 7

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 3 0 – A r r a y s , M a p s , a n d C o m p o u n d D a t a T y p e s

Common Tags
Many of the compound data types support a common set of tags. These tags can be used interchangeably
between several different data types. Although the specific meaning of each tag varies depending on which
data type it is used with.

	 •	Size – The […->Size] tags return the number of elements in each data type.

	 •	Get – The […->Get] tags return a specified element from each data type. In the array and set types the
element is specified by a position greater than one and the return value can be of any data type. Bounds
checking must be used to guarantee that a position within the array or set is asked for. Any position greater
than the number of elements in the array, or less than 0 will return an error..

In the map and tree map types the the return value will always be a pair with the key and value for one
particular element of the map. Since the order of elements in the map types is undefined the […->Get] tags
can be used to fetch each element of the map in turn, but it can be difficult to fetch a specific element in
this fashion.

The pair type supports get with a parameter of 1 or 2 corresponding to [Pair->First] and [Pair->Second].

In the stack, queue, and priority queue types the position parameter is ignored and the first value of the
type is returned and removed from the type. This means that calling […->Get] repeatedly on a stack, queue,
or priority queue will consume elements of the type, eventually leaving an empty type.

	 •	Insert – The […->Insert] tags insert a new element into a compound data type. Arrays and sets by default
insert elements at the end of the type. An optional second parameter specifies at what position to insert a
new element.

The map and tree map types insert values using a key and a value. The list type allows values to be inserted
either at the end or the beginning of the type.

The stack, queue, and priority queue types allow values only to be inserted.

	 •	Remove – The […->Remove] tags remove an element from a compound data type. The value of the removed
element is not returned.

	 •	First, Second, and Last – The […->First] tags allow the first element of the array, list, pair, queue,
priorityqueue, set, and stack types to be inspected. The array, pair, and set types also support […->Second]
tags that allow the second element of each type to be inspected. The array, list, and set types also support
[…->Last] tags that allow the last element of each type to be inspected.

	 •	Iterate – The [Iterate] … [/Iterate] tags insert a new element into a compound data type. Arrays and sets by
default insert elements at the end of the type. An optional second parameter specifies at what position to
insert a new element.

Comparators
A comparator is a tag which is able to compare two values to each other. Comparators can be passed to
several different compound data type creator tags and member tags. Comparators are always passed by
reference and are never called directly. These tags should not be used within conditionals.

Comparators are used to sort arrays, priority queues, sets, and tree maps. For example, a priority queue can
be initialized with a comparator. Any values that are greater with respect to the comparator will be sorted
to the front of the priority queue. In the following code a priority queue is created using the comparator
\Compare_LessThan which has the effect of sorting the lowest value to the front of the queue.

[Var: 'myPriorityQueue' = (PriorityQueue: \Compare_LessThan)]

See the section on Comparators later in this chapter for full details and for instructions about how to create
new comparators.

3 8 8

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 3 0 – A r r a y s , M a p s , a n d C o m p o u n d D a t a T y p e s

Matchers
A matcher is a data type that accepts one value when it is created. It can then be compared against other
values. Matchers can be used to select a subset of a compound data type. For example, the matcher
[MathRegExp] matches any element according to the specified regular expression. The following matcher would
match any capatalized word.

[Match_RegExp: '[A-Z][a-z]+']

See the section on Matchers later in this chapter for full details and for instructions about how to create new
matchers.

Iterators
Iterators allow each element within a compound data type to be explored in turn. An iterator is returned by
the […->Iterator] or […->ReverseIterator] tags of the array, list, map, set, and tree map types. Custom types might
also return iterators.

For example, the following example shows how the [While] … [/While] tags can be used with the [Array->Iterator] to
iterate through each value within an array $myArray. The [Null] tag suppresses the output from [Iterator->Forward].

<?LassoScript
	 Var: 'myArray' = Array('Alpha','Beta','Gamma','Delta');
	 Var: 'myIterator' = $myArray->Iterator;

	 While: ($myIterator->atEnd == False);
		 '
' + $myIterator->Value;
		 Null: $myIterator->Forward;
	 /While;
?>

See the section on Iterators later in this chapter for full details and for instructions about how to create new
iterators.

Arrays
An array is a sequence of values which are stored and retrieved by numeric position. The values stored in an
array can be of any data type in Lasso. Arrays can store any values from strings and integers to other arrays
and maps. By nesting compound data types very complex data structures can be created.

Types of Arrays
Arrays can be used in Lasso for several different purposes. The same member tags can be used on each type of
array, but some have specific uses when used with a particular type of array. These specific uses are described
in the examples for each member tag.

	 •	A List Array is a sequence of string, decimal, or integer values. New values can be appended to the end
of the list or inserted between two elements of the list using [Array->Insert]. Two lists can be merged using
[Array->Merge]. The order of elements in the array is important, but may be manipulated using the array
member tags.

	 •	A Storage Array is a sequence of “cubby holes” for values. Values are stored into a slot identified by an
integer and later retrieved. The [Array->Get] tag is used to store and retrieve values, but the order of elements
in the array is never altered and multiple arrays are never merged.

	 •	A Pair Array is a sequence of pairs. [Action_Params] returns an array of pairs which identify the command
tags and name/value pairs that comprise the current Lasso action. This array can be manipulated and then
passed as a parameter to an [Inline] tag.

3 8 9

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 3 0 – A r r a y s , M a p s , a n d C o m p o u n d D a t a T y p e s

Creating Arrays
Arrays are created using the [Array] constructor tag. The parameters of the tag become the initial values stored
in the array. The parameters can be string, decimal, or integer literals, constructor tags for other complex data
types, or name/value pairs which are interpreted as pairs to be added to the array.

Table 1: Array Tag

Tag	 Description	

[Array]	 Creates an array that contains each of the parameters of the tag. If no
parameters are specified, an empty array is created.

		

To create an array:

	 •	The following example creates an empty array and stores it in a variable.

[Variable: 'EmptyArray' = (Array)]

	 •	The following example shows an array of string literals.

[Array: 'String One', 'String Two', 'String Three']

	 •	The following example shows an array with a combination of string, decimal, and integer literals.

[Array: 'String One', 2, 3.333333]

	 •	The following example shows how to use values from database fields, form parameters, variables, or tokens
as the initial values for an array.

[Array: (Field: 'Field_Name'), (Action_Param: 'Parameter_Name'),
	 (Variable: 'Variable_Name'), (Token_Value: 'Token_Name')]

	 •	The following example shows an array of pairs. Each name/value pair becomes a single pair within the
array returned by the tag.

[Array: 'Name_One'='Value_One', 'Name_Two'='Value_Two']

	 •	The following example shows an array of arrays. The array returned by the following code will only contain
two array elements. Each array element will in turn contain two integer elements. Nested arrays can be used
to store mathematical multi-dimensional arrays.

[Array: (Array: 1, -1), (Array: -1, 0)]

	 •	The following example shows how to create an array from a string. The [String->Split] tag can be used to split
a string into an array which contains one element for each substring delimited by the parameter to the tag.
The following string is split on the comma , character into an array of four elements.

['One,Two,Three,Four,Five'->Split(',')]

Values are always copied into an array. They are never stored by reference to the original value. This applies
both to simple data types and compound data types. There is no way in Lasso to store a reference to a
compound data type, except for the name of the variable containing the data type.

Array Member Tags
The array data type has a number of member tags that can be used to store, retrieve or delete array elements
or to otherwise manipulate array values.

Table 2: Array Member Tags

Tag	 Description	

[Array->Contains]	 Returns True if the specified element is contained in the array. Requires a single
parameter which is a value to compare to each element of the array.

3 9 0

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 3 0 – A r r a y s , M a p s , a n d C o m p o u n d D a t a T y p e s

[Array->Difference]	 Compares the array against another returning a new array that contains only
elements of the current array which are not contained in the other array. Requires
one parameter which is an array to be compared. Note: Both arrays must be
sorted using the same order or comparator.

[Array->Find]	 Returns an array of elements that match the parameter. Accepts a single
parameter of any data type.

[Array->FindPosition]	 Returns an array of the indicies for elements that match the parameter. Accepts
a single parameter of any data type. (Note: This tag was previously named
[Array->FindIndex].)

[Array->First]	 Returns the first element of the array.

[Array->ForEach]	 Applies a tag to each element of the array in turn. Requires a single parameter
which is a reference to a tag or compound data type. Modifies the array in place
and returns no value.

[Array->Get]	 Returns an item from the array. Accepts a single integer parameter identifying the
position of the item to be returned. This tag can be used as the left parameter of
an assignment operator to set an element of the array.

[Array->Insert]	 Inserts a value into the array. Accepts a single parameter which is the value to be
inserted and an optional integer parameter identifying the position of the location
where the value should be inserted. Defaults to the end of the array. Returns no
value.

[Array->InsertFirst]	 Inserts an element at the front of the array. Accepts a single parameter which is
the value to be inserted.

[Array->InsertFrom]	 Inserts elements from an iterator. All of the inserted elements are inserted at the
end of the array in order. Requires a single parameter which is an iterator from
another compound data type.

[Array->InsertLast]	 Inserts an element at the end of the array. Accepts a single parameter which is
the value to be inserted

[Array->Intersection]	 Compares the array against another returning a new array that contains only
elements contained in both arrays. Requires one parameter which is an array
to be compared. Note: Both arrays must be sorted using the same order or
comparator.

[Array->Iterator]	 Returns an iterator to step through every element of the array. An optional
parameter specifies a comparator which selects which elements of the array to
return.

[Array->Join]	 Joins the items of the array into a string. Accepts a single string parameter which
is placed inbetween each item from the array. The opposite of [String->Split].

[Array->Last]	 Returns the last item in the array.

[Array->Merge]	 Merges an array parameter into the array. Accepts an array parameter and three
integer parameters that identify which items from the array parameter should be
inserted into the array. Defaults to inserting the entire array parameter at the end
of the array. Returns no value.

[Array->Remove]	 Removes an item from the array. Accepts a single integer parameter identifying
the position of the item to be removed. Defaults to the last item in the array.
Returns no value.

[Array->RemoveAll]	 Removes any elements that match the parameter from the array. Accepts a single
parameter of any data type. Returns no value.

[Array->RemoveFirst]	 Removes the first element of the array. Returns no value.

[Array->RemoveLast]	 Removes the last element of the array. Returns no value.

[Array->Reverse]	 Revers the order of all elements of the array. Modifies the array in place and
returns no value.

[Array->ReverseIterator]	 The same as iterator, but returns the elements in the reverse order. See iterator
for more details.

[Array->Reserve]	 Reserves storage for the specified number of elements. The size of the array is
not changed by [Array->Reserve], but Lasso will internally make enough room for
the specified number of elements.

3 9 1

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 3 0 – A r r a y s , M a p s , a n d C o m p o u n d D a t a T y p e s

[Array->Second]	 Returns the second element of the array.

[Array->Size]	 Returns the number of elements in the array.

[Array->Sort]	 Reorders the elements of the array in alphabetical or numerical order. Accepts a
single boolean parameter. Sorts in ascending order by default or if the parameter
is True and in descending order if the parameter is False.

[Array->SortWith]	 Reorders the elements of the array in the order defined by a comparator.
Requires one parameter which is a comparator used to determine the new order
of elements in the array. Modifies the array in place and returns no value.

[Array->Union]	 Returns a new array that contains all of the elements from two arrays without
duplicates. Requires one parameter which is an array to be added to the current
array. Note: Both arrays must be sorted using the same order or comparator.

		

The following examples show how to manipulate an array by getting, setting, inserting, and deleting values.
The examples are all based on the following array which contains the seven days of the week in English.

[Variable: 'DaysOfWeek' = (Array: 'Sunday', 'Monday', 'Tuesday', 'Wednesday',
	 'Thursday', 'Friday', 'Saturday')]

To get the size of an array:

Use the [Array->Size] tag. The following example shows how to output the size of the DaysOfWeek array.

[$DaysOfWeek->Size] � 7

To get elements of an array:

	 •	To get an element of the array use the [Array->Get] tag with the appropriate position. In the following
example different elements of the DaysOfWeek array are returned.

[$DaysOfWeek->(Get: 1)] � Sunday
[$DaysOfWeek->(Get: 4)] � Wednesday

	 •	The last element of the array can be returned by using [Array->Get] with a parameter of [Array->Size].
[Array->Size] will return 7 since the array DaysOFWeek is 7 elements long and element 7 of the array is Saturday.

[$DaysOFWeek->(Get: ($DaysOfWeek->Size))] � Saturday

	 •	All of the elements in the array can be returned using [Iterate] … [/Iterate] tags. The following example shows
how to list all of the days of the week.

[Iterate: $DaysOfWeek, (Variable: 'DayName')]
	
[Variable: 'DayName']
[/Iterate]

�	
Sunday

Monday

Tuesday

Wednesday

Thursday

Friday

Saturday

	 •	Alternately, all of the elements in the array can be returned using [Loop] … [/Loop] tags. The following
example shows how to list all of the days of the week by using [Array->Get] with a parameter of [Loop_Count].

[Loop: ($DaysOfWeek->Size)]
	
[$DaysOFWeek->(Get: (Loop_Count))]
[/Loop]

3 9 2

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 3 0 – A r r a y s , M a p s , a n d C o m p o u n d D a t a T y p e s

�	
Sunday

Monday

Tuesday

Wednesday

Thursday

Friday

Saturday

To set elements of an array:

The [Array->Get] member tag can be used on the left side of an assignment operator to set the value stored in
the specified position within the array.

	 •	In the following example, the value of the second element of the array DaysOfWeek is set to the Spanish
word for Monday, Lunes.

<?LassoScript
	 $DaysOfWeek->(Get: 2) = 'Lunes';
?>

The value of the second element of the array can then be output using the [Array->Get] tag.

[$DaysOfWeek->(Get: 2)] � Lunes

	 •	Elements of the array can be modified using any of the assignment symbols. In the following example,
the substring day is removed from the third element of the array using the deletion assignment symbol -=
leaving Tues. This value is then output.

<?LassoScript
	 $DaysOFWeek->(Get: 3) -= 'day';
	 $DaysOfWeek->(Get: 3);
?>

�	 Tues

To insert elements into an array:

	 •	The [Array->Insert] tag can be used to insert a single element in the array. In the following example Sunday is
inserted at the end of the array DaysOfWeek. The whole array is then output.

<?LassoScript
	 $DaysOfWeek->(Insert: 'Sunday');

	 Loop: ($DaysOfWeek->Size);
		 $DaysOfWeek->(Get: (Loop_Count)) + ' ';
	 /Loop;
?>

�	 Sunday Monday Tuesday Wednesday Thursday Friday Saturday Sunday

	 •	The [Array->Insert] tag can also be used to insert a single element anywhere in the array. In the following
example Tuesday is inserted as the third element of the array DaysOfWeek. This pushes back all the other
elements of the array. No values in the array are removed or replaced by the [Array->Insert] tag. The whole
array is then output.

<?LassoScript
	 $DaysOfWeek->(Insert: 'Tuesday', 3);

	 Loop: ($DaysOfWeek->Size);
		 $DaysOfWeek->(Get: (Loop_Count)) + ' ';
	 /Loop;
?>

�	 Sunday Monday Tuesday Tuesday Wednesday Thursday Friday Saturday

3 9 3

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 3 0 – A r r a y s , M a p s , a n d C o m p o u n d D a t a T y p e s

To remove elements from an array:

	 •	The [Array->Remove] tag can be used to remove a single element from the array. If no parameter is specified
then the last item of the array is removed. In the following example the last item of the array Saturday is
removed and then the entire array is displayed.

<?LassoScript
	 $DaysOfWeek->(Remove);

	 Loop: ($DaysOfWeek->Size);
		 $DaysOfWeek->(Get: (Loop_Count)) + ' ';
	 /Loop;
?>

�	 Sunday Monday Tuesday Wednesday Thursday Friday

	 •	The [Array->Remove] tag can also be used to remove a single element anywhere in the array. In the following
example the fourth value in the array is removed. This removes the element Wednesday. The whole array is
then output.

<?LassoScript
	 $DaysOfWeek->(Remove: 4);

	 Loop: ($DaysOfWeek->Size);
		 $DaysOfWeek->(Get: (Loop_Count)) + ' ';
	 /Loop;
?>

�	 Sunday Monday Tuesday Thursday Friday Saturday

To display the elements of an array:

	 •	Arrays can be displayed by simply outputting the variable that contains the array. All of the elements of
the array are displayed surrounded by parentheses. This is useful primarily for debugging purposes so the
values in an array can be inspected without writing a loop to output all of the elements of the array.

[Variable: 'DaysOfWeek']

�	 (Array: (Sunday), (Monday), (Tuesday), (Wednesday), (Thursday), (Friday), (Saturday))

	 •	Arrays can be displayed by joining the elements of the array into a string. In the following example the days
of the week are output with commas between each element.

[Output $DaysOfWeek->(Join: ',')]

�	 Sunday,Monday,Tuesday,Wednesday,Thursday,Friday,Saturday

Arrays and Strings
Arrays can be used for string manipulation using a combination of array and string member tags. First, the
string to be manipulated is transformed into an array using the [String->Split] tag, then the array is manipulated,
and finally the string is rendered from the array using the [Array->Join] tag.

The following example demonstrates how to modify a URL which is stored in a variable. This same technique
can be used to modify any string which can be split into array elements based on a specific delimiter.

To parse, modify, and reassemble a URL using array tags:

	 1	Store the URL to be modified in a string variable, here named URL_Variable.

[Variable: 'URL_Variable' = 'http://www.example.com/default.lasso?
	 -FindAll&-Database=Contacts&-Table=People&-KeyField=ID']

3 9 4

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 3 0 – A r r a y s , M a p s , a n d C o m p o u n d D a t a T y p e s

	 2	Use [String->Split] to break the URL apart into several different variables. First, the string is split on ? to
split the base of the URL from the parameters. These two parameters are stored in temporary variables,
URL_Base and URL_Parameters.

[Variable: 'Temp_Array' = ($URL_Variable->(Split: '?'))]
[Variable: 'URL_Base' = ($Temp_Array->(Get: 1))]
[Variable: 'URL_Parameters' = ($Temp_Array->(Get: 2))]

	 3	Use [String->Split] to break the URL parameters apart into an array at the ampersand & character.

[Variable: 'URL_Array' = ($URL_Parameters->(Split: '&'))]

	 4	Now the parameters array can be manipulated. For this example we will sort it using the [Array->Sort]
command. Other options include removing or inserting elements, merging two or more URL parameter
arrays, checking for the existence of specific values, etc.

[($URL_Array->Sort)]

	 5	Reassemble the URL parameters using the [Array->Join] tag to append each item in the array to a new variable
URL_Parameters. An ampersand & is placed between each element of the array.

[Variable: 'URL_Parameters'=$URL_Array->(Join: '&')]

	 6	Reassemble the full URL by concatenating the original URL_Base to the new URL_Parameters and store the
result in URL_Variable.

[Variable: 'URL_Variable' = $URL_Base + '?' + $URL_Parameters]

	 7	Display the modified URL to confirm that the modifications have been made correctly. The command tags
in the URL are now sorted alphabetically.

[Variable: 'URL_Variable']

�	 http://www.example.com/default.lasso?
	 -Database=Contacts&-FindAll&-KeyField=ID&-Table=People

Merging Arrays
The [Array->Merge] tag can be used to merge two arrays by placing the elements of the tag’s array parameter into
the base array. The [Array->Merge] accepts a number of parameters as detailed in the following table.

Table 3: [Array->Merge] Parameters

Parameter	 Description	

First	 The array which is to be merged; the source array.

Second	 The position in the destination array where the elements of the source array
should be inserted. Optional, defaults to the end of the destination array.

Third	 The position in the source array of the first element which should be inserted into
the destination array. Optional, defaults to 1.

Fourth	 The number of elements from the source array to insert into the destination
array. Optional, defaults to all elements from the third parameter to the end of the
source array.

		

The four parameters to [Array->Merge] allow for a selected subset of the source array to be placed at any
location in the destination array. This allows very complex array manipulations to be performed.

To append an array to the end of another array:

Use the [Array->Merge] tag with a single array parameter. All the elements of the array parameter will be
inserted at the end of the base array. In the following example, two arrays are created, each containing three
integers. The elements of the second array are merged into the elements of the first array and then all the
elements of the new array are displayed.

3 9 5

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 3 0 – A r r a y s , M a p s , a n d C o m p o u n d D a t a T y p e s

<?LassoScript
	 Variable: 'First_Array' = (Array: 1, 2, 3);
	 Variable: 'Second_Array' = (Array: 4, 5, 6);

	 $First_Array->(Merge: $Second_Array);

	 $First_Array;
?>

�	 (Array: (1), (2), (3), (4), (5), (6))

To insert a single element from one array into another array:

In the following example the third element of the Second_Array is inserted as the new first element of the
First_Array using the [Array->Merge] tag. The second parameter to [Array->Merge] is set to 1 so the element
will be inserted as the first element of First_Array. The third parameter is set to 3 so the third element of
Second_Array will be selected. The fourth parameter is set to 1 so only one element of Second_Array will be
copied.

<?LassoScript
	 Variable: 'First_Array' = (Array: 1, 2, 3);
	 Variable: 'Second_Array' = (Array: 4, 5, 6);

	 $First_Array->(Merge: $Second_Array, 1, 3, 1);

	 $First_Array;
?>

�	 (Array: (6), (1), (2), (3))

Finding Elements of an Array
The [Array->Find] tag can be used to return a subset of an array which matches a specified value. This can be
used to determine whether an array contains a value or, when used in concert with the [Array->RemoveAll] tag
this can be used to extract a number of elements from an array.

To determine whether an array contains a value:

In the following example the array DaysOfWeek is checked to see if it contains an element Thursday using the
contains symbol >>.

<?LassoScript
	 Variable: 'DaysOfWeek'= (Array: 'Sunday', 'Monday', 'Tuesday', 'Wednesday',
		 'Thursday', 'Friday', 'Saturday');

	 If: ($DaysOfWeek >> 'Thursday');
		 'The array contains Thursday!';
	 /If;
?>

To find the indices where an element occurs within the array:

In the following example, an array is returned that reports the position of each occurrence of 1 within the
array.

<?LassoScript
	 Variable: 'Find_Array' = (Array: 6, 1, 4, 1, 5, 1, 2, 3, 1);

	 $Find_Array->(FindPosition: 1);
?>

�	 (Array: (2), (4), (6), (9))

3 9 6

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 3 0 – A r r a y s , M a p s , a n d C o m p o u n d D a t a T y p e s

The result array can be used to modify each occurrence of 1 within the array. In the following example each
occurrence of 1 within the array is changed to 0.

<?LassoScript
	 Variable: 'Find_Array' = (Array: 6, 1, 4, 1, 5, 1, 2, 3, 1);

	 Variable: 'Temp_Array' = $Find_Array(FindPosition: 1);

	 Iterate: $Temp_Array, (Variable: 'Temp_Position');
		 $Find_Array->(Get: $Temp_Position) = 0;
	 /Iterate;

	 $Find_Array;
?>

�	 (Array: (6), (0), (4), (0), (5), (0), (2), (3), (0))

To delete elements with a certain value from an array:

In the following example, all elements with value 1 are deleted from an array Delete_Array. The initial array
contains many different integer values. The resulting array is output after all the elements with value 1 have
been deleted.

<?LassoScript
	 Variable: 'Delete_Array' = (Array: 6, 1, 4, 1, 5, 1, 2, 3, 1);

	 $Delete_Array->(RemoveAll: 1);

	 $Delete_Array;
?>

�	 (Array: (6), (4), (5), (2), (3))

Pair Arrays
Pair arrays can be used to store a sequence of name/value pairs. The order of elements within a pair array is
maintained. The [Action_Params] and [Params] tags both return pair arrays which contain the parameters passed
with the current Lasso action or into a custom tag respectively.

To create a pair array:

Use the [Array] tag with name/value parameters. Each name/value parameter becomes a pair in the resulting
array. The following example shows an array created with three pair elements.

[Array: 'Name_One'='Value_One',
	 'Name_Two'='Value_Two',
	 'Name_Three'='Value_Three']

To find pairs within a pair array:

The [Array->Find] tag can be used to find pairs within a pair array. The parameter passed to the [Array->Find] tag is
only compared to the [Pair->First] element of each pair. The [Array->Find] tag returns an array that contains only
the pairs whose first part matches the parameter. The following example shows an array defined with three
pair elements. The [Array->Find] tag is used to return both elements for the name Alpha.

[Variable: 'Pair_Array' = (Array: 'Alpha'='One', 'Beta'='Two', 'Alpha'=1, 'Beta'=2)]
[$Pair_Array->(Find: 'Alpha')]

�	 (Array: (Pair: (Alpha)=(One)), (Pair: (Alpha)=(1)))

To insert pairs into a pair array:

Use the [Array->Insert] tag with a name/value parameter. The new element will be inserted at the end of the
array by default. The following example inserts a new element Gamma=Three into Pair_Array.

3 9 7

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 3 0 – A r r a y s , M a p s , a n d C o m p o u n d D a t a T y p e s

<?LassoScript
	 Variable: 'Pair_Array' = (Array: 'Alpha'='One', 'Beta'='Two', 'Alpha'=1, 'Beta'=2);
	 $Pair_Array->(Insert: 'Gamma'='Three');
?>

Sorting Arrays
Arrays can be sorted using the [Array->Sort] tag. This tag reorders the elements of the array so they will no
longer be available at the position they were originally set.

Examples of sorting arrays:

	 •	The following LassoScript shows an array with integer elements. The array is sorted and then the values of
the array are output. The default sort order is ascending.

<?LassoScript
	 Variable: 'Sort_Array' = (Array: 6, 4, 5, 2, 3, 1);

	 $Sort_Array->(Sort);

	 $Sort_Array;
?>

�	 (Array: (1), (2), (3), (4), (5), (6))

	 •	The following LassoScript shows the DaysOFWeek array being sorted in descending alphabetical order. The
[Array->Sort] tag accepts one parameter. True for ascending order or False for descending order. The default is
True.

<?LassoScript
	 Variable: 'DaysOfWeek'= (Array: 'Sunday', 'Monday', 'Tuesday', 'Wednesday',
		 'Thursday', 'Friday', 'Saturday');

	 $DaysOfWeek->(Sort: False);

	 $DaysOfWeek;
?>

�	 (Array: (Wednesday), (Tuesday), (Thursday), (Sunday), (Saturday), (Monday), (Friday))

Lists
A list is a sequence of values. values are stored and retrieved only from the front or end of a list. Lists do not
support random access to value stored in the center of the list. The values stored in a list can be of any data
type in Lasso.

Table 4: List Tag

Tag	 Description	

[List]	 Creates a new list. Any parameters passed to the tag are used as the initiali
values for the list.

		

3 9 8

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 3 0 – A r r a y s , M a p s , a n d C o m p o u n d D a t a T y p e s

To create a list:

Lists are created using the [List] tag. The parameters of the tag define the initial element of the list. Additional
lements can be added using the [List->InsertFirst] or [List->InsertLast] tags. For example, the following code creates
a list with the value Two and then inserts One and Three into it.

<?LassoScript
	 Var: 'myList' = (List: 'Two');
	 $myList->InsertFirst('One');
	 $myList->InsertLast('Three');
?>

List Member Tags
The list data type has a number of member tags that can be used to store, retrieve or delete array elements or
to otherwise manipulate array values.

Table 5: List Member Tags

Tag	 Description	

[List->Contains]	 Returns True if the specified element is contained in the list. Requires a single
parameter which is a value to compare to each element of the list.

[List->Difference]	 Compares the list against another returning a new list that contains only
elements of the current list which are not contained in the other list. Requires one
parameter which is an list to be compared. Note: Both list must be sorted using
the same order or comparator.

[List->Find]	 Returns an array of elements that match the parameter. Accepts a single
parameter of any data type.

[List->First]	 Returns the first element of the list.

[List->ForEach]	 Applies a tag to each element of the list in turn. Requires a single parameter
which is a reference to a tag or compound data type. Modifies the list in place
and returns no value.

[List->Insert]	 Inserts a value into the list. Accepts a single parameter which is the value to be
inserted and an optional iterator identifying the location where the value should
be inserted. Defaults to the end of the list. Returns no value.

[List->InsertFirst]	 Inserts an element at the front of the list. Accepts a single parameter which is the
value to be inserted.

[List->InsertFrom]	 Inserts elements from an iterator. All of the inserted elements are inserted at
the end of the list in order. Requires a single parameter which is an iterator from
another compound data type.

[List->InsertLast]	 Inserts an element at the end of the list. Accepts a single parameter which is the
value to be inserted

[List->Intersection]	 Compares the list against another returning a new list that contains only elements
contained in both lists. Requires one parameter which is a list to be compared.
Note: Both lists must be sorted using the same order or comparator.

[List->Iterator]	 Returns an iterator to step through every element of the list. An optional
parameter specifies a comparator which selects which elements of the list to
return.

[List->Join]	 Joins the items of the lists into a string. Accepts a single string parameter which
is placed inbetween each item from the lists.

[List->Last]	 Returns the last item in the lists.

[List->Remove]	 Removes an item from the lists. Accepts an iterator parameter identifying the item
to be removed. Defaults to the last item in the list. Returns no value.

[List->RemoveAll]	 Removes any elements that match the parameter from the list. Accepts a single
parameter of any data type. Returns no value.

[List->RemoveFirst]	 Removes the first element of the list. Returns no value.

[List->RemoveLast]	 Removes the last element of the list. Returns no value.

3 9 9

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 3 0 – A r r a y s , M a p s , a n d C o m p o u n d D a t a T y p e s

[List->Reverse]	 Reverses the order of all elements of the list. Modifies the list in place and
returns no value.

[List->ReverseIterator]	 The same as iterator, but returns the elements in the reverse order. See iterator
for more details.

[List->Second]	 Returns the second element of the list.

[List->Size]	 Returns the number of elements in the list.

[List->Sort]	 Reorders the elements of the list in alphabetical or numerical order. Accepts a
single boolean parameter. Sorts in ascending order by default or if the parameter
is True and in descending order if the parameter is False.

[List->SortWith]	 Reorders the elements of the list in the order defined by a comparator. Requires
one parameter which is a comparator used to determine the new order of
elements in the list. Modifies the list in place and returns no value.

[List->Union]	 Returns a new list that contains all of the elements from two list without
duplicates. Requires one parameter which is a list to be added to the current list.
Note: Both lists must be sorted using the same order or comparator.

		

To inspect the first and last elements in a list:

Use the [List->First] tag and the [List->Last] tag. These tags will return the values for the first and last element the
list. In the following example a list is created with some values and then the first and last values are returned.

<?LassoScript
	 Var: 'MyList' = (List: 'Uno', 'Dos', 'Tres', 'Quatro');
	 $myList->First + ', ' + $myList->Last;
?>

➜	 Uno, Quatro

To return the number of elements in the list:

Use the [List->Size] tag. This tag returns an integer representing the number of elements that are contained
within the list. The following code outputs the size of the list created above.

[$myList->Size]

➜	 4

To insert new values in a list:

Use the [List->InsertFirst] or [List->InsertLast] tags. Values can only be inserted into the beginning or end of a list.
The following examples inserts additional values into the list defined above and then outputs the new list.

[$myList->InsertFirst('Cero')]
[$myList->InsertLast('Cinco')]

[String: $myList]

➜	 List: Cero, Uno, Dos, Tres, Quatro, Cinco

To remove values from a list:

Use the [List->RemoveFirst] or [List->RemoveLast] tags. Values can only be removed from the beginning or end of a
list. The following examples removes the first and last values from the list defined above and then outputs the
new list.

[$myList->RemoveFirst]
[$myList->RemoveLast]

[String: $myList]

➜	 List: Uno, Dos, Tres, Quatro

4 0 0

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 3 0 – A r r a y s , M a p s , a n d C o m p o u n d D a t a T y p e s

To inspect all the values in a list:

When a list is cast to string all of the values within it can be inspected. This output is intended to make it easy
to debug list operations. The following code outputs the list that is created above. The elements are printed
out in the order they were inserted.

[String: $myList]

➜	 List: Uno, Dos, Tres, Quatro

Maps
Maps store and retrieve values based on a key. This allows for specific values to be stored under a name and
then retrieved later using that same name. The name or key is always a string value.

Maps can only store one value per key. When a new value with the same key is inserted into a map it replaces
the previous value which was stored in the map. If you need to create a data structure that stores more than
one value per key, use an array of pairs instead.

Note: The order of elements in a map is not defined. As more elements are added to a map the order may
change and should never be relied upon.

Table 6: Map Tag

Tag	 Description	

[Map]	 Creates a map that contains each of the name/value parameters of the tag. If no
parameters are specified, an empty map is created.

		

To create a map:

	 •	The following example creates an empty map and stores it in a variable.

[Variable: 'EmptyMap' = (Map)]

	 •	The following example shows a map with data stored using string literals as keys. The map is similar to a
database record storing information about a particular site visitor.

[Map: 'First_Name'='John', 'Last_Name'='Doe', 'Phone_Number'='800-555-1212']

	 •	The following example shows a map with integer literals as keys. This map could be used to lookup the
name of a day of the week based on its order within the week.

[Map: 1='Sunday',
	 2='Monday',
	 3='Tuesday',
	 4='Wednesday',
	 5='Thursday',
	 6='Friday',
	 7='Saturday']

	 •	The following example shows a map which contains arrays that are retrieved using string literals as keys.
The map contains two arrays which are named Array_One and Array_Two.

[Map: 'Array_One' = (Array: 1, 2, 3, 4, 5),
	 'Array_Two' = (Array: 9, 8, 7, 6, 5)]

Map Member Tags
The map data type has a number of member tags that can be used to store, retrieve or delete map elements by
key.

4 0 1

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 3 0 – A r r a y s , M a p s , a n d C o m p o u n d D a t a T y p e s

Table 7: Map Member Tags

Tag	 Description	

[Map->Find]	 Returns a value from the map by key. Accepts a single parameter which is the
key of the value to be returned.

[Map->Get]	 Returns a pair from the map by integer position. Accepts a single parameter
which is the position of the value to be returned.

[Map->Keys]	 Returns an array of all the keys specified in the map.

[Map->Insert]	 Inserts a value into the map by key. Accepts a single name/value pair parameter
which specifies the key and value to be inserted.

[Map->Remove]	 Removes a value from the map by key. Accepts a single parameter which is the
key of the value to be deleted.

[Map->Size]	 Returns the number of elements (keys) in the map.

[Map->Values]	 Returns an array of all the values specified in the map.
		

The following examples show how to manipulate a map by inserting, removing, and displaying elements. The
examples are all based on the following array which contains the seven days of the week in English each with
an integer key corresponding to their calendar order.

[Variable: 'DaysOfWeek' = (Map: 1='Sunday',
	 2='Monday',
	 3='Tuesday',
	 4='Wednesday',
	 5='Thursday',
	 6='Friday',
	 7='Saturday')]

To get values from a map:

	 •	The value for a given key within the map can be retrieved using the [Map->Find] tag. The tag accepts a single
parameter which is the key of the value to be returned. The key can be any value in Lasso. In the following
example the numeric keys in the DaysOfWeek variable are used to return several days of the week.

[$DaysOfWeek->(Find: 2)] � Monday
[$DaysOfWeek->(Find: 4)] � Wednesday
[$DaysOfWeek->(Find: 6)] � Friday

	 •	All of the keys used within a map can be displayed using the [Map->Keys] tag. In the following example, the
integer keys of the DaysOfWeek map are displayed.

[Output $DaysOfWeek->Keys]

�	 (Array: (1), (2), (3), (4), (5), (6), (7))

	 •	All of the values used within a map can be displayed using the [Map->Values] tag. In the following example,
the string values of the DaysOfWeek map are displayed.

[Output $DaysOfWeek->Values]

�	 (Array: (Sunday), (Monday), (Tuesday), (Wednesday), (Thursday), (Friday), (Saturday))

	 •	All of the elements in a map can be displayed using the [Iterate] … [/Iterate] tags. In the following example, a
temporary variable TempElement is set to the value of each element of the map in turn. The [Pair->First] and
[Pair->Second] parts of each element are displayed.

[Iterate: $DaysOfWeek, (Variable: 'TempElement')]
	
[$TempElement->First] = [$TempElement->Second]
[/Iterate]

4 0 2

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 3 0 – A r r a y s , M a p s , a n d C o m p o u n d D a t a T y p e s

�	
1 = Sunday

2 = Monday

3 = Tuesday

4 = Wednesday

5 = Thursday

6 = Friday

7 = Saturday

	 •	Alternately, all of the elements in a map can be displayed using the [Loop] … [/Loop] tags. In the following
example, the [Map->Size] tag is used to return the size of the map and the [Map->Get] tag is used to return
a particular element of the map. These tags function exactly like the same tags used on a pair array. A
temporary variable TempElement is used to make the code easier to read.

[Loop: ($DaysOfWeek->Size)]
	 [Variable: 'TempElement' = ($DaysOfWeek->(Get: (Loop_Count)))]
	
[$TempElement->First] = [$TempElement->Second]
[/Loop]

�	
1 = Sunday

2 = Monday

3 = Tuesday

4 = Wednesday

5 = Thursday

6 = Friday

7 = Saturday

Note: Map elements cannot be set using the [Map->Get] member tag. Instead, map elements should be inserted
using the [Map->Insert] member tag with the same key value as an element in the map.

To insert values into a map:

Elements can be added to the map or the value for a given key can be changed within a map using the
[Map->Insert] tag.

	 •	Use the [Map->Insert] tag with a name/value parameter to insert a new value into a map. The following
example shows how to add an Extra Saturday to the map stored in DaysOfWeek. No value is returned by the
[Map->Insert] tag, but the new value for key 8 is retrieved using [Map->Find] to show that the new element has
been added.

<?LassoScript
	 $DaysOfWeek->(Insert: 8='Extra Saturday');
	 $DaysOfWeek->(Find: 8);
?>

�	 Extra Saturday

	 •	Use the [Map->Insert] tag with the name of a value already stored in the map to replace that value within
the map. The following example shows how to change the value for key 8 to Extra Sabado, substituting
the Spanish word for Saturday. No value is returned by the [Map->Insert] tag, but the new value for key 8 is
retrieved using [Map->Find] to show that the element has been modified.

<?LassoScript
	 $DaysOfWeek->(Insert: 8='Extra Sabado');
	 $DaysOfWeek->(Find: 8);
?>

�	 Extra Sabado

To remove values from a map:

The value for a key can be removed from a map using the [Map->Remove] tag. The tag accepts a single
parameter, the name of the element to be removed. In the following example, the Extra Sabado entry is
removed from the map stored in DaysOfWeek.

4 0 3

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 3 0 – A r r a y s , M a p s , a n d C o m p o u n d D a t a T y p e s

<?LassoScript
	 $DaysOfWeek->(Remove: 8);
?>

To display the elements of a map:

For debugging purposes all of the elements of a map can be output simply by displaying the value of the
variable holding the map. This is a quick way to see the value stored in a map, but is not intended to be used
to show to site visitors.

[Variable: 'DaysOfWeek']

�	 (Map: (1)=(Sunday),
	 (2)=(Monday),
	 (3)=(Tuesday),
	 (4)=(Wednesday),
	 (5)=(Thursday),
	 (6)=(Friday),
	 (7)=(Saturday))

Maps vs Pair Arrays
Maps and pair arrays can both be used to store data which is retrieved by name. Maps store a single value per
name. Pair arrays can store many different values for each name. Maps do not maintain the order of elements
contained within them. Pair arrays do maintain the order of elements, though they generally cannot be
sorted. Maps contain only values associated with names (although the names and values can be of any data
type). Arrays can contain a combination of pairs and other data types.

Maps should be used when the set of keys by which data will be retrieved is unique. Maps can be used as an
equivalent for database records. Maps provide fast lookup of a value associated with a key.

Pair arrays should be used when multiple values need to be stored with each key or when the order of
elements stored in the array is important. Pair arrays are used to return name/value parameters from Lasso
actions or within custom tags.

Pairs
A pair is a compound data type that stores two elements. Pairs are most commonly used when working with
lists of command tags and name/value parameters in concert with the [Action_Params] tag or when parsing
parameters of a custom tag using the [Params] tag.

Table 8: Pair Tag

Tag	 Description	

[Pair]	 Creates a pair with the specified name and value as the first and second
elements.

		

To create a pair:

	 •	The following example shows how to create a pair using the [Pair] tag. The tag accepts a single name/
value parameter. The name part of the parameter becomes the First part of the pair. The value part of the
parameter becomes the Second part of the pair.

[Pair: 'First_Name'='John']

	 •	Pairs can be created in an [Array] constructor tag by specifying a name/value parameter as one of the
parameters for the new array. The following example shows how to create an array with three pair elements.

[Array: 'First_Name'='John', 'Last_Name'='Doe', 'Phone_Number'='800-555-1212']

4 0 4

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 3 0 – A r r a y s , M a p s , a n d C o m p o u n d D a t a T y p e s

	 •	Pairs are also created in a [Map] constructor tag by specifying name/value parameters. The following
example shows how to create a map with three pairs.

[Map: 'First_Name'='John', 'Last_Name'='Doe', 'Phone_Number'='800-555-1212']

Pair Member Tags
The pair data type has two member tags that can be used to change or retrieve the two elements of the pair
data type.

Table 9: Pair Member Tags

Tag	 Description	

[Pair->First]	 Returns the first element of the pair. Can be used as the left parameter of an
assignment operator to change the first element of the pair.

[Pair->Second]	 Returns the second element of the pair. Can be used as the left parameter of an
assignment operator to change the second element of the pair.

		

Note: For compatibility with maps and arrays the [Pair->Size] tag always returns 2 and [Pair->(Get:1)] and [Pair->(Get:2)]
work to extract the first and second elements from a pair.

To get the elements of a pair:

The following example shows how to create a pair using a name/value parameter and then return the First and
Second elements of the pair.

[Variable: 'Test_Pair' = (Pair: 'First_Name'='John')]
[$Test_Pair->First]: [$Test_Pair->Second]

�	 First_Name: John

To set the elements of a pair:

The following example shows how to set the first and second elements of a pair to new values using the
assignment operator =. The altered pair is then displayed.

<?LassoScript
	 Variable: 'Test_Pair' = (Pair: 'First_Name'='John');
	 $Test_Pair->First = 'Last_Name';
	 $Test_Pair->Second = 'Doe';
	 $Test_Pair->First + ': ' + $Test_Pair->Second;

�	 Last_Name: Doe

To display the elements of a pair:

For debugging purposes the elements of a pair can be displayed simply by outputting the variable which
contains the pair. The following example shows how to output a pair stored in a variable Test_Pair.

[Variable: 'Test_Pair' = (Pair: 'First_Name'='John')]
[Variable: 'Test_Pair']

�	 (Pair: (First_Name)=(John))

Priority Queues
A priority queue is a compound data type that stores elements in a sorted queue. When a priority queue is
created a comparator can be specified which will be used to sort all of the elements of the queue. By default
elements will be sorted alphabetically or numerically and the greatest element will be returned first.

4 0 5

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 3 0 – A r r a y s , M a p s , a n d C o m p o u n d D a t a T y p e s

When an element is inserted into a priority queue it is automatically placed in the proper position based on
its value in comparison to the elements already within the queue. Only the first or greatest value of the queue
can be retrieved.

Priority queues are always created empty. Elements can then be added using the [PriorityQueue->Insert] tag.

Note: priority queues pull their next value off the end of the list of contained elements. Using the
\Compare_LessThan comparator will result in the greatest element being returned first. Using the
\Compare_GreaterThan comparator will result in the least element being returned first. Custom comparators will
need to take this behavior into account in order to get the expected results.

Table 10: Priority Queue Tag

Tag	 Description	

[PriorityQueue]	 Creates a priority queue. Accepts an optional parameter which specifies a
comparator that will be used to sort elements as they are inserted into the queue.

		

To create a priority queue:

Priority queues are created empty using the priority queue tag. The [PriorityQueue] tag has one optional
parameter which specifies a comparator that will be used to sort the elements within the queue. Once the
priority queue has been created, elements can be added using the [PriorityQueue->Insert] tag.

	 •	For example, the following code creates a priority queue using the default comparator (which sorts
elements alphabetically or numerically and returns the greatest value) and then inserts One and Two into it.

<?LassoScript
	 Var: 'myPriorityQueue' = (PriorityQueue);
	 $myPriorityQueue->Insert('One');
	 $myPriorityQueue->Insert('Two');
?>

Note that the elements are stored in the queue in alphabetical order. [PriorityQueue->First] would return Two
after the code above is run since Two is alphabetically greater than One.

	 •	A priority queue can be created which sorts elements in the reverse order, always returning the lowest value
when compared alphabetically or numerically, by specifying the \Compare_GreaterThan comparator when
creating the queue.

<?LassoScript
	 Var: 'myPriorityQueue' = (PriorityQueue: \Compare_GreaterThan);
	 $myPriorityQueue->Insert('One');
	 $myPriorityQueue->Insert('Two');
?>

Now the [PriorityQueue->First] tag would return One since the values within the queue will be sorted in reverse
alphabetical order.

Priority Queue Member Tags
The priority queue data type has a number of member tags that can be used to store, retrieve or delete array
elements or to otherwise manipulate array values.

Table 11: Priority Queue Member Tags

Tag	 Description	

[PriorityQueue->First]	 Returns the first element of the priority queue. This is the maximum value
according to the comparator specified when the priority queue was created.

[PriorityQueue->Get]	 Returns the first element of the priority queue and removes it from the queue.
Repeated calls to this tag will consume the data type, eventually leaving an empty
type.

4 0 6

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 3 0 – A r r a y s , M a p s , a n d C o m p o u n d D a t a T y p e s

[PriorityQueue->Insert]	 Inserts a value into the priority queue. Accepts a single parameter which is the
value to be inserted. The element is always inserted according to the comparator
specified when the priority queue was created. [PriorityQueue->InsertLast] is an
alias.

[PriorityQueue->Remove]	 Removes the first element from the priority queue. Returns no value.
[PriorityQueue->RemoveFirst] is an alias.

[PriorityQueue->Size]	 Returns the number of elements in the priority queue.
		

To inspect the first element in the priority queue:

Use the [PriorityQueue->First] tag. This tag will return the value of the next element on the priority queue
(the greatest value according to the comparator which was specified when the queue was created) without
modifying the queue in any way. The values One and Two are pushed onto the queue then the value Two is
inspected.

<?LassoScript
	 Var: 'myPriorityQueue' = (PriorityQueue);
	 $myPriorityQueue->Insert('One');
	 $myPriorityQueue->Insert('Two');

	 $myPriorityQueue->First;
?>

➜	 Two

To return the number of elements in the priority queue:

Use the [PriorityQueue->Size] tag. This tag returns an integer representing the number of elements that are
contained within the priority queue. The following code outputs the size of the queue created above.

[$myPriorityQueue->Size]

➜	 2

To inspect all the values in the priority queue:

When a priority queue is cast to string all of the values within it can be inspected. This output is intended to
make it easy to debug queue operations. The following code outputs the queue that is created above.

[String: $myPriorityQueue]

➜	 PriorityQueue: One, Two

Note: The elements will not necessarily be printed out in the order that they will be returned by the member
tags of the priority queue type.

To remove an element from the priority queue:

There are two methods to remove an element from the queue depending on whether the value is needed for
further processing or should simply be discarded.

	 •	The [PriorityQueue->Get] tag removes the first element from the queue and returns its value. The following
code gets the value of the first element of the queue and then returns the size of the queue showing the
value has been removed.

4 0 7

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 3 0 – A r r a y s , M a p s , a n d C o m p o u n d D a t a T y p e s

<?LassoScript
	 Var: 'myPriorityQueue' = (PriorityQueue);
	 $myPriorityQueue->Insert('One');
	 $myPriorityQueue->Insert('Two');

	 $myPriorityQueue->Get;

	 $myPriorityQueue->Size;
?>

➜	 Two
1

	 •	The [PriorityQueue->Remove] tag removes the first element from the queue, but does not return its value.
The following code removes the first element from the queue and then returns its size. Notice that the
[PriorityQueue->Remove] tag does not return any value so only the size is output.

<?LassoScript
	 Var: 'myPriorityQueue' = (PriorityQueue);
	 $myPriorityQueue->Insert('One');
	 $myPriorityQueue->Insert('Two');

	 $myPriorityQueue->Remove;

	 $myPriorityQueue->Size;
?>

➜	 1

To perform an operation on each element of a priority queue:

The [Iterate] … [/Iterate] tags can be used to get each element of the queue in turn. The [Iterate] … [/Iterate] tags use
the [PriorityQueue->Size] and [PriorityQueue->Get] tags in order to cycle through every element in the queue. At the
end of the loop the queue will be empty.

The following example creates a queue and then uses [Iterate] … [/Iterate] tags to print out each value in the
queue. Note that the values in the queue are returned in sorted order.

<?LassoScript
	 Var: 'myPriorityQueue' = (PriorityQueue);
	 $myPriorityQueue->Insert('One');
	 $myPriorityQueue->Insert('Two');

	 Iterate: $myPriorityQueue, (Var: 'myItem');
		 '
' + $myItem;
	 /Iterate;

?>

➜	
Two

One

Queues
A queue is a compound data type that stores elements in “first in, first out” or FIFO order. Elements are
pushed onto the end of the queue using [Queue->Insert]. Elements can be popped off the front of the queue
using [Queue->Get]. Only the earliest inserted element of a queue can be retrieved or inspected.

Queues can be used when a series of values need to be kept track of and processed in order. Queues are
always created empty. Elements can then be added using the [Queue->Insert] tag.

4 0 8

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 3 0 – A r r a y s , M a p s , a n d C o m p o u n d D a t a T y p e s

Table 12: Queue Tag

Tag	 Description	

[Queue]	 Creates an empty queue.
		

To create a queue:

Queues are created empty using the queue tag. Elements can be added using the [Queue->Insert] tag. For
example, the following code creates a queue and then inserts One and Two into it.

<?LassoScript
	 Var: 'myQueue' = (Queue);
	 $myQueue->Insert('One');
	 $myQueue->Insert('Two');
?>

Note that the elements that are stored in the queue will be retrieved in the same order they are inserted.
[$myQueue->First] will return One after the above code is run.

Queue Member Tags
The queue data type has a number of member tags that can be used to store, retrieve or delete queue
elements.

Table 13: Queue Member Tags

Tag	 Description	

[Queue->First]	 Returns the first element of the queue. This is always the earliest value inserted
into the queue. The queue is not modified by this tag.

[Queue->Get]	 Returns the first element of the queue and removes it from the queue. Repeated
calls to this tag will consume the data type, eventually leaving an empty type.

[Queue->Insert]	 Inserts a value onto the end of the queue. Accepts a single parameter which is
the value to be inserted. [Queue->InsertLast] is an alias.

[Queue->Remove]	 Removes the first element from the queue. Returns no value. [Queue-
>RemoveFirst] is an alias.

[Queue->Size]	 Returns the number of elements in the queue.
		

To inspect the first element on the queue:

Use the [Queue->First] tag. This tag will return the value of the next element on the queue (the earliest inserted
value) without modifying the queue in any way. The values One and Two are pushed into the queue then the
value One is inspected.

<?LassoScript
	 Var: 'myQueue' = (Queue);
	 $myQueue->Insert('One');
	 $myQueue->Insert('Two');

	 $myQueue->First;
?>

➜	 One

To return the number of elements in the queue:

Use the [Queue->Size] tag. This tag returns an integer representing the number of elements that are contained
within the queue. The following code outputs the size of the queue created above.

[$myQueue->Size]

➜	 2

4 0 9

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 3 0 – A r r a y s , M a p s , a n d C o m p o u n d D a t a T y p e s

To inspect all the values in the queue:

When a queue is cast to string all of the values within it can be inspected. This output is intended to make it
easy to debug queue operations. The following code outputs the queue that is created above. The elements are
printed out in the order they were inserted.

[String: $myQueue]

➜	 Queue: One, Two

To modify the first element on the queue:

The [Queue->First] tag returns the first element of the queue by reference so the value of the element can be
changed. It is not possible to change the values of any other elements on the queue. In the folowing example
the first element in the queue is modified to have the value Three and then this value is returned.

<?LassoScript
	 Var: 'myQueue' = (Queue);
	 $myQueue->Insert('One');
	 $myQueue->Insert('Two');

	 $myQueue->First = 'Three';

	 $myQueue->First;
?>

➜	 Three

To remove an element from the queue:

There are two methods to remove an element from the queue depending on whether the value is needed for
further processing or should simply be discarded.

	 •	The [Queue->Get] tag removes the first element from the queue and returns its value. The following code gets
the value of the first element of the queue and then returns the size of the queue showing the value has
been removed.

<?LassoScript
	 Var: 'myQueue' = (Queue);
	 $myQueue->Insert('One');
	 $myQueue->Insert('Two');

	 $myQueue->Get;

	 $myQueue->Size;
?>

➜	 One
1

	 •	The [Queue->Remove] tag removes the first element from the queue, but does not return its value. The
following code removes the first element from the queue and then returns its size. Notice that the
[Queue->Remove] tag does not return any value so only the size is output.

<?LassoScript
	 Var: 'myQueue' = (Queue);
	 $myQueue->Insert('One');
	 $myQueue->Insert('Two');

	 $myQueue->Remove;

	 $myQueue->Size;
?>

➜	 1

4 1 0

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 3 0 – A r r a y s , M a p s , a n d C o m p o u n d D a t a T y p e s

To perform an operation on each element of a queue:

The [Iterate] … [/Iterate] tags can be used to get each element of a queue in turn. The [Iterate] … [/Iterate] tags use
the [Queue->Size] and [Queue->Get] tags in order to cycle through every element in the queue. At the end of the
loop the queue will be empty.

The following example creates a queue and then uses [Iterate] … [/Iterate] tags to print out each value in the
quue. Note that the values in the queue are returned in the same order as they were inserted.

<?LassoScript
	 Var: 'myQueue' = (Queue);
	 $myQueue->Insert('One');
	 $myQueue->Insert('Two');

	 Iterate: $myQueue, (Var: 'myItem');
		 '
' + $myItem;
	 /Iterate;

?>

➜	
One

Two

Series
A series is a simple data type that represents a sequence of values. When a series is created it requires a start
and an end value. The start value is incremented until it equals the end value and all of the intervening values
are placed in an array. Series are usually created using integer or decimal values, but can be created using any
data type that supports the ++ symbol.

Table 14: Series Tag

Tag	 Description	

[Series]	 Creates a new series. The tag accepts two parameters which are the start and
end value for the range.

		

To create a series:

Series are created using the [Series] tag. The tag accepts two parameters which define the start and end of the
series. For example, the following code creates a series with values from 1 to 10.

[Series(1, 10)]

➜	 Series: (1), (2), (3), (4), (5), (6), (7), (8), (9), (10)

The series data type supports the same member tags as the array data type. See the array examples for details
about how to use those member tags.

Sets
A set is a collection of unique values. The elements within a set are always sorted. When a new element is
inserted the set is first checked to see if the value is already contained. Sets can be manipulated using the [Set-
>Difference], [Set->Intersection], and [Set->Union] tags. The values stored in a set can be of any data type in
Lasso.

4 1 1

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 3 0 – A r r a y s , M a p s , a n d C o m p o u n d D a t a T y p e s

Table 15: Set Tag

Tag	 Description	

[Set]	 Creates a new set. The tag accepts one parameter which is a comparator that
will be used to order the elements within the set. By default the comparator sorts
the elements alphanumerically.

		

To create a set:

Sets are created using the [Set] tag. The tag accepts an optional parameter which defines the sort order for the
set. Set elements can be added using the [Set->Insert] tag. For example, the following code creates a set with the
default comparator and then inserts One and Three into it. The multiple inserts of Three are ignored since the
set can only ontain unique values.

<?LassoScript
	 Var: 'mySet' = (Set);
	 $mySet->Insert('One');
	 $mySet->Insert('Three');
	 $mySet->Insert('Three');
	 $mySet->Insert('Three');

	 $mySet;
?>

➜	 Set: (One, Three)

Set Member Tags
The set data type has a number of member tags that can be used to store, retrieve or delete set elements or to
otherwise manipulate set values.

Table 16: Set Member Tags

Tag	 Description	

[Set->Contains]	 Returns True if the specified element is contained in the set. Requires a single
parameter which is a value to compare to each element of the set.

[Set->Difference]	 Compares the set against another returning a new set that contains only
elements of the current set which are not contained in the other set. Requires
one parameter which is a set to be compared.

[Set->Find]	 Returns a set of elements that match the parameter. Accepts a single parameter
of any data type.

[Set->ForEach]	 Applies a tag to each element of the set in turn. Requires a single parameter
which is a reference to a tag or compound data type. Modifies the set in place
and returns no value.

[Set->Get]	 Returns an item from the set. Accepts a single integer parameter identifying the
position of the item to be returned. This tag can be used as the left parameter of
an assignment operator to set an element of the set.

[Set->Insert]	 Inserts a value into the set. Accepts a single parameter which is the value to be
inserted. Returns no value.

[Set->InsertFrom]	 Inserts elements from an iterator. Requires a single parameter which is an iterator
from another compound data type.

[Set->Intersection]	 Compares the set against another returning a new set that contains only
elements contained in both sets. Requires one parameter which is a set to be
compared.

[Set->Iterator]	 Returns an iterator to step through every element of the set. An optional
parameter specifies a comparator which selects which elements of the set to
return.

4 1 2

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 3 0 – A r r a y s , M a p s , a n d C o m p o u n d D a t a T y p e s

[Set->Join]	 Joins the items of the set into a string. Accepts a single string parameter which is
placed inbetween each item from the array. The opposite of [String->Split].

[Set->Remove]	 Removes an item from the set. Accepts a single integer parameter identifying the
position of the item to be removed. Defaults to the last item in the set. Returns no
value.

[Set->RemoveAll]	 Removes any elements that match the parameter from the set. Accepts a single
parameter of any data type. Returns no value.

[Set->ReverseIterator]	 The same as iterator, but returns the elements in the reverse order. See iterator
for more details.

[Set->Size]	 Returns the number of elements in the set.

[Set->Union]	 Returns a new sets that contains all of the elements from two sets without
duplicates. Requires one parameter which is a set to be added to the current set.

		

To manipulate sets using difference, intersection, and union:

The [Set->Difference], [Set->Intersection], and [Set->Union] tags can be used to manipulate sets. Since sets contain
only unique values the result of each of these tags will be a set that contains only the unique values that are
the result of the operation.

Each of these examples uses the following two sets.

[Var: 'FirstSet' = (Set)]
[$FirstSet->(Insert: 'Alpha')]
[$FirstSet->(Insert: 'Beta')]
[$FirstSet->(Insert: 'Gamma')]

[Var: 'SecondSet' = (Set)]
[$SecondSet->(Insert: 'Beta')]
[$SecondSet->(Insert: 'Gamma')]
[$SecondSet->(Insert: 'Delta')]

	 •	Difference – The difference between two sets is a set of unique values which are contained in the base set,
but are not contained in the parameter set. For example, the following code duplicates FirstSet as ResultSet
and then calculates the difference from SecondSet. The result is only those elements from FirstSet that are
not contained in SecondSet.

[Var: 'ResultSet' = $FirstSet]
[$ResultSet->(Difference: $SecondSet)]
[$ResultSet]

➜	 Set: (Alpha)

	 •	Intersection – The intersection of two sets is a set of unique values which are contained in both the base
set and the parameter set. For example, the following code duplicates FirstSet as ResultSet and then calculates
the intersection with SecondSet. The result is only those elements from FirstSet that are also contained in
SecondSet.

[Var: 'ResultSet' = $FirstSet]
[$ResultSet->(Intersection: $SecondSet)]
[$ResultSet]

➜	 Set: (Beta), (Gamma))

	 •	Union – The union between two sets is a set of unique values which are contained in either the base set
or the parameter set. For example, the following code duplicates FirstSet as ResultSet and then calculates the
union with SecondSet. The result is every elements from FirstSet and every element from SecondSet.

[Var: 'ResultSet' = $FirstSet]
[$ResultSet->(Union: $SecondSet)]
[$ResultSet]

➜	 Set: (Alpha), (Beta), (Gamma), (Delta)

4 1 3

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 3 0 – A r r a y s , M a p s , a n d C o m p o u n d D a t a T y p e s

Stacks
A stack is a compound data type that stores elements in “last in, first out” or LIFO order. Elements are pushed
onto the stack using [Stack->Insert]. Elements can be popped off the stack using [Stack->Get]. Only the most
recently inserted element of a stack can be retrieved or inspected.

Stacks are frequently used to keep track of the current state of an ongoing process. For example, when
processing a directory hierarchy a stack will often be used to record the current directory that is being
processed.

Stacks are always created empty. Elements can then be added using the [Stack->Insert] tag.

Table 17: Stack Tag

Tag	 Description	

[Stack]	 Creates an empty stack.
		

To create a stack:

Stacks are created empty using the stack tag. Elements can be added using the [Stack->Insert] tag. For example,
the following code creates a stack and then inserts One and Two into it.

<?LassoScript
	 Var: 'myStack' = (Stack);
	 $myStack->Insert('One');
	 $myStack->Insert('Two');
?>

Note that the elements that are stored in the stack will be retrieved in reverse order. [$myStack->First] will return
Two after the above code is run.

Stack Member Tags
The stack data type has a number of member tags that can be used to push, pop, or inspect the elements on
the stack.

Table 18: Stack Member Tags

Tag	 Description	

[Stack->First]	 Returns the first element of the stack. This is always the most recent value
inserted into the stack. The stack is not modified by this tag.

[Stack->Get]	 Returns the first element of the stack and removes it from the stack. Equivalent
to a pop operation. Repeated calls to this tag will consume the data type,
eventually leaving an empty type.

[Stack->Insert]	 Inserts a value into the stack. Accepts a single parameter which is the value to
be inserted. Equivalent to a push operation. [Stack->InsertFirst] is an alias.

[Stack->Remove]	 Removes the first element from the stack. Returns no value. [Stack-
>RemoveFirst] is an alias.

[Stack->Size]	 Returns the number of elements in the stack.
		

To inspect the first element on the stack:

Use the [Stack->First] tag. This tag will return the value of the next element on the stack (the most recently
inserted value) without modifying the stack in any way. The values One and Two are pushed onto the stack
then the value Two is inspected.

4 1 4

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 3 0 – A r r a y s , M a p s , a n d C o m p o u n d D a t a T y p e s

<?LassoScript
	 Var: 'myStack' = (Stack);
	 $myStack->Insert('One');
	 $myStack->Insert('Two');

	 $myStack->First;
?>

➜	 Two

To return the number of elements on the stack:

Use the [Stack->Size] tag. This tag returns an integer representing the number of elements that are contained
within the stack. The following code outputs the size of the stack created above.

[$myStack->Size]

➜	 2

To inspect all the values on the stack:

When a stack is cast to string all of the values within it can be inspected. This output is intended to make it
easy to debug stack operations. The following code outputs the stack that is created above. The elements are
printed out in the order they were inserted.

[String: $myStack]

➜	 Stack: One, Two

To modify the first element on the stack:

The [Stack->First] tag returns the first element of the stack by reference so the value of the element can be
changed. It is not possible to change the values of any other elements on the stack. In the folowing example
the first element on the stack is modified to have the value Three and then this value is returned.

<?LassoScript
	 Var: 'myStack' = (Stack);
	 $myStack->Insert('One');
	 $myStack->Insert('Two');

	 $myStack->First = 'Three';

	 $myStack->First;
?>

➜	 Three

To remove an element from the stack:

There are two methods to remove an element from the stack depending on whether the value is needed for
further processing or should simply be discarded.

	 •	The [Stack->Get] tag removes the first element from the stack and returns its value. The following code gets
the value of the first element of the stack and then returns the size of the stack showing the value has been
removed.

4 1 5

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 3 0 – A r r a y s , M a p s , a n d C o m p o u n d D a t a T y p e s

<?LassoScript
	 Var: 'myStack' = (Stack);
	 $myStack->Insert('One');
	 $myStack->Insert('Two');

	 $myStack->Get;

	 $myStack->Size;
?>

➜	 Two
1

	 •	The [Stack->Remove] tag removes the first element from the stack, but does not return its value. The following
code removes the first element from the stack and then returns its size. Notice that the [Stack->Remove] tag
does not return any value so only the size is output.

<?LassoScript
	 Var: 'myStack' = (Stack);
	 $myStack->Insert('One');
	 $myStack->Insert('Two');

	 $myStack->Remove;

	 $myStack->Size;
?>

➜	 1

To perform an operation on each element of a stack:

The [Iterate] … [/Iterate] tags can be used to pop each element of the stack off in turn. The [Iterate] … [/Iterate] tags
use the [Stack->Size] and [Stack->Get] tags in order to cycle through every element in the stack. At the end of the
loop the stack will be empty.

The following example creates a stack and then uses [Iterate] … [/Iterate] tags to print out each value in the stack.
Note that the values in the stack are returned in the reverse order from how they were inserted.

<?LassoScript
	 Var: 'myStack' = (Stack);
	 $myStack->Insert('One');
	 $myStack->Insert('Two');

	 Iterate: $myStack, (Var: 'myItem');
		 '
' + $myItem;
	 /Iterate;

?>

➜	
Two

One

4 1 6

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 3 0 – A r r a y s , M a p s , a n d C o m p o u n d D a t a T y p e s

Tree Maps
Tree maps store and retrieve values based on a key. This allows for specific values to be stored under a name
and then retrieved later using that same name.

Tree maps differ from maps in two respects. The keys in a tree map can be any Lasso data type. In a simple
map all keys are convereted to string values. Second, the keys in a tree map can be sorted using a comparator
which is provided when the tree map is created.

Tree maps can only store one value per key. When a new value with the same key is inserted into a map it
replaces the previous value which was stored in the map. In order to create a data structure that stores more
than one value per key, use an array of pairs instead.

Table 19: Tree Map Tag

Tag	 Description	

[TreeMap]	 Creates a tree map that contains each of the name/value parameters of the tag.
If no parameters are specified, an empty map is created.

		

To create a tree map:

	 •	The following example creates an empty tree map and stores it in a variable.

[Variable: 'EmptyMap' = (TreeMap)]

	 •	The following example shows a tree map with data stored using string literals as keys. The map is similar to
a database record storing information about a particular site visitor.

[TreeMap: 'First_Name'='John', 'Last_Name'='Doe']

	 •	The following example shows a tree map which contains elements that have an array as both the key and
value.

[Map: (Array: 1, 5) = (Array: 1, 2, 3, 4, 5),
	 (Array: 9, 5) = (Array: 9, 8, 7, 6, 5)]

Tree Map Member Tags
The map data type has a number of member tags that can be used to store, retrieve or delete map elements by
key.

Table 20: Tree Map Member Tags

Tag	 Description	

[TreeMap->Find]	 Returns a value from the tree map by key. Accepts a single parameter which is
the key of the value to be returned.

[TreeMap->Get]	 Returns a pair from the tree map by integer position. Accepts a single parameter
which is the position of the value to be returned.

[TreeMap->Keys]	 Returns an array of all the keys specified in the tree map.

[TreeMap->Insert]	 Inserts a value into the tree map by key. Accepts a single name/value pair
parameter which specifies the key and value to be inserted.

[TreeMap->Iterator]	 Returns an iterator that can be used to cycle through all the elements in the tree
map. An optional parameter can be used to only match certain keys within the
tree map.

[TreeMap->Remove]	 Removes a value from the tree map by key. Accepts a single parameter which is
the key of the value to be deleted.

[TreeMap->RemoveAll]	 Removes all matching values from the tree map. Requires one parameter which
is the value to compare to each key of the map.

[TreeMap->Size]	 Returns the number of elements in the tree map.

[TreeMap->Values]	 Returns an array of all the values specified in the tree map.
		

4 1 7

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 3 0 – A r r a y s , M a p s , a n d C o m p o u n d D a t a T y p e s

The following examples show how to manipulate a tree map by inserting, removing, and displaying elements.
The examples are all based on the following array which contains the seven days of the week in English each
with an integer key corresponding to their calendar order.

[Variable: 'DaysOfWeek' = (TreeMap: 1='Sunday',
	 2='Monday',
	 3='Tuesday',
	 4='Wednesday',
	 5='Thursday',
	 6='Friday',
	 7='Saturday')]

To get values from a tree map:

	 •	The value for a given key within the map can be retrieved using the [TreeMap->Find] tag. The tag accepts a
single parameter which is the key of the value to be returned. The key can be any value in Lasso. In the
following example the numeric keys in the DaysOfWeek variable are used to return several days of the week.

[$DaysOfWeek->(Find: 2)] � Monday
[$DaysOfWeek->(Find: 4)] � Wednesday
[$DaysOfWeek->(Find: 6)] � Friday

	 •	All of the keys used within a tree map can be displayed using the [TreeMap->Keys] tag. In the following
example, the integer keys of the DaysOfWeek map are displayed.

[Output $DaysOfWeek->Keys]

�	 (Array: (1), (2), (3), (4), (5), (6), (7))

	 •	All of the values within a tree map can be displayed using the [TreeMap->Values] tag. In the following
example, the string values of the DaysOfWeek map are displayed.

[Output $DaysOfWeek->Values]

�	 (Array: (Sunday), (Monday), (Tuesday), (Wednesday), (Thursday), (Friday), (Saturday))

	 •	All of the elements in a tree map can be displayed using the [Iterate] … [/Iterate] tags. In the following
example, a temporary variable TempElement is set to the value of each element of the map in turn. The
[Pair->First] and [Pair->Second] parts of each element are displayed.

[Iterate: $DaysOfWeek, (Variable: 'TempElement')]
	
[$TempElement->First] = [$TempElement->Second]
[/Iterate]

�	
1 = Sunday

2 = Monday

3 = Tuesday

4 = Wednesday

5 = Thursday

6 = Friday

7 = Saturday

	 •	Alternately, all of the elements in a tree map can be displayed using the [Loop] … [/Loop] tags. In the
following example, the [TreeMap->Size] tag is used to return the size of the map and the [TreeMap->Get] tag is
used to return a particular element of the tree map. These tags function exactly like the same tags used on a
map or pair array. A temporary variable TempElement is used to make the code easier to read.

[Loop: ($DaysOfWeek->Size)]
	 [Variable: 'TempElement' = ($DaysOfWeek->(Get: (Loop_Count)))]
	
[$TempElement->First] = [$TempElement->Second]
[/Loop]

4 1 8

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 3 0 – A r r a y s , M a p s , a n d C o m p o u n d D a t a T y p e s

�	
1 = Sunday

2 = Monday

3 = Tuesday

4 = Wednesday

5 = Thursday

6 = Friday

7 = Saturday

Note: Tree map elements cannot be set using the [TreeMap->Get] member tag. Instead, tree map elements should
be inserted using the [TreeMap->Insert] member tag with the same key as an element in the map.

To insert values into a tree map:

Elements can be added to the tree map or the value for a given key can be changed within a tree map using
the [TreeMap->Insert] tag.

	 •	Use the [TreeMap->Insert] tag with a name/value parameter to insert a new value into a tree map. The
following example shows how to add an Extra Saturday to thetree map stored in DaysOfWeek. No value is
returned by the [TreeMap->Insert] tag, but the new value for key 8 is retrieved using [TreeMap->Find] to show
that the new element has been added.

<?LassoScript
	 $DaysOfWeek->(Insert: 8='Extra Saturday');
	 $DaysOfWeek->(Find: 8);
?>

�	 Extra Saturday

	 •	Use the [TreeMap->Insert] tag with the name of a value already stored in the map to replace that value within
the tree map. The following example shows how to change the value for key 8 to Extra Sabado, substituting
the Spanish word for Saturday. No value is returned by the [TreeMap->Insert] tag, but the new value for key 8 is
retrieved using [TreeMap->Find] to show that the element has been modified.

<?LassoScript
	 $DaysOfWeek->(Insert: 8='Extra Sabado');
	 $DaysOfWeek->(Find: 8);
?>

�	 Extra Sabado

To remove values from a tree map:

The value for a key can be removed from a tree map using the [Map->Remove] tag. The tag accepts a single
parameter, the key of the element to be removed. In the following example, the Extra Sabado entry is removed
from the tree map stored in DaysOfWeek.

<?LassoScript
	 $DaysOfWeek->(Remove: 8);
?>

To display the elements of a tree map:

For debugging purposes all of the elements of a tree map can be output simply by displaying the value of the
variable holding the tree map. This is a quick way to see the value stored in a tree map, but is not intended to
be used to show to site visitors.

[Variable: 'DaysOfWeek']

4 1 9

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 3 0 – A r r a y s , M a p s , a n d C o m p o u n d D a t a T y p e s

�	 (TreeMap: (1)=(Sunday),
	 (2)=(Monday),
	 (3)=(Tuesday),
	 (4)=(Wednesday),
	 (5)=(Thursday),
	 (6)=(Friday),
	 (7)=(Saturday))

Comparators
Comparators are used with the [Match_Comparator] matcher or to sort the elements within a compound data
type. A comparator can be specified when a priority queue is created. Comparators can also be used with the
[Array->SortWith] and [List->SortWith] tags to explicitly order the elements within those data types.

The default comparator for priority queues is LessThan. This comparator is equivalent to the less than <
symbol. It will sort strings alphabetically and integers or decimals numerically. The largest value will be
returned first from the priority queue.

Lasso provides a collection of comparators that perform the most common types of sorting and comparisons.
The comparators are shown in the following table.

Table 21: Comparators

Tag	 Description	

\Compare_LessThan	 Sorts the elements in alphabetical or numerical order with lower values first. The
default for priority queues (returning the greatest value first).

\Compare_GreaterThan	 Sorts the elements in alphabetical or numerical order with higher values first.

\Compare_Contains	 Can be used with the matcher to return elements that contain the specified value.

\Compare_NotContains	 Can be used with the matcher to return elements that do not contain the specified
value.

\Compare_EqualTo	 Can be used with the matcher to return elements that equal the specified value
(with type conversion).

\Compare_NotEqualTo	 Can be used with the matcher to return elements that do not equal the specified
value (with type conversion).

\Compare_StrictEqualTo	 Same as \Compare_EqualTo, but performs a strict comparison including type.

\Compare_StrictNotEqualTo	 Same as \Compare_NotEqualTo, but performs a strict comparison including type.
		

Note: Comparators do not return True or False. Comparators generally return an integer value. A valid
comparison is signaled by the return value of 0. Any other result signals that the comparison was not valid.

To sort an array using a comparator:

Arrays and other compound data types can be sorted using comparators in the ->SortWith member tag.

	 •	An array can be sorted in ascending order using the \Compare_LessThan comparator.

[var('array' = array('aaa', 'bbb', 'ccc', 'aa', 'a', 'b','c','bb','cc'))]
[$array->SortWith(\Compare_LessThan)]
[Encode_HTML($array)]

➜	 Array: (a), (aa), (aaa), (b), (bb), (bbb), (c), (cc), (ccc)

	 •	An array can be sorted in descending order using the \Compare_GreaterThan comparator.

[var('array' = array('aaa', 'bbb', 'ccc', 'aa', 'a', 'b','c','bb','cc'))]
[$array->SortWith(\Compare_GreaterThan)]
[Encode_HTML($array)]

➜	 Array: (aaa), (aa), (a), (bbb), (bb), (b), (ccc), (cc), (c)

4 2 0

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 3 0 – A r r a y s , M a p s , a n d C o m p o u n d D a t a T y p e s

Note: See the following section for examples of using comparators with the [Match_Comparator] matcher.

Custom Comparators
Custom comparators can be created as custom tags or as custom types by overriding the onCompare callback
tag. More details are included in the chapter on custom types. The example below would compare the first
element of arrays.

<?LassoScript
	 Define_Tag: 'ex_Compare_First', -Required='Left', -Required='Right';
		 If: #Left->First < #Left->Second;
			 Return 0;
		 /If;
		 Return: -1;
	 /Define_Tag;
?>

Matchers
Matchers are used with the […->Iterator], […->RemoveAll], and […->ReverseIterator] tags to determine which
elements of a compound data type should be operated on.

The most simple matchers are just strings or numeric values. For example the matcher 'Alpha' will match any
string Alpha contained in an array or set, any value in a map or tree map with a key of Alpha, or any pair with a
first part of Alpha.

Lasso also provides a collection of matchers that perform an operation on each element of the compound
data type in order to determine whether the value should match or not. These matchers are shown in the
following table.

Table 22: Matchers

Tag	 Description	

Literal String, Decimal, Integer	 Any literal value is a matcher for that value. Automatic casting is performed just
as it is for the == symbol. Only the first part of pairs or the key value for maps is
compared.

[Match_RegExp]	 Requires a single parameter which is a regular expression. If the regular
expression matches part of a string value then a match is signaled.

[Match_NotRegExp]	 The same as [Match_RegExp], but signals a match if the regular expression is
not matched.

[Match_Range]	 Requires two parameters: a low value and a high value. Signals a match if the
compared value is equal to either end-value or within the specified range.

[Match_NotRange]	 The same as [Match_Range], but signals a match if the value is not in the range.

[Match_Comparator]	 Requires two parameters: a comparator and either an -RHS or an -LHS value.
Signals a match if the comparator matches the value. The -RHS parameter
should be used by default to compare the value to each element. The -LHS
parameter can be used to instead compare each element to the value.

		

Note: Matchers do not return True or False. Matchers generally return an integer value. A match is signaled by
the return value of 0. Any other result signals that a match did not occur.

To check whether an array contains a value using a matcher:

The ->Contains member tag of each compound data type and the contains symbol >> both accept a matcher as
a parameter. They return True if the matcher matches one or more elements within the compound data type
or False otherwise.

	 •	The most basic matcher is any literal value. For example, the following code checks to see if an array of
numbers contains a specific number.

4 2 1

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 3 0 – A r r a y s , M a p s , a n d C o m p o u n d D a t a T y p e s

[(Array: 1, 2, 3, 4, 5, 6, 7) >> 7] ➜ True

	 •	The [Match_Range] matcher allows the array to be checked to see if it contains a number within a specific
range.

[(Array: 1, 2, 3, 4, 5, 6, 7) >> (Match_Range: 1, 4)] ➜ True

[(Array: 1, 2, 3, 4, 5, 6, 7) >> (Match_Range: 8, 10)] ➜ False

The [Match_NotRange] matcher allows the array to be checked to see if it does not contains a number within
a specific range.

	 •	The [Match_RegExp] matcher allows the array to be checked to see if it contains a string that matches a
regular expression. The first example returns True since the words in the array contain the letter o. The
second example returns False since neither word contains the letter f.

[(Array: 'one', 'two') >> (Match_RegExp: 'o')] ➜ True

[(Array: 'one', 'two') >> (Match_RegExp: 'f')] ➜ False

The [Match_NotRegExp] matcher allows the array to be checked to see if it does not contains a string that
matches the specified regular expression.

	 •	The [Match_Comparator] matcher can be used with any of the available comparators (or a custom
comparator).

Using the \Compare_LessThan comparator and a -RHS parameter of 5 the expression returns True if the array
contains any element that is less than 5. Switching to the -LHS parameter returns False, checking if 5 is less
than any element.

[(Array: 1, 2, 3) >> (Match_Comparator: \Compare_LessThan, -RHS=5)] ➜ True

[(Array: 1, 2, 3) >> (Match_Comparator: \Compare_LessThan, -LHS=5)] ➜ False

Using the \Compare_EqualTo comparator and a -RHS parameter of 3 the expression returns True if the array
contains any element that is equal to 3. Using the \Compare_StrictEqualTo comparator and a -RHS parameter
of ‘3' (a string) the expression returns False since the array does not contain any element that is strictly
equal to the string '3'.

[(Array: 1, 2, 3) >> (Match_Comparator: \Compare_EqualTo, -RHS=3)] ➜ True

[(Array: 1, 2, 3) >> (Match_Comparator: \Compare_StrictEqualTo, -RHS='3')] ➜ False

To remove elements from an array using a matcher:

Multiple elements can be removed from an array simultaneously using a matcher. in the ->RemoveAll tag.

	 •	A range of numbers can be removed from an array using the [Match_Range] matcher. The following example
removes all numbers between 2 and 4 from an array and returns the result.

[Var('array' = Array(1, 2, 3, 4, 5, 6, 7))]
[$array->RemoveAll(Match_Range(2, 4))]
[Output_HTML($array)]

➜	 Array: (1), (5), (6), (7)

	 •	A set of strings that match a regular expression can be removed from an array using the [Match_RegExp]
matcher. The following example removes strings that start with T from an array and returns the result.

[Var('array' = Array('Monday','Tuesday','Wednesday','Thursday','Friday'))]
[$array->RemoveAll(Match_RegExp('\\bT'))]
[Output_HTML($array)]

➜	 Array: (Monday), (Wednesday), (Friday))

	 •	The [Match_Comparator] matcher can be used to remove any elements that match any of the available
comparators (or a custom comparator). Using the \Compare_LessThan comparator and a -RHS parameter of 5
the expression removes all of the elements less than 5 from the array.

4 2 2

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 3 0 – A r r a y s , M a p s , a n d C o m p o u n d D a t a T y p e s

[Var('array' = Array(1, 2, 3, 4, 5, 6, 7))]
[$array->RemoveAll(Match_Comparator(\Compare_LessThan, -RHS=5))]
[Output_HTML($array)]

➜	 Array: (5), (6), (7)

Custom Matchers
Custom matchers can be created as custom tags or as custom types by overriding the onCompare callback tag.
More details are included in the chapter on custom types. The example below would match against today’s
date.

<?LassoScript
	 Define_Type: 'ex_Match_Today';
		 Define_Tag: 'onCompare', -Required='Value';
			 If: (Date: #Value)->(Format: '%D') == Date->(Format: '%D');
				 Return 0;
			 /If;
			 Return: -1;
		 /Define_Tag;
	 /Define_Type;
?>

Iterators
Iterators allow each element within a compound data type to be explored in turn. An iterator is created using
the [Iterator] or [ReverseIterator] tags or returned by the […->Iterator] or […->ReverseIterator] tags of the array, list,
map, set, and tree map types. Custom types might also return iterators.

An iterator has three essential characteristics:

	 •	It has a collection of elements which it can return in order. This could include all of the elements within a
compound data type or a subset of the elements within a compound data type if a matcher is used.

	 •	It has a location within the collection of elements. For the built-in compound data types the location is
a position and the iterator can be moved forward or backward through the elements. Iterators may also
support moving left and right or up and down through a multi-dimensional collection of elements.

	 •	It has a value for the current element. The map types have both a key and a value. In addition, iterators can
be used to remove the current value or to insert a new value in place of the current value.

Methodology
The basic methodology of an iterator uses the [While] … [/While] tags to move through each element in
the collection of elements. In th example below, the iterator is acquired using the [Array->Iterator] tag. The
[Iterator->AtEnd] tag is checked in the while condition to see whether the iterator is at the end yet. Each
time through the loop the iterator value is fetched using [Iterator->Value] and the iterator is advanced using
[Iterator->Forward]. The [Null] tag suppresses the output from [Iterator->Forward].

<?LassoScript
	 Var: 'myArray' = Array('Alpha','Beta','Gamma','Delta');
	 Var: 'myIterator' = $myArray->Iterator;

	 While: ($myIterator->atEnd == False);
		 '
' + $myIterator->Value;
		 Null: $myIterator->Forward;
	 /While;
?>

4 2 3

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 3 0 – A r r a y s , M a p s , a n d C o m p o u n d D a t a T y p e s

➜	
Alpha

Beta

Gamma

Delta

Iterators And Other Iterate Methods
Lasso provides several different methods of iterating through elements within a compound data type. Each
of the different methods has benefits and drawbacks. Ultimately, the method that is used in a given solution
depends on the needs of that solution.

	 •	Most compound data types support the […->Size] and […->Get] tags. With the [Loop] … [/Loop] tags, these
tags represent the basic method of iterating through all the elements within a compound data type. The
advantages of this method are backward compatibility and support across most compound data types. The
drawback is that this method requires a lot of code compared with some of the other methods.

	 •	Most compound data types also support the [Iterate] … [/Iterate] tags. These tags actually use the […->Size] and
[…->Get] tags in their implementation and provide an easy way to access every element of the compound
data type in turn. The advantages of this method are backward compatibility and support across most
compound data types. The drawback of this method is that it always returns every element in the data type
and it is difficult to remove elements from the data type while iterating.

	 •	The map types also support the […->Keys] tag which allows either of the above methods to be used to
iterator through the key values for the data type. The value for each element in the map can then be
fetched, modified, or deleted using the appropriate member tags.

	 •	The iterators defined in this section can be used to iterator through most compound data types. Iterators
have the advantage of being able to move forward or backward through the data type. Elements can be
easily deleted or inserted into the data type while iterating. The iterator can be used with a matcher to
select only certain elements within the data type. The disadvantage is that only certain compound data
types support iterators.

Finally, the iterators mechanism is very flexible. It provides convenient access to both the key and value
in map data types. And, it supports movement in up to three dimensions for more complex custom data
types. The iterator method is designed to be forward thinking so it can be used by third-party developers to
implement advanced functionality.

Iterator Tags
Iterators can be obtained using the ->Iterator or ->ReverseIterator tags of compound data types (or custom data
types) or by using the tags in the following table.

Table 23: Iterator Tags

Tag	 Description	

[Iterator]	 Requires a compound data type as a parameter. Returns the iterator for the data
type. A second optional parameter allows a matcher to be specified. Uses the
built-in iterator if the type supports the ->Iterator member tag. Otherwise, uses
->Size and ->Get to create a generic iterator.

[ReverseIterator]	 The same as [Iterator], but returns a reverse iterator.
				

Each iterator implements a number of member tags which can be used to move through the set of elements,
to reset the iterator, or to fetch the current key or value for an element. These tags are summarized in the
following table.

Table 24: Iterator and Reverse Iterator Member Tags

Tag	 Description	

[Iterator->Forward]	 Moves the iterator forward one element. Returns True if the move was
successful.

4 2 4

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 3 0 – A r r a y s , M a p s , a n d C o m p o u n d D a t a T y p e s

[Iterator->Backward]	 Moves the iterator back one elements. Returns True if the move was successful.

[Iterator->AtEnd]	 Returns True if the iterator is at the end element.

[Iterator->AtBegin]	 Returns True if the iterator is at the beginning element.

[Iterator->Left]	 Moves the iterator left one element. Returns True if the move was successful.

[Iterator->Right]	 Moves the iterator right one element. Returns True if the move was successful.

[Iterator->AtFarLeft]	 Returns True if the iterator is at the far left element.

[Iterator->AtFarRight]	 Returns True if the iterator is at the far right element.

[Iterator->Up]	 Moves the iterator up one element. Returns True if the move was successful.

[Iterator->Down]	 Moves the iterator down one element. Returns True if the move was successful.

[Iterator->AtTop]	 Returns True if the iterator is at the top element.

[Iterator->AtBottom]	 Returns True if the iterator is at the bottom element.

[Iterator->Reset]	 Resets the iterator to its default state. Usually resets to the beginning, far left,
bottom element.

[Iterator->Key]	 Returns the key for the current element if defined.

[Iterator->Value]	 Returns a reference to the value of the current element.

[Iterator->RemoveCurrent]	 Removes the current element from the compound data type and advances to the
next value using [Iterator->Forward].

[Iterator->InsertAtCurrent]	 Inserts an element into the compound data type at the current location.
		

The iterators for the built-in types only support the forward/backward dimension. The left/right and up/down
tags will return False if a move is attempted and the test tags will return True since moving in that dimension
is not possible.

There is no guarantee that moving through an iterator is symmetric. In general moving in one direction and
then the opposite will return the iterator to the same element (for example moving forward then backward).
However, when moving in multiple dimensions the behavior depends entirely on the underlying data
structure. For example, moving up, left, down, right would not return the iterator to the starting element in
most tree data structures.

To get an iterator for a data type:

There are several different methods for getting an iterator for a data type. The preferred method is to use the
[Iterator] tag with the data type as a parameter.

[Var('myIterator' = Iterator($DataType))]

This method will return the built-in iterator if the data type supports the ->Iterator member tag (e.g. the array,
list, map, set, and tree map types) or will construct a generic iterator using the data types ->Size and ->Get tags
otherwise.

[Var('myIterator' = $DataType->Iterator)]

Note: The [ReverseIterator] tag can be used to get a reverse iterator.

To use an iterator with the while tags:

	 •	An array iterator can be cycled through using [While] … [/While] tags. The iterator tag [Iterator->atEnd] is checked
in the condition of the opening [While] tag. If the iterator as at the end then the while loop is finished.
Otherwise, the current value for the iterator is output using [Iterator->Value] and the iterator is advanced using
[Iterator->Forward]. The [Null] tag suppresses the output from [Iterator->Forward].

<?LassoScript
	 Var('myArray' = Array('One', 'Two', 'Three', 'Four'));
	 Var('myIterator' = Iterator($myArray));
	 While($myIterator->atEnd == False);
		 '
' + $myIterator->Value;
		 Null: $myIterator->Forward;
	 /While;
?>

4 2 5

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 3 0 – A r r a y s , M a p s , a n d C o m p o u n d D a t a T y p e s

➜	
One

Two

Three

Four

	 •	The same code using [ReverseIterator] rather than [Iterator] will output the elements of the array in reverse
order.

<?LassoScript
	 Var('myArray' = Array('One', 'Two', 'Three', 'Four'));
	 Var('myIterator' = ReverseIterator($myArray));
	 While($myIterator->atEnd == False);
		 '
' + $myIterator->Value;
		 Null: $myIterator->Forward;
	 /While;
?>

➜	
Four

Three

Two

One

	 •	A map iterator can be cycled through using [While] … [/While] tags. The iterator tag [Iterator->atEnd] is checked
in the condition of the opening [While] tag. If the iterator as at the end then the while loop is finished.
Otherwise, the current value for the iterator is output using [Iterator->Key] and [Iterator->Value]. The iterator is
advanced using [Iterator->Forward].

<?LassoScript
	 Var('myArray' = Array(Map: 1='Sunday', 2='Monday', …));
	 Var('myIterator' = Iterator($myArray));
	 While($myIterator->atEnd == False);
		 '
' + $myIterator->Key + ' = ' + $myIterator->Value;
		 Null: $myIterator->Forward;
	 /While;
?>

➜	
1 = Sunday

2 = Monday
…

To use a matcher with an iterator:

A matcher can be passed to the [Iterator] tag or to the ->Iterator member tags of a compound data type.

	 •	The [Match_Range] matcher can be used to restrict what part of an array is iterated over using the [Iterator] tag.
For example, in the code below [Match_Range('a', 'm')] is used to show only those elements from the array that
start with a letter in the first half of the alphabet.

<?LassoScript
	 Var('myArray' = Array('One', 'Two', 'Three', 'Four'));
	 Var('myIterator' = Iterator($myArray, (Match_Range: 'a', 'm'))));
	 While($myIterator->atEnd == False);
		 '
' + $myIterator->Value;
		 Null: $myIterator->Forward;
	 /While;
?>

➜	
Four

	 •	Any value can be used as a matcher. For example, in the code below the keyword -SortField is used as a
matcher to show only those elements from the array that start with -SortField.

4 2 6

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 3 0 – A r r a y s , M a p s , a n d C o m p o u n d D a t a T y p e s

<?LassoScript
	 Var('myArray' = Array(-SortField='First_Name', -SortOrder='Descending'));
	 Var('myIterator' = Iterator($myArray, -SortField)));
	 While($myIterator->atEnd == False);
		 '
' + $myIterator->Value;
		 Null: $myIterator->Forward;
	 /While;
?>

➜	
(Pair: (-SortField), (First_Name))

See the preceding section on matchers for a full list of possible matchers.

4 2 7

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 3 0 – A r r a y s , M a p s , a n d C o m p o u n d D a t a T y p e s

31
Chapter 31

Files

Lasso provides three sets of tags that create and manipulate files on the Web server: include tags, logging tags,
and file tags.

	 •	File Tags describes the [File_…] tags which allow files and directories to be created, read, written, edited,
moved, and deleted.

	 •	File Data Type describes the [File] and [Directory] tags and data types, and their various member tags that
allow files and folders to be manipulated using an object-oriented methodology.

	 •	File Uploads describes the [File_Uploads] tag which allows files that have been uploaded with an HTML form
to be manipulated and the [File_ProcessUploads] tag that automatically moves uploaded files to a destination
directory.

	 •	File Serving describes the [File_Serve] and [File_Stream] tags that can be used to serve files.

File Tags
The [File_…] tags can be used to read and write files on the same machine as Lasso Service. Any text or binary
file with an approved file suffix can be manipulated. This chapter lists the Lasso substitution tags that are
available to list, inspect, read, write, modify, and delete files. Examples of using the tags are included both in
this section and in the File Upload section that follows.

Note: See also the section on the File Data Type for information on how to manipulate files using an object-
oriented methodology.

Specifying Paths
There are three different types of paths which can be used with the file tags depending on where the files that
are to be manipulated are located.

	 •	Relative Paths – Relative paths are specified from the location of the current Lasso page. Relative paths
follow the same basic rules as for paths specified within the [Include] tags or within HTML anchor <a> tags.

For example, the following tag returns the creation date of a file named library.lasso located in the same
folder as the current Lasso page.

[File_CreationDate: 'library.lasso']

�	 11/6/2001 14:30:00

The following tag returns the creation date of a file named library.lasso located in a sub-folder named
Includes located in the same folder as the current Lasso page.

[File_CreationDate: 'Includes/library.lasso']

�	 8/5/2001 15:35:30

4 2 8

L a s s o 8 . 5 L a n g u a g e G u i d e

Note: The use of relative paths requires that Lasso Service and the Lasso Web server connector be running
on the same machine. The file tags only work with files that are located on the same machine as Lasso
Service.

	 •	Absolute Paths – Absolute paths are specified from the root of the current Web serving folder. Absolute
paths always start with a forward slash /. The root of the current Web serving folder is defined by the
preferences of the Web server and usually corresponds to the location of the default page that is served
when a simple URL such as http://www.example.com/ is visited.

Relative paths follow the same basic rules as for paths specified within the [Include] tags or within HTML
anchor <a> tags.

For example, the following tag returns the creation date of a file named index.html located in the root of the
Web serving folder.

[File_CreationDate: '/index.html']

�	 11/3/2001 16:06:15

The following tag returns the creation date of a file named header.lasso located in a sub-folder named
Includes located in the root of the Web serving folder.

[File_CreationDate: '/Includes/header.lasso']

�	 6/7/2001 8:35:45

Note: The use of relative paths requires that Lasso Service and the Lasso Web server connector be running
on the same machine. The file tags only work with files that are located on the same machine as Lasso
Service.

	 •	Mac OS X Fully Qualified Paths – Fully qualified paths are specified from the root of the file system.
They can be used to specify any files on the Web server including those outside of the Web serving root.

In Mac OS X, fully qualified paths are always preceded by three forward slashes ///. This identifier is used to
distinguish fully qualified paths from absolute paths. The root folder /// corresponds to the root of the file
system as defined in the Terminal application (e.g. cd /).

For example, the following tag returns the creation date of Lasso Service in Mac OS X.

[File_CreationDate: '///Applications/Lasso Professional 8/LassoService']

�	 11/3/2001 16:06:15

The following tag returns the creation date of Admin.LassoApp located in the default Web serving folder in
Mac OS X.

[File_CreationDate: '///Library/WebServer/Documents/Lasso/Admin.LassoApp']

�	 6/7/2001 8:35:45

Partitions and mounted servers are located in the ///Volumes/ folder. The default Web serving folder for
Apache is ///Library/WebServer/Documents/ and for WebSTAR V is ///Applications/4DWebSTAR/WebServer/DefaultSite/.

	 •	Windows Fully Qualified Paths – Fully qualified paths are specified from the root of the file system. They
can be used to specify any files on the Web server including those outside of the Web serving root.

In Windows, fully qualified paths are always preceded by the letter name of a partition, a colon, and two
forward slashes C:// or E://. Any mounted partition can be referenced in this fashion.

For example, the following tag returns the creation date of Lasso Service from the C: drive in Windows.

[File_CreationDate: 'C://OmniPilot Software/Lasso Professional 8/LassoService.exe']

�	 11/3/2001 16:06:15

4 2 9

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 3 1 – F i l e s

The following tag returns the creation date of Admin.LassoApp located in the default Web serving folder from
the C: drive in Windows.

[File_CreationDate: 'C://InetPub/WWWRoot/Lasso/Admin.LassoApp']

�	 6/7/2001 8:35:45

Note: The file tags only work with files that are located on the same machine as Lasso Service or are
accessible through a mounted file server.

File Suffixes
Any file which is manipulated by Lasso using the file tags must have an authorized file suffix within Site
Administration. See the Setting Site Preferences chapter of the Lasso Professional 8 Setup Guide for more
information about how to authorize file suffixes.

By default the following suffixes are authorized within Site Administration. Files named with any of these file
suffixes can be used with the file tags.

.text								 .txt

.bmp								 .cmyk

.gif 									 .jpg

.pdf 								 .png

.psd								 .rgb

.tif 									 .uld

.wsdl								 .xml

.xsd

Note: If permission has been granted to Any File Extension for the current user then the file suffix preferences are
ignored and files with any file suffix can be manipulated.

Security
The use of file tags is restricted based upon what permissions have been granted in Site Administration for
the current user. If necessary, an inline can be used to surround a block of file tags in order to run those tags
with the permissions of the user specified in the inline.

[Inline: -Username='FileUser', -Password='MySecretPassword']
	 … File Tags …
[/Inline]

Any file operation must pass the following four security checks in order to be allowed.

	 •	File Tags Enabled – The desired file tag must be enabled within the Setup > Security > Tags section of
Site Administration. Tags which are disabled in this section are not available for use by any user other than
the global administrator.

	 •	File Tag Permissions – The current user must have permission to execute the desired file tag. Permission is
granted in the Setup > Security > Tags section of Site Administration. Permission must be granted for one
of the groups in which the current user belongs or for the AnyUser group.

	 •	File Permissions – The current user must have permission to execute the desired file action. Permission is
granted in the Setup > Security > Files section of Site Administration. Permission must be granted for one
of the groups to which the current user belongs or for the AnyUser group.

	 •	Allow Path – The Allow Path for the current user must allow the file to be accessed. The Allow Path is specified
in the Setup > Security > Files section of Site Administration. Any files in sub-folders of the allowed path
can be manipulated using the file tags.

	 •	File Suffixes – Discussed above. The file to be operated upon must be named with an approved file suffix.

The Any File Permission permission specified in the Setup > Security > Files section of Site Administration
allows a user to access file without respect to the allowed path or file suffixes. Any files on the machine
hosting Lasso Service can be manipulated.

4 3 0

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 3 1 – F i l e s

Mac OS X Note: See the Mac OS X Tips document in the Documentation folder for information about how to
configure Mac OS X file permissions.

The global administrator has permission to perform any Lasso actions and is able to access any files on the
machine hosting Lasso service without regard to these security settings.

Table 1: File Tags

Tag	 Description	

[File_Chmod]	 Allows the Unix file permissions of a file to be modified. Requires the path to
the file to be modified and an octal permission string as parameters. This tag is
currently supported on Mac OS X and Linux.

[File_Copy]	 Copies a file or directory from one location to another. Accepts two parameters,
the location of the file or directory to be copied and the new location. Optional
-FileOverWrite keyword specifies that the destination file should be overwritten if
it exists.

[File_StreamCopy]	 Copies a file or directory from one location to another. using a buffer. This allows
very large files to be copied without using an inordinate amount of memory.
Accepts two parameters, the location of the file or directory to be copied and the
new location. Optional -FileOverWrite keyword specifies that the destination file
should be overwritten if it exists. Optional -Buffer specifies an integer number of
bytes which should be used for the copy buffer (defaults to 30,000).

[File_Create]	 Creates a new, empty file or a new directory. Accepts one parameter, the location
of the file or directory to be created. If the file name ends in a / then a directory
is created. Optional -FileOverWrite keyword specifies that the destination file
should be overwritten if it exists.

[File_CreationDate]	 Returns the creation date of a file. Accepts one parameter, the name of the file or
directory to be inspected.

[File_CurrentError]	 Reports the last error reported by a file tag. Accepts an optional keyword -
ErrorCode that returns the error code rather than the error message.

[File_Delete]	 Deletes a file or directory. Accepts one parameter, the name of the file or
directory to be deleted.

[File_Exists]	 Returns True if the file or directory exists. Accepts one parameter, the name of
the file or directory to be inspected.

[File_GetSize]	 Returns the size in bytes of a file. Accepts one parameter, the name of the file to
be inspected.

[File_IsDirectory]	 Returns True if the specified path is a directory. Accepts one parameter, the
name of the file or directory to be inspected.

[File_GetLineCount]	 Returns the number of lines in a file. Accepts one parameter, the name of the file
to be inspected. Optional -FileEndOfLine keyword/value parameter specifies what
character represents the end of a line.

[File_ListDirectory]	 Returns an array of strings. Each item in the array is the name of one file in the
directory. Accepts one parameter, the name of the directory to be listed.

[File_ModDate]	 Returns the modification date of a file. Accepts one parameter, the name of the
file or directory to be inspected.

[File_Move]	 Moves a file or directory from one location to another. Accepts two parameters,
the location of the file or directory to be moved and the new location. Optional
-FileOverWrite keyword specifies that the destination file should be overwritten if
it exists.

[File_ProbeEOL]	 Returns the end-of-line character used within a string. Returns either \r\n, \r, or \n.
Requires one parameter which is a string or bytes type containing file data.

[File_Read]	 Reads the contents of a file. Accepts one parameter, the name of the file to be
read. Two optional parameters -FileStartPos and -FileEndPos define the range of
characters which should be read from the file.

4 3 1

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 3 1 – F i l e s

[File_ReadLine]	 Reads a single line from a file. Accepts two parameters, the name of the file to
be read and -FileLineNumber specifying which line of the file to read. An optional
keyword/value parameter -FileEndOfLine specifies what character represents the
end of lines within the file.

[File_Rename]	 Renames a file or directory. Accepts two parameters, the location of the file
or directory to be copied and the new name. Optional -FileOverWrite keyword
specifies that the destination file should be overwritten if it exists.

[File_SetSize]	 Sets the size of the specified file. Accepts two parameters, the name of the file to
be modified and the size in bytes which the file should be set to. Any data beyond
that size in bytes will be truncated.

[File_Write]	 Writes data to the specified file. Accepts two parameters, the name of the
file to be written and the data which should be written into the file. Optional -
FileOverWrite keyword specifies that the destination file should be overwritten if it
exists, otherwise the data specified is appended to the end of the file.

		

See Appendix A: Error Codes under the table File Codes for a list of error codes and messages which will be
returned by the [File_CurrentError] tag.

Note: If [File_ListDirectory] returns unusual results check the Apache httpd.conf file for a DirectoryIndex directive which
specifies a folder rather than a file name.

To list a directory:

	 •	Use the [File_ListDirectory] tag with the path to the directory. An array is returned which can be output
using [Loop] … [/Loop] tags. In the following example the contents of the Web serving folder on a Windows
machine is listed by storing the array of files in an array File_Listing and then looping through the array.
Each machine will have a different listing depending on what files have been installed in this directory.

[Variable: 'File_Listing' = (File_ListDirectory: 'C://InetPub/WWWRoot/')]
[Loop: ($File_Listing->Size)]
	
[$File_Listing->(Get: (Loop_Count))]
[/Loop]

�	
default.htm

default.lasso

error.lasso

Images/

Lasso/

Note: The Web serving root on either platform can be listed using [File_ListDirectory: '/'] as long as both Lasso
Service and the Web server are hosted on the same machine.

	 •	The number of files in a directory can be counted by simply outputting the size of the array which is
returned from [File_ListDirectory]. In the following example, the number of files in the Web serving folder
listed above is returned.

[Variable: 'File_Listing' = (File_ListDirectory: 'C://InetPub/WWWRoot/')]
[$File_Listing->Size]

�	 5

	 •	More information about each of the files can be returned using the other file tags. The following example
shows how to return the size, creation and modification dates of each of the files as well as whether each
file is actually a file or a directory. The two directories do not have sizes or date information.

[Variable: 'File_Root' = 'C://InetPub/WWWRoot/']
[Variable: 'File_Listing' = (File_ListDirectory: $File_Root)]
[Loop: ($File_Listing->Size)]
	 [Variable: 'File_Temp' = $File_Root + $File_Listing->(Get: (Loop_Count))]
	
[$File_Temp] [File_GetSize: $File_Temp]
	 [File_CreationDate: $File_Temp] [File_ModDate: $File_Temp]
	 [File_Exists: $File_Temp] [File_IsDirectory: $File_Temp]
[/Loop]

4 3 2

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 3 1 – F i l e s

�	
default.htm 4325 11/15/2000 14:00:12 11/13/2000 17:26:18 True False

default.lasso 12130 4/11/2000 12:33:29 3/17/2001 11:09:43 True False

error.lasso 393 11/13/2000 11:46:15 11/13/2000 11:50:47 True False

Images/ True True

Lasso/ True True

To create a new directory:

A new directory can be created using the [File_Create] tag. The tag creates a directory if the file name specified
ends in a slash / character.

	 •	The following tag would create a new directory named files at the root of the Web serving folder.

[File_Create: '/files/']

	 •	The following tag would create a new directory named files at the root of the Web serving folder using a
fully qualified path on Windows 2000.

[File_Create: 'C://InetPub/wwwroot//files/']

	 •	The following tag would create a new directory named files at the root of the default Apache Web serving
folder using a fully qualified path on Mac OS X.

[File_Create: '///Library/WebServer/Documents//files/']

To create a new file:

	 •	A new file can be created using the [File_Create] tag. The data for the file in the following example comes
from a variable File_Contents. The entire file newfile.lasso is written in one step using [File_Write]. If a file of the
same name already exists in the specified directory it will be overwritten.

[File_Create: '/files/newfile.lasso', -FileOverWrite]
[File_Write: '/files/newfile.lasso', $File_Contents, -FileOverWrite]

	 •	The following example shows how to do a safe file write. The code first checks to see if the desired output
file is going to overwrite an existing file. A new file is created and the current error is checked using
[File_CurrentError]. If no error occurred then the file is written using the [File_Write] tag.

[Variable: 'File_Path' = '/files/newfile.txt']
[Variable: 'File_Contents' = 'The contents of the new file']
[If: (File_Exists: $File_Path) == False]
	 [File_Create: $File_Path]
	 [If: (File_CurrentError) == (Error_NoError)]
		 [File_Write: $File_Path, $File_Contents]
	 [Else]
		
Error - Error Creating File
	 [/If]
[Else]
	
Error - File Already Exists
[/If]

To import data from a file:

Data can be imported from a file using the [File_ReadLine] tag to read in each line of the file in turn. The lines
of the file can then be parsed and stored in a database or shown to a user.

In the following example, each line of the file is assumed to be tab-delimited output from a database which
is split into an array and could be later stored into a database. Each line of the file is split into an array
Array_Temp and then the array is stored in the array File_Array.

4 3 3

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 3 1 – F i l e s

[Variable: 'File_Path' = '///Library/WebServer/Documents/import.lasso']	 [Variable: 'File_Array' = (Array)]
[If: (File_Exists: $File_Path)]
	 [Loop: (File_GetLineCount: $File_Path)]
		 [Variable: 'File_Temp' = (File_ReadLine: $File_Path,
				 -FileLineNumber=(Loop_Count))]
		 [Variable: 'Array_Temp' = $File_Temp->(Split: '\t')]
		 [$File_Array->(Insert: ($Array_Temp))]
	 [/Loop]
[/If]

The end result of importing the file is an array File_Array which contains an element for each line of the file.
Each element is itself an array that contains an element for each tab-delimited item of data in the specified
line.

To report errors while working with files:

Errors can be reported using the [File_CurrentError] tag. This tag works in much the same way as the
[Error_CurrentError] tag. The following code creates a file and writes data into it, reporting errors at each step of
the process.

[File_Create: 'e://files/newfile.lasso', -FileOverWrite]

Error was [File_CurrentError: -ErrorCode]: [File_CurrentError].
[File_Write: 'e:\files\newfile.lasso', $File_Contents, -FileOverWrite]

Error was [File_CurrentError: -ErrorCode]: [File_CurrentError].

�	
Error was 0: No Error.

Error was 0: No Error.

See Appendix A: Error Codes under the table File Codes for a list of error codes and messages which will be
returned by the [File_CurrentError] tag.

To change the Unix file permissons of a file:

Use the [File_Chmod] tag. The following example changes the Unix file system permissions of a file to -rwxrwxr-x
(read, write, and execute permissions for the file owner, read, write, and execute permissions for the file
group, and read and execute permissions for all other system users).

[File_Chmod: 'file.txt', -u='rwx', -g='rwx', -o='rx']

Line Endings
Files on Mac OS X, Windows, and Linux each have a different standard for line endings. The following table
summarizes the different standards.

Table 2: Line Endings

Tag	 Description	

Mac OS X	 Line feed: \n. Each line is ended with a single line feed character.

Windows	 Line feed and carriage return: \r\n. Each line is ended with both a line feed and a
carriage return character.

Linux	 Line feed: \n. Each line is ended with a single line feed character.
		

Line ending differences are handled automatically by Web servers and Web browsers so are generally only
a concern when reading and writing files using the [File_…] tags. The following tips make working with files
from different platforms easier.

	 •	The default line endings used by the [File_LineCount] and [File_ReadLine] tags match the platform default. They
are \n in Mac OS and Linux, and \r\n in Windows.

	 •	Specify line endings explicitly in the [File_LineCount] and [File_ReadLine] tags. For example, the following tag
could be used to get the line count for a file orginally created in Linux.

[File_LineCount: 'FileName.txt', -FileEndOfLine='\r']

4 3 4

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 3 1 – F i l e s

Or, the following tag could be used to get the line count for a file that was originally created on Windows.

[File_LineCount: 'FileName.txt', -FileEndOfLine='\r\n']

	 •	Many FTP clients and Web browsers will automatically translate line endings when uploading or
downloading files. Always check the characters which are actually used to end lines in a file, don’t assume
that they will automatically be set to the standard of either the current platform or the platform from
which they originated.

	 •	A text editor can be used to change the line endings in a file from one standard to another explicitly.

	 •	The [File_ProbeEOL] tag can be used to determine what end-of-line character is being used within a string or
byte stream.

File Data Type
The file data type allows files to be cast as Lasso objects and manipulated using member tags. This
methodology is more advanced than the [File_…] tags methodology, giving Lasso developers a wide array of
file connection modes and types for connecting to files.

Note: All guidelines for specifying file paths, file extensions, line endings, and permissions that were described in
the File Tags section also apply to the file data type and its member tags described here.

File Data Type
To use the file streaming methodology, a file must first be cast as a Lasso file variable using the [File] tag. This
tag is described below.

Table 3: [File] Tag

Tag	 Description	

[File]	 Casts a file as a Lasso object, and sets the open and read modes. Requires the
name and path to a file as a parameter. Also requires parameters which specify
the open and read modes for the file.

		

When a file connection is opened using the [File] tag, several different open modes can be used. These modes
optimize the file connection for best performance depending on the purpose of the connection. The open
modes are described below.

Table 4: File Open Modes

Mode	 Description	

File_OpenRead	 Sets the file connection to read-only.

File_OpenWrite	 Sets the file connection to write-only.

File_OpenReadWrite	 Sets the file connection to read and write.

File_OpenWriteAppend	 Sets the file connection to write and append data.

File_OpenWriteTruncate	 Sets the file connection to write and truncate data.
		

When using the [File] tag, a read mode may also be specified to determine how the file will be read when the
[File->Get] tag is used. The read modes are described below.

Table 5: File Read Modes

Read Mode	 Description	

File_ModeChar	 [File->Get] reads a file character by character.

File_ModeLine	 [File->Get] reads a file line by line.
		

4 3 5

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 3 1 – F i l e s

To cast a file as a Lasso object:

Use the [File] tag. The example below casts a local file named myfile.txt as a Lasso object in read-only/character
mode. Note that no single quotes are used around the open and read mode designators, as they are type
constants and not strings.

[Var:'File'=(File: 'myfile.txt', File_OpenRead, File_ModeChar)]

Manipulating File Objects
Once a file has been cast as a Lasso file data type, various [File] member tags can be used to manipulate it.
These tags can handle file specification, opening, closing, deleting, reading, writing and meta-data for files.

Table 6: File Streaming Tags

Tag	 Description	

[File->Open]	 Opens a new connection to a file. Requires the name and path to a file as a
parameter. Optional parameters may include an open mode and read mode, as
in the [File] tag. The open mode and read mode set in the initial [File] tag call are
used by default if not respecified.

[File->SetEncoding]	 Sets the encoding for the file. This encoding is used to translate strings
passed to [File->Write] to the specified character set and strings returned from
[File->ReadString] from the specified character set. Defaults to UTF-8 encoding.

[File->SetMode]	 Sets the file read mode for the connection. This can be File_ModeLine for
reading a file line by line, or File_ModeChar for reading a file character by
character. Defaults to File_ModeChar if not specified.

[File->Read]	 Reads byte data from a file. Requires the integer number of bytes (characters) to
read as a parameter. Outputs the file data as bytes. This tag always reads bytes
from the file without respect to the file read mode.

[File->ReadString]	 Reads a string from a file. Requires the integer number of bytes (characters)
to read as a parameter. Outputs the file data as strings (translated using UTF-8
or the character set established by [File->SetEncoding]). This tag always reads
bytes from the file without respect to the file read mode.

[File->Write]	 Writes data to a file. Requires the text string or byte stream to write as a
parameter. Strings are translated to UTF-8 or the character set established by
[File->SetEncoding]. Byte streams are written as binary data without translation.
Two optional comma-delimited integer parameters may also be specified. The first
specifies the number of characters of the input to write, and the second specifies
the number of characters in the input to skip.

[File->SetPosition]	 Sets the position of the file's read/write marker. Requires an integer line or
character position (depending on mode) as a parameter. All subsequent reads
and writes will occur at the given position.

[File->Position]	 Returns the current file position. Defaults to 0 if no previous file operations have
been performed.

[File->Get]	 Returns the current character or line (depending on the file's read mode) at the
current file position. Repeated calls to [File-Get] will read the next character or
line from the file. Note that lines do not end with a return or newline.

[File->SetSize]	 Sets the size of the file. Requires an integer parameter that specifies the size of
the file in bytes.

[File->MoveTo]	 Moves the file to the new path. Requires a path on the local server as a
parameter.

[File->Delete]	 Deletes the file and reinitializes the type instance.

[File->Size]	 Returns size of the file in bytes.

[File->Name]	 Returns the file's name.

[File->Path]	 Returns the full internal path to file.

[File->Close]	 Closes a connection to a file. This tag should be called whenever a file streaming
operation is finished.

4 3 6

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 3 1 – F i l e s

[File->IsOpen]	 Returns a value of True if the file connection has not been closed.
		

To read characters from a file:

Use the [File->Read] tag. The file object should be cast with an open mode that permits reading, and with the
read mode set to File_ModeChar. The example below reads the first 256 characters of myfile.txt.

[Var:'File'=(File: 'myfile.txt', File_OpenRead, File_ModeChar)]
[$File->(Read: 256)]
[$File->Close]

To read characters from a file starting at a specified position:

Characters can be read starting at a set position using the [File->SetPosition] tag before the [File->Read] tag. The
example below reads 240 characters starting at character number 16.

[Var:'File'=(File: 'myfile.txt', File_OpenRead, File_ModeChar)]
[$File->(SetPosition: 16)]
[$File->(Read: 240)]
[$File->Close]

To read lines from a file:

Use the [File->Get] tag. The file object should be cast with an open mode that permits reading, and with the
read mode set to File_ModeLine. The example below reads the first 4 lines of myfile.txt. Note that each line
returned does not end with a return or newline character.

[Var:'File'=(File: 'myfile.txt', File_OpenRead, File_ModeLine)]
[Loop: 4]
	 [Encode_HTML: $File->Get]

[/Loop]
[$File->Close]

To read all the lines from a file:

All lines from a file can be read using the [While] … [/While] tags with [File->Get]. The following code loops
until the current position in the file is the end of the file. The code outputs each line of the file using the
[Encode_HTML] tag. Note that each line returned does not end with a return or newline character.

[Var:'File'=(File: 'myfile.txt', File_OpenRead, File_ModeLine)]
[Var: 'line' = '']
[While: $file->position < $file->size]
	 [Encode_HTML: $file->Get]

[/While]
[$File->Close]

To reset the read mode during file operations:

Use the [File->SetMode] tag to change the read mode. The example below starts in File_ModeLine mode, reads the
first line of myfile.txt, changes to File_ModeChar mode, moves to the fifth character, and then reads the next 16
characters.

[Var:'File'=(File: 'myfile.txt', File_OpenRead, File_ModeLine)]
[$File->Get]
[$File->(SetMode: File_ModeChar)]
[$File->(SetPosition: 5)]
[$File->(Read: 16)]
[$File->Close]

To write text to a file:

Use the [File->Write] tag. The file object should be cast with an open mode that permits writing. The example
below adds the text This is some text after the fifth line of the file.

4 3 7

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 3 1 – F i l e s

[Var:'File'=(File: 'myfile.txt', File_OpenWrite, File_ModeLine)]
[$File->(SetPosition: 5)]
[$File->(Write:'this is some text')]
[$File->Close]

To write part of a string variable to a file:

Use the [File->Write] tag with the optional size and offset integer parameters. This is useful for truncating part of
an existing string variable on-the-fly before writing it to the file. The example below adds the text five to the
file out of a pre-defined string variable with a value of There are five elements.

[Var:'Text'='There are five elements']
[Var:'File'=(File: 'myfile.txt', File_OpenWrite, File_ModeLine)]
[$File->(Write: $Text, 4, 10)]
[$File->Close]

To return information about a file:

The [File->Name], [File->Path], and [File->Size] tags can be used to output the name, path, and size (in kilobytes)
of a file. The example below outputs the file name, path, and size delimited by HTML line breaks.

[Var:'File'=(File: 'myfile.txt', File_OpenRead, File_ModeChar)]
[$File->Path]

[$File->Name]

[$File->Size]

[$File->Close]

To move a file to a different folder:

Use the [File->MoveTo] tag. The following examples moves the local myfile.txt file to a different to folder on a Mac
OS X hard drive.

[Var:'File'=(File: 'myfile.txt', File_OpenRead, File_ModeChar)]
[$File->(MoveTo:'///Library/WebServer/Documents/myfile.txt')]
[$File->Close]

File Uploads
Files can be uploaded to Lasso using standard HTML form inputs. Any uploaded files are processed by Lasso
and stored in a temporary location. An array [File_Uploads] is provided that returns information about each of
the uploaded files. The Lasso developer must write code to move the files to a safe location in the response
page to the form in which they were uploaded. The [File_Copy] tag should be used to move uploaded files to a
permanent location. Any files left in the temporary location once the Lasso page has finished executing will
be deleted.

File Permissions Note: File access permission for All Files is required for a user to upload files. For more
information, see the Setting Up Security chapter in the Lasso Professional 8 Setup Guide.

HTML Form for File Upload
HTML forms must specify an enctype of multipart/form-data in order for file upload to work. An <input> tag with a
type of file must be specified for each file that can be uploaded using the form. The following form includes a
single <input> so one file can be uploaded to Lasso.

<form action="response.lasso" method="post" enctype="multipart/form-data">
	 Select a file: <input type="file" name="upload" value="">
	
<input type="submit" value="Upload File">
</form>

4 3 8

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 3 1 – F i l e s

Once the site visitor selects a file using the file control shown in their browser and selects the
Upload File button, the Lasso page response.lasso will be called. Within this file the tag [File_Uploads] returns an
array of information about each of the files uploaded with the form. In this case the array will only contain
one item.

Table 7: File Upload Tags

Tag	 Description	

[File_Uploads]	 Returns an array of maps that contain information about any files that were
uploaded with the form that triggered the current Lasso page.

[File_ProcessUploads]	 Moves uploaded files into a destination directory. Allows the files to be filtered by
size or file extension. Requires one parameter -Destination which is the desired
directory for the uploaded files. By default files are restored to their original name.
An optional -UseTempNames parameter will instead use the .uld name for each
file. An optional -FileOverwrite paramater will overwrite files with matching names
in the destination.
An optional -Size parameter allows a maximum size in bytes to be specified.
Only files smaller than this size will be moved. An optional -Extensions parameter
allows an array of file extensions to be spcified. Only files that originally had one
of these extensions will be moved.

		

Each element of the array returned by the [File_Uploads] tag is a map with the elements defined in the
following table. If no files were uploaded then [File_Uploads] returns an empty array. Note that each <input> can
only be used to upload one file, but multiple <input> tags can be specified in a single form to upload multiple
files.

Table 8: [File_Uploads] Map Elements

Element	 Description	

Path	 The path to the temporary location where the uploaded file is stored. Also
accessible as Upload.Name.

File	 A file object for the temporary file.

Size	 The size of the uploaded file in bytes. Also accessible as Upload.Size.

Type	 The type of the uploaded file. Also accessible as Upload.Type.

Param	 The name of the form parameter which the file was uploaded in.

OrigName	 The original name of the uploaded file (if provided) without any path information.

OrigPath	 The original path of the uploaded file (if provided). Also accessible as Upload.
RealName.

OrigExtension	 The original file extensions of the uploaded file.
		

To display information about the uploaded files:

	 •	Information about the uploaded files can be displayed to the site visitor by looping through the
[File_Uploads] array. The following code loops through the array and returns information about each
uploaded file on a separate line. The results are shown for a single uploaded file named Picture.gif.

[If: (File_Uploads->Size == 0)]
	 No files were uploaded.
[Else]
	 [Loop: (File_Uploads->Size)]
		 [Variable: 'File_Temp'= (File_Uploads->(Get: (Loop_Count)))]
		
[$File_Temp->(Find: 'Path')]
			 [$File_Temp->(Find: 'Size')]
			 [$File_Temp->(Find: 'Type')]
			 [$File_Temp->(Find: 'OrigPath')]
	 [/Loop]
[/If]

�	
E://WinNT/Temp/Lasso-tmp4.uld 128 image/gif Picture.gif

4 3 9

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 3 1 – F i l e s

To move uploaded files to a permanent location:

All of the files which were uploaded will be deleted when the current Lasso page is finished processing.
Each uploaded file must be moved to another location in order to prevent it from being deleted. It is
recommended that you use the [File_ProcessUploads] tag to move uploaded files.

The following code moves each file that was uploaded to a folder located at the path /uploads/ within the
Web server root. Each file is restored to its original name and files with the same name in the destination are
overwritten.

[File_ProcessUploads: -Destination='/uploads/', -FileOverwrite]

The code does not return any output, but all uploaded files are moved to the destination directory.

To move select uploaded files to a permanent location:

The following code moves only .gif or .jpeg files under 32 kbytes to a folder located at the path /uploads/ within
the Web server root. Each file is restored to its original name and files with the same name in the destination
are overwritten.

[File_ProcessUploads: -Destination='/uploads/', -FileOverwrite,
		 -Size=32768, -Extensions=(Array: 'gif', 'jpg')]

The code does not return any output, but all uploaded files that match the specified criteria are moved to the
destination directory.

To move uploaded files to a permanent location manually:

The following code moves each file that was uploaded to a folder located at the path e://uploads/ named
upload1.txt, upload2,txt, etc. From there the files can be further manipulated or moved as needed.

[Variable: 'Path' = 'e://uploads/']
[If: (File_Uploads->Size == 0)]
	 No files were uploaded.
[Else]
	 [Loop: (File_Uploads->Size)]
		 [Variable: 'File_Temp'= (File_Uploads->(Get: (Loop_Count)))]
		 [File_Copy: $File_Temp->(Find: 'Upload.Name'),
			 ($Path + 'upload' + (loop_count) + '.txt')]
	 [/Loop]
[/If]

The code does not return any output if there were no files uploaded.

File Serving
Lasso can serve files in place of the current output file using the tags described in this section. Once one
of these tags is called the current output is superseded by the output of the tag. These tags are usually used
in a Lasso page that acts as a proxy for the downloaded file and does not have any output other than the
[File_Serve] or [File_Stream] tag.

Table 9: File Serving Tags

Tag	 Description	

[File_Serve]	 Serves a file in place of the output of the current Lasso page. The first parameter
is the data to be served. Optional -File parameter specifies the name of the
served data. Optional -Type parameter allows the MIME type to be overridden
from the default of text/html.

[File_Stream]	 Serves a file in place of the output of the current file. Uses very little memory so
large files can be served. -File paramter specifies the path to a disk file. -Name
specifies the name of the file to send to the client. Optional -Type parameter
allows the MIME type to be specified (defaults to application/ octet-stream).

		

4 4 0

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 3 1 – F i l e s

The two tags provide very similar functionality, but are ideal for different purposes.

	 •	[File_Serve] should be used when the data to be served is generated within Lasso such as from the image,
PDF, or file tags or from a database action. [File_Serve] is ideal for serving smaller files since the entire file
must be stored in memory before it is sent to the client.

	 •	[File_Stream] should be used when the data to be served is in a disk file. Since the tag will read the file off
disk in small chunks it can be used to serve very large files with low overhead.

Note: The current user must have permission to read the specified file in order to use the [File_Stream] tag.

To serve an image from a FileMaker container field:

Pass the value of the [Database_FMContainer] field to the [File_Serve] tag. In the following example a single
image is fetched from a database based on the value of the action parameter ID. The contents of the Image
field is interpreted as a JPEG and passed to [File_Serve]. To the site visitor this file will serve a file named
FileMakerImage.jpg.

[Inline: -Database='Contacts.fp5',
		 -Layout='People',
		 -KeyValue=(Action_Param: 'ID')
		 -Search]
	 [File_Serve:
			 (Database_FMContainer: 'Image'),
			 -Type='image/jpeg',
			 -File='FileMakerImage.jpg']
[/Inline]

Note: The [File_Serve] tag replaces the current output of the page with the image and performs an [Abort]. The
code above represents the complete content of a Lasso page.

The code above could be saved into a Lasso page called Image.Lasso. This page would then be referenced
within an HTML tag as follows.

To stream a file to the Web client:

Use the [File_Stream] tag. The following example serves a file named example.mpg from within the Web server
root.

[File_Stream:
		 -File='/example.mpg',
		 -Name='example.mpg',
		 -Type='video/mpeg']

4 4 1

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 3 1 – F i l e s

32
Chapter 32

Images and Multimedia

This chapter describes the methods which can be used to manipulate and serve images and multimedia files
using Lasso.

	 •	Overview provides an overview of the image manipulation and multimedia features included in Lasso
Professional 8.

	 •	Casting Images as Lasso Objects describes how to cast image files as Lasso objects so they can be
dynamically edited using Lasso.

	 •	Getting Image Information describes how to access the attributes of an image using Lasso.

	 •	Converting and Saving Images describes how to convert images from one format to another, and how to
save images to file using Lasso.

	 •	Manipulating Images describes how to edit image files using Lasso.

	 •	Extended ImageMagick Commands describes how to invoke extended ImageMagick functionality using
Lasso.

	 •	Serving Images and Multimedia Files describes how to serve images and multimedia files through Lasso
pages, and how to reference images and multimedia files stored within the Web server root.

Overview
Lasso Professional 8 includes features that allow you to manipulate and serve images and multimedia files on
the fly. New Lasso [Image] tags allow you to do the following with image files in supported image formats:

	 •	Scaling and cropping images, facilitating the creation of thumbnail images on the fly.

	 •	Rotating images and changing image orientation.

	 •	Apply image effects such as modulation, blurring, and sharpening effects.

	 •	Adjusting image color depth and opacity.

	 •	Combining images, adding logos and watermarks.

	 •	Image format conversion.

	 •	Retrieval of image attributes, such as image dimensions, bit depth, and format.

	 •	Executing extended ImageMagick commands.

Implementation Note: The image tags and features in Lasso 8 are implemented using ImageMagick 5.5.7 (July
2003 build), which is installed as part of Lasso Professional 8 on Mac OS X 10.3. Windows requires ImageMagick
to be installed separately, which is covered in chapter 4 of the Lasso Professional 8 Setup Guide. For more
information on ImageMagick, visit http://www.imagemagick.com.

4 4 2

L a s s o 8 . 5 L a n g u a g e G u i d e

Introduction to Manipulating Image Files
Image files can be manipulated via Lasso by setting a variable that references an image file on the server
using the [Image] tag, and then using various member tags to manipulate the variable. Once the image file is
manipulated, it can either be served directly to the client browser, or it can be saved to disk on the Web server.

To dynamically manipulate an image on the server:

The following shows an example of initializing, manipulating, and serving an image file named image.jpg
using the [Image] tags.

[Var:'MyImage' = (Image: '/images/image.tif')]
[$MyImage->(Scale: -Height=35, -Width=35, -Thumbnail)]
[$MyImage->(Save: '/images/image.jpg')]

In the example above, an image file named image.tif is cast as a Lasso image data type using the [Image] tag,
then resized to 35 x 35 pixels using the [Image->Scale] tag (the optional -Thumbnail parameter optimizes the
image for the Web). Then, the image is converted to JPEG format and saved to file using the [Image->Save] tag,
and displayed on the current page using an HTML tag.

This chapter explains in detail how these and other tags are used to manipulate image and multimedia files.
This chapter also shows how to output an image file to a client browser within the context of a Lasso page.

Supported Image Formats
Because the [Image] tags are based on ImageMagick, Lasso Professional 8 supports reading and manipulating
over 88 major file formats (not including sub-formats). A comprehensive list of supported image formats can
be found at the following URL.

http://www.imagemagick.com/www/formats.html

A list of commonly used image formats that are certified to work with Lasso Professional 8 out of the box
without additional components installed are shown in Table 1: Tested and Certified Image Formats.

Table 1: Tested and Certified Image Formats

Format	 Description	

BMP	 Microsoft Windows bitmap.

CMYK	 Raw cyan, magenta, yellow, and black samples.

GIF	 CompuServe Graphics Interchange Format. 8-bit RGB PseudoColor with up to
256 palette entries.

JPEG	 Joint Photographic Experts Group JFIF format. Also known as JPG.

PNG	 Portable Network Graphics.

PSD	 Adobe Photoshop bitmap file.

RGB	 Raw red, green, and blue samples.

TIFF	 Tagged Image File Format. Also known as TIF.
		

Note: Many of the supported formats listed on the ImageMagick site such as EPS and PDF may be used with the
[Image_…] tags, but require additional components such as Ghostscript to be installed before they will work. These
formats may be used, but because they rely heavily on third-party components, they are not officially supported
by LassoSoft.

File Permissions
This section describes the file permission requirements for manipulating files on a Web server using Lasso 8.
In order to successfully manipulate and save image files, the following conditions must be met.

4 4 3

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 3 2 – I m a g e s a n d M u l t i m e d i a

	 •	When saving image files using the [Image] tags, the user (e.g. AnyUser group for anonymous users) must have
Create Files, Read Files, and Write Files permissions allowed in the Setup > Security > Files section of Lasso
Administration, and the folder in which the image will be created must be available to the user within the
Allow Path field.

	 •	When creating files, Lasso Service (i.e. the Lasso user in Mac OS X or LocalSystem user in Windows) must be
allowed by the operating system to write and execute files inside the folder. To check folder permissions in
Windows, right-click on the folder and select Properties > Security. For Mac OS X, refer to the included
Mac_OS_X_Tips.pdf document for instructions on changing file and folder permissions.

	 •	Any file extensions being used by the [Image] tags must be allowed in the Setup > Global Settings >
Settings section of Lasso Administration. This can include .gif, .jpg, .png, or any other supported image
format you are using.

Casting Images as Lasso Objects
For Lasso to be able to edit an image via Lasso, an image file or image data must first be cast as a Lasso image
variable using the [Image] tag. Once a variable has been set to an image data type, various Image member tags
can be used to manipulate the image. Once the image file is manipulated, it can either be served directly to
the client browser, or it can be saved to disk on the Web server.

Table 2: [Image] Tag:

Tag	 Description	

[Image]	 Casts an image as a Lasso object. Requires either the name and path of an
image file or a binary data string to initialize an image. Once an image is cast
as an object, it may be edited and saved using [Image] member tags, which are
described throughout this chapter.

		

Table 3: [Image] Tag Parameters:

Parameter	 Description	

'File Path'	 Path to image file on the server. Required if -Binary or -Base64 is not specified.

-Binary	 Creates an image file from binary image data. Requires a valid binary string for a
supported image format. Required if a file path is not specified.

-Info	 Optional parameter retrieves all the attributes of an image without reading the
pixel data. Allows for better performance and less memory usage when casting
an image (recommended for larger files).

		

To cast an image file as a Lasso object:

Use the [Image] to initialize an image file so it can be manipulated by Lasso.

[Var:'MyImage1'=(Image: '/images/image.jpg')]

To cast a large image file as a Lasso object:

Use the [Image] to initialize an image file using the -Info parameter for increased performance with larger files.

[Var:'MyImage2'=(Image: '/images/largeimage.jpg', -Info)]

To initialize an image from binary image data:

Lasso can create an image from a binary string for a valid image type using the [Image] tag with the -Binary
parameter. The image is initialized and created in memory only until it is saved using the [Image->Save] tag
described later.

[Var:'Binary'=(Include_Raw: 'image.jpg')]
[Var:'MyImage3'=(Image: -Binary=$Binary)]

4 4 4

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 3 2 – I m a g e s a n d M u l t i m e d i a

Getting Image Information
Information about an image can be returned using special [Image] member tags. These tags return specific
values representing the attributes of an image such as size, resolution, format, and file comments. All image
information tags in Lasso 8 are defined in Table 4: Image Information Tags.

Table 4: Image Information Tags

Tag	 Description	

[Image->Width]	 Returns the image width in pixels. Integer value returned.

[Image->Height]	 Returns the image height in pixels. Integer value returned.

[Image->ResolutionH]	 Returns the horizontal resolution of the image in dpi. Integer value returned.

[Image->ResolutionV]	 Returns the vertical resolution of the image in dpi. Integer value returned.

[Image->Depth]	 Returns the color depth of the image in bits. Can be either 8 or 16.

[Image->Format]	 Returns the image format (GIF, JPEG, etc).

[Image->Pixel]	 Returns the color of the pixel located at the specified pixel coordinates (X,Y). The
returned value is an array of RGB color integers (0-255) by default. An optional
-Hex parameter returns a hex color string (#FFCCDD) instead of an RGB array.

[Image->Comments]	 Returns any comments included in the image file header.

[Image->Describe]	 Lists various image attributes, mostly for debugging purposes. An optional -Short
parameter displays abbreviated information.

[Image->File]	 Returns the image file path and name, or null for in-memory images.
		

To return the height and width of an image:

Use the [Image->Height] and [Image-Width] tags on a defined image variable. This returns an integer value
representing the height and width of the image in pixels.

[Var: 'MyImage' =(Image: '/images/image.jpg')]
[$MyImage->Width] x [$MyImage->Height]

� 400 x 300

To return the resolution of an image:

Use the [Image->ResolutionH] and [Image->ResolutionV] tags on a defined image variable. This returns a decimal
value representing the horizontal and vertical dpi (dots per inch) of the image.

[Var: 'MyImage' =(Image: '/images/image.jpg')]
[$MyImage->ResolutionV] x [$MyImage->ResolutionH]

� ✖600 x 600

To return the color depth of an image:

Use the [Image->Depth] tag on a defined image variable. This returns an integer value representing the color
depth of an image in bits.

[Var: 'MyImage' =(Image: '/images/image.jpg')]
[$MyImage->Depth]

� 16

To return the format of an image:

Use the [Image->Format] tag on a defined image variable. This returns a string value representing the file format
of the image.

[Var: 'MyImage' =(Image: '/images/image.gif')]
[$MyImage->Format]

4 4 5

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 3 2 – I m a g e s a n d M u l t i m e d i a

� GIF

To return pixel information about an image:

Use the [Image->Pixel] tag on a defined image variable. This returns a string value representing the color of the
pixel at the specified coordinates.

[Var: 'MyImage' =(Image: '/images/image.jpg')]
[$MyImage->(Pixel: 25, 125, -Hex)]

� FF00FF

Converting and Saving Images
This section describes how image files can be converted from one format to another and saved to file. This is
all accomplished using the [Image->Save] tag, which is described in the following table.

Table 5: Image Conversion and File Tags

Tag	 Description	

[Image->Convert]	 Converts an image variable to a new format. Requires a file extension as a string
parameter which represents the new format the image is being converted to (e.g.
'jpg', 'gif'). A -Quality parameter specifies the image compression ratio (integer
value of 1-100) used when saving to JPEG or GIF format.

[Image->Save]	 Saves the image to a file in a format defined by the file extension. Automatically
converts images when the extension of the image to save as differs from that of
the original image. A -Quality parameter specifies the image compression ratio
(integer value of 1-100) used when saving to JPEG or GIF format.

[Image->AddComment]	 Adds a file header comment to the image before it is saved. Passing a Null
parameter removes any existing comments.

		

To convert an image file from one format to another:

Use the [Image->Convert] and [Image->Save] tags on a defined image variable, specifying the new format as part
of the [Image->Convert] tag.

[Var: 'MyImage' =(Image: '/images/image.gif')]
[$MyImage->(Convert: 'JPG', -Quality=100)]
[$MyImage->(Save: '/images/image.jpg', -Quality=100)]

To automatically convert an image file from one format to another:

Use the [Image->Save] tag on a defined image variable, changing the image file extension to the desired image
format. A -Quality parameter value of 100 specifies that the resulting JPEG file will be saved at the highest-
quality resolution.

[Var: 'MyImage' =(Image: '/images/image.gif')]
[$MyImage->(Save: '/images/image.jpg', -Quality=100)]

To save a defined image variable to file:

Use the [Image->Save] tag on a defined image variable, specifying the desired image name, path, and format.

[Var: 'MyImage' =(Image: '/folder/asdf1.jpg')]
[$MyImage->(Save: '/images/image.jpg')]

To rename an image:

Use the [Image->Save] tag on a defined image variable, changing the existing image file name to the desired
image file name.

4 4 6

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 3 2 – I m a g e s a n d M u l t i m e d i a

[Var: 'MyImage' =(Image: '/images/image.gif')]
[$MyImage->(Save: '/images/image.jpg', -Quality=100)]

To add a comment to an image file header:

Use the [Image->AddComment] tag to add a comment to a defined image variable before it is saved to file. This
comment is not displayed, but stored with the image file information.

[Var: 'MyImage' =(Image: '/images/image.gif')]
[$MyImage->(AddComment: 'This is a comment')]
[$MyImage->(Save: '/images/image.gif')]

To remove all comments from an image file header:

Use the [Image->AddComment] tag with a Null parameter to remove all comments from an image variable before
it is saved to file. The following code adds a comment and then removes all comments. The result is an image
with no comments.

[Var: 'MyImage' =(Image: '/images/image.gif')]
[$MyImage->(AddComment: 'This is a comment')]
[$MyImage->(AddComment: Null)]
[$MyImage->(Save: '/images/image.gif')]

Manipulating Images
Images can be transformed and manipulated using special [Image] member tags. These tags change the
appearance of the image as it served to the client browser. This includes tags for changing image size and
orientation, applying image effects, adding text to images, and merging images, which are described in the
following sub-sections.

Changing Image Size and Orientation
Lasso provides tags that allow you to scale, rotate, crop, and invert images. These tags are defined in Table 6:
Image Size and Orientation Tags.

Table 6: Image Size and Orientation Tags

Tag	 Description	

[Image->Scale]	 Scales an image to a specified size. Requries -Width and -Height parameters,
which specifiy the new size of the image using either integer pixel values (e.g. 50)
or string percentage values (e.g. '50%'). An optional -Sample parameter indicates
pixel sampling should be used so no additional colors will be addd to the image.
An optional -Thumbnail parameter optimizes the image for display on the Web. If
only one of the -Width or -Height is specified then the other value is calculated
proportionally.

[Image->Rotate]	 Rotates an image counterclockwise by the specified amount in degrees (integer
value of 0-360). An optional -BGColor parameter specifies the hex color to fill the
blank areas of the resulting image.

[Image->Crop]	 Crops the original image by cutting off extra pixels beyond the boundaries
specified by the parameters. Requires -Height and -Width parameters which
specify the pixel size of the resulting image, and -Left and -Right parameters
specify the offset of the resulting image within the initial image.

[Image->FlipV]	 Creates a vertical mirror image by reflecting the pixels around the central X-axis.

[Image->FlipH]	 Creates a horizontal mirror image by reflecting the pixels around the central Y-
axis.

		

4 4 7

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 3 2 – I m a g e s a n d M u l t i m e d i a

To enlarge an image:

Use the [Image->Scale] tag on a defined image variable. The following example enlarges image.jpg to 225 X 225
pixels. The optional -Sample parameter specifies that pixel sampling should be used.

[Var: 'MyImage' =(Image: '/images/image.jpg')]
[$MyImage->(Scale: -Height=225, -Width=225, -Sample)]
[$MyImage->(Save: '/images/image.jpg')]

To contract an image:

Use the [Image->Scale] tag on a defined image variable. The following example contracts image.jpg to 25 x 25
pixels. The optional -Thumbnail parameter optimizes the image for the Web.

[Var: 'MyImage' =(Image: '/images/image.jpg')]
[$MyImage->(Scale: -Height=25, -Width=25, -Thumbnail)]
[$MyImage->(Save: '/images/image.jpg')]

To rotate an image:

Use the [Image->Rotate] tag on a defined image variable. The following example rotates the image 60 degrees
counterclockwise on top of a white background.

[Var: 'MyImage' =(Image: '/images/image.jpg')]
[$MyImage->(Rotate: 60, -BGColor='FFFFFF')]
[$MyImage->(Save: '/images/image.jpg')]

To crop an image:

Use the [Image->Crop] tag on a defined image variable. The example below crops 10 pixels off of each side of a
70 x 70 image.

[Var: 'MyImage' =(Image: '/images/image.jpg')]
[$MyImage->(Crop: -Left=10, -Right=10, -Width=50, -Height=50)]
[$MyImage->(Save: '/images/image.jpg')]

To mirror an image:

Use the [Image->FlipV] tag on a defined image variable. The following example mirrors the image vertically.

[Var: 'MyImage' =(Image: '/images/image.jpg')]
[$MyImage->FlipV]
[$MyImage->(Save: '/images/image.jpg')]

Applying Image Effects
Lasso provides tags that allow you to add image effects by applying special image filters. This includes color
modulation, image noise enhancement, sharpness controls, blur controls, contrast controls, and composite
image merging. These tags are described below in Table 7: Image Effects Tags.

Table 7: Image Effects Tags

Tag	 Description	

[Image->Modulate] 	 Controls the brightness, saturation, and hue of an image. Brightness, saturation,
and hue are controlled by three comma-delimited integer parameters, where 100
equals the original value.

[Image->Contrast]	 Enhances the intensity differences between the lighter and darker elements of
the image. Specify 'False' to reduce the image contrast, otherwise the contrast is
increased.

4 4 8

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 3 2 – I m a g e s a n d M u l t i m e d i a

[Image->Blur]	 Applies either a motion or Gaussian blur to an image. To apply a motion blur, an
-Angle paramater with a decimal degree value must be specified to indicate the
direction of the motion. To apply a Gaussian blur, a -Gaussian keyword parameter
must be specified in addition to -Radius and -Sigma parameters that require
decimal values. The -Radius parameter is the radius of the Gaussian in pixels,
and -Sigma is the standard deviation of the Gaussian in pixels. For reasonable
results, the radius should be larger than the sigma.

[Image->Sharpen]	 Sharpens an image. Requires -Radius and -Sigma parameters that require
integer values. The -Radius parameter is the radius of the Gaussian sharp effect
in pixels, and -Sigma is the standard deviation of the Gaussian sharp effect
in pixels. For reasonable results, the radius should be larger than the sigma.
Optional -Amount and -Threshold parameters may be used to add an unsharp
masking effect. -Amount specifies the decimal percentage of the difference
between the original and the blur image that is added back into the original, and
-Threshold specifies the threshold in decimal pixels needed to apply the diffence
amount.

[Image->Enhance]	 Applies a filter that improves the quality of a noisy, lower-quality image.
		

To adjust the brightness of an image:

Use the [Image->Modulate] tag on a defined image variable and adjust the first integer parameter, representing
brightness. The following example increases the brightness of an image by a factor of two.

[Var: 'MyImage' =(Image: '/images/image.jpg')]
[$MyImage->(Modulate: 200, 100, 100)]
[$MyImage->(Save: '/images/image.jpg')]

To adjust the color saturation of an image:

Use the [Image->Modulate] tag on a defined image variable and adjust the second integer parameter,
representing color saturation. The following example decreases the color saturation of an image by 25%.

[Var: 'MyImage' =(Image: '/images/image.jpg')]
[$MyImage->(Modulate: 100, 75, 100)]
[$MyImage->(Save: '/images/image.jpg')]

To adjust the hue of an image:

Use the [Image->Modulate] tag on a defined image variable and adjust the third integer parameter, representing
hue. The following example tints the image green by increasing the hue value. Decreasing the hue value tints
the image red.

[Var: 'MyImage' =(Image: '/images/image.jpg')]
[$MyImage->(Modulate: 100, 100, 175)]
[$MyImage->(Save: '/images/image.jpg')]

To adjust the contrast of an image:

Use the [Image->Contrast] tag on a defined image variable. The first example increases the contrast. The second
example uses a False parameter, which reduces the contrast instead.

[Var: 'MyImage' =(Image: '/images/image.jpg')]
[$MyImage->Contrast]
[$MyImage->(Save: '/images/image.jpg')]

[Var: 'MyImage' =(Image: '/images/image.jpg')]
[$MyImage->(Contrast: 'False')]
[$MyImage->(Save: '/images/image.jpg')]

4 4 9

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 3 2 – I m a g e s a n d M u l t i m e d i a

To apply a motion blur to an image:

Use the [Image->Blur] tag on a defined image variable. The following example applies a motion blur at 20
degrees.

[Var: 'MyImage' =(Image: '/images/image.jpg')]
[$MyImage->(Blur: -Angle=20)]
[$MyImage->(Save: '/images/image.jpg')]

To apply a Gaussian blur to an image:

Use the [Image->Blur] tag with the -Gaussian parameter on a defined image variable. The following example
applies a Gaussian blur with a radius of 15 pixels and a standard deviation of 10 pixels.

[Var: 'MyImage' =(Image: '/images/image.jpg')]
[$MyImage->(Blur: -Radius=15, -Sigma=10, -Gaussian)]
[$MyImage->(Save: '/images/image.jpg')]

To sharpen an image:

Use the [Image->Sharpen] tag on a defined image variable. The following example applies a Gaussian sharp
effect with a radius of 20 pixels and a standard deviation of 10 pixels.

[Var: 'MyImage' =(Image: '/images/image.jpg')]
[$MyImage->(Sharpen: -Radius=20, -Sigma=10)]
[$MyImage->(Save: '/images/image.jpg')]

To sharpen an image with an unsharp mask effect:

Use the [Image->Sharpen] tag with the -Amount and -Threshold parameters on a defined image variable. The
following example applies an unsharp mask effect with a radius of 20 pixels and a standard deviation of 10
pixels.

[Var: 'MyImage' =(Image: '/images/image.jpg')]
[$MyImage->(Sharpen: -Radius=20, -Sigma=10, -Amount=50, -Threshold=20)]
[$MyImage->(Save: '/images/image.jpg')]

To enhance a low-quality image:

Use the [Image->Enhance] tag on a defined image variable.

[Var: 'MyImage' =(Image: '/images/image.jpg')]
[$MyImage->Enhance]
[$MyImage->(Save: '/images/image.jpg')]

Adding Text to Images
Lasso allows text to be overlaid on top of images using the [Image->Annotate] tag, as described below in the
following table.

Table 8: Annotate Image Tag

Tag	 Description	

[Image->Annotate]	 Overlays text on to an image. Requires a string value as a parameter, which is
the text to be overlaid. Required -Left and -Top parameters specify the place of
the text in pixel integers relative to the upper left corner of the image. An optional
-Font parameter specifies the name (with extension) and full path to a system font
to be used for the text, and an optional -Size parameter specifies the text size in
integer pixels. An optional
-Color parameter specifies the text color as a hex string ('#FFCCDD'). An optional
-Aliased keyword parameter turns on text anti-alising.

			
		

4 5 0

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 3 2 – I m a g e s a n d M u l t i m e d i a

Fonts Note: When specifiying a font, the full hard drive path to the font must be used (e.g.
-Font='/Library/Fonts/Arial.ttf'). True Type (.ttf), and Type One (.pfa, .pfb) font types are officially supported.

To add text to an image:

Use the [Image->Annotate] tag on a defined image variable. The example below adds the text (c) 2003 LassoSoft to
the specified image.

[Var: 'MyImage' =(Image: '/images/image.jpg')]
[$MyImage->(Annotate: '(c) 2003 LassoSoft, -Left=5, -Top=300,
		 -Font='/Library/Fonts/Arial.ttf', -Size=8, -Color='#000000', -Aliased)]
[$MyImage->(Save: '/images/image.jpg')]

Merging Images
Lasso allows images to be merged using the [Image->Composite] tag. The [Image->Composite] tag supports over 20
different composite methods, which are described in the following tables.

Table 9: Composite Image Tag

Tag	 Description	

[Image->Composite]	 Composites a second image onto the current image. Requires a second Lasso
image variable to be composited. An -Op parameter specifies the composite
method which affects how the second image is applied to the first image (a list
of operators is shown below). Optional -Left and -Top parameter specify the
horizontal and vertical offset of the second image over the first in integer pixels
(defaults to the upper left corner). An optional -Opacity parameter attenuates the
opacity of the composited second image, where a value of 0 is fully opaque and
1.0 is fully transparent.

		

The table below shows the various composite methods that can be specified in the -Op parameter of the
[Image->Composite] tag. The descriptions for each method are adapted from the ImageMagick Web site.

Table 10: Composite Image Tag Operators

Composite Operator	 Description	

Over	 The result is the union of the the two image shapes with the composite image
obscuring the image in the region of overlap.

In	 The result is the first image cut by the shape of the second image. None of the
second image data is included in the result.

Out	 The result is the second image cut by the shape of the first image. None of the
first image data is included in the result.

Plus	 The result is the sum of the raw image data with output image color channels
cropped to 255.

Minus	 The result is the subtraction of the raw image data with color channel underflow
cropped to zero.

Add	 The result is the sum of the raw image data with color channel overflow channel
wrapping around 256.

Subtract	 The result is the subtraction of the raw image data with color channel underflow
wrapping around 256.

Difference	 Returns the difference between two images. This is useful for comparing two very
similar images.

Bumpmap	 The resulting image is shaded by the second image.

CopyRed	 The resulting image is the red layer in the image replaced with the red layer in the
second image.

CopyGreen	 The resulting image is the green layer in the image replaced with the green layer
in the second image.

4 5 1

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 3 2 – I m a g e s a n d M u l t i m e d i a

CopyBlue	 The resulting image is the blue layer in the image replaced with the blue layer in
the second image.

CopyOpacity	 The resulting image is the opaque layer in the image replaced with the opaque
layer in the second image.

Displace	 Displaces part of the first image where the second image is overlaid.

Threshold	 Only colors in the second image that are darker than the colors in the first image
are overlaid.

Darken	 Only dark colors in the second image are overlaid.

Lighten	 Only light colors in the second image are overlaid.

Colorize	 Only base spectrum colors in the second image are overlaid.

Hue	 Only the hue of the second image is overlaid.

Saturate	 Only the saturation of the second image is overlaid.

Luminize	 Only the luminousity of the the second image is overlaid.

Modulate	 Has the effect of Hue, Saturate, and Luminize functions applied at the same time.
		

To overlay an image on top of another image:

Use the [Image->Composite] tag to add a defined image variable to a second defined image variable. The
following example adds image2.jpg offset by five pixels in the upper left corner of image1.jpg.

[Var: 'MyImage1' =(Image: '/images/image1.jpg')]
[Var: 'MyImage2' =(Image: '/images/image2.jpg')]
[$MyImage1->(Composite: $MyImage2, -Left=5, -Top=5)]
[$MyImage1->(Save: '/images/image1.jpg')]

To add a watermark to an image:

Use the [Image->Composite] tag with the -Opacity parameter to add a defined image variable to a second defined
image variable. The following example adds a mostly transparent version of image2.jpg to image1.jpg.

[Var: 'MyImage1' =(Image: '/images/image1.jpg')]
[Var: 'MyImage2' =(Image: '/images/image2.jpg')]
[$MyImage1->(Composite: $MyImage2, -Opacity=0.75)]
[$MyImage1->(Save: '/images/image1.jpg')]

To shade image with a second image:

Use the [Image->Composite] tag with the Bumpmap operator to shade a defined image variable over a second
defined image variable.

[Var: 'MyImage1' =(Image: '/images/image1.jpg')]
[Var: 'MyImage2' =(Image: '/images/image2.jpg')]
[$MyImage1->(Composite: $MyImage2, -Op='Bumpmap')]
[$MyImage1->(Save: '/images/image1.jpg')]

To return the pixel difference between two images:

Use the [Image->Composite] tag with the Difference operator to return the pixel difference between two defined
image variables.

[Var: 'MyImage1' =(Image: '/images/image1.jpg')]
[Var: 'MyImage2' =(Image: '/images/image2.jpg')]
[$MyImage1->(Composite: $MyImage2, -Op='Difference')]
[$MyImage1->(Save: '/images/image1.jpg')]

4 5 2

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 3 2 – I m a g e s a n d M u l t i m e d i a

Extended ImageMagick Commands
For users who have experience using the ImageMagick command line utility, Lasso provides the
[Image->Execute] tag to allow advanced users to take advantage of additional ImageMagick commands and
functionality.

Table 11: ImageMagick Execute Tag

Tag	 Description	

[Image->Execute]	 Execute ImageMagick commands. Provides direct access to the ImageMagick
command-line interface. Supports the Composite, Mogrify, and Montage
commands.

		

For detailed descriptions of the Composite, Mogrify, and Montage commands and corresponding parameters, see
the following URL.

http://www.imagemagick.com/www/utilities.html

To execute an ImageMagick command using Lasso:

Use the [Image->Execute] tag on a defined image variable, with the desired command as the parameter. The
following example shows the Mogrify command for adding a stunning blue border to an image.

[Var: 'MyImage' =(Image: '/images/image.gif')]
[$MyImage->(Execute: 'mogrify -bordercolor blue -border=3x3')]
[$MyImage->(Save: '/images/image.gif')]

Serving Image and Multimedia Files
This section discusses how to serve image and multimedia files, including referencing files within HTML
pages and serving files separately via HTTP.

Referencing Within HTML Files
The easiest way to serve images and multimedia files is simply by referencing files stored within the Web
server root using standard HTML tags such as or <embed>. The path to the image file can be calculated
in the Lasso page or stored within a database field. Since the specified file is ultimately served by the Web
server application which is optimized for serving images and multimedia files, this is the most efficient way
to serve images and multimedia files.

To generate the path to an image or multimedia file:

	 •	The following example shows a variable Company_Name that contains blueworld. This variable is used to
construct a path to an image file stored within the Images folder named with the company name and
_logo.gif to form the full file path /Images/blueworld_logo.gif.

[Variable: 'Company_Name'='blueworld']

�	

4 5 3

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 3 2 – I m a g e s a n d M u l t i m e d i a

	 •	The following example shows a variable Company_Name that contains blueworld. This variable is used to
construct a path to an image file stored within the Images folder named with the company name and
_logo.gif to form the full file path /Images/blueworld_logo.gif. The path to the image file is stored within the
variable Image_Path and then reference in the HTML tag.

[Variable: 'Company_Name'='blueworld']
[Variable: 'Image_Path'='/Images/' + $Company_Name + '_logo.gif']

�	

	 •	The following example shows a variable Band_Name that contains ArtOfNoise. This variable is used to
construct a path to sound files stored within the Sounds folder named with the band name and .mp3
to form the full file path /Sounds/ArtOfNoise.mp3. The path to the sound file is stored within the variable
Sound_Path and then reference in the HTML <a> link tag.

[Variable: 'Band_Name'='ArtOfNoise']
[Variable: 'Sound_Path'='/Images/' + $Band_Name + '.mp3']
Download MP3

��	Art of Noise Song

Serving Files via HTTP
Lasso can also be used to serve image and multimedia files rather than merely referencing them by path. Files
are served through Lasso using the [File_Serve] tag or a combination of the [Content_Type] tag and [Include_Raw]
tags. Lasso 8 also includes an [Image->Data] tag that automatically converts an image variable to a binary string,
allowing an edited [Image] variable to be output by [File_Serve] without it first being written to file.

In order to serve an image or multimedia file through Lasso the MIME type of the file must be determined.
Often, this can be discovered by looking at the configuration of the Web server or Web browser. The MIME
type for a GIF is image/gif and the MIME type for a JPEG is image/jpeg.

Note: It is not recommended that you configure your Web server application to process all .gif and .jpg files
through Lasso. Lasso will attempt to interpret the binary data of the image file as Lasso code. Instead, use one of
the procedures below to serve an image file with a .lasso extension.

Table 12: Image Serving Tag

Tag	 Description	

[File_Serve]	 Serves a file in place of the output of the current Lasso page. The first parameter
is the data to be served. Optional -File parameter specifies the name of the
served data. Optional -Type parameter allows the MIME type to be overridden
from the default of text/html.

[Image->Data]	 Converts an image variable to a binary string. This is useful for serving images to
a browser without writing the image to file.

		

To serve an image file:

	 •	Use the [File_Serve] tag to set the MIME type of the image to be served, and use the [Image->Data] tag to get
the binary data from a defined [Image] variable. The [File_Serve] tag aborts the current file so it must be
the last tag to be processed. The following example shows a GIF named Picture.gif being served from an
Images folder.

[Var:'Image'=(Image: '/Images/Picture.gif')]
[File_Serve: $Image->Data, -Type='image/gif']

	 •	Use the [Content_Type] tag to set the MIME type of the image to be served and use the [Include_Raw] tag to
include data from the image file. The two tags should be the only content of the file and should not be
separated by any white space. The following example shows a GIF named Picture.gif being served from an
Images folder.

4 5 4

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 3 2 – I m a g e s a n d M u l t i m e d i a

[Content_Type: 'image/gif'][Include_Raw: '/Images/Picture.gif'][Abort]

If either of the code examples above is stored in a file named Image.lasso at the root of the Web serving folder
then the image could be accessed with the following tag.

To serve a multimedia file:

Use the [Content_Type] tag to set the MIME type of the file to be served and use the [Include_Raw] tag to include
data from the multimedia file. The two tags should be the only content of the file and should not be
separated by any white space. The following example shows a sound file named ArtOfNoise.mp3 being served
from a Sounds folder.

[Content_Type: 'audio/mp3'][Include_Raw: '/Sounds/ArtOfNoise.mp3'][Abort]

If the code above is stored in a file named ArtOfNoise.lasso at the root of the Web serving folder then the sound
file could be accessed with the following <a> link tag.

Art of Noise Song

This same technique can be used to serve multimedia files of any type by designating the appropriate MIME
type in the [Content_Type] tag.

To serve an image file with a proper file extension:

The following example demonstrates how to serve a GIF file with a .gif extension. The extension .gif must be
allowed in Lasso Administration. Use the [Content_Type] tag to set the MIME type of the image to be served
and use the [Include_Raw] tag to include data from the image file.

[Content_Type: 'image/gif'][Include_Raw: '/Images/Picture.gif'][Abort]

The file will need to be referenced using Action.Lasso and a -Response command tag within the URL. If the
code above is stored in a file named Image.gif at the root of the Web serving folder then the image could be
accessed with the following tag.

To serve a multimedia file with a proper file extension:

The following example demonstrates how to serve a sound file with a .mp3 extension. The extension .mp3
must be allowed in Lasso Administration. Use the [Content_Type] tag to set the MIME type of the multimedia
file to be served and use the [Include_Raw] tag to include data from the multimedia file.

[Content_Type: 'audio/mp3'][Include_Raw: '/Sounds/ArtOfNoise.mp3'][Abort]

The file will need to be referenced using Action.Lasso and a -Response command tag within the URL. If the code
above is stored in a file named ArtOfNoise.mp3 at the root of the Web serving folder then the image could be
accessed with the following <a> link tag.

	 Art Of Noise Song

This same technique can be used to serve multimedia files of any type by designating the appropriate MIME
type in the [Content_Type] tag.

To limit access to a file:

Since the Lasso page can process any Lasso code before serving the image it is easy to create a file
that generates an error if an unauthorized person tries to access a file. The following code checks the
[Client_Username] for the name John. If the current user is not named John then a file Error.gif is served instead of
the desired Picture.gif file.

4 5 5

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 3 2 – I m a g e s a n d M u l t i m e d i a

<?LassoScript
	 Content_Type: 'image/gif';
	 If: (Client_Username) == 'John');
		 Include_Raw: '/Images/Picture.gif';
	 Else;
		 Include_Raw: '/Images/Error.gif';
	 /If;
?>

This same technique can be used to restrict access to any image or multimedia file. It could actually be used
to restrict access to any Lasso page.

4 5 6

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 3 2 – I m a g e s a n d M u l t i m e d i a

33
Chapter 33

Networking

Lasso provides a network type that provides access to other servers through TCP and UDP communications.

	 •	Network Communications describes the [Net] type.

Network Communication
Network communication in Lasso are provided by the [Net] type and its member tags. These tags allow
for direct communication between Lasso and remote servers using low-level communication standards.
These tags are the foundation for the implementation of specific protocols such as HTTP, RPC, or SMTP
communication.

Note: Using the [Net] type requires an understanding of Internet communication standards. The examples in this
chapter are purely for demonstration purposes of the [Net] tags.

The [Net] type supports the following features:

	 •	TCP (Transmission Control Protocol) – Connection oriented communication with remote servers. TCP
allows communication with full duplex capabilities and guaranteed delivery of data.

	 •	SSL (Secure Socket Layer) – Lasso allows TCP traffic to be encrypted in transit using SSL. Lasso also
supports switching an existing network connection to SSL on the fly.

	 •	UDP (User Datagram Protocol) – Connectionless communication with remote servers. UDP is a
lightweight format that allows communication without guaranteed delivery of data.

	 •	Listeners – Lasso allows sockets to be opened to listen for either TCP or UDP traffic. Lasso can act as either
the source or the recipient of TCP or UDP communication.

	 •	Non-Blocking – Connections can be non-blocking so data is sent and received without synchronization
with the remote host.

	 •	Timeouts – Lasso has an efficient set of timeout controls that allow different timeout periods to be used
when establishing connections and when participating in communication.

Note: The [TCP_…] tags from prior versions of Lasso have been deprecated. Solutions which rely on the
[TCP_…] tags should be rewritten to make use of the new functionality afforded by the [Net] type.

Table 1: [Net] Tags

Tag	 Description	

[Net]	 Create a new network data type. Requires no parameters. All interaction with the
network data type is performed through the member tags of this type.

		

The member tags of the [Net] type and constants which are used as parameters for some of the tags are split
into categories based on which protocols they can be used with. The discussion that follows is split into three
sections: TCP Communication, SSL Communication, TCP Blocking Communication, TCP Listening, and
UDP Communication.

4 5 7

L a s s o 8 . 5 L a n g u a g e G u i d e

The following table includes tags which are used to establish what method of communication (TCP, SSL,
or UDP) is going to be used for connections created by the type instance and whether a blocking or non-
blocking TCP connection will be used.

Table 2: [Net] Type Member Tags

Tag	 Description	

[Net->SetType]	 Specifies whether the connection should use TCP or UDP. Requires a single
parameter either [Net_TypeTCP], [Net_TypeSSL], or [Net_TypeUDP]. Defaults
to TCP communication. This tag can also be called with an open TCP network
connection to switch the connection to SSL communications.

[Net->SetBlocking]	 Specifies whether connects, sends, and receives should block until the operation
completes. Requires a single boolean parameter. The default is True to require
blocking.

[Net->SetEncoding]	 Specifies what character set should be used when writing data to remote servers
and when reading data using [Net->ReadString]. If this tag is not called then the
default character set UTF-8 will be used.

[Net->LocalAddress]	 Returns the address of the local host.

[Net->RemoteAddress]	 Returns the address of the remote host.
		

The [Net->SetType] tag and [Net->SetBlocking] tag must be called before an incoming or outgoing network
connection is established. See each of the examples of specific communication methods for a demonstration
of how these tags are used.

Table 3: [Net] Type Constants

Tag	 Description	

[Net_TypeTCP]	 Passed to [Net->SetType] to establish TCP communication.

[Net_TypeSSL]	 Passed to [Net->SetType] to establish SSL over TCP communication.

[Net_TypeUDP]	 Passed to [Net->SetType] to establish UDP connectionless communication.
		

Note: All of the [Net_…] constants represent values that are either passed into [Net] type member tags or returned
from them. None of these tags are used on their own.

The [Net->SetEncoding] tag can be used to specify what character set should be used when writing data to a
remote server and when reading data using the [Net->ReadString]. By default, all data written to remote servers
uses Lasso’s default UTF-8 character set. When [Net->SetEncoding] is called with a different character set then
Lasso will automatically translate all writes to the remote server to that character set.

For example, using [Net->(SetEncoding: 'iso-8859-1')] will instruct Lasso to translate all strings sent to the remote
server to the ISO-8859-1 character set. Only strings which are passed to the [Net->Write] or [Net->WriteTo]
tags are modified by this tag. Byte streams passed to these tags are never modified. The return value of
[Net->ReadString] will be automatically translated using the character set set by [Net->SetEncoding]. The [Net->Read]
and [Net->ReadFrom] tags will always return a byte stream.

TCP Communication
TCP connections are some of the most common on the Internet. They are used for communication with Web
servers, email servers, FTP servers, and for protocols like SSH and Telnet.

To use a blocking TCP connection:

By default a TCP connection uses blocking to ensure that each communication completes before the next
begins. This mode works best for command/response protocols in which commands are issued to the remote
host and then the response to those commands is received back. Many standard Internet protocols like HTTP,
SMTP, and FTP rely on this mechanism.

4 5 8

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 3 3 – N e t w o r k i n g

Table 4: [Net] TCP Non-Blocking Member Tags

Tag	 Description	

[Net->Connect]	 Connects to a remote host. Requires two parameters. The first is the DNS host
name or IP address of the remote host. The second is the port on which to
connect. Returns [Net_ConnectOK] if the connection was established or [Net_
ConnectInProgress] if a connection attempt is already in progress.

[Net->Read]	 Reads bytes from the connection. Requires a single parameter which is
the maximum number of bytes to be read. Returns the bytes read from the
connection.

[Net->ReadString]	 Reads a string from the connection (using UTF-8 or the character set
established by the [Net->SetEncoding] tag). Requires a single parameter which
is the maximum number of bytes to be read. Returns the string read from the
connection.

[Net->Write]	 Writes bytes into the connection. Requires a single parameter which is the byte
stream or string to be written into the connection. Optional second and third
parameters specify an offset and count of characters from the string to be written
into the connection. Returns the number of bytes written.

		

Table 5: [Net] Connect Constants

Tag	 Description	

[Net_ConnectOK]	 Returned by [Net->Connect] if the connection was established.

[Net_ConnectInProgress]	 Returned by [Net->Connect] if another connection is in progress.
		

The basic outline of a TCP communication session is as follows.

	 1	A [Net] object is created and stored in a variable. This object will represent the communication channel with
a remote server.

[Var: 'myConnection' = (Net)]

Note: If SSL communication is desired for the TCP connection then [$myConnection->(SetType: Net_TypeSSL)]
should be called immediately after creating the [Net] object.

	 2	A connection to a remote server is established. The connection requires the DNS host name or IP address
of the remote server and the port on which to connect.

[$myConnection->(Connect: 'localhost', 80)]

	 3	At this point the remote server might send a welcome message. HTTP servers (port 80) don’t send any
message. SMTP servers (port 25) send a message like the following. The parameter to [Net->Read] is the
maximum number of characters to fetch. Even though 1024 is specified as the maximum number of
characters to fetch, there are only about 32 characters in the connection buffer so that is all that is returned.

[$myConnection->(Read: 1024)]

�	 220 localhost Mail Ready for action

	 4	A message can be sent through the channel to the remote server using the [Net->Write] tag. For example,
sending GET / HTTP/1.0 (followed by two \r\n pairs) to an HTTP server will get the HTML of the home page
of the default site.

[$myConnection->(Write: 'GET / HTTP/1.0\r\n\r\n')]

	 5	The return value from the Web server can be read using [Net->Read]. Since this is a blocking connection
the [Net->Read] tag will wait until the response from the remote server is complete before returning. The
parameter to [Net->Read] is the maximum number of characters to fetch and should be larger than the
expected result. In this case we will fetch the first 32 kilobytes of the Web page.

[$myConnection->(Read: 32768)]

�	 <html>\r<head>\r\t<title>Default Page</title>\r</head>\r<body>…</body>\r</html>

4 5 9

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 3 3 – N e t w o r k i n g

	 6	The connection should be closed once communication is complete.

[$myConnection->Close]

SSL Communication
SSL connections and listeners are established in exactly the same fashion as TCP connections and listeners.
An SSL connection can be established by calling [Net->(SetType: Net_TypeSSL)] before calling the [Net->Connect]
member tag. Alternately, a TCP connection can first be established by calling [Net->Connect] and the
[Net->(SetType: Net_TypeSSL)] tag can be called later to switch the TCP connection over to SSL communication.
The first method is useful for protocols which require SSL connections like HTTPS. The second method
is useful for protocols which enable switching to SSL after first negotiating the capabilities of sender and
reciever like POP and SMTP over SSL.

Non-Blocking TCP Communication
Non-blocking TCP connections can be used for communication with servers which support reading and
writing data simultaneously. Some Internet protocols use non-blocking connections in order to speed up
communication since multiple commands can be written into the connection without waiting to read the
each response.

To use a non-blocking TCP connection:

When using a non-blocking TCP connection each [Net->Read] tag will return immediately with whatever
data is currently available to be read. This means that if no data has been received from the remote server
[Net->Read] will return with no bytes. Rather than repeatedly calling [Net->Read], the [Net->Wait] tag can be used
to wait until there are bytes available to be read.

Table 6: [Net] TCP Blocking Member Tags

Tag	 Description	

[Net->Connect]	 Connects to a remote host. Requires two parameters. The first is the DNS host
name or IP address of the remote host. The second is the port on which to
connect. Returns [Net_ConnectOK] if the connection was established or [Net_
ConnectInProgress] if a connection attempt is already in progress.

[Net->Read]	 Reads bytes from the connection. Requires a single parameter which is
the maximum number of bytes to be read. Returns the bytes read from the
connection.

[Net->ReadString]	 Reads a string from the connection (using UTF-8 or the character set
established by the [Net->SetEncoding] tag). Requires a single parameter which
is the maximum number of bytes to be read. Returns the string read from the
connection.

[Net->Write]	 Writes bytes into the connection. Requires a single parameter which is the string
to be written into the connection. Optional second and third parameters specify
an offset and count of characters from the string to be written into the connection.
Returns the number of bytes written.

[Net->Wait]	 For non-blocking sockets only. Waits for a specified number of seconds for
the connection to enter a state. Requires one parameter which is the number
of seconds to wait before timing out. A negative value will cause the tag to
wait forever. An optional second parameter can be either [Net_WaitRead] or
[Net_WaitWrite] specifying the state to wait for, otherwise either state will trigger
a return. The tag returns the current state of the connection [Net_WaitRead] or
[Net_WaitWrite] or [Net_WaitTimeout] if the timeout value was reached.

[Net->Close]	 Closes an open or bound connection. Every connection which is opened should
be explicilty closed when its use is completed.

		

4 6 0

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 3 3 – N e t w o r k i n g

Table 7: [Net] Wait Constants

Tag	 Description	

[Net_WaitRead]	 Passed into and/or returned from [Net->Wait] to signal that bytes are available for
reading from a connection.

[Net_WaitWrite]	 Passed into and/or returned from [Net->Wait] to signal that bytes can be written
into a connection.

[Net_WaitTimeout]	 Returned from [Net->Wait] to signal that a timeout occurred.
		

The basic outline of a non-blocking TCP session is as follows.

	 1	A [Net] object is created and stored in a variable. This object will represent the communication channel with
a remote server.

[Var: 'myConnection' = (Net)]

	 2	A connection to a remote server is established. The connection requires the DNS host name or IP address
of the remote server and the port which is to be connected to.

[$myConnection->(Connect: 'localhost', 80)]

	 3	The connection is switched over to non-blocking mode using the [Net->SetBlocking] tag.

[$myConnection->(SetBlocking: False)]

	 4	A message can be sent through the channel to the remote server using the [Net->Write] tag. For example,
sending GET / HTTP/1.0 (followed by two \r\n pairs) to an HTTP server will get the HTML of the home page
of the default site.

[$myConnection->(Write: 'GET / HTTP/1.0\r\n\r\n')]

	 5	A [Net->Wait] tag is used to wait until there is data which can be read through the connection. The [Net->Wait]
tag takes two parameters. The first is the condition which is being waited for, in this case [Net_WaitRead],
and the second is the number of seconds to wait. The tag below will wait for 60 seconds for data to be
available.

[$myConnection->(Wait: 60, Net_WaitRead)]

This tag should be incorporated into a conditional statement so its return value can be checked. The return
value from [Net->Wait] will be either [Net_WaitRead] if a read is possible or [Net_WaitTimeout] if the 60 seconds
timeout was reached. The following code will perform a read from the connection only if data is available.

[If: ($myConnection->(Wait: 60, Net_WaitRead) == Net_WaitRead)]
	 [$myConnection->(Read: 32768)]
[Else]
	 Timeout!
[/If]

�	 <html>\r<head>\r\t<title>Default Page</title>\r</head>\r<body>…</body>\r</html>

	 6	The connection should be closed once communication is complete.

[$myConnection->Close]

TCP Listening
The [Net] type can be used to listen for connections coming in from remote clients. This allows Lasso to act
as the server for different protocols. In theory, with this functionality Lasso itself could be used as an HTTP
server or SMTP server.

Table 8: [Net] TCP Listener Member Tags

Tag	 Description	

[Net->Accept]	 Accepts a single connection and returns a new [Net] instance for the connection.

4 6 1

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 3 3 – N e t w o r k i n g

[Net->Bind]	 Binds to a specific port on the local machine. Requires a single parameter which
is the port on which to bind. Required for establishing a listener or reading bytes
from a connectionless protocol (like UDP).

[Net->Listen]	 Switches the connection to an incoming, listening socket.

[Net->Read]	 Reads bytes from the connection. Requires a single parameter which is
the maximum number of bytes to be read. Returns the bytes read from the
connection.

[Net->ReadString]	 Reads a string from the connection (using UTF-8 or the character set
established by the [Net->SetEncoding] tag). Requires a single parameter which
is the maximum number of bytes to be read. Returns the string read from the
connection.

[Net->Write]	 Writes bytes into the connection. Requires a single parameter which is the string
to be written into the connection. Optional second and third parameters specify
an offset and count of characters from the string to be written into the connection.
Returns the number of bytes written.

[Net->Close]	 Closes an open or bound connection. Every connection which is opened should
be explicilty closed when its use is completed.

		

The basic outline of a TCP listening session is as follows.

	 1	A [Net] object is created and stored in a variable. This object will represent the communication channel with
a remote server.

[Var: 'myListener' = (Net)]

	 2	The connection must be switched into listening mode and bound to a port on the local machine. This is
the port that remote clients will access in order to communicate with the new service. In this example port
8000 is used.

[$myListener->(Bind: 8000)]
[$myListener->(Listen)]

	 3	Since this is a listener no further action is required until a remote client attempts a connection. The
[Net->Accept] tag is used to wait for and accept a connection when one comes in. The result of the
[Net->Accept] tag is a new [Net] object specific for the remote client that has connected. The listener is then
free to call [Net->Accept] again and wait for the next connection.

[Var: 'myConnection' = $myListener->(Accept)]

	 4	Now, using the connection that has been established with the remote host, the particular needs of
the protocol that is being implemented must be met. For this example, the connection will wait for a
command from the remote client and then return a Web page in response.

[Var: 'myCommand' = $myConnection->(Read: 1024)]

[If: ($myCommand >> 'GET")]
	 [$myConnection->(Write: '<html> … </html>')]
[Else]
	 [$myConnection->(Write: 'Error: Unrecognized Command')]
[/If]

�	 <html>\r<head>\r\t<title>Default Page</title>\r</head>\r<body>…</body>\r</html>

	 6	The connection should be closed once communication is complete and if no further connections will be
processed by the listener it should be closed as well.

[$myConnection->Close]
[$myListener->Close]

A listener can be blocking or non-blocking and can use the [Net->Wait] command to implement timeouts.
The [Net] type can be used to create a listener that only accepts one connection at a time or to create a listener
that spawns an asynchronous tag for each incoming connection so many connections can be handled
simultaneously.

4 6 2

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 3 3 – N e t w o r k i n g

UDP Connections
UDP connections are generally used for simpler protocols on the Internet. UDP is considered connectionless.
Rather than establishing a connection and then sending data, data will simply be sent to the remote host
and a response listened for. UDP is an excellent method for one way communication, such as a status
logging service, or for single command/response communication. UDP connections make use of the general
[Net->Bind] and [Net->Wait] and [Net->Close] tags as well as two UDP specific tags, [Net->ReadFrom] and [Net->WriteTo].

Table 9: [Net] UDP Member Tags

Tag	 Description	

[Net->Bind]	 Binds to a specific port on the local machine. Requires a single parameter which
is the port on which to bind. Required for establishing a listener or reading bytes
from a connectionless protocol (like UDP).

[Net->ReadFrom]	 Reads whatever data is available from a UDP connection. Requires one
parameter which is the maximum number of bytes to read. Returns a pair where
the first part is the data and the second part is the name of the host that sent the
data.

[Net->WriteTo]	 Sends data to a specified host and port. Requires three parameters. The DNS
host name or IP address of the remote host, the port to connect to, and the string
data to be written. Optional additional parameters allow an offset and count into
the string data to be specified. Returns the number of bytes written.

		

To send a message using UDP:

A message can be sent to a remote host with UDP using only the [Net->WriteTo] tag. This tag includes
the connection information and message to send all in one call. This example implements a fictional
TIME command that is sent to port 8000 on a remote machine. The remote machine will then send back the
current time on port 8000.

	 1	A [Net] object is created and stored in a variable. This object will represent the communication channel with
any remote UDP servers.

[Var: 'myConnection'= (Net)]

	 2	The [Net] object must be switched to UDP mode using the [Net->SetType] tag.

[$myConnection->(SetType: Net_TypeUDP)]

	 3	A message is sent to the remote server. The [Net->WriteTo] tag requires the DNS host name or IP address of
the remote server and the port which is to be connected to as well as the message which is to be sent.

[$myConnection->(WriteTo: 'time.example.com', 8000, 'TIME')]

	 4	The connection should be closed once all UDP communication have completed. However, this same
connection can be used to communicate with many different servers.

[$myConnection->Close]

Once a UDP message has been sent a listener must be established to wait for a reply. Since no connection is
established there is no way to simply hold the channel open so the remote host can reply immediately.

To listen for a message using UDP:

Listening for a UDP message involves opening a port and then waiting for a message using the [Net->ReadFrom]
tag. Messages can come in from any machine on the Internet. The incoming data is returned as the first part
of the result from [Net->ReadFrom] and the address of the remote host is sent as the second part of the result.

	 1	A [Net] object is created and stored in a variable. This object will represent the communication channel with
any remote UDP servers.

[Var: 'myListener'= (Net)]

4 6 3

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 3 3 – N e t w o r k i n g

	 2	The [Net] object must be switched to UDP mode using the [Net->SetType] tag.

[$myListener->(SetType: Net_TypeUDP)]

	 3	The [Net] object is bound to a local port using the [Net->Bind] tag. The local port is the port that other
machines will send messages on. For this example, the listener is bound to port 8000.

[$myListener->(Bind: 8000)]

	 4	Now the listener must be wait for a message to come in from a remote server. The [Net->ReadFrom] tag will
wait until a message comes in and then return a pair containing the data that has been received and the
address of the host that sent the data. The parameter is the maximum number of bytes to read.

[Var: 'myMessage' = $myListener->(ReadFrom: 32768)]
[Var: 'myData' = $myMessage->First]
[Var: 'myHost' = $myMessage->Second]

The current time can now be output by displaying the data that was sent from the remote host.

The current time is: [Var: 'myData'].

	 5	The connection should be closed once all UDP communication have completed. However, this same
connection can be used to communicate with many different servers.

[$myListener->Close]

4 6 4

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 3 3 – N e t w o r k i n g

34
Chapter 34

XML

This chapter describes how to parse and create Extensible Markup Language (XML) data and how to
communicate using XML Remote Procedure Calls (XML-RPC).

	 •	Overview introduces Lasso’s XML support.

	 •	XML Glossary introduces XML specific terms.

	 •	XML Data Type describes how to parse and create XML data using the XML data type.

	 •	XPath Extraction describes how to use XPath parameters to extract specific data from an XML file.

	 •	XSLT Style Sheet Transforms describes how to transform XML data using XSLT style sheets.

	 •	XML Stream Data Type describes how to parse XML documents using a stream model similar to a SAX
parser.

	 •	Serving XML describes how to serve XML data in place of the current Lasso page.

	 •	Formatting XML describes how to specify the MIME type and encode data for XML clients.

	 •	XML Templates describes the XML templates included with Lasso and how to use them to format database
action results as XML data.

Overview
Lasso provides support for a number of different XML standards which make parsing, validating, creating,
transforming, and serving XML easy.

Lasso includes an XML data type that automatically parses XML from string values. The XML data type
represents XML data as a tree data structure and includes member tags for manipulating the individual
tags which make up the XML data. Changes can be made to the XML data type and will be automatically
converted to proper XML syntax when output to the Web browser.

Lasso can validate XML data according to a Document Type Definition (DTD). If the XML data does not
correspond to the structure defined by the DTD then an error will be returned to the user.

Lasso supports automatic transformations of XML data using the XSLT style sheets. An XSLT transform can
be applied to XML data stored in a variable, database field, or file. In addition, a single Lasso page can be
repurposed for many different clients through the use of a stylesheet transform just prior to serving.

Lasso supports extracting individual XML elements from XML data using XPath parameters. The XPath
language complements Lasso’s built-in XML data type allowing sophisticated queries on XML data. The
[XML_Extract] tag can be used to work with large XML documents.

XML-RPC support allows Lasso to communicate between servers. Lasso supports incoming XML-RPC requests
through custom XML-RPC tags that are automatically processed or allows incoming requests to be processed
by any Lasso page. XML-RPC requests can be easily generated and sent to other servers on the Internet for
processing.

Finally, Lasso can serve XML data which conforms to any Document Type Definition (DTD) or XML Schema
using the same tools which allow Lasso to serve any style of HTML, WML, or other browser-based languages.

4 6 5

L a s s o 8 . 5 L a n g u a g e G u i d e

XML data needs to be formatted according to the rules defined by the World Wide Web Consortium.
Documentation of this language is beyond the scope of this manual. Please consult a book on XML for more
information about how to create properly formatted XML data.

Note: The XML data type should not generally be used to process XML documents larger than about 3
megabytes depending on their complexity. The [XML_Extract] tag can be used to parse much larger XML
documents and extract specific elements for further processing.

XML Glossary
Here is a short glossary of essential terms which will help you understand the rest of this documentation if
you are new to XML.

	 •	HTML – HyperText Markup Language (HTML) is the language in which the World Wide Web is formatted
and is characterized by markup tags enclosed in angle brackets. HTML is a subset of SGML.

	 •	XML – Extensible Markup Language (XML) is the universal format for structured documents and data on
the Web. XML is a subset of SGML.

	 •	SGML – Standard Generalized Markup Language (SGML) is a system for defining markup languages.
Authors mark up their documents by representing structural, presentational, and semantic information
alongside content. HTML and XML are both based on SGML.

	 •	DTD – A Document Type Definition (DTD) is a type of file associated with SGML and XML documents
that defines how the markup tags should be interpreted by the application presenting the document.

	 •	Schema – An XML-based method of specifying the structure of an XML document. Basically, a replacement
for a DTD, but specified in XML syntax. This is an emerging standard which is yet to be ratified by the
World Wide Web Consortium (W3C) at the time of this writing.

	 •	XPath – A language which is used to define the location of one or more tags or attributes within XML data.
XPaths can be used to extract tags or attributes from XML data and are used in XSLT style sheets. XPaths are
used to extract specific elements from a larger XML document.

	 •	XSL – Extensible Stylesheet Language (XSL) is a language for expressing stylesheets. An XSL stylesheet
specifies the presentation of a class of XML documents by describing how an instance of the class is
transformed into an XML document that uses the formatting vocabulary.

	 •	XSLT – XSL Transformations (XSLT) is a language for transforming XML documents into other XML
documents. XSLT is designed for use as part of XSL, which is a stylesheet language for XML.

	 •	XML-RPC – XML Remote Procedure Call (XML-RPC) allows actions to be performed on another server on
the Internet and for data to be returned.

	 •	WML – Wireless Markup Language (WML) is an XML-based language in which “cards” for display on
cellular phones and other wireless devices are created.

XML Data Type
The XML data type in Lasso automatically parses XML data which is stored in a variable. The member tags
of the XML data type can then be used to inspect and change the XML data. The XML Data Type Tag table
describes the tag which is used to convert string data to the XML data type.

Lasso also provides an alternate method of parsing XML data that may be more efficient for very large XML
documents. This method is described in the XML Stream Data Type section below.

Table 1: XML Data Type Tag

Tag	 Description	

[XML]	 Requires a single parameter which is a string containing validly formatted XML
data.
Optional -DTD parameter specifies a DTD against which the XML should be
validated or optional -Schema parameter specifies an XML schema against which

4 6 6

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 3 4 – XM L

the XML should be validated.
Optional -Validation parameter specifies whether the validation errors should be
reported. Proper values include 'always', 'never', and 'auto'. The default is 'auto'
which reports errors only if a schema or DTD was specified.
Optional -Namespaces parameter specifies whether XML namespaces should be
processed. Defaults to false.
Optional -FullCheck parameter specifies whether full schema checking should be
performed. This check can be very time consuming. Defaults to false.

		

XML data from any source can be parsed and manipulated using Lasso by first storing the XML data in a
variable and then casting it to the XML data type using the [XML] tag. Lasso can work with XML data from a
database field, XML file, remote Web application server, XML-RPC request, FTP site, etc. Or, Lasso can work
with XML data that is created programmatically within a variable.

To parse XML data:

Use the [XML] tag to cast a string variable to the XML data type and parse the XML data which is contained
within the variable. The following example stores a string of XML data in a variable, then casts it to XML.

[Variable: 'XML_String' = '<?xml version="1.0" encoding="UTF-8" ?>
	 <ROOT>
		 <RECORD>
			 <FIELD name="First Name">John</FIELD>
			 <FIELD name="Last_Name">Doe</FIELD>
		 </RECORD>
	 </ROOT>']
[Variable: 'XML_Data' = (XML: $XML_String)]

The variable XML_Data now contains a parsed representation of the data from XML_String. If the variable
XML_Data is output the value of XML_String will simply be returned, but if the type of the variable is checked it
will be XML.

[Variable: 'XML_Data']

Type: [$XML_Data->Type]

�	 <?xml version="1.0" encoding="UTF-8" ?>
	 <ROOT>
		 <RECORD>
			 <FIELD name="First_Name">John</FIELD>
			 <FIELD name="Last_Name">Doe</FIELD>
		 </RECORD>
	 </ROOT>

Type: XML

The parts of the parsed XML data can be accessed using the member tags of the XML data type which are
detailed in the XML Member Tags table.

Table 2: XML Member Tags

Tag	 Description	

[XML->AddAttribute]	 Adds a new attribute to an XML node. Requires one parameter which is a name/
value pair specifing the new attribute.

[XML->AddChild]	 Adds an XML node as a child of the current node. Requires one parameter which
is an XML node that is copied to form a new child node.

[XML->AddContent]	 Adds text to the contents of the current node. Requires a string parameter.

[XML->AddNameSpace]	 Adds a new namespace to the current node. Requires one parameter which is a
name/value pair specifying the name and URL of the new namespace.

[XML->AddNextSibling]	 Adds an XML node as the next sibling of the current node. Requires one
parameter which is an XML node that is copied to form a new child node.

[XML->AddPrevSibling]	 Adds an XML node as the previous sibling of the current node. Requires one
parameter which is an XML node that is copied to form a new child node.

4 6 7

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 3 4 – XM L

[XML->AddSibling]	 Adds an XML node as a sibling of the current node. Requires one parameter
which is an XML node that is copied to form a new child node.

[XML->Attributes]	 An array of pairs for each of the attributes of the root tag.

[XML->Children]	 An array of XML objects for each of the children tags of the root tag.

[XML->HasChildren]	 Returns True if the root tag has children.

[XML->Contents]	 The contents of the root tag.

[XML->Document]	 Returns the root tag of the current XML document.

[XML->Extract]	 Returns the value for an XPath. Requires a single parameter which is the XPath
to be evaluated. Returns different values depending on the XPath.

[XML->ExtractOne]	 Works the same as [XML->Extract] but only returns the first element found by the
XPath.

[XML->FindNameSpace]	 Finds a namespace. Requires one parameter which is a string specifying the
name of the namespace. Returns a pair including the name and URL of the
found namespace.

[XML->FindNameSpaceByHref]	 Finds a namespace by URL. Requires one parameter which is a string specifying
the URL of the namespace. Returns a pair including the name and URL of the
found namespace.

[XML->FirstChild]	 Returns the first child node of the current node.

[XML->GetAttribute]	 Searches for an attribute by name and, if found, returns it. Requires one
parameter which is the name of an attribute.

[XML->LastChild]	 Returns the last child node of the current node.

[XML->Name]	 The name of the root tag.

[XML->NameSpaces]	 Returns an array of namespaces for the namespaces declared for this node. The
array has pairs in which the first element is the namespace prefix and the second
element is the URI of the namespace.

[XML->NewChild]	 Adds a new empty XML node as a child of the current node. Requires one
parameter which is the name of the node to be added.

[XML->NextSibling]	 Returns the next sibling of the current node.

[XML->NodeType]	 Returns the type of the current node.

[XML->Parent]	 Returns the parent for the current node.

[XML->Path]	 Returns the path to the current node from the root of the document.

[XML->PreviousSibling]	 Returns the previous sibling for the current node.

[XML->RemoveAttribute]	 Removes an attribute from an XML node. Requires one parameter which is the
name of the parameter to be removed.

[XML->RemoveChild]	 Removes a specified child node from the current node's document. Requires an
XML node which is to be removed.

[XML->RemoveNamespace]	 Removes a namespace from the current node. Requires one parameter which is
the name of the namespace to be removed.

[XML->ReplaceWith]	 Replaces the current node with the specified node. Requires one parameter
which is an XML node.

[XML->SetName]	 Sets the name of an XML node. Requires one parameter which is the new name
of the node.

[XML->Transform]	 Performs an XSLT style sheet transformation on the current XML object. Requires
a string which contains a valid XSLT style sheet. Returns a new XML object with
the results of the transformation.

		

These member tags can be used to inspect the attributes and children of an XML tag.

4 6 8

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 3 4 – XM L

To find specific children of an XML tag:

Use the [XML->Children] tag to get an array of children of an XML tag. For example, the children of the <ROOT>
tag in XML_Data can be returned as follows. The result is always an array even if there is only one child of the
root XML tag.

[$XML_Data->Children]

�	 (Array: (<RECORD> … </RECORD>))

The children of the <RECORD> tag can be found by extracting the <RECORD> tag from the array of children
using [Array->Get] and then using [XML->Children] to return an array of <FIELD> tags.

[Variable: 'XML_Record' = $XML_Data->Children->(Get: 1)]
[$XML_Record->Children]

�	 (Array: (<FIELD name="First_Name">John</FIELD>),
	 (<FIELD name="Last_Name">Doe</FIELD>))

To display the attributes of an XML tag:

Use the [XML->Attributes] tag. The following example returns the attributes of the first element from the
XML_Record variable in the previous example. The [Iterate] … [/Iterate] tags are used to cycle through the array of
attributes and the elements of each attribute pair are displayed.

[Variable: 'XML_Attributes' = $XML_Record->Attributes]
[Iterate: $XML_Attributes, (Variable: 'Attribute')]
	
[$Attribute->First] = [$Attribute->Second]
[/Iterate]

�	
Name = First_Name

To display the contents of an XML tag:

Use the [XML->Contents] tag. The following example returns the contents of the first element from the
XML_Record variable in the example above.

[Encode_HTML: $XML_Record->Contents]

�	 John

XPath Extraction
XPath is a language that allows XML data to be searched for specific tags or attributes. An XPath expression
instructs how to get to a specific tag or tags within XML data similarly to how a file system path instructs how
to get to a specific file within a hard drive.

This is the preferred method of processing large XML documents. An XPath can be used to extract the relevant
elements from the large XML document and then those individual elements can be converted to the XML
data type for further processing.

Note: The examples in this section all use a simple XML document. See the sub-section Working With Name
Spaces for information about working with more complex XML documents.

For example, the Lasso Service application on Mac OS X is represented by the following path. The path says to
go to the root of the file system /, enter the Applications folder then the Lasso Professional 8 folder, and look for
the file named LassoService.

/Applications/Lasso Professional 8/LassoService

Similarly, an XPath to navigate through the following XML data can be constructed.

4 6 9

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 3 4 – XM L

[Variable: 'XML_String' = '<?xml version="1.0" encoding="UTF-8" ?>
	 <ROOT>
		 <RECORD>
			 <FIELD name="First_Name">John</FIELD>
			 <FIELD name="Last_Name">Doe</FIELD>
		 </RECORD>
	 </ROOT>']

The following XPath starts at the root of the XML data, the <ROOT> tag represented by /ROOT. It enters the
<RECORD> tag and returns the <FIELD> tag which has a name attribute equal to First_Name.

/ROOT/RECORD/FIELD[@name="First_Name"]

The [XML_Extract] tag allows an XPath to be applied to XML data within Lasso and for the results to be
returned.

Table 3: [XML_Extract] Tag

Tag	 Description	

[XML_Extract]	 Accepts two parameters and returns an array of string. -XML is the XML source
data or -File specifies the path to a file that contains the XML source data. -XPath
is the XPath that describes what data to return.

		

Note: The [XML_Extract] tag will read XML data from a -File parameter if it is present. This is the preferred method
of working with large XML documents since Lasso can parse the file without reading it into memory. If no -File
parameter is specified then the data passed directly to the -XML parameter is used instead.

The XPath from above would be applied to the XML data in this way.

[XML_Extract: -XML=$XML_String,
	 -XPath='/ROOT/RECORD/FIELD[@name=First_Name]']

The return value is an array containing a single string representing the tag which was found.

�	 (Array: (<FIELD name="First_Name">John</FIELD>))

File paths generally only allow inspecting the names of files and directories. XML tags have a name, children,
attributes, contents, etc. The XPath allows any of these different aspects of XML tags to be used in specifying a
path to a specific tag or set of tags.

The Simple XPath Expressions table includes the basic elements of an XPath. These can be combined with
the conditional functions detailed in the Conditional XPath Expressions table to create sophisticated queries
allowing very specific sets of tags and sub tags to be extracted from XML data.

Note: A full discussion of XPath syntax is beyond the scope of this book. Please consult a book about XML for
full details about XPath syntax.

4 7 0

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 3 4 – XM L

Table 4: Simple XPath Expressions

Expression	 Description	

/	 Selects the root element of the XML data. The first XML tag in the XML data is a
child of the root element.

/*	 Selects all children elements from the current element including XML tags and
text elements. /node() is a synonym.

/tagname	 Selects all XML tag children with the specified tag name from the current
element.

/text()	 Selects all text element children from the current element .

//*	 Selects all descendents starting from the current element including XML tags and
text elements. //node() is a synonym.

//tagname	 Selects all XML tags descendents with the specified tag name starting from the
current element.

//text()	 Selects all text element descendents starting from the current element.

/@*	 Selects all attributes of the current tag.

/@attribute	 Selects all attributes of the current tag with the specified attribute name.

normalize-space(expression)	 Returns the contents of the first tag returned by the expression.
		

These expressions are assembled into a path by placing them in the appropriate order depending on the tags
or attributes that need to be extracted. The following are some examples of XPaths and what tags they would
extract from the XML data specified on the previous page.

	 •	Select all <ROOT> tags.

/ROOT

	 •	Select all <RECORD> tags which are contained in the <ROOT> tag.

/ROOT/RECORD/

	 •	Select all <FIELD> tags which are children of a <ROOT> and <RECORD> tag.

/ROOT/RECORD/FIELD

	 •	Select the text contents of all <FIELD> tags which are children of a <ROOT> and <RECORD> tag.

/ROOT/RECORD/FIELD/text()

	 •	Select all <FIELD> tags no matter what the name of their parent tag was.

//FIELD

	 •	Select the name attributes from all <FIELD> tags.

//FIELD/@name

	 •	Select all attributes from all <FIELD> tags.

//FIELD/@*

	 •	Select all text elements from the XML data.

//text()

4 7 1

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 3 4 – XM L

To extract tags from XML data using simple XPath expressions:

The simple XPath expressions can be used to find a specific set of nodes within XML data. For example, using
the same XML data as for the example above the following XPaths return the specified results.

[Variable: 'XML_String' = '<?xml version="1.0" encoding="UTF-8" ?>
	 <ROOT>
		 <RECORD>
			 <FIELD name="First_Name">John</FIELD>
			 <FIELD name="Last_Name">Doe</FIELD>
		 </RECORD>
	 </ROOT>']

	 •	The root tag of the XML data and all of its contents can be returned using /ROOT/. The <ROOT> tag and all its
contents are returned.

[XML_Extract: -XML=$XML_String, -XPath='/ROOT']

�	 (Array: (<ROOT> … </ROOT>))

	 •	All children of the root tag can be returned using /ROOT/*. The <RECORD> tag and all its contents are
returned.

[XML_Extract: -XML=$XML_String, -XPath='/ROOT/*']

�	 (Array: (<RECORD> … </RECORD>))

	 •	All <FIELD> tags in the XML data can be returned using //FIELD. The two <FIELD> tags and all of their contents
are returned.

[XML_Extract: -XML=$XML_String, -XPath='//FIELD']

�	 (Array: (<FIELD name="First_Name">John</FIELD>),
	 (<FIELD name="Last_Name">Doe</FIELD>))

	 •	The name parameter from all <FIELD> tags in the XML data can be returned using //FIELD/@name. The
name parameters of the <FIELD> tags are returned.

[XML_Extract: -XML=$XML_String, -XPath='//FIELD/@name']

�	 (Array: (name="First_Name"), (name="Last_Name"))

Many complex queries can be created using the simple XPath parameters. In addition, XPath allows for
conditional expressions to be used on the simple XPath expressions. These are detailed in the Conditional
XPath Expressions table.

4 7 2

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 3 4 – XM L

Table 5: Conditional XPath Expressions

Expression	 Description	

[n]	 A number selects one specific element from an array of returned tags or
parameters.

[last()]	 Returns the last element from an array of returned tags or parameters.

[tagname]	 Returns only tags which have one or more children with the specified tag name.

[@attribute]	 Returns only those tags which have the specified attribute.

[@attribute=value]	 Returns only those tags which have the specified attribute equal to the value.

[.=value]	 Returns only those tags which have their contents equal to the specified value.

[expression = value]	 Returns only those tags for which the expression is equal to the specified value.
Can also use < <= > >= or != for numeric comparisons.

[starts-with(expression, value)]	 Returns only those tags which have an attribute or child tag that starts with the
specified value.

[contains(expression, value)]	 Returns only those tags which have an attribute or child tag that contains the
specified value.

[count(expression)]	 Returns the number of elements in an array of returned tags or parameters.

[name() == "value"]	 Tests the current node name. The expression //[name() == 'value'] is equivalent to
the expression //value.

[local-name() == "value"]	 Tests the current node name, ignoring any name space prefixes. See the section
on Working With Name Spaces which follows for more information.

[id('value')]	 Finds elements with the specified ID within the XML document.
		

In addition to the expressions detailed in this table it is possible to use numeric functions + - * div mod,
boolean operations and or or, and parentheses to create more complex expressions.

To extract tags from XML data using conditional XPath expressions:

The conditional XPath expressions can be used to find a specific set of nodes within XML data. For example,
using the same XML data as the example above, the following XPaths return the specified results.

[Variable: 'XML_String' = '<?xml version="1.0" encoding="UTF-8" ?>
	 <ROOT>
		 <RECORD>
			 <FIELD name="First Name">John</FIELD>
			 <FIELD name="Last_Name">Doe</FIELD>
		 </RECORD>
	 </ROOT>']

	 •	The first <FIELD> tag in the XML data can be returned using //FIELD[1]. The first <FIELD> tag and all of its
contents are returned.

[XML_Extract: -XML=$XML_String, -XPath='//FIELD[1]']

�	 (Array: (<FIELD name="First_Name">John</FIELD>))

	 •	The last <FIELD> tag descendant of the root tag can be returned using //FIELD[last()]. The second <FIELD> tag
and all of its contents are returned.

[XML_Extract: -XML=$XML_String, -XPath='//FIELD[last()]']

�	 (Array: (<FIELD name="Last_Name">Doe</FIELD>))

	 •	All <FIELD> tag descendants of the root tag which have their contents equal to John can be returned using
//FIELD[.="John"]. The . in the expression represents the current tag that is being examined. The first <FIELD>
tag and all of its contents are returned.

[XML_Extract: -XML=$XML_String, -XPath='//FIELD[.="John"]']

�	 (Array: (<FIELD name="First_Name">John</FIELD>))

4 7 3

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 3 4 – XM L

	 •	All <FIELD> tag descendants of the root tag which have a name parameter that contains the word Name can
be returned using //FIELD[contains(@name, "Name")]. Both <FIELD> tags and all of their contents are returned.

[XML_Extract: -XML=$XML_String, -XPath='//FIELD[contains(@name, "Name")]']

�	 (Array: (<FIELD name="First_Name">John</FIELD>),
	 (<FIELD name="Last_Name">Doe</FIELD>))

Working With Name Spaces
Most real-world XML documents include name space information which must be handled specially within
XPath expressions. The example which is used throughout the XPath discussion above could be rewritten with
an EXAMPLE name space as follows.

<?xml version=”1.0” encoding=”UTF-8” ?>
	 <EXAMPLE:ROOT xmlns:EXAMPLE=”http://example.com”>
		 <EXAMPLE:RECORD>
			 <EXAMPLE:FIELD name=”First_Name”>John</EXAMPLE:FIELD>
			 <EXAMPLE:FIELD name=”Last_Name”>Doe</EXAMPLE:FIELD>
		 </EXAMPLE:RECORD>
	 </EXAMPLE:ROOT>

This document presents a challenge to XPath since //EXAMPLE:FIELD is not a valid expression. Instead
the local-name() condition can be used to strip away the name space information. The expression
//*[local-name() == "FIELD"] returns all of the <EXAMPLE:FIELD> tags from the document.

Some of the examples from the preceding discussion are reproduced below using this name space enabled
XML string and modified XPath expressions.

[Variable: 'XML_String' = '<?xml version=”1.0” encoding=”UTF-8” ?>
	 <EXAMPLE:ROOT xmlns:EXAMPLE=”http://example.com”>
		 <EXAMPLE:RECORD>
			 <EXAMPLE:FIELD name=”First_Name”>John</EXAMPLE:FIELD>
			 <EXAMPLE:FIELD name=”Last_Name”>Doe</EXAMPLE:FIELD>
		 </EXAMPLE:RECORD>
	 </EXAMPLE:ROOT>']

	 •	All children of the root tag can be returned using /ROOT/*. The <RECORD> tag and all its contents are
returned.

[XML_Extract: -XML=$XML_String, -XPath='/*[local-name()=”ROOT"]/*']

�	 (Array: (<EXAMPLE:RECORD> … </EXAMPLE:RECORD>))

	 •	All <EXAMPLE:FIELD> tags in the XML data can be returned using //*[local-name()="FIELD"]. The two
<EXAMPLE:FIELD> tags and all of their contents are returned.

[XML_Extract: -XML=$XML_String, -XPath='//*[local-name()="FIELD"]']

�	 (Array: (<EXAMPLE:FIELD name="First_Name">John</EXAMPLE:FIELD>),
	 (<EXAMPLE:FIELD name="Last_Name">Doe</EXAMPLE:FIELD>))

	 •	The name parameter from all <EXAMPLE:FIELD> tags in the XML data can be returned using
//*[local-name() = "FIELD"]/@name. The name parameters of the <EXAMPLE:FIELD> tags are returned.

[XML_Extract: -XML=$XML_String, -XPath='//*[local-name()="FIELD"]/@name']

�	 (Array: (name="First_Name"), (name="Last_Name"))

4 7 4

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 3 4 – XM L

XSLT Style Sheet Transforms
XML style sheets allow one set of XML data to be transformed to a different set. A single base XML document
can be converted so it can be used in many different situations. For example, a single document could be
converted to HTML for display in a Web browser and to WML for display in a wireless device.

Lasso allows XSLT transforming style sheets to be applied to XML data using the [XML_Transform] tag. The input
of the tag is a string containing XML source data and a string containing a valid XSLT style sheet. The result is
the string that is generated by applying the style sheet to the data.

Note: A full discussion of XSLT syntax is beyond the scope of this book. Please consult a book about XML for full
details about XML style sheets.

Table 6: [XML_Transform] Tag

Tag	 Description	

[XML_Transform]	 Accepts two parameters and returns a string. -XML is the XML source data. -XSL
is the XSLT style sheet to be applied.

		

Note: It is important to include version and xmlns:xsl parameters in the opening <xsl:stylesheet> tag passed to Lasso
so the XSLT processor knows what version of XSL is being used and what namespace to use when parsing the
XSLT style sheet.

To transform XML data using an XSLT style sheet:

Use the [XML_Transform] tag. The following example uses an XSLT style sheet stored in XSLT_String to transform
XML data stored in XML_String and output an HTML table.

The XSLT style sheet is an XML document that uses XPath expressions to select portions of the XML data and
transform them into a different format. In this case, XML data is transformed into HTML for display in a Web
browser.

The <xsl:template> tag specifies what XML element the style sheet will transform. The <xsl:for-each> tags accept
an XPath that specifies a specific set of elements to iterate through. The contents of the tags is repeated for
each iteration. The <xsl:value-of> tag returns the value of an XPath. In this example, it used both to return the
name parameter from each <FIELD> tag and to return the value of the <FIELD> tag itself.

[Variable: 'XSLT_String' = '<?xml version="1.0" encoding="UTF-8" ?>
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
	 <xsl:template match="//ROOT">
		 <TABLE>
			 <TR>
				 <xsl:for-each select="RECORD[1]/FIELD/@name">
					 <TD><xsl:value-of select="self()"/></TD>
				 </xsl:for-each>
			 </TR>
			 <xsl:for-each select="RECORD">
				 <TR>
					 <xsl:for-each select="FIELD">
						 <TD><xsl:value-of select="self()"/></TD>
					 </xsl:for-each>
				 </TR>
			 </xsl:for-each>
		 </TABLE>
	 </xsl:template>
</xsl:stylesheet>']

The XML data is stored in XML_String.

4 7 5

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 3 4 – XM L

[Variable: 'XML_String' = '<?xml version="1.0" encoding="UTF-8" ?>
	 <ROOT>
		 <RECORD>
			 <FIELD name="First Name">John</FIELD>
			 <FIELD name="Last_Name">Doe</FIELD>
		 </RECORD>
	 </ROOT>']

The transformation is performed using the [XML_Transform] tag and the results are shown.

[XML_Transform: -XML=$XML_String, -XSL=$XSLT_String]

�	 <TABLE>
	 <TR>
		 <TD>First_Name</TD>
		 <TD>Last_Name</TD>
	 </TR>
	 <TR>
		 <TD>John</TD>
		 <TD>Doe</TD>
	 </TR>
</TABLE>

XML Stream Data Type
The XML stream data type in Lasso automatically parses XML data which is stored in a variable. The member
tags of the XML stream data type can then be used to inspect and change the XML data. The XML Stream
Data Type Tag table describes the tag which is used to convert string data to the XML stream data type.

The XML stream data type treats XML data as a stream of objects which will be consumed one by one until
the end of the document is reached. This method of parsing XML documents is comparable to the SAX
methodology.

The member tags of the XML data type can also be used to parse XML data. These methods are described in
the preceding XML Data Type section.

Table 7: XML Stream Data Type Tag

Tag	 Description	

[XMLStream]	 Accepts a single parameter which is a string containing validly formatted XML
data.

		

XML data from any source can be parsed and manipulated using Lasso by first storing the XML data in a
variable and then casting it to the XML stream data type using the [XMLStream] tag. Lasso can work with XML
data from a database field, XML file, remote Web application server, XML-RPC request, FTP site, etc. Or, Lasso
can work with XML data that is created programmatically within a variable.

Navigating an XML Stream
An XML stream is made up of many objects called nodes. A node is a opening XML tag, a closing tag, an
attribute of an XML tag, a string of text, CDATA, a processing instruction, a comment, or others. All of the
available node types are detailed in the XML Stream Node Types table.

Table 8: XML Stream Node Types

Type	 Description	

startElement	 An opening XML tag. Opening XML tags are the only nodes that have attributes.

endElement	 A closing XML tag.

attributes	 An attribute of an opening XML tag.

4 7 6

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 3 4 – XM L

text	 The text contents of an XML tag.

cdata	 The CDATA contents of an XML tag.

entityref 	 An entity reference. Often used for extended characters like & representing
the ampersand &.

entitydecl	 An entity declaration.

pi	 A processing instruction. LassoScript embedded in an XML document would be
considered a processing instruction. <? … ?>

comment	 A comment. These are formatted the same as HTML comments <!-- … -->

document	 The root of the XML document.

dtd	 A document type declaration.

documentfrag	 A fragment of a document.

notation	 A notation.
		

The member tags which are used to set the current node of the XML stream are detailed in the XML Stream
Navigation Member Tags table. All of these tags return a boolean value if the desired operation could be
performed. The current node for the stream is changed and the member tags in the XML Stream Member
Tags table can then be used to inspect the current node.

Table 9: XML Stream Navigation Member Tags

Tag	 Description	

[XMLStream->Next]	 Advances to the next node of the XML stream. Returns True if successful or
False if there are no more nodes.

[XMLStream->NextSibling]	 Advances to the next sibling node, bypassing any child notes. Returns True if
successful or False if there are no more sibling nodes.

[XMLStream->MoveToAttribute]	 Moves the position to the specified attribute. Requires a single parameter which is
the attribute name to be moved to or an integer index to move to each attribute in
order. Returns True if the current node could be changed.

[XMLStream->MoveToAttributeNamespace]

	 Moves the position to the specified attribute. Requires two parameters. The first
parameter is the name of the attribute to be moved to. The second parameter is
the URI of the namespace to be used. Returns True if the current node could be
changed.

[XMLStream->MoveToFirstAttribute]

	 Moves the position to the first attribute associated with the current node. Returns
True if successful or False if the current node has no attributes.

[XMLStream->MoveToNextAttribute]
Moves the position to the next attribute of the current node. Returns True if
successful or False if there are no more attributes of the current node.

[XMLStream->MoveToElement]	 Moves the position to the current node. Returns True if successful. This tag can
be used to return to the node after moving to one or more attributes.

		

Navigation through an XML stream occurs only forward through the nodes. Each XML opening tag, closing
tag, and other node types is visited in order using [XMLStream->Next]. The nodes are presented in the order they
appear in the document without respect for the nesting of XML tags in the document.

<alpha name="value"> Some Text <beta> More Text </beta> </alpha>

For example, in the above XML document the following nodes will be visited in order: Starting at the
document node. The startElement node representing the opening <alpha> tag. The text node Some Text. The
startElement node representing the opening <beta> tag. The text node More Text. The endElement node representing
the closing </beta> tag. And finally, the endElement node representing the closing </alpha> tag.

4 7 7

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 3 4 – XM L

Node Attributes
As each node is visited its attributes can be fetched using one of the member tags detailed in the XML Stream
Member Tags table. These tags provide tools for inspecting the attributes and contents of a tag.

Table 10: XML Stream Member Tags

Tag	 Description	

[XMLStream->AttributeCount]	 Returns the number of attributes of the current node.

[XMLStream->BaseURI]	 Returns the base URI of the current node.

[XMLStream->Depth]	 Returns the depth of the current node in the tree.

[XMLStream->GetAttribute]	 Returns the value of an attribute of the current node. Requires one parameter
which is the name of an attribute or an integer index to retrieve the attributes in
order.

[XMLStream->GetAttributeNamespace]

	 Returns the value of an attribute of the current node. Requires two parameters.
The first is the name of a parameter. The second is the URI for a namespace.

[XMLStream->HasAttributes]	 Returns True if the current node has any attributes.

[XMLStream->HasValue]	 Retturns True if the current node can have a text value.

[XMLStream->isEmptyElement]	 Returns True if the current node is empty.

[XMLStream->LocalName]	 Returns the local name of the current node.

[XMLStream->LookupNamespace]
Returns the namespace for a prefix. Requires a single parameter which is the
prefix to be looked up.

[XMLStream->NodeType]	 Returns the type of the current node. The node types are identified in the
following table.

[XMLStream->ReadAttributeValue]
Parses an attribute value into one or more Text and EntityReference nodes.
Returns True if successful.

[XMLStream->ReadString]	 Returns the text of the current node as a string.

[XMLStream->Name]	 Returns the qualified name of the current node: "Prefix:LocalName".

[XMLStream->NamespaceURI]	 Returns the URI defining the namespace associated with the current node.

[XMLStream->Prefix]	 Returns the namespace prefix for the current node.

[XMLStream->Value]	 Returns the text value of the current node if present.

[XMLStream->XMLLang]	 Returns the xml:lang scope within which the current node resides.
		

XML Stream Example
The use of the XML stream tags depends largely on what type of XML document needs to be parsed. This
example shows how a simple XML structure can be parsed and its attributes output to the browser.

This is the example XML data that will be processed for the example.

<xml>
	 XML Data
	 <tag param="value">
		 A Tag
		 _{A Sub-Tag}
	 </tag>
</xml>

To prepare to process the XML document it must be stored in a variable and then an [XMLStream] object is
initialized.

[var: 'xml' = '<xml> … </xml>']
[var: 'stream' = (xmlstream: $xml)]

4 7 8

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 3 4 – XM L

The following code advances through the XML stream using [XMLStream->Next]. It prints out various attributes
of the current node and then advanced through the node’s attributes (if any).

<?LassoScript
	 while: $stream->next;
		 $stream->nodetype + ': ' +
				 '"' + $stream->name + '" = "' $stream->value + '"';
		 '
';
		 if: ($stream->attributecount > 0) && ($stream->movetofirstattribute);
			 var: 'more' = true;
			 while: $more;
				 encode_html: loop_count + ' ' + $stream->nodetype + ': ' + '
						 '"' + $stream->name + '" = "' $stream->value + '"';
				 '
';
				 var: 'more' = $stream->movetonextattribute;
			 /while;
			 $stream->(movetoelement);
		 /if;		

/while;
?>

The results of running the code on the example XML document are shown below. Each node is output with
its type, name, and value. The node for the opening <tag> has an attribute which is shown with a preceding
numeral.

�	 startElement: "xml" = ""
text: "#text" = "XML Data"
startElement: "tag" = ""
1 attributes: "param" = "value"
text: "#text" = "A Tag"
startElement: "Sub" = ""
text: "#text" = "A Sub-Tag"
endElement: "sub" = ""
endElement: "tag" = ""
endElement: "xml" = ""

This same code can be run on more complex XML documents to see how the XML stream tags report
information about the different nodes. By adding actions when certain node types are encountered, this code
can also be adapted into a tool that will parse XML and perform actions based on the contents.

Serving XML
XML data which is created within a variable, stored in a database, or read from a file on the Web serving
machine can be served in place of the current Lasso page using the [XML_Serve] tag. When this tag is called
processing of the current Lasso page is aborted and the specified XML data is served to the site visitor.

The visitor’s Web browser will determine how the XML data is formatted. Many Web browsers will show XML
data in outline form where the individual tags can be collapsed or expanded to view different portions of the
data.

Table 11: [XML_Serve] Serving Tags

Tag	 Description	

[XML_Serve]	 Returns XML data in place of the current Lasso page. The first parameter is
the XML data to be served. Optional -File parameter allows the name of the
XML data to be specified. Optional -Type parameter allows the MIME type to be
overridden from the default of text/xml.

		

4 7 9

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 3 4 – XM L

To serve XML data:

Use the [XML_Serve] tag. The following example serves some simple XML data in place of the current Lasso
page. No tags after the [XML_Serve] tag will be processed.

[Variable: 'XMLData' = '<?xml version="1.0" encoding="UTF-8" ?>
	 <ROOT>
		 <ROW>
			 This is XML data.
		 </ROW>
	 </ROOT>']

[XML_Serve: $XMLData]

Formatting XML
XML data should be served using the MIME type of text/xml and a UTF-8 character set. The [Content_Type] tag can
be used to set the MIME type and character set of a page served by Lasso. This tag simply adjusts the header
of the page served by Lasso, it does not perform any conversion of the data on the page.

To specify that a Lasso page contains XML:

Use the following tag as the very first line of any files which contain XML data. Notice that the tag accepts
only a single parameter, the charset argument is appended to the MIME type argument with a semi-colon ;.

[Content_Type: 'text/xml; charset=UTF-8']

To format XML:

Most XML pages have the following format, an <?XML … ?> declaration followed by a root tag that surrounds
the entire contents of the file. This is similar to the <html> tag that typically surrounds an entire HTML page.
The following example shows a <ROOT> … </ROOT> tag with a single <ROW> … </ROW> tag inside.

[Content_Type: 'text/xml; charset=UTF-8']
<?xml version="1.0" encoding="UTF-8" ?>
<ROOT>
	 <ROW>
		 This is XML data.
	 </ROW>
</ROOT>

To encode data within XML:

The data within XML tags and tag parameters should be XML encoded. The [Encode_Set] … [/Encode_Set] tags
can be used to change the default encoding for all substitution tags in an entire XML page. The following
example shows an XML page with an enclosing set of [Encode_Set] … [/Encode_Set] tags. The value of the
[Variable] tag will be XML encoded, ensuring that it is recognized properly by an XML parser.

[Content_Type: 'text/xml; charset=UTF-8']
<?xml version="1.0" encoding="UTF-8" ?>
[Encode_Set: -EncodeXML]
	 <ROOT>
		 <ROW>
			 [Variable: 'XML_Data']
		 </ROW>
	 </ROOT>
[/Encode_Set]

4 8 0

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 3 4 – XM L

Tags which return XML tags should not have their values encoded. Tags which return XML data require
an -EncodeNone encoding keyword in order to ensure that the angle brackets and other markup characters
are not encoded into XML entities. The following example shows a variable that returns an entire
<ROW> … </ROW> tag. The [Variable] tag has an -EncodeNone keyword so the angle brackets within the XML data
are not encoded.

[Content_Type: 'text/xml; charset=UTF-8']
[Variable: 'XML_Data' = '<ROW><p>This is XML data.<ROW>']
<?xml version="1.0" encoding="UTF-8" ?>
[Encode_Set: -EncodeXML]
	 <wml>
		 [Variable: 'XML_Data', -EncodeNone]
	 </wml>
[/Encode_Set]

XML Templates
Lasso includes a collection of XML templates that you can incorporate into your own Web site or customize
to use a different DTD or schema. In order to use the templates, you must construct a Lasso action which uses
the XML template as its response.

The templates are contained in Documentation/3 - Language Guide/Examples/XML/ folder within the Lasso
Professional 8 application folder. In order to use these examples, the entire XML folder should be copied into
the Web server root. The examples in this section assume the XML folder can be reached at the root of the Web
server by the following URL.

http://www.example.com/XML/

	 •	FileMaker Pro templates allow data to be published using the same formats as those provided with
FileMaker Pro Data Source Object (DSO) and FileMaker Pro (FileMaker) templates are provided including
versions with DTDs and schemas. Each of the templates is described in the FileMaker Pro XML Templates
table. All of the templates are included in the folder FileMaker within the XML folder.

	 •	SQL Server templates allow data to be published using some of the formats provided with Microsoft SQL
Server. Templates are provided for Raw SQL results and for results structured as Auto Elements (Elem). Each
of the templates includes versions with DTDs and schemas. They are described in Table 19: SQL Server
XML Templates. All of the templates are included in the folder SQLServer within the XML folder.

Each template can be used as the response to a Lasso action that returns records. The templates are written in
a database-independent fashion and build their DTD or schema based on the actual field names which define
the results that they are formatting.

4 8 1

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 3 4 – XM L

Table 12: FileMaker Pro XML Templates

Template	 Description	

dso_xml.lasso	 Data Source Object template uses the name of each field in the database as the
name of an XML tag. Root tag is <FMPDSORESULT> which contains <ROW>
tags that contain individual field tags.

dso_xml_dtd.lasso	 Includes a dynamically generated DTD.

dso_xml_schema.lasso	 Includes a dynamically generated Schema.

fmp_layout_xml.lasso	 FileMaker Pro Layout template includes <LAYOUT>, <FIELD>, and
<VALUELIST> tags which describe a FileMaker Pro layout. Root tag is
<FMPXMLLAYOUT> which contains <ERRORCODE> <PRODUCT> and
<LAYOUT> tags.

fmp_layout_xml_dtd.lasso	 Includes a dynamically generated DTD.

fmp_layout_xml_schema.lasso	 Includes a dynamically generated Schema.

fmp_xml.lasso	 FileMaker Pro results template includes database structure and <RESULTS>
tag with <ROW> and <COL> sub-tags. Root tag is <FMPXMLRESULT> which
contains <ERRORCODE> <PRODUCT> <DATABASE>, <METADATA> and
<RESULTS> tags.

fmp_xml_dtd.lasso	 Includes a dynamically generated DTD.

fmp_xml_schma.lasso	 Includes a dynamically generated Schema.
		

Table 13: SQL Server XML Templates

Template	 Description	

sql_xml_raw.lasso	 Includes each record in a single <ROW> tag. Root tag is <ROOT> which contains
<ROW> tags. Each field is specified as a parameter of the <ROW> tags.

sql_xml_raw_dtd.lasso	 Includes a dynamically generated DTD.

sql_xml_raw_schema.lasso	 Includes a dynamically generated Schema.

sql_xml_elem.lasso	 Includes each record in a single <ROW> tag. Root tag is <ROOT> which contains
<ROW> tags. Each field is specified as a tag named the same as the field name
within the <ROW> tags.

sql_xml_elem_dtd.lasso	 Includes a dynamically generated DTD.

sql_xml_elem_schema.lasso	 Includes a dynamically generated Schema.
		

To use a template with an [Inline] … [/Inline] action:

Specify a search within [Inline] … [/Inline] tags and use an [Include] tag to insert the desired template to
format the results. A [Content_Type] tag is required at the top of the file containing the [Inline] … [/Inline] tags
so the MIME type of the returned data will be properly specified. The following example finds all
records in a Contacts database and formats the results using the FileMaker DSO template stored at
/XML/FileMaker/dso_xml.lasso.

<?LassoScript
	 Content_Type: 'text/xml; charset=UTF-8';
	 Inline: -Database='Contacts', -Table='People', -KeyField='ID', -FindAll;
		 Include: '/XML/FileMaker/dso_xml.lasso';
	 /Inline;
?>

4 8 2

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 3 4 – XM L

How to Customize
The XML templates are good examples of data source-independent design and can be used as the starting
point of an automatic publishing system based on XML.

The templates are also a good starting point to create XML Lasso pages that are industry specific or to a
particular database structure. Starting with a DTD or schema, an XML Lasso page can be created that outputs
data from a data source in precisely the format required.

Custom XML templates will need to be created in order to take advantage of relationships, repeating fields,
stored images, or portals specific to any given data source.

4 8 3

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 3 4 – XM L

35
Chapter 35

Portable Document Format

This chapter describes how to create files in Portable Document Format (PDF) using Lasso 8.

	 •	Overview introduces PDF support in Lasso Professional 8.

	 •	Working With PDF Documents describes how to read PDF documents, work with embedded forms,
import and extract FDF files, and how to save copies of PDF documents with optional encryption.

	 •	Creating PDF Documents describes how to create PDF documents using Lasso tags, and how to use
existing PDF documents as templates.

	 •	Creating Text Content describes how to add text to a PDF variable using Lasso tags.

	 •	Creating and Using Forms describes how to add forms to a PDF variable using Lasso tags, and also
discusses how PDF forms can be used to submit data to a database using Lasso.

	 •	Creating Tables describes how to create and insert tables in a PDF variable using Lasso tags.

	 •	Creating Graphics describes how to create and insert graphics in a PDF variable using Lasso tags.

	 •	Creating Barcodes describes how to create and insert barcodes in a PDF variable using Lasso tags.

	 •	Example PDF Files provides complete examples of using Lasso to create PDF files with text, forms, tables,
graphics, and barcodes.

	 •	Serving PDF Files describes how to display a PDF file within the context of a Lasso page.

Overview
Lasso Professional 8 provides support for Portable Document Format (PDF) files, allowing PDF documents to
be created using Lasso. The PDF file format is a widely-accepted standard for electronic documentation, and
facilitates superb printer-quality documents from simple graphs to complex forms such as tax forms, escrow
documents, loan applications, stock reports, and user manuals. For more information on PDF technology, see
the following URL.

http://www.adobe.com/products/acrobat/adobepdf.html

Implementation Note: The [PDF_…] tags in Lasso 8 are implemented in LJAPI, and based on the iText Java
library. For more information on the iText Java library, visit http://www.lowagie.com/iText.

Introduction to Creating PDF Files
PDF files are created in Lasso by setting a variable as a [PDF_Doc] object, and using various member tags and
other [PDF_…] tags to add data to the variable. The PDF is then written to file when the Lasso page containing
all code is served by the Web server.

4 8 4

L a s s o 8 . 5 L a n g u a g e G u i d e

To create a basic PDF file using Lasso:

The following shows an example of creating and outputting a PDF file named MyFile.pdf using the [PDF_…]
tags.

[Var:'MyFile'=(PDF_Doc: -File='MyFile.pdf',
		 -Size='A4',
		 -Margin=(Array: 144.0, 144.0, 72.0, 72.0))]
[Var: 'Font'=(PDF_Font: -Face='Helvetica', -Size=36)]
[Var: 'Text'=(PDF_Text:'I am a PDF document', -Font=$Font)]
[$MyFile->(Add: $Text)]
[$MyFile->Close]

In the example above, a variable named MyFile is set to a [PDF_Doc] type for a file named MyFile.pdf. A single
font type is defined for the document using the [PDF_Font] tag. Then, the text I am a PDF document is defined
using the [PDF_Text] tag, and added using the [PDF_Doc->Add] member tag. The PDF is then written to file upon
execution of the [$MyFile->Close] tag.

This chapter explains in detail how these and other tags are used to create and edit PDF files. This chapter
also shows how to output a PDF file to a client browser within the context of a Lasso page, which is described
in the Serving PDF Files section of this chapter.

File Permissions
This section describes the file permission requirements for creating PDF files on a Web server using Lasso 8.
In order to successfully create PDF files, the following conditions must be met.

	 •	When creating PDF files using the [PDF_…] tags, the current user must have Create Files, Read Files, and Write
Files permissions allowed in the Setup > Security > Files section of Lasso Administration, and the folder
in which the PDF will be created must be available to the user within the Allow Path field.

	 •	Any file extensions being used by the [PDF_…] tags must be allowed in the Setup > Global Settings >
Settings section of Lasso Administration. This can include .pdf, .jpg, and .gif.

	 •	When creating files, Lasso Service must be allowed to write to the folder by the operating system (i.e.
the Lasso system user in Mac OS X and Linux). For more information, see the Files and Logging chapter.

Working With PDF Documents
Lasso provides a data type that allows existing PDF documents to be read and manipulated. A PDF document
is read using [PDF_Read]. The document can then be inspected for page count, page size, and the values of
any embedded form elements. Pages from the file can be placed within a new PDF document. A range of
pages from the PDF document can be saved as a new PDF document and encryption options can be added to
the new PDF document.

Table 1: [PDF_Read] Tag and Members

Tag	 Description	

[PDF_Read]	 Reads an existing PDF document into an object. Requires one parameter -File
which specifies the name of the PDF document to be read. Optional -Password
parameter specifies the owner's password for the file.

[PDF_Read->PageCount]	 Returns the number of pages in the document.

[PDF_Read->PageSize]	 Returns the size of a page in the document as an array of width and height.
Optional parameter specifies which page in the PDF to return the size of.

[PDF_Read->GetHeaders]	 Returns an map of header elements from the PDF document.

[PDF_Read->FieldNames]	 Returns an array of form elements embedded in the PDF document.

[PDF_Read->FieldType]	 Returns the type of a single form element. Requires one parameter which is the
name of the field element to be inspected. Types include Checkbox, Combobox,
List, PushButton, RadioButton, Text, Signature.

4 8 5

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 3 5 – P o r t a b l e D o c u m e n t F o r m a t

[PDF_Read->FieldValue]	 Returns the value of a single form element. Requires one parameter which is the
name of the field element to be inspected.

[PDF_Read->SetFieldValue]	 Sets the value of a single form element. Requires two parameters: -Field
specifies the name of a form element and -Value specifies a new value for the
element. Optional -Display parameter specifies a display string for the element.

[PDF_Read->ImportFDF]	 Merges an FDF file into the current PDF document. Any form elements within
the document will be populated with the values from the FDF file. Accepts a
-File parameter that specifies the path to the FDF file. Alternately, accepts a byte
stream containing the file. Optional -NoFields and -NoComments parameters
prevent either fields or comments from being merged.

[PDF_Read->ExportFDF]	 Exports an FDF file from the current PDF document. The FDF file will contain
values for each of the form elements in the PDF document. If a -File parameter
is specified then the FDF file will be written to that path. Otherwise, a byte stream
containing the FDF file will be returned.

[PDF_Read->JavaScript]	 Returns the global document JavaScript action for the current PDF document.

[PDF_Read->AddJavaScript]	 Adds a JavaScript action to the current PDF document.

[PDF_Read->Save]	 Saves a copy of the current PDF document. Requires one parameter -File which
specifies the path to the file where the PDF document should be saved. Also
accepts -UserPassword, -OwnerPassword, -EncryptStrong, and -Permissions
paramerters. See the descriptions in the following table on the [PDF_Doc] tag for
more information about these parameters.

[PDF_Read->SetPageRange]	 Selects a range of pages to save into a new PDF document. Multiple ranges can
be specified separated by comments. Ranges take the form 4-10 to specify a
start and end page number. Optional e or o prefix only selects even or odd pages.
Optional ! prefix specifies a range of pages that should not be included. o4-10
would select the pages 5,7,9 and 1-10,!2-9 would select the pages 1,10.

		

Note: The [PDF_Read] object can be used in concert with the [PDF_Doc->InsertPage] tag described below to insert
pages from an existing PDF document into a new PDF document.

To read in an existing PDF document:

In order to work with an existing PDF document, it must first be cast as a Lasso variable using the [PDF_Read]
tag.

[Var:'Old_PDF'=(PDF_Read:-File='/documents/somepdf.pdf')]

To determine the attributes of an existing PDF document:

The number of pages and the dimensions of an existing PDF document can be returned using the
[PDF_Read->PageCount] and [PDF_Read->PageSize] tags on a defined [PDF_Read] variable.

[Var:'Old_PDF'=(PDF_Read:-File='/documents/somepdf.pdf')]
Number of pages: [$Old_PDF->PageCount]

Page size: [$Old_PDF->(PageSize: 1)]

4 8 6

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 3 5 – P o r t a b l e D o c u m e n t F o r m a t

Creating PDF Documents
PDF documents are Initialized and created using the [PDF_Doc] tag. This is the basic tag used to create PDF
documents with Lasso, and is used in concert with all tags described in this chapter.

Table 2: [PDF_Doc] Tag and Parameters

Tag	 Description	

[PDF_Doc]	 Initializes a PDF document. Uses optional parameters which set the basic
specifications of the file to be created. Data is added to the variable using [PDF_
Doc] member tags, which are described throughout this chapter.

-File	 Defines the file name and path of the PDF document. If omitted, the PDF
document is created in RAM (see the Serving PDF Files section of this
chapter for more information). If a file name is specified without a folder path, the
file is created in the same location as the Lasso page containing the [PDF_…]
tags.

-Size	 Define the page size of the document. Values for this parameter are standard
print sizes, and can be A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, B0, B1, B2,
B3, B4, B5, ARCH_A, ARCH_B, ARCH_C, ARCH_D, ARCH_E, FLSA, FLSE,
HALFLETTER, LEDGER, LEGAL, LETTER, NOTE, and TABLOID. Defaults to A4
if not used. Optional.

-Height	 Defines a custom page height for the document. Accepts an integer value which
represents the size in points. This can be used with the -Width parameter instead
of the -Size parameter. Optional.

-Width	 Defines a custom page width for the document. Requires an integer value which
represents the size in points. This can be used with the -Height parameter
instead of the -Size parameter. Optional.

-Margins	 Defines the margin size for the page. Requires an array of four decimal values,
which define the left, right, top, and bottom margins for the page (Left, Right, Top,
Bottom). Optional.

-Color	 Defines the initial text color of the PDF document. Requires a hex color string.
Defaults to '#000000' if not used. Optional.

-UseDate	 Adds the current date and time to the file header. Optional.

-NoCompress	 Produces a PDF without compression to allow PDF code to be viewed. PDF files
are compressed by default if not used. Optional.

-PageNo	 Sets the starting page number for the PDF document. Requires an integer value,
which is the page number of the first page. Optional.

-PageHeader	 Sets text that will be displayed at the top of each page in the PDF. Requires a
text string as a value. Optional.

'Header'='Content'	 Adds defined file headers to the PDF document. 'Header' is replaced with the
name of the file header (e.g. Title, Author), and 'Content' is replaced with the
header value. Optional.

-UserPassword	 Specifies a password which will be required to open the resulting PDF in a reader
appliccation including Adobe Reader, Preview, etc. The file will be encrypted if
this parameter is specified. Optional.

-OwnerPassword	 Specifies a password which will be required to open the resulting PDF in an editor
including Acrobat Pro, Lasso's [PDF_Read] tag, etc. The file will be encrypted if
this parameter is specified. Optional.

-EncryptStrong	 If specified then strong 128-bit encryption is used rather than 40-bit
encryption. Note, encryption will only be performed if either -UserPassword or
-OwnerPassword is specified. Optional.

-Permissions	 A comma delimited list of permissions for the PDF file. Values include
Print, Modify, Copy, or Annotate. Four additional options are available only
if -EncryptStrong is used including FillIn, Assemble, ScreenReader, and
DegradedPrint. Optional.

		

4 8 7

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 3 5 – P o r t a b l e D o c u m e n t F o r m a t

The examples below show creating basic PDF files, however these files contain little or no data. Various types
of data can be added to these files using the tags described in the remainder of this chapter.

To start a basic PDF file:

Use the [PDF_Doc] tag to create a PDF file to a hard drive location on the Web server. Use the -File parameter
to define the location and file name, and the -Size parameter to define a pre-defined standard size. This basic
example creates a blank, one-page PDF document.

[Var:'MyFile'=(PDF_Doc: -File='MyFile.pdf', -Size='A4')]

To start a PDF file with a custom page size:

Use the [PDF_Doc] tag with the -Height and -Width parameters to define a custom page size in points. One inch
is equal to 72 points.

[Var:'MyFile'=(PDF_Doc: -File='MyFile.pdf',
		 -Height='648.0',
		 -Width='468.0')]

To start a PDF file with custom margins:

Use the [PDF_Doc] tag with the -Margin parameter to define a custom page size (in points). The following
example adds a margin of 72 points (one inch) to the left and right sides of the page, but adds no margin
to the top and bottom. This example also adds the date and time of creation to the file header using the
-UseDate parameter.

[Var:'MyFile'=(PDF_Doc: -File='MyFile.pdf',
		 -Size='A4',
		 -Margin=(Array: 72.0, 72.0, 0.0, 0.0),
		 -UseDate)]

To start an uncompressed PDF file:

Use the [PDF_Doc] tag with the -NoCompress parameter.

[Var:'MyFile'=(PDF_Doc: -File='MyFile.pdf',
		 -Size='A4',
		 -NoCompress)]

To start a PDF file with custom file headers:

Use the [PDF_Doc] tag with appropriate 'Header'='Content' parameters.

[Var:'MyFile'=(PDF_Doc: -File='MyFile.pdf',
		 -Size='A4',
		 'Title'='My PDF File',
		 'Subject'='How to create PDF files',
		 'Author'='John Doe')]

Adding Content to PDFs
In Lasso 8, there are several different types of data that can be added to a PDF document. Many of these types
are first defined as objects using tags such as [PDF_Text], [PDF_List], [PDF_Image], [PDF_Table], or [PDF_BarCode],
and then added to a [PDF_Doc] variable using the [PDF_Doc->Add] member tag. Each data type object is
described separately in subsequent sections of this chapter.

4 8 8

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 3 5 – P o r t a b l e D o c u m e n t F o r m a t

Table 3: [PDF_Doc->Add] Tag and Parameters

Tag	 Description	

[PDF_Doc->Add]	 Adds a PDF content object to a document. This can be used to add [PDF_Text],
[PDF_List], [PDF_Image], [PDF_Table], or [PDF_BarCode] objects. If no
position information is specified then the object is added to the flow of the page,
otherwise it is drawn at the specified location. Requires one parameter, which is
the object to be added. Optional parameters are described below.

-Align 	 Sets the alignment of the object in the page ('Left', 'Center', or 'Right'). Defaults to
'Left'. Works only for [PDF_Image] and [PDF_BarCode] objects. Optional.

-Wrap	 Keyword parameter specifies that text should flow around the embedded object.
Works only for [PDF_Image] and [PDF_BarCode] objects. Optional.

-Left	 Specifies the placement of the object relative to the left side of the document.
Requires a decimal value, which is the placement offset in points. Works only for
[PDF_Image] and [PDF_BarCode] objects. Optional.

-Top 	 Specifies the placement of the object relative to the top of the document.
Requires a decimal value, which is the placement offset in points. Works only for
[PDF_Image] and [PDF_BarCode] objects. Optional.

-Height 	 Scales the object to the specified height. Requires a decimal value which is the
desired object height in points. Works only for [PDF_Image] and [PDF_BarCode]
objects. Optional.

-Width 	 Scales the object to the specified width. Requires a decimal value which is the
desired object width in points. Works only for [PDF_Image] and [PDF_BarCode]
objects. Optional.

[PDF_Doc->GetVerticalPosition]	 Returns the current vertical position where text will next be inserted on the page.
		

For examples of using the [PDF_Doc->Add] tag to add text, image, table, and barcode PDF objects to a [PDF_Doc]
variable, see the corresponding sections in this chapter.

Adding Pages
If the content of a PDF document will span more than one page, additional pages can be added using special
[PDF_Doc] member tags. These tags signal where pages start and stop within the flow of the Lasso PDF creation
tags.

Table 4: PDF Page Tags

Tag	 Description	

[PDF_Doc->AddPage]	 Adds additonal blank pages to the [PDF_Doc] variable. When used, this tag ends
in the current page and starts a new page.

[PDF_Doc->AddChapter]	 Adds a page with a named chapter title (and bookmark) to a [PDF_Doc] variable.
Requires a text string or [PDF_Text] object as a parameter, which specifies the
chapter title. An additonal -Number parameter sets an integer chapter number for
the chapter. An optional
-HideNumber parameter specifies that no number will be shown.

[PDF_Doc->SetPageNumber]	 Sets a page number for a new page. Requires an integer value.

[PDF_Doc->GetPageNumber]	 Returns the current page number.
		

To start a new page:

Use the [PDF_Doc->AddPage] tag. The following example ends a preceding page, and starts a new page.

[$MyFile->(Add:'Thus, ends the discussion on page 1.')]
[$MyFile->AddPage]
[$MyFile->(Add:'On page 2, we will discuss something else.')]

4 8 9

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 3 5 – P o r t a b l e D o c u m e n t F o r m a t

To add a chapter title:

Use the [PDF_Doc->AddChapter] tag. The following example adds a page with the text 30. Important Chapter to the
[PDF_Doc] variable with a defined chapter number of 30.

[$MyFile->(AddChapter:'Important Chapter', -Number=30)]

To set the page number for a page:

Use the [PDF_Doc->SetPageNumber] tag. The following example sets a page number of 5 for the current page.

[$MyFile->(SetPageNumber: 5)]

To return the current page number:

Use the [PDF_Doc->GetPageNumber] tag. The following example returns a page number of 1 when used within
the first page of the document.

[$MyFile->GetPageNumber] � 1

Adding Pages from Existing PDFs
Pages in existing PDF documents can be added to a [PDF_Doc] variable using the [PDF_Read] tag. This tag
makes it possible to use existing PDF documents as templates.

Note: Lasso cannot change existing text or graphics that are contained within a PDF document read in using
[PDF_Read]. Instead, Lasso is able to overlay text, graphics, and other elements on the PDF.

Once an existing PDF document has been cast as a Lasso object using [PDF_Read], it may be added to a
[PDF_Doc] variable using the [PDF-Doc->InsertPage] tag.

Table 5: Page Insertion Tag and Parameters

Tag	 Description	

[PDF_Doc->InsertPage]	 Inserts a page from a [PDF_Read] object into a [PDF_Doc] variable. Requires
the name of a [PDF_Read] variable, followed by a comma and the number of
the page to insert. This tag has many optional parameters for specifying how an
existing page should be insterted into a [PDF_Doc] variable. These parameters
are explained below.

-NewPage	 Keyword parameter specifying that the new page should be appended at the
end of the document. Otherwise the page is drawn over the first page in the
[PDF_Doc] variable by default.

-Top	 If the page being inserted is shorter than the current pages in the [PDF_Doc]
variable, this parameter may be used to specifiy the offset of the new page from
the top of the current page frame in points.

-Left	 If the page being inserted is not as wide the current pages in the [PDF_Doc]
variable, this parameter may be used to specifiy the offset of the new page from
the left of the current page frame in points.

-Width	 Scales the inserted page by width. Requires either a point width value, or a
percentage string (e.g. 50%).

-Height	 Scales the inserted page by height. Requires either a point height value, or a
percentage string (e.g. 50%).

		

To insert an existing page into a new PDF document:

Use the [PDF_Doc->InsertPage] tag with a defined [PDF_Read] variable. The example below makes the first page
of the somepdf.pdf PDF the first page of the [PDF_Doc] variable. Content may then be overlaid on top of the new
page using the tags described in the rest of this chapter.

[Var:'New_PDF'=(PDF_Doc: -File='MyFile.pdf', -Size='A4')]
[Var:'Old_PDF'=(PDF_Read:-File='/documents/somepdf.pdf')]
[$New_PDF->(InsertPage: $Old_PDF, 1)]

4 9 0

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 3 5 – P o r t a b l e D o c u m e n t F o r m a t

To insert an existing page at the end of a new PDF document:

Use the [PDF_Doc->InsertPage] tag with the optional -NewPage parameter. The example below adds the first page
of the somepdf.pdf PDF after all existing pages in the [PDF_Doc] variable.

[Var:'New_PDF'=(PDF_Doc: -File='MyFile.pdf', -Size='A4')]
[Var:'Old_PDF'=(PDF_Read:-File='/documents/somepdf.pdf')]
[$New_PDF->(InsertPage: $Old_PDF, 1, -NewPage)]

To place an inserted page:

Use the [PDF_Doc->InsertPage] tag with the optional -Top and/or -Width parameters. The example below places
the inserted page 50 points away from the top and left sides of the new document page frame.

[Var:'New_PDF'=(PDF_Doc: -File='MyFile.pdf', -Size='A4')]
[Var:'Old_PDF'=(PDF_Read:-File='/documents/somepdf.pdf')]
[$New_PDF->(InsertPage: $Old_PDF, 1, -Width=50, -Height=50)]

Accessing PDF File Information
Parameter values of a [PDF_Doc] variable can be returned using special accessor tags. These tags return specific
values such as the page size, margin size, or the value of any other [PDF_Doc] variable described in the
previous section. All PDF accessor tags in Lasso 8 are defined in Table 6: PDF Accessor Tags.

Table 6: PDF Accessor Tags

Tag	 Description	

[PDF_Doc->GetMargins]	 Returns the current page margins as an array data type (Array: Left, Right, Top,
Bottom).

[PDF_Doc->GetSize]	 Returns the current page size as an array of width and height point values
(Array: Width, Height).

[PDF_Doc->GetColor]	 Returns the current color as a hex string.

[PDF_Doc->GetHeaders]	 Returns all document headers as a map data type (Map: 'Header1'='Content1',
'Header2'='Content2', …).

[PDF_Doc->SetFont]	 Sets a font for all following text. The value is a [PDF_Font] object.
		

To return PDF page margins:

Use the [PDF_Doc->GetMargins] tag. The following example returns the current margins of a defined [PDF_Doc]
variable.

[$MyFile->GetMargins] � (Array: 72.0, 72.0, 72.0, 72.0)

To return a PDF page size:

Use the [PDF_Doc->GetSize] tag. The following example returns the current sizes of a defined [PDF_Doc] variable.

[$MyFile->GetSize] � (Array: 468.0, 648.0)

To return a PDF base font color:

Use the [PDF_Doc->GetColor] tag. The following example returns the base font color of a defined [PDF_Doc]
variable.

[$MyFile->GetColor] � #333333

Saving PDF Files
Once a [PDF_Doc] variable has been filled with the desired content, the [PDF_Doc->Close] tag must be used to
signal that the PDF file is finished and is ready to be written to file or served.

4 9 1

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 3 5 – P o r t a b l e D o c u m e n t F o r m a t

Table 7: [PDF_Doc->Close] Tag

Tag	 Description	

[PDF_Doc->Close]	 Closes [PDF_Doc] variable and commits it to file after all desired data has been
added to it. Additional data may not be added to the specified variable after this
tag is used.

		

To close a PDF file:

Use the [PDF_Doc->Close] tag after all desired modifications have been performed on the [PDF_Doc] variable.

[Var:'MyFile'=(PDF_Doc: -File='MyFile.pdf', -Size='A4', -Margin=(Array: 144.0, 144.0, 72.0, 72.0))]
[Var: 'Font'=(PDF_Font: -Face='Helvetica', -Size=36)]
[Var: 'Text'=(PDF_Text:'I am a PDF document', -Font=$Font)]
[$MyFile->(Add: $Text)]
[$MyFile->Close]

Creating Text Content
Text content is the most basic type of data within a PDF document. PDF text is first defined as a [PDF_Text]
object, and then added to a PDF variable using the [PDF_Doc->Add] tag.

[PDF_Text] objects may be positioned within the current PDF page using the -Left and -Top parameters of the
[PDF_Doc->Add] tag. Otherwise, if no positioning parameters are specified, the text will be added to the top left
corner of the page by default.

Using Fonts
Before adding text, it is important to first define the font and style for the text to determine how it will
appear. This is done using the [PDF_Font] tag.

Table 8: PDF Font Tag and Parameters

Tag	 Description	

[PDF_Font]	 Stores all the specifications for a font style. This include font family, size, style,
and color. Parameters are used with the [PDF_Font] tag that define the font
family, size, color, and specifications. The following parameters may be used with
the [PDF_Font] tag.

-Face	 Specifies the font by its family name. Allowed font names are Courier, Courier-
Bold, Courier-Oblique, Courier-BoldOblique, Helvetica, Helvetica-Bold, Helvetica-
Oblique, Helvetica-BoldOblique, Symbol, Times-Roman, Times-Bold, Times-Italic,
Times-BoldItalic, and ZapfDingbats.

-File	 Creates a font from a local font file. The file name and path to the font must be
specified (e.g /Fonts/Courier.ttf). This parameter may be used instead of the -
Face parameter. Optional.

-Size	 Sets the font size in points. Requires an integer point value as a parameter (e.g
14). Optional.

-Color	 Sets the font color. Require a hex color string as a parameter (e.g '#550000').
Defaults to '#000000' if not used. Optional.

-Encoding 	 Sets the desired font encoding. The font encoding defaults to 'CP1252' if not
specified. TrueType fonts can be asked to return an array of supported encodings
via the [PDF_Font->GetSupportedEncodings] member tag. Optional.

-Embed	 Embeds the fonts used within the PDF document as opposed to relying on the
client PDF reader for font information. Optional.

		

The following examples show how to set variables as [PDF_Font] types that define the font styles that are used
in a PDF document.

4 9 2

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 3 5 – P o r t a b l e D o c u m e n t F o r m a t

To set a basic font style:

Set a variable as a [PDF_Font] tag. The following example sets a style to be a standard Helvetica font with a size
of 14 points. The font color is green.

[Var:'Font1'=(PDF_Font: -Face='Helvetica',
		 -Size=14,
		 -Color='#005500')]

Individual parameters may be viewed and changed in a [PDF_Font] variable using [PDF_Font] member tags.
These parameters are most useful for retrieving information about a [PDF_Font] object that was defined using
the -File parameter, and are summarized in Table 9: [PDF_Font] Member Tags.

Table 9: [PDF_Font] Member Tags

Tag	 Description	

[PDF_Font->SetFace]	 Changes the font face of the [PDF_Font] variable to one of the allowed font
names.

[PDF_Font->SetColor]	 Changes the font color of the [PDF_Font] variable.

[PDF_Font->SetSize]	 Changes the font size of the [PDF_Font] variable.

[PDF_Font->SetEncoding]	 Changes the encoding of the [PDF_Font] variable.

[PDF_Font->SetUnderline]	 Sets the [PDF_Font] variable style to underlined. Requires a boolean parameter
of 'True' if used.

[PDF_Font->GetFace]	 Returns the current font face of a [PDF_Font] variable.

[PDF_Font->GetColor]	 Returns the current font color of a [PDF_Font] variable.

[PDF_Font->GetSize]	 Returns the current font size of a [PDF_Font] variable.

[PDF_Font->GetEncoding]	 Returns the current encoding of a [PDF_Font] variable.

[PDF_Font->GetPSFontName]	 Returns the exact Postscript font name of the current font of a [PDF_Font]
variable (e.g. AdobeCorIDMinBd).

[PDF_Font->IsTrueType]	 Returns True if the current font is a True Type font.

[PDF_Font->GetSupportedEncodings]	 Returns an array of all supported encodings for a current True Type font face
(Array:'1252 Latin 1','1253 Greek').

[PDF_Font->GetFullFontName]	 Returns the full True Type name of the current font of a [PDF_Font] variable (e.g
Comic Sans MS Negreta).

[PDF_Font->TextWidth]	 Returns an integer value representing how wide (in pixels) the text would be
using the current [PDF_Font] variable. Requires a string value, which is the text
to return the width of.

		

To change a font face:

Use the [PDF_Font->SetFace] tag. The following example sets a defined [PDF_Font] variable to a standard Courier
font.

[$MyFont->(SetFace:'Courier')]

To change a font color:

Use the [PDF_Font->SetColor] tag. The following example sets a defined [PDF_Font] variable to the color red.

[$MyFont->(SetColor:'#990000')]

To underline a font:

Use the [PDF_Font->SetUnderline] tag. The following example sets a predefined [PDF_Font] variable to use an
underlined style.

[$MyFont->(SetUnderline: 'True')]

4 9 3

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 3 5 – P o r t a b l e D o c u m e n t F o r m a t

To return a font face:

Use the [PDF_Font->GetFace] tag. The following example returns the current font face of a defined [PDF_Font]
variable.

[$MyFont->GetFace] � Courier

To return a font encoding:

Use the [PDF_Font->GetEncoding] tag. The following example returns the encoding of the current font face of a
defined [PDF_Font] variable.

[$MyFont->GetEncoding] � CP1252

Adding Text
PDF text content is constructed using the [PDF_Text] tag, which is then added to a [PDF_Doc] variable using the
[PDF_Doc->Add] tag. The [PDF_Text] constructor tag and parameters are described below.

Table 10: [PDF_Text] Tag and Parameters

Tag	 Description	

[PDF_Text]	 Creates a text object to be added to a [PDF_Doc] variable. Requires the
text string to be added to the PDF document as the first parameter. Optional
parameters are listed below.

-Type 	 Specifies the text type. This can be 'Chunk', 'Phrase', or 'Paragraph'. Different
parameters are available for each of these types, as described below. Defaults to
the 'Paragraph' type if no -Type parameter is specified. Optional.

-Color 	 Sets the font color. Requires a hex color string as a parameter (e.g '#550000').
Defaults to '#000000' if not used. Optional.

-BackgroundColor 	 Sets the text background color. Require a hex color string as a parameter (e.g
'#550000'). Optional.

-Underline 	 Keyword parameter underlines the text. Optional.

-TextRise 	 Sets the baseline shift for superscript. Requires a decimal value that specifies the
text rise in points. Optional.

-Font	 Sets the font for the specified text. The value is a [PDF_Font] variable, which is
described in the Using Fonts section of this chapter. The font defaults to the
current inherited font if no -Font parameter is specified.

-Anchor	 Links the specified text to a URL. The value of the parameter is the URL string
(e.g. 'http://www.example.com'). Optional.

-Name	 Sets the name of an anchor destination within a page. The value of the
parameter is the anchor name
(e.g. 'Name'). Optional.

-GoTo	 Links the specified text to a local anchor destination to go to. The value of the
parameter is the local anchor name (e.g. 'Name'). Optional.

-File	 Links the specified text to a PDF document. The value of the parameter is a PDF
file name (e.g. 'Somefile.pdf'). The -Goto parameter can be used concurrently to
specify an anchor name within the destination document. Optional.

-Leading 	 Sets the leading space in points (the space above each line of text), requires a
decimal value. For 'Phrase' and 'Paragraph' types only.

-Align 	 Sets the alignment of the text in the page ('Left', 'Center', or 'Right'). Optional.

-IndentLeft 	 Sets the left indent of the text object. Requires a decimal value which is the
number of points to indent the text. Optional. Available for 'Paragraph' types only.

-IndentRight 	 Sets the right indent of the text object. Requires a decimal value which is the
number of points to indent the text. Optional. Available for 'Paragraph' types only.

		

The following examples show how to add text to a defined PDF variable named MyFile that has been
initialized previously using the [PDF_Doc] tag.

4 9 4

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 3 5 – P o r t a b l e D o c u m e n t F o r m a t

To add a chunk of text:

Use the [PDF_Text] tag with the -Type='Chunk' parameter. The following example adds the text LassoSoft to the
[PDF_Doc] variable with a predefined font. The text is positioned in the top left corner of the page by default.

[Var:'Text'=(PDF_Text:'LassoSoft', -Type='Chunk', -Font=$MyFont)]
[$MyFile->(Add: $Text)]

To add a paragraph of text:

Use the [PDF_Text] tag with the -Type='Paragraph' parameter. The following example adds three sentences of text
to the [PDF_Doc] variable with a predefined font.

[Var:'Text'=(PDF_Text:'The mysterious file cabinet in orbit has been successfully lassoed. The file cabinent had been traveling at
a velocity of 300 meters per second. Top scientists suspect that the cabinet had been in orbit for some time.',
-Type='Paragraph', -Font=$MyFont, -Leading=10.0, -IndentLeft=20.0)]

To add a linked phrase:

Use the [PDF_Text] tag with the -Anchor parameter. The following example adds the text Click here to go somewhere
to the [PDF_Doc] variable with a predefined font, and links the phrase to http://www.example.com.

[Var:'Text'=(PDF_Text:'Click here to go somewhere', -Type='Chunk', -Font=$MyFont,
-Anchor='http://www.example.com', -Underline=true)]
[$MyFile->(Add: $Text, -Left=100.0, -Top=100.0)]

Adding Floating Text
Instead of adding text to the flow of the page, text can also be positioned on a page using the
[PDF_Doc->DrawText] tag. The [PDF_Doc->Drawtext] tag accepts coordiates that allow the text to be placed at an
absolute position on the page.

Important: The [PDF_Doc->DrawText] tag is a graphics operation. It relies on the fill color set using the
[PDF_Doc->SetColor] tag. The color of the -Font parameter will not be recognized.

Table 11: [PDF_Doc->DrawText] Tag

Tag	 Description	

[PDF_Doc->DrawText]	 Adds specified text that is positioned on a page using point coordinates. A
required -Leading parameter (decimal value) sets the text leading space in points
(the space above each line of the text). A -Left parameter specifies the placement
of the left side of the text from the left side of the page in points, and a -Top
parameter specifies the placement of the bottom of the image from the bottom of
the page in points (decimal value).

		

To add floating text:

Use the [PDF_Doc->DrawText] tag. The following example adds the text Some floating text to the [PDF_Doc] variable
with a predefined font at the coordinates specified in the -Top and -Left parameters. The coordinates represent
the distance in points from the lower and left sides of the page.

[$MyFile->(DrawText:'Some floating text', -Font=$MyFont, -Left=144.0, -Top=480.0)

4 9 5

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 3 5 – P o r t a b l e D o c u m e n t F o r m a t

Adding Lists
A list of items can be constructed using the [PDF_List] tag, which can be added to a [PDF_Doc] variable. The
[PDF_List] constructor tag and parameters are described below.

Table 12: [PDF_List] Tags and Parameters

Tag	 Description	

[PDF_List]	 Creates a list object to be added to a [PDF_Doc] variable. Text list items are
added to this object using the [PDF_List->Add] tag. Optional parameters for this
object are described below.

-Format	 Specifies whether the list is numbered, lettered, or bulleted. Requires a value of
'Number', 'Letter', 'Bullet'. Defaults to 'Bullet' if no -Format parameter is specified.
Optional.

-Bullet 	 Specifies a custom character to use as the bullet character. Requires a character
as a parameter (e.g. 'x'). Defaults to '•' if not specified. Optional.

-Indent 	 Sets the space between the bullet and the list item. Requires a decimal or integer
parameter which is the width of the indentation in points. Optional.

-Font	 Sets the font for the specified text. The value is a [PDF_Font] variable, which is
described in the Using Fonts section of this chapter. The font defaults to the
current inherited font if no -Font parameter is specified.

-Align 	 Sets the alignment of the list in the page ('Left', 'Center', or 'Right'). Optional.

-Color 	 Sets the font color. Requires a hex color string as a parameter (e.g '#550000').
Defaults to '#000000' if not used. Optional.

-BackgroundColor 	 Sets the text background color. Require a hex color string as a parameter (e.g
'#550000'). Optional.

-Leading 	 Sets the list leading space in points (the space above each line of text), requires
a decimal value. Optional.

[PDF_List->Add] 	 Add objects to the list. Requires a text string or a [PDF_Text] object as a
parameter.

		

To add a numbered list:

Use the [PDF_List] tag with the -Format='Number' parameter to define the list, and the [PDF_List->Add] tag to add
items to the list. The example below creates a numbered list with three items.

[Var:'List'=(PDF_List: -Format='Number', -Align='Center', -Font=$MyFont)]
[$List->(Add:'This is item one')]
[$List->(Add:'This is item two')]
[$List->(Add:'This is item three')]
[$MyFile->(Add: $List, -Top=400.0)]

To add a bulleted list:

Use the [PDF_List] tag with the -Format='Number' parameter to define the list, and the [PDF_List->Add] tag to add
items to the list. The example below adds a numbered list with four items, where a hyphen (-) is used as the
bullet character.

[Var:'List'=(PDF_List: -Format='Bullet', -Bullet='-', -Font=$MyFont)]
[$List->(Add:'This is item one')]
[$List->(Add:'This is item two')]
[$List->(Add:'This is item three')]
[$List->(Add:'This is item four')]
[$MyFile->(Add: $List, -Top=400.0)]

4 9 6

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 3 5 – P o r t a b l e D o c u m e n t F o r m a t

Special Characters
When adding text to a [PDF_Doc] object, special characters can be used to designate lines breaks, tabs, and
more. These characters are summarized in Table 13: Special Characters.

Table 13: Special Characters

Character	 Description	

\n	 Line break character (Mac OS X and Linux).

\r\n	 Line break character (Windows).

\t	 Tab character.

\"	 Double quote character.

\'	 Single quote character.

\\	 Backslash character.
		

To use special characters in a text string:

The following example shows how to use special characters within a [PDF_Doc] text tag.

[$MyFile->(Add: '\\ \t \'Single Quotes\', \"Double Quotes\" \t \\', -Font=$MyFont)]

Creating and Using Forms
Forms can be created in PDF documents for submitting information to a Web site. PDF forms use the same
attributes as HTML forms, making them useful for submitting information to a Web site in place of an HTML
form. This section describes how to create form elements within a PDF file, and also how PDF forms can be
used to submit data to a Lasso-enabled database.

Note: Due to the iText implementation of PDF support in Lasso Professional 8, PDF documents created may
contain one form only.

Creating Forms
Form elements are created in [PDF_Doc] variables using [PDF_Doc] form member tags, which are listed in Table
14: [PDF_Doc] Form Member Tags.

Table 14: [PDF_Doc] Form Member Tags

Tag	 Description	

[PDF_Doc->AddTextField]	 Adds a text field to a form. A required -Name parameter specifies the name of
the text field, and a required -Value parameter specifies the default value entered.
A required -Font parameter is used to specify a [PDF_Font] variable forthe text
font.

[PDF_Doc->AddPasswordField]	 Adds a password field to a form. A required -Name parameter specifies the name
of the password field, and a required -Value parameter specifies the default value
entered. A required -Font parameter is used to specify a [PDF_Font] variable for
the text font.

[PDF_Doc->AddTextArea]	 Adds a text area to a form. A required -Name parameter specifies the name
of the text area, and a required -Value parameter specifies the default value
entered. A required -Font parameter is used to specify a [PDF_Font] variable for
the text font.

[PDF_Doc->AddCheckBox]	 Adds a check box to a form. A required -Name parameter specifies the name
of the checkbox, and a required -Value parameter specifies the value for the
checkbox. An optional -Checked parameter specifies that the checkbox is
checked by default.

4 9 7

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 3 5 – P o r t a b l e D o c u m e n t F o r m a t

[PDF_Doc->AddRadioGroup]	 Adds a radio button group to a form. A required -Name parameter specifies the
name of the radio button group. Radio buttons must be assigned to the group
using the [PDF_Doc->AddRadioButton] tag.

[PDF_Doc->AddRadioButton]	 Adds a radio button to a form. A required -Group parameter specifies the name
of the radio button group, and a required -Value parameter specifies the value of
the radio button.

[PDF_Doc->AddComboBox]	 Adds a pull-down menu to a form. A required -Name parameter specifies the
name of the pull-down menu, and a required -Values parameter specifies the
array of values contained in the menu (Array: 'Value1', 'Value2'). An -Options
parameter may be used instead of the -Values parameter that specifies a pair
for each value. The first element in the pair is the value to be used upon form
submission, and the second element is the human-readable label to be used for
display only. An optional -Default parameter specifies the name of a default value
selected. An optional -Editiable parameter specifies that the user may edit the
values on the menu. A required -Font parameter is used to specify a [PDF_Font]
variable for the text font.

[PDF_Doc->AddSelectList]	 Adds a select list to a form. A required -Name parameter specifies the name of
the select list, and a required -Values parameter specifies the array of values
contained in the select list (Array: 'Value1', 'Value2'). An -Options parameter may
be used instead of the -Values parameter that specifies a pair data type for each
value. The first element in the pair is the value to be used upon form submission,
and the second element is the human-readable label to be used for display only.
An optional -Default parameter specifies the name of a default value selected.
A required -Font parameter is used to specify a [PDF_Font] variable for the text
font.

[PDF_Doc->AddHiddenField]	 Adds a hidden field to a form. A required -Name parameter specifies the name of
the hidden field, and a -Value parameter specifies the default value entered.

[PDF_Doc->AddSubmitButton]	 Adds a submit button to a form. Also specifies the URL to which the form data
will be submitted. A required
-Name parameter specifies the name of the button, and a required -Value
parameter specifies the name displayed on the button. A required -URL
parameter specifies the URL of the response page. A -Font parameter is used to
specify a [PDF_Font] variable for the button text font, and an optional -Caption
parameter specifies a caption (displayed name) for the button.

[PDF_Doc->AddResetButton]	 Adds a reset button to a form. A required -Name parameter specifies the name
of the button, and a required -Value parameter specifies the name displayed on
the button. A -Font parameter is used to specify a [PDF_Font] variable for the
button text font, and an optional -Caption parameter specifies a caption (displayed
name) for the button.

		

Field Label Note: With the exception of the [PDF_Doc->AddSubmitButton] and [PDF_Doc->AddSubmitButton] tags, no
form input element tags include captions or labels with the field elements. Field captions and labels can be
applied using the [PDF_Text] and [PDF_Doc->Add] tags to position text appropriately. See the Creating Text Content
section for more information.

All [PDF_Doc] form member tags, with the exception of [PDF_Doc->AddHiddenField], require placement
parameters for specifying the exact positioning of form elements within a page. These parameters are
summarized in Table 15: Form Placement Parameters.

4 9 8

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 3 5 – P o r t a b l e D o c u m e n t F o r m a t

Table 16: Form Placement Parameters

Tag	 Description	

-Left	 Specifies the placement of the left side of the form element from the left side of
the current page in points. Requires a decimal value. Optional.

-Top	 Specifies the placement of the bottom of the form element from the bottom of
the current page in points. Requires a decimal value. Optional.

-Width	 Specifies the width of the form element in points. Requires a decimal value.
Optional.

-Height	 Specifies the height of the form element in points. Requires a decimal value.
Optional.

		

To add a text field:

Use the [PDF_Doc->AddTextField] tag. The example below adds a field named Field_Name that has Some Text
entered by default. The field size is 144.0 points (two inches) wide and 36.0 points high.

[$MyFile->(AddTextField: -Name='Field_Name',
		 -Value='Some Text',
		 -Font=$MyFont,
		 -Left=72.0, -Top=350.0, -Width=144.0, -Height=36.0)]

To add a text area:

Use the [PDF_Doc->AddTextArea] tag. The example below adds a text area named Field_Name that has the text
Insert default text here entered by default. The field size is 144.0 points wide and 288.0 points high.

[$MyFile->(AddTextArea: -Name='Field_Name',
		 -Value='Insert default text here',
		 -Font=$MyFont,
		 -Left=72.0, -Top=300.0, -Width=144.0, -Height=288.0)]

To add a checkbox:

Use the [PDF_Doc->AddCheckbox] tag. The example below adds a field named Field_Name with a checked value
of Checked_Value that is checked by default. The checkbox is 4.0 points wide and 4.0 points high, and is
positioned 272.0 points from the bottom and left sides of the page.

[$MyFile->(AddCheckBox: -Name='Field_Name',
		 -Value='Checked_Value',
		 -Checked,
		 -Left=272.0, -Top=272.0, -Width=4.0, -Height=4.0)]

To add a group of radio buttons:

Use the [PDF_Doc->AddRadioGroup] and [PDF_Doc->AddRadioButton] tags. The example below adds a radio button
group named Group_Name, and adds two radio buttons with the values of Yes and No. The radio buttons are
6.0 points wide and 6.0 points high each.

Note: If the [PDF_Doc->AddRadioGroup] tag is not used, then radio buttons will not appear in the form.

[$MyFile->(AddRadioGroup: -Name='Group_Name')]
[$MyFile->(AddRadioButton: -Group='Group_Name',
		 -Value='Yes',
		 -Left=72.0, -Top=372.0, -Width=6.0, -Height=6.0)]
[$MyFile->(AddRadioButton: -Group='Group_Name',
		 -Value='No',
		 -Left=90.0, -Top=372.0, -Width=6.0, -Height=6.0)]

4 9 9

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 3 5 – P o r t a b l e D o c u m e n t F o r m a t

To add an editable pull-down menu:

Use the [PDF_Doc->AddComboBox] tag. The example below adds a pull-down menu named Menu_Name with the
values One, Two, Three, and Four as menu values. The value One is selected by default, and an -Editable parameter
allows the users to edit the values if desired. The pull-down menu size is 144.0 points wide and 36.0 points
high.

[$MyFile->(AddComboBox: -Name='List_Name',
		 -Values=(Array: 'One', 'Two', 'Three', 'Four'),
		 -Default='One',
		 -Editable,
		 -Left=72.0, -Top=272.0, -Width=144.0, -Height=36.0)]

To add a pull-down menu with different displayed values:

Use the [PDF_Doc->AddComboBox] tag with the -Options parameter instead of the -Values parameter. The example
below adds a pull-down menu named Menu_Name with the values 1, 2, 3, and 4 as submitable menu values,
but displays the names One, Two, Three, and Four for each value. No value is selected by default.

[$MyFile->(AddComboBox: -Name='List_Name',
		 -Values=(Array: (Pair: (1)=(One)),
				 (Pair: (2)=(Two)),
				 (Pair: (3)=(Three)),
				 (Pair: (4)=(Four))),
		 -Left=72.0, -Top=272.0, -Width=144.0, -Height=36.0)]

To add a select list:

Use the [PDF_Doc->AddSelectList] tag. The example below adds a select list named List_Name with the values One,
Two, Three, and Four as list items. The select list is 144.0 points wide and 288.0 points high, and is positioned
72.0 points from the bottom and left sides of the page.

[$MyFile->(AddSelectList: -Name='List_Name',
		 -Values=(Array: 'One', 'Two', 'Three', 'Four'),
		 -Default='One',
		 -Left=72.0, -Top=72.0, -Width=144.0, -Height=288.0)]

To add a hidden field:

Use the [PDF_Doc->AddHiddenField] tag. The example below adds a hidden field named Field_Name with a value
of Hidden_Value to a [PDF_Doc] variable named MyFile. No placement coordinates are needed because the field is
not displayed on the page.

[$MyFile->(AddHiddenField: -Name='Field_Name',
		 -Value='Some_Value')]

To add a submit button:

Use the [PDF_Doc->AddSubmitButton] tag. The example below adds a submit button named
Button_Name with a value of Submited_Value. The -URL parameter specifies that the user will be taken to
http://www.example.com/responsepage.lasso when the button is selected in the form. A -Caption parameter specifies
the displayed name of the button, which is Submit This Form.

[$MyFile->(AddSubmitButton: -Name='Button_Name',
		 -Value='Submited_Value',
		 -URL='http://www.example.com/responsepage.lasso',
		 -Caption='Submit This Form',
		 -Left=72.0, -Top=72.0, -Width=144.0, -Height=36.0)]

5 0 0

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 3 5 – P o r t a b l e D o c u m e n t F o r m a t

To add a reset button:

Use the [PDF_Doc->AddResetButton] tag. The example below adds a submit button named Button_Name with
a value of Submited_Value. A -Caption parameter specifies the displayed name of the button, which is
Reset This Form.

[$MyFile->(AddResetButton: -Name='Button_Name',
		 -Value='Submited_Value',
		 -Caption='Reset This Form',
		 -Left=72.0, -Top=72.0, -Width=144.0, -Height=36.0)]

Submitting Form Data to Lasso-Enabled Databases
In Lasso Professional 8, one has the ability to submit data from a PDF form to a Lasso-enabled database. PDF
forms may be used in the same way as HTML forms to submit action parameters to a Lasso response page,
where database actions can occur via an [Inline] tag.

The following example shows the HTML form example in the Database Interaction Fundamentals chapter
Inline Method section as it would appear in a [PDF_Doc] variable in a Form.lasso page.

To submit information to database using a PDF form:

	 1	In the Form.lasso page, name the PDF form fields to correspond to the names of fields in the desired
database. The names of these fields will be used in the [Inline] tag in the Lasso response page.

[Var:'MyFile'=(PDF_Doc: -File='Form.pdf', -Size='A4')]
[Var:'MyFont'=(PDF_Font: -Face='Helvetica', -Size=12)]
[$MyFile->(DrawText: 'First Name:', -Font=$MyFont, -Left=80.0, -Top=60.0)]
[$MyFile->(DrawText: 'Last Name:', -Font=$MyFont, -Left=80.0, -Top=60.0)]
[$MyFile->(AddTextField: -Name='First Name',
		 -Value='Enter First Name',
		 -Left=144.0, -Top=72.0, -Width=144.0, -Height=36.0)]
[$MyFile->(AddTextField: -Name='Last Name',
		 -Value='Enter Last Name',
		 -Left=144.0, -Top=92.0, -Width=144.0, -Height=36.0)]

	 2	Create a submit button in the Form.lasso page that contains the name and URL of the Lasso response page.

[$MyFile->(AddSubmitButton: -Name='Search',
		 -Value='Search',
		 -Caption='Click here to Search',
		 -URL='http://www.example.com/Response.lasso',
		 -Font=$MyFont)]
[$MyFile->Close]

		 After the [PDF_Doc] variable is closed and executed on the server, a Form.pdf file will be created with a form.

	 3	In the Response.lasso page, create an [Inline] tag that uses the action parameters passed from the PDF
form to perform a database action. This example performs a search on the Contacts database using the
First_Name and Last_Name parameters passed from the PDF form.

[Inline: -Search,
-Database='Contacts',
-Table='People',
-KeyField='ID',
'First_Name'=(Action_Param: 'First_Name'),
'Last_Name'=(Action_Param: 'Last_Name')]
There were [Found_Count] record(s) found in the People table.
[Records]

[Field: 'First_Name'] [Field: 'Last_Name']
[/Records]
[/Inline]

5 0 1

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 3 5 – P o r t a b l e D o c u m e n t F o r m a t

If the user of the PDF form entered Jane for the first name and Doe for the last name, then the following
results would be returned.

� There were 1 record(s) found in the People table.
Jane Doe

Creating Tables
Tables can be created in PDF documents for displaying data. These are created using the [PDF_Table] tag, and
added to a PDF variable using [PDF_Doc] member tags, which are described in this section.

Defining Tables
Tables for organizing data can be defined for use in a PDF document using the [PDF_Table] tag. This tag is used
to set a variable as a [PDF_Table] type, and the [PDF_Table] variable is then added to a [PDF_Doc] variable.

Table 17: [PDF_Table] Tag and Parameters

Tag	 Description	

[PDF_Table]	 Creates a table to be placed in a PDF. Uses parameters which set the basic
specifications of the table to be created.

-Cols	 Specifies the number of columns in a table. Required.

-Rows	 Specifies the number of rows in a table. Required.

-Spacing	 Specifies the spacing around a table cell. Defaults to 0 (no spacing) if not
specified. Optional.

-Padding	 Specifies the padding within a table cell. Defaults to 0 (no padding) if not
specified. Optional.

-Width	 Specifies the width of the table as a percentage of the current page width.
Defaults to the width of the cell text plus spacing, padding, and borders if not
specified. Optional.

-BorderWidth 	 Specifies the border width of the table in points. Requires a decimal value.
Optional.

-BorderColor 	 Specifies the border color of the table. Requires a hex color string (e.g.
'#000000'). Optional.

-BackgroundColor 	 Specifies the background color of the table. Requires a hex color string (e.g.
'#CCCCCC'). Optional.

-ColWidth 	 Sets the column width for each column in the table. Requires an array of
decimals representing the width percentage of each column. Optional.

		

Member tags can be used to set additional specifications for a [PDF_Table] variable, as well as access parameter
values from [PDF_Table] variables. These tags are summarized in Table 18: [PDF_Table] Member Tags.

Table 18: [PDF_Table] Member Tags

Tag	 Description	

[PDF_Table->GetColumnCount]	 Returns the number of columns in a [PDF_Table] variable.

[PDF_Table->GetRowCount]	 Returns the number of rows in a [PDF_Table] variable.

[PDF_Table->GetAbsWidth]	 Returns the total [PDF_Table] variable width in pixels.
		

To create a basic table:

Use the [PDF_Table] tag. The example below creates a table with two columns and five rows, with table cell
spacing of one point and cell padding of two points. The width of the table is set at 75 percent of the current
page width.

5 0 2

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 3 5 – P o r t a b l e D o c u m e n t F o r m a t

[Var:'MyTable'=(PDF_Table: -Cols=2,
		 -Rows=5,
		 -Spacing=1,
		 -Padding=2,
		 -Width=75,
		 -BackgroundColor='#CCCCCC')]

To create a table with a border:

Use the [PDF_Table] tag with the -Border… parameters. The example below creates a basic table, and then adds a
black border with a width of 3 points to the table.

[Var:'MyTable'=(PDF_Table: -Cols=2,
		 -Rows=5,
		 -Spacing=1,
		 -Padding=2,
		 -BorderWidth=3,
		 -BorderColor='#000000')]

To rotate a table:

Use the [PDF_Table] tag with the -Rotate parameter The example below creates a basic table, and then rotates it
by 90 degrees clockwise.

[Var:'MyTable'=(PDF_Table: -Cols=2,
		 -Rows=5,
		 -Spacing=1,
		 -Padding=2,
		 -Rotate=90)]

To create a table with pre-specified column widths:

Use the [PDF_Table] tag with the -ColWidth parameter The example below creates a basic table with percentage
widths for three columns.

[Var:'MyTable'=(PDF_Table: -Cols=2,
		 -Rows=5,
		 -Spacing=1,
		 -Padding=2,
		 -ColWidth=(Array: '50.0', '25.0', '25.0'))]

Adding Content to Table Cells
Content is added to table cells using additional [PDF_Table] member tags These tags are summarized in Table
19: Cell Content Tags.

Table 19: Cell Content Tags

Tag	 Description	

[PDF_Table->Add]	 Inserts text content or a new nested table into a cell. Requires a text string
or a new [PDF_Table] variable to be inserted as a parameter. Also requires
parameters described in the following table.

-Col	 Specifies the column number starting from 0 (numbered from left to right) of the
cell to add or remove. Requires an integer value. Required.

-Row	 Specifies the row number starting from 0 (numbered from top to bottom) of the
cell to add or remove. Requires an integer value. Required.

-Colspan	 Specifies the number of columns a cell should span. If specified, requires an
integer value 1 or greater. Optional.

-Rowspan 	 Specifies the number of rows a cell should span. If specified, requires an integer
value 1 or greater. Optional.

5 0 3

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 3 5 – P o r t a b l e D o c u m e n t F o r m a t

-VerticalAlignment	 Vertical alignment for text within a cell. Accepts a value of 'Top', 'Center', or
'Bottom'. Defaults to 'Center' if not specified. Optional.

-HorizontalAlignment	 Horizontal alignment for text within a cell. Accepts a value of 'Left', 'Center', or
'Right'. Defaults to 'Center' if not specified. Optional.

-BorderColor	 Specifies the border color for the cell (e.g. '#440000'). Defaults to '#000000' if not
specified. Optional.

-BorderWidth	 Specifies the border width of the cell in points. Requires an integer value.
Defaults to 0 if not specified. Optional.

-Header	 Specifies that the cell is a table header. This is typically used for cells in the first
row. Optional.

-NoWrap	 Specifies that the text contained in a cell should not wrap to conform to the cell
size specifications. If used, the cell will expand to the right to accomodate longer
text strings. Optional.

		

To add a cell to a table:

Use the [PDF_Table->Add] tag. The example below adds a cell to the first row and column in a table. Note that
the first row and column are numbered 0.

[$MyTable->(Add: 'This is the first cell in my table', -Col=0, -Row=0, -Colspan=1, -Rowspan=1]

To add a multi-column cell to a table:

Use the [PDF_Table->Add] tag with the number of columns to span for the -Column parameter. The example
below adds a cell to the first row that spans three columns. The -NoWrap parameter is used to indicate that the
added text will not be wrapped into multiple lines.

[$MyTable->(Insert: 'This text will only stay on one line regardless of the table size', -Col=0, -Row=0, -Colspan=3, -Rowspan=1,
-NoWrap)]

To add a header cell to a table:

Use the [PDF_Table->Add] tag with the -Header parameter. The example below adds the header My Column Title to
the first column of the table.

[$MyTable->(Add: 'My Column Title', -Col=0, -Row=0, -Colspan=1, -Rowspan=1, -Header]

To add a cell with a border to a table:

Use the [PDF_Table->Add] tag with the -BorderWidth and -BorderColor parameter. The example below adds a cell
with a red border to the first column of the table.

[$MyTable->(Add: 'This cell has a border', -Col=0, -Row=0, -Colspan=1,
-Rowspan=1, -BorderWidth=45.0, -BorderColor='#440000']

Adding Tables
Once a [PDF_Table] object is completely defined and has cell content, it may then be added to a [PDF_Doc]
objects using the [PDF_Doc->Add] tag.

To add a table to a [PDF_Doc] variable:

Use the [PDF_Doc->Add] tag. The following example adds a predefined [PDF_Table] variable named MyTable to a
[PDF_Doc] variable named MyFile.

[$MyFile->(Add: $MyTable)]

5 0 4

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 3 5 – P o r t a b l e D o c u m e n t F o r m a t

Creating Graphics
This section describes how to draw custom graphic objects and insert image files within a PDF document.

Inserting Images
Image files can be placed within PDF pages via the [PDF_Doc->AddImage] tag, which is summarized in Table 20:
[PDF_Doc] Image Tag.

Table 20: [PDF_Image] Tag and Parameters

Tag	 Description	

[PDF_Image]	 Casts an image file as a Lasso object so it can be placed in a PDF file. Requires
either a -File, -URL, or -Raw parameter, as described below. Only images in
JPEG, GIF, PNG, and WMF formats may be used.

-File 	 Specifies the local path to an image file. Required if the -URL or -Raw
parameters are not used.

-URL 	 Specifies a URL to an image file. Required if the -File or -Raw parameters are not
used.

-Raw 	 Inputs a raw string of bits representing the image. Required if the -URL or -File
parameters are not used.

-Height 	 Scales the image to the specified height. Requires a decimal value which is the
desired image height in points. Optional.

-Width 	 Scales the image to the specified width. Requires a decimal value which is the
desired image width in points. Optional.

-Proportional	 Keyword parameter specifying that all scaling should preserve the aspect ratio of
the inserted page. Optional.

-Rotate	 Rotates the image by the specified degrees clockwise. Optional.
		

To add an image file to a [PDF_Doc] variable:

Use the [PDF_Image] tag. The following example adds a file named Image.jpg in a /Documents/Images/ folder to a
[PDF_Doc] variable named MyFile.

[Var:'Image'=PDF_Image: -File='/Documents/Images/Image.jpg')]
[$MyFile->(Add: $Image, -Left=144.0, -Top=300.0)]

To scale image file:

Use the [PDF_Image] tag with the -Height or -Width parameter. The following example proportionally reduces the
size of the added image by 50%.

[Var:'Image'=(PDF_Image: -File='/Documents/Images/Image.jpg', -Height='50%')]
[$MyFile->(Add: $Image, -Left=144.0, -Top=300.0)]

To rotate an image file :

Use the [PDF_Image] tag with the -Rotate parameter. The following example rotates the added image by 90
degrees clockwise.

[Var:'Image'=(PDF_Image: -File='/Documents/Images/Image.jpg', -Rotate=90.0)]
[$MyFile->(Add: $Image, -Left=144.0, -Top=300.0)]

5 0 5

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 3 5 – P o r t a b l e D o c u m e n t F o r m a t

Drawing Graphics
To draw custom graphics, Lasso uses a coordinate system to determine the placement of each graphical object.
This coordinate system is a standard coordinate plane with horizontal (X) vertical (Y) axis, where a point on
a page is defined by an array containing horizontal and vertical position values (X, Y). The base point of the
coordinate plane (0, 0) is located in the lower left corner for the current page. Increasing an X-Value moves a
point to the right in the page, and increasing the Y-Value moves the point up in the page. The maximum X
and Y values are defined by the current width and height of the page in points.

Custom graphics may be drawn in PDF pages using [PDF_Doc] drawing member tags. These member tags
operate by controlling a “virtual pen” which draws graphics similar to a true graphics editor. These member
tags are summarized in Table 21: [PDF_Doc] Drawing Member Tags.

Table 21: [PDF_Doc] Drawing Member Tags

Tag	 Description	

[PDF_Doc->SetColor]	 Sets the color and style for subsequent drawing operations on the page. A
required 'Type' parameter specifies whether the drawing action is of type Stroke,
Fill, or Both. A required 'Color' parameter specifies a color type of Gray, RGB, or
CMYK. If Gray is specified, a decimal specifies a color strength value. If RGB is
specified,three decimal values specifiy red, green and blue values, respectively. If
CMYK is specified, four decimal values specifiy cyan, magenta, yellow, and black
values, respectively. Color values are specified as decimals ranging from 0 to 1.0.

[PDF_Doc->SetLineWidth]	 Sets the line width for subsequent drawing actions on the page in points.
Requires a decimal point value.

[PDF_Doc->Line]	 Draws a line. Requires a string of integer points which specifies the starting point
and ending point of the line (X1, Y1, X2, Y2).

[PDF_Doc->CurveTo]	 Draws a curve. Requires a string of integer points which specifies the starting
point, middle point, and ending point of the curve (X1, Y1, X2, Y2, X3, Y3).

[PDF_Doc->Rect]	 Draws a rectangle. Requires a string of X and Y integer points which specifies
the lower right corner of the rectangle, and the height and width of the rectangle
sides from that coordinate (X, Y, Width, Height). Optional -Fill parameter draws a
filled rectangle.

[PDF_Doc->Circle]	 Draws a circle. Requires a string of integer points for the center coordinates and
a radius length value (X, Y, R). Optional -Fill parameter draws a filled circle.

[PDF_Doc->Arc]	 Draws an arc. Requires a string of integer points for the center coordinates and
radius of the invisible circle to which the arc belongs, a starting degree which
specifies the degrees of the circle at which the arc starts, and an ending degree
which specifies the circle degrees at which the arc ends (X, Y, R, Start, End).
Angles start with 0 to the right of the center and increase counter-clockwise.
Optional -Fill parameter draws a filled arc.

		

Note: The color and line width must be set on each new page of the PDF prior to calling any drawing tags.

To set the color and style for a drawing action:

Use the [PDF_Doc->SetColor] tag. The example below sets a color of red for all subsequent drawing action until
another [PDF_Doc->SetColor] tag is set.

[$MyFile->(SetColor: 'Stroke', 'RBG', 0.1, 0.9, 0.9)]

The example below sets the fill color of red for all subsequent drawing action until another
[PDF_Doc->SetColor] tag is set. The tags to draw rectangles, circles, or arcs must be called with the optional -Fill
parameter for this color choice to be applied.

[$MyFile->(SetColor: 'Fill', 'RBG', 0.1, 0.9, 0.9)]

5 0 6

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 3 5 – P o r t a b l e D o c u m e n t F o r m a t

To set the line width of a drawing action:

Use the [PDF_Doc->SetLineWidth] tag. The example below sets a line width of 5 points for all subsequent
drawing action until another [PDF_Doc->SetLineWidth] tag is set.

[$MyFile->(SetLineWidth: 5.0)]

To draw a line:

Use the [PDF_Doc->Line] tag. The example below draws a horizontal line from points (8, 8) to points (32, 32).

[$MyFile->(Line: 8, 8, 32, 32)]

To draw a curve:

Use the [PDF_Doc->CurveTo] tag. The example below draws a curve starting from points (8, 8), peaking at points
(32, 32), and ending at points (56, 8).

[$MyFile->(CurveTo: 8, 8, 32, 32, 56, 8)]

To draw a filled rectangle:

Use the [PDF_Doc->Rect] tag. The example below draws a rectangle whose lower left corner is at coordinates
(10, 60), has left and right sides that are 50 points long, and has top and bottom sides that are 20 point long.
The optional -Fill parameter ensures this rectangle has the current fill color applied.

[$MyFile->(Rect: 10, 60, 20, 50, -Fill)]

To draw a circle:

Use the [PDF_Doc->Circle] tag. The example below draws a circle whose center is at coordinates (50, 50) and has
a radius of 20 points.

[$MyFile->(Circle: 50, 50, 20)]

To draw an arc:

Use the [PDF_Doc->Arc] tag. The example below draws an arc whose center is at coordinates (50, 50), has a
radius of 20 points, and runs from 0 degrees to 90 degrees from the center.

[$MyFile->(Arc: 50, 50, 20, 0, 90)]

Creating Barcodes
Barcodes are special device-readable images that can be created in PDF documents using the [PDF_Barcode] tag,
and added to a PDF variable using [PDF_Doc] member tags, which are described in this section. Lasso
Professional 8 can be used to create the following industry-standard barcodes:

	 •	Code 39 (alphanumeric, ASCII subset)

	 •	Code 39 Extended (alphanumeric, escaped text)

	 •	Code 128

	 •	Code 128 UCC/EAN

	 •	Code 128 Raw

	 •	EAN (8 digits)

	 •	EAN (13 digits)

	 •	POSTNET

	 •	PLANET

5 0 7

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 3 5 – P o r t a b l e D o c u m e n t F o r m a t

Creating Bar Codes
Barcodes can be defined for use in a PDF file using the [PDF_Barcode] tag. This tag is used to set a variable as a
[PDF_Barcode] type, and the [PDF_Barcode] variable is added to a [PDF_Doc] variable using member tags.

Table 22: [PDF_Barcode] Tag and Parameters

Tag	 Description	

[PDF_Barcode]	 Creates a barcode image to be placed in a PDF. Uses parameters which set the
basic specifications of the barcode to be created.

-Type	 Specifies the type of barcode to be created. Available parameters are CODE39,
CODE39_EX, CODE128, CODE128_UCC, CODE128_RAW, EAN8, EAN13,
POSTNET, and PLANET. Defaults to CODE39 if not specified.

-Code	 Specifies the numeric or alphanumeric barcode data. Some formats require
specific data strings: EAN8 requires an 8-digit integer, EAN13 requires a 13-
digit integer, POSTNET requires a zip code, and Code39 requires uppercase
characters. Required.

-Color	 Specifies the color of the bars in the barcode. Requires a hex string color value.
Defaults to '#000000' if not specified. Optional.

-Supplemental	 Adds an additional two or five digit supplemental barcode to EAN8 or EAN13
barcode types. Requires a two or five digit integer as a parameter. Optional.

-GenerateChecksum	 Generates a checksum for the barcode. Optional.

-ShowCode39StartStop	 Displays start and stop characters (*) in the text for Code 39 barcodes. Optional.

-ShowEANGuardBars	 Show the guard bars for EAN barcodes. Optional.

-BarHeight 	 Sets the height of the bars in points. Requires a decimal value.

-BarWidth 	 Sets the width of the bars in points. Requires a decimal value.

-BaseLine 	 Sets the text baseline in points. Requires a decimal value.)

-ShowChecksum	 Keyword parameter sets the generated checksum to be shown in the text

-Font 	 Sets the text font. Requires a [PDF_Font] variable.

-BarMultiplier 	 Sets the bar multiplier for wide bars. Requires a decimal value.

-TextSize 	 Sets the size of the text. Requires a decimal value.
		

To create a barcode:

Use the [PDF_Barcode] tag. The example below creates a basic Code 39 barcode with the data 1234567890, and
uses the optional Code 39 start and stop characters (*). The barcode is then added to a [PDF_Doc] variable
using [PDF_Doc->Add].

[Var:'Barcode'=(PDF_Barcode:
-Type='CODE39',
-Code='1234567890',
-ShowCode39StartStop)]
[$MyPDF->(Add: $Barcode, -Left=150.0, -Top=100.0)]

To create a barcode with a specified bar width:

Use the [PDF_Barcode] tag with the -BarWidth parameter. The following example sets a [PDF_Barcode] variable
with a bar width of 0.2 points.

[Var:'Barcode'=(PDF_Barcode:
-Type='CODE39',
-Code='1234567890',
-BarWidth=0.2)]
[$MyPDF->(Add: $Barcode, -Left=150.0, -Top=100.0)]

5 0 8

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 3 5 – P o r t a b l e D o c u m e n t F o r m a t

To create a barcode with a specified bar multiplier:

Use the [PDF_Barcode] tag with the -BarMultiplier parameter. The following example sets a [PDF_Barcode] variable
with a bar multiplier constant of 4.0. The barcode is then added to a [PDF_Doc] variable using [PDF_Doc->Add].

[Var:'Barcode'=(PDF_Barcode:
-Type='CODE39',
-Code='1234567890',
-BarMultiplier=4.0)]
[$MyPDF->(Add: $Barcode, -Left=150.0, -Top=100.0)]

To create a barcode with a specified text size:

Use the [PDF_Barcode] tag with the -TextSize parameter. The following example sets a [PDF_Barcode] variable with
a text size of 6 points. The barcode is then added to a [PDF_Doc] variable using [PDF_Doc->Add].

[Var:'Barcode'=(PDF_Barcode:
-Type='CODE39',
-Code='1234567890',
-TextSize=6)]
[$MyPDF->(Add: $Barcode, -Left=150.0, -Top=100.0)]

To create a barcode with a specified font:

Use the [PDF_Barcode] tag with the -Font parameter. The following example sets a [PDF_Barcode] variable font
specified in a [PDF_Font] variable named MyFont. The barcode is then added to a [PDF_Doc] variable using
[PDF_Doc->Add].

[Var:'Barcode'=(PDF_Barcode:
-Type='CODE39',
-Code='1234567890',
-Font=$MyFont)]
[$MyPDF->(Add: $Barcode, -Left=150.0, -Top=100.0)]

Example PDF Files
This section provides complete examples of creating PDF files using the tags described in this chapter.
Examples include a two-page PDF file with multiple text styles, a PDF file with a form, a PDF file with a table,
a PDF file with drawn graphics, and a PDF file with a barcode.

Special Characters Note: All examples in this section use the Mac OS X line break character \n in the text
sections. If creating PDF files on the Windows or Linux version of Lasso Professional 8, change all instances of \n
to \r\n for Windows, or \r for Linux.

5 0 9

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 3 5 – P o r t a b l e D o c u m e n t F o r m a t

PDF Text Example
The following example creates a PDF file that contains two pages of text with multiple text styles.

[Var:'Text_Example'=(PDF_Doc: -File='Text_Example.pdf', -Size='A4')]
[$Text_Example->AddPage]
[$Text_Example->(SetPageNumber: 1)]
[Var:'Font1'=(PDF_Font: -Face='Helvetica', -Size='24', -Color='#990000')]
[Var:'Font2'=(PDF_Font: -Face='Helvetica', -Size='14', -Color='#000000')]
[Var:'Font3'=(PDF_Font: -Face='Helvetica', -Size='14', -Color='#0000CC')]
[Var:'Title'=(PDF_Text: 'Lasso Professional 8', -Type='Chunk', -Font=$Font1)]
[$Text_Example->(Add: $Title, -Number=1)]
[Var:'Text1'=(PDF_Text:'\n\nThe Lasso product line consists of authoring and serving tools that allow Web designers and Web
developers to quickly build and serve powerful data-driven Web sites with maximum productivity and ease. The product line
includes Lasso Professional for building, serving, and administering data-driven Web sites, and Lasso Studio for building and
testing data-driven Web sites within a graphical editor.\n\nLasso Professional 8 works with the following data sources:',
-Type='Paragraph', -Leading=15, -Font=$Font2)]
[$Text_Example->(Add: $Text1)]
[Var:'List'=(PDF_List: -Format='Bullet', -Bullet='-', -Font=$Font2, -Indent=30)]
[$List->(Add:'FileMaker Pro')]
[$List->(Add:'MySQL')]
[$List->(Add:'Microsoft SQL Server')]
[$List->(Add:'Frontbase')]
[$List->(Add:'Sybase')]
[$List->(Add:'PostgreSQL')]
[$List->(Add:'DB2')]
[$List->(Add:'Plus many other JDBC-compliant databases')]
[$Text_Example->(Add: $List)]
[Var:'Text2'=(PDF_Text:'\nLasso\'s innovative architecture provides an industry first multi-platform, database-independent
and open standards approach to delivering database-driven Web sites firmly positioning Lasso technology within the rapidly
evolving server-side Web tools market. Lasso technology is used at hundreds of thousands of Web sites worldwide.\n\n', -
Type='Paragraph', -Font=$Font2)]
[$Text_Example->(Add: $Text2)]
[Var:'Text3'=(PDF_Text:'Click here to go to the LassoSoft Web site', -Type='Phrase', -Font=$Font3, -Underline='true', -
Anchor='http://www.lassosoft.com')]
[$Text_Example->(Add: $Text3)]
[$Text_Example->(DrawText: (String: $Text_Example->GetPageNumber),
-Font=$Font2, -Top=30, -Left=560)]
[$Text_Example->AddPage]
[$Text_Example->(SetPageNumber: 2)]
[Var:'Text4'=(PDF_Text:'Lasso Professional 8 is server-side software that adds a suite of dynamic functionality and
administration to your Web server. This functionality empowers you to build and serve just about any dynamic Web application
that can be built with maximum productivity and ease.\n\n', -Type='Paragraph', -Leading=15, -Font=$Font2)]
[$Text_Example->(Add: $Text4)]
[Var:'Text5'=(PDF_Text:'Lasso works by using a simple tag-based markup language (LassoScript), which can be embedded
in Web pages and scripts residing on your Web server. The details of scripting and programming in LassoScript are covered
in the Lasso 8 Language Guide also included with this product. By default, Lasso Professional 8 is designed to run on the
most prevalent modern Web server platforms with the most popular Web serving applications. In addition, Lasso's extensibility
allows Web Server Connectors to be authored for any Web server for which default connectivity is not provided.\n\n', -
Type='Paragraph', -Leading=15, -Font=$Font2)]
[$Text_Example->(Add: $Text5)]
[$Text_Example->(DrawText: (String: $Text_Example->GetPageNumber),
-Font=$Font2, -Top=30, -Left=560)]
[$Text_Example->Close]

5 1 0

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 3 5 – P o r t a b l e D o c u m e n t F o r m a t

PDF Form Example
The following example creates a PDF file that contains both text and a form.

<?LassoScript
Var: 'Form_Example' = (PDF_Doc: -File='Form_Example.pdf', -Size='A4');
Var: 'myFont' = (PDF_Font: -Face='Helvetica', -Size='12');
$Form_Example->(AddText:'This PDF file contains a form. See below.\n',
	 -Font=$myFont);
$Form_Example->(DrawText: 'Select List', -Font=$myFont, -Left=90, -Top=116);
$Form_Example->(AddSelectList: -Name='mySelectList', -Values=(Array: 'one',
	 'two', 'three', 'four'), -Default='one', -Left=216, -Top=104, -Width=144, -Height=72,
	 -Font=$myFont);
$Form_Example->(DrawText: 'Pull-Down Menu', -Font=$myFont, -Left=90, -Top=200);
$Form_Example->(AddComboBox: -Name='myComboBox', -Values=(Array: 'one',
	 'two', 'three', 'four'), -Default='one', -Left=216, -Top=188, -Width=144, -Height=18,
	 -Font=$myFont);
$Form_Example->(DrawText: 'Text Area', -Font=$myFont, -Left=90, -Top=238);
$Form_Example->(AddTextArea: -Name='myTextArea', -Value='Some text', -Left=216,
	 -Top=230, -Width=144, -Height=72, -Font=$myFont);
$Form_Example->(DrawText: 'Password Field', -Font=$myFont, -Left=90, -Top=334);
$Form_Example->(AddPasswordField: -Name='myPassword', -Value='***', -Left=216,
	 -Top=322, -Width=144, -Height=18, -Font=$myFont);
$Form_Example->(DrawText: 'Text Field', -Font=$myFont, -Left=90, -Top=368);
$Form_Example->(AddTextField: -Name='myTextField', -Value='Some More Text',
	 -Left=216, -Top=360, -Width=144, -Height=18, -Font=$myFont);
$Form_Example->(AddHiddenField: -Name='myHiddenField', -Value='Shh');
$Form_Example->(AddSubmitButton: -URL='http://www.example.com/response.lasso',
	 -Name='myButton', -Value='Submit', -Caption='Submit Form', -Left=216, -Top=400,
	 -Width=100, -Height=26, -Font=$myFont);
$Form_Example->(AddResetButton: -Name='Reset', -Value='Reset',
	 -Caption='Reset Form', -Left=365, -Top=400, -Width=100, -Height=26,
	 -Font=$myFont);
$Form_Example->Close;
?>

PDF Table Example
The following example creates a PDF file that contains both text and a table.

[Var:'Table_Example'=(PDF_Doc: -File='Table_Example.pdf', -Size='A4')]

[Var:'Font1'=(PDF_Font: -Face='Helvetica', -Size='24')]
[Var:'Text'=(PDF_Text:'This PDF file contains a table. See below.\n\n', -Leading=15, -Font=$Font1)]\\
[$Table_Example->(Add: $Text)]

[Var:'Font2'=(PDF_Font: -Face='Helvetica', -Size='12')]
[Var:'Cell1'=(PDF_Text:'Cell One', -Font=$Font2)]
[Var:'Cell2'=(PDF_Text:'Cell Two', -Font=$Font2)]
[Var:'Cell3'=(PDF_Text:'Cell Three', -Font=$Font2)]
[Var:'Cell4'=(PDF_Text:'Cell Four', -Font=$Font2)]
[Var:'MyTable'=(PDF_Table: -Cols=2, -Rows=2, -Spacing=4, -Padding=4, -Width=75, -BorderWidth=7)]
[$MyTable->(Add: $Cell1, -Col=0, -Row=0, -Colspan=1, -Rowspan=1,
		 -VerticalAlignment='Center', -HorizontalAlignment='Center', -BorderWidth=4)]
[$MyTable->(Add: $Cell2, -Col=0, -Row=1, -Colspan=1, -Rowspan=1,
		 -VerticalAlignment='Center', -HorizontalAlignment='Center', -BorderWidth=4)]
[$MyTable->(Add: $Cell3, -Col=1, -Row=0, -Colspan=1, -Rowspan=1,
		 -VerticalAlignment='Center', -HorizontalAlignment='Center', -BorderWidth=4)]
[$MyTable->(Add: $Cell4, -Col=1, -Row=1, -Colspan=1, -Rowspan=1,
		 -VerticalAlignment='Center', -HorizontalAlignment='Center', s-BorderWidth=4)]
[$Table_Example->(Add: $MyTable)]

5 1 1

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 3 5 – P o r t a b l e D o c u m e n t F o r m a t

[$Table_Example->Close]

PDF Graphics Example
The following example shows how to create a PDF file that contains drawn graphic objects.

[Var:'Graphic_Example'=(PDF_Doc: -File='Graphic_Example.pdf', -Height='650', -Width='550')]
[Var:'Text'=(PDF_Text:'This PDF file contains lines and circles. See below.\n')]
[$Graphic_Example->(Add: $Text)]
[$Graphic_Example->(Line: 200, 400, 400, 400)]
[$Graphic_Example->(Line: 200, 500, 400, 500)]
[$Graphic_Example->(Line: 266, 333, 266, 566)]
[$Graphic_Example->(Line: 333, 333, 333, 566)]
[$Graphic_Example->(Line: 200, 333, 400, 566)]
[$Graphic_Example->(Circle: 233, 366, 20)]
[$Graphic_Example->(Circle: 300, 452, 20)]
[$Graphic_Example->(Circle: 366, 533, 20)]
[$Graphic_Example->(Line: 220, 432, 240, 472)]
[$Graphic_Example->(Line: 220, 472, 240, 432)]
[$Graphic_Example->(Line: 360, 432, 380, 472)]
[$Graphic_Example->(Line: 360, 472, 380, 432)]
[$Graphic_Example->(Line: 220, 517, 240, 558)]
[$Graphic_Example->(Line: 220, 558, 240, 517)]
[$Graphic_Example->Close]

PDF Barcode Example
The following example shows how to create a PDF file that contains text accompanied by a barcode.

[Var:'Barcode_Example'=(PDF_Doc: -File='Barcode_Example.pdf',
		 -Height=172,
		 -Width=300)]
[Var:'Font1'=(PDF_Font: -Face='Courier', -Size='12')]
[Var:'MyBarcode'=(PDF_Barcode: -Type='CODE39',
		 -Code='1234567890',
		 -GenerateCheckSum,
		 -ShowCode39StartStop,
		 -TextSize: 6)]
[$Barcode_Example->(DrawText: 'The Shipping Company\n',
		 -Font=$Font1, -Left=72, -Top=90)]
[$Barcode_Example->(Add: $MyBarcode, -Left=72, -Top=40)]
[$Barcode_Example->Close]

Serving PDF Files
This section describes how PDF files can be served using Lasso Professional 8. This can be done by supplying
a download link to the created PDF file, or by using the [PDF_Serve] tag described in this chapter.

Syntax Note: When creating PDF files using Lasso and serving data to a browser in the same page, the use of
the LassoScript syntax is recommended as it does not output hard returns in the rendered HTML source code.
For more information on LassoScript, see the LassoScript chapter.

Linking to PDF Files
Named PDF files may be linked to in a Lasso page using basic HTML. Once a user clicks on a link to a file
with a .pdf extension, the client browser should prompt to download the file or launch the file in PDF reader
(if configured to do so).

5 1 2

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 3 5 – P o r t a b l e D o c u m e n t F o r m a t

To link a PDF file:

The example below shows how a PDF can be created and written to file, and then linked to in the Lasso page.

<?LassoScript
	 Var:'MyFile'=(PDF_Doc: -File='MyFile.pdf', -Size='A4');
	 Var:'Text'=(PDF_Text: 'Hello World');
	 $MyFile->(Add: $Text);
	 $MyFile->Close;
?>
<html>
	 <body>
		 <p>Click on the following link to download MyFile.pdf.</p>
		 <p>Click Here</p>
	 </body>
</html>

Serving PDF Files to Client Browsers
PDF files may also be served directly to a client browser using the [PDF_Serve] tag. This tag automatically
informs the client Web browser that the data being load is a PDF file, and outputs the file with the correct
file name. If the client Web browser is configured to handle PDF files via a reader, then the out PDF file will
automatically be opened in the clients configured PDF reader. Otherwise, the client Web browser should
prompt the user to save the file.

Table 23: PDF Serving Tags

Tag	 Description	

[PDF_Serve]	 Serves a PDF file to a client browser with a MIME type of application/pdf.
Requires a -File parameters which specifies the name of the file to be output to
the browser. An optional -Type parameter may be used to specify addtional MIME
types.

		

To serve a PDF file to a client browser:

Use the [PDF_Serve] tag to serve the created PDF file. The file parameter specifies the file name that should be
output.

<?LassoScript
	 Var:'MyFile'=(PDF_Doc: -File='MyFile.pdf', -Size='A4', -NoCompress);
	 Var:'Text'=(PDF_Text: 'Hello World');
	 $MyFile->(Add: $Text);
	 $MyFile->Close;
	 PDF_Serve: $MyFile, -File='MyFile.PDF'
?>

To serve a PDF file without writing to file:

PDF files may be served to the client browser without ever writing them to file on the local server. This is
done using the [PDF_Doc] tag without the -File parameter. This allows a PDF file to be created in the system
memory, but does not the save the file to a hard drive location. The resulting file can saved by the end user to
a location on the end user's hard drive.

<?LassoScript
	 Var:'MyFile'=(PDF_Doc: -Size='A4', -NoCompress);
	 Var:'Text'=(PDF_Text: 'Hello World');
	 $MyFile->(Add: $Text);
	 $MyFile->Close;
	 PDF_Serve: $MyFile, -File='MyFile.pdf';
?>

5 1 3

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 3 5 – P o r t a b l e D o c u m e n t F o r m a t

36
Chapter 36

JavaBeans

Lasso provides access to JavaBeans through a simple [Java_Bean] data type.

	 •	Overview describes what JavaBeans are and how they are used.

	 •	Installing JavaBeans describes how to install new JavaBeans in Lasso.

	 •	JavaBeans Type describes how to access JavaBeans through Lasso.

	 •	Creating JavaBeans covers how to create JavaBeans for use with Lasso.

Overview
A JavaBean is a reusable software component written in the Java programming language. JavaBeans are
operating-system independent and can be developed in one environment and run, copied, modified and
extended in another. Developers can easily share JavaBeans between multiple projects.

Lasso’s support for JavaBeans allows Lasso developers to use existing JavaBeans that have been created for
Java or JSP programming. Lasso developers can also easily extend the functionality of Lasso without having to
learn LJAPI. The Creating JavaBeans section of this chapter contains an example of how to create a JavaBean.

Lasso should be able to access any JavaBeans that are written to the JavaBeans specification. See the Creating
JavaBeans section for a technical discussion of which JavaBeans can be used with Lasso.

Lasso supports JavaBeans through a [Java_Bean] data type that allows JavaBeans to be instantiated and their
attributes to be manipulated. The overall methodology is quite similar to that implemented in JSP 1.0:

For example, in JSP a JavaBean called ColorBean could be called as follows. The JavaBean is instantiated, a
property red is set to the value 125, and finally the property saturation is fetched.

<jsp:useBean id="bean" class=ColorBean" />
<jsp:setProperty name="bean" property="red" value="125" />
<jsp:getProperty name="bean" property="saturation" />

The process is very similar in Lasso. The JavaBean is instantiated using the [Java_Bean] tag and
stored in a variable named myBean. The [Java_Bean->SetProperty] tag is used to set red to 125, and the
[Java_Bean->GetProperty] tag is used to get the property saturation.

[Var: 'myBean' = (Java_Bean: 'ColorBean')]
[$myBean->(SetProperty: 'red', 125)]
[$myBean->(GetProperty: 'saturation')]

Lasso also supports the * as a special [Java_Bean->SetProperty] value to automatically set all the properties of a
JavaBean from the action parameters of the current page. This JSP code sets up a JavaBean using the current
action parameters of the page:

<jsp:useBean id="bean" class=ColorBean" />
<jsp:setProperty name="bean" property="*" />
<jsp:getProperty name="bean" property="saturation" />

5 1 4

L a s s o 8 . 5 L a n g u a g e G u i d e

The equivalent code in Lasso is shown below:

[Var: 'myBean' = (Java_Bean: 'ColorBean')]
[$myBean->(SetProperty: '*')]
[$myBean->(GetProperty: 'saturation')]

The Lasso page could be called with this URL and would display the value of the saturation property of the
JavaBean. The red, green, and blue properties would be set automatically.

http://www.example.com/javabean.lasso?red=25&green=0&blue=160

The functions that the JavaBean implements can also be called directly as member tags of the [Java_Bean]
object. For example if a JavaBean implements an evaluate() function it can be called as follows.

[$myBean->Evaluate]

The [Java_Bean->BeanProperties] tag returns an array of possible JavaBeans property names.

[Var: 'myBean' = (Java_Bean: 'ColorBean')]
[$myBean->(BeanProperties)]

➜	 (Array: (Red), (Blue), (Green), (Saturation), (Hue), (Color))

Installing JavaBeans
JavaBeans can be placed in the JavaLibraries folder in the Lasso Professional 8 application folder. JavaBeans can
be stored in Java archive files with .jar or .zip extensions.

It is also possible to load JavaBeans from .class files, but they must be placed in sub-folders of JavaLibraries
that correspond to the class name The JavaBean com.mycompany.myBean class file is expected to be found in
JavaLibraries/com/mycompany/myBean.class.

Note: JavaBeans may also be discovered by Lasso anywhere within the Java classpath.

JavaBeans Type
The [Java_Bean] type and its member tags provide access to any JavaBean that is installed in Lasso. The
following table shows the JavaBean tags available. This is followed by several examples of how to use
JavaBeans.

Table 1: JavaBeans Type

Tag	 Description	

[Java_Bean]	 Instantiates a JavaBean. Requires the class name of a JavaBean.

[Java_Bean->BeanProperties]	 Returns an array of property names available in a JavaBean.

[Java_Bean->SetProperty]	 Sets a JavaBean property. Requires two parameters: a name and a value that
specify the property to set and the new value. May also be used with a single '*'
parameter and no value to set a JavaBean's properties automatically from the
current action parameters.

[Java_Bean->GetProperty]	 Gets the value for a JavaBean property. Requires one name parameter that
specifies the property to fetch.

[Java-Bean->…]	 Functions that the JavaBean implements can be called directly as member tags
of the JavaBean object.

		

5 1 5

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 3 6 – J a v a B e a n s

Examples

To calculate the hue, saturation, and brightness for a color:

The example shows how to use the ColorBean JavaBean to calculate the hue, saturation, and brightness for
the color red. The values the red, green, and blue properties are set. Then, the values for the hue, saturation, and
brightness properties are displayed.

<?LassoScript
	 Var: 'myBean' = (Java_Bean: 'ColorBean');
	 $myBean->(SetProperty: 'red', 255);
	 $myBean->(SetProperty: 'green', 0);
	 $myBean->(SetProperty: 'blue', 0);

	
Hue: $myBean->(GetProperty: 'hue');
	
Saturation: $myBean->(GetProperty: 'saturation');
	
Color: $myBean->(GetProperty: 'brightness');
?>

➜	 Hue: 0
Saturation: 100
Brightness: 100

To compile and execute arbitrary Java code:

The StatementBean available from the following Web site allows arbitrary Java code to be compiled and
executed within Lasso. The Java archive must be downloaded and installed in JavaLibraries before the JavaBean
can be used.

http://www.fuka.info.waseda.ac.jp/Project/CBSE/fukabeans/statementbean.jar

The JavaBean is used as follows. The Java code to be executed is stored in a variable myJavaCode. The JavaBean
is instantiated using the [Java_Bean] tag with the class path of the JavaBean. The property statement is set to
the desired Java code. Finally, the evaluate() function of the JavaBean is called to execute the Java code and
return the result.

<?LassoScript
	 Var: 'myJavaCode' = 'new java.util.Date().toString();';

	 Var: 'myBean' = (Java_Bean: 'net.washizaki.statement.StatementBean');
	 $myBean->(SetProperty: 'statement', $myJavaCode);
	 $myBean->Evaluate;
?>

➜	 July 12, 2004

Creating JavaBeans
The JavaBeans name comes from a Java API specification for a component architecture for the Java language.
The JavaBeans Specification describes the complete set of characteristics that makes an arbitrary Java class a
JavaBean or not. The full text of the document is available at the following URL:

 http://java.sun.com/products/javabeans/

JavaBeans are regular java classes that must follow a set of syntactical rules. In its simplest form, a JavaBean
can implement a number of “properties”, whose values can be accessed/manipulated through a pair of “get”
or “set” methods for each property name. The following points must be considered by JavaBean developers
when developing JavaBeans for use with Lasso:

	 • 	The class must be public, and provide a public constructor that accepts no arguments.

5 1 6

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 3 6 – J a v a B e a n s

	 • 	JavaBeans have a no arguments constructor. The configuration of each bean’s behavior must be
accomplished separately from its instantiation. This is typically done by defining a set of properties for the
bean which can be used to set up initial values for the bean and to modify the behavior of the bean.

	 • 	Each bean property will have a public “getter” and “setter” method that are used to retrieve or define the
property’s value, respectively. The JavaBeans specification defines a design pattern for these names, using
“get” or “set” as the prefix for the property name with it’s first character capitalized, e.g.:

	 public String getFirstName();
	 public void setFirstName(String firstName);

	 • 	If a bean has both a getter and a setter method for a property, the data type returned by the getter must
match the data type accepted by the setter. In addition, it is contrary to the JavaBeans specification to have
more than one setter with the same name, but different property types.

Note: The JavaBeans specification also describes many additional design patterns for event listeners, wiring
JavaBeans together into component hierarchies, and other useful features that are beyond the scope of this
document.

Example JavaBean Source
Part of the source code for the example ColorBean JavaBean that is used throughout this chapter is provided
below. The JavaBean consists of a private member variable that stores a Java color. The getters and setters for
the different properties simply pass their arguments through to this color object. Only the getter and setter for
the red property are shown, but the getters and setters for green, blue, hue, saturation, and brightness are similar.

public class ColorBean
{

	 private java.awt.Color color;

	 public ColorBean()
	 {
		 // Default Zero Argument Constructor
	 }

	 public void setRed(int red)
	 {
		 color.setRed(red);
	 }

	 public int getRed()
	 {
		 return color..getRed();
	 }

	 … Other Properties …

}

5 1 7

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 3 6 – J a v a B e a n s

37
Chapter 37

iCalendar

This chapter introduces Lasso’s built-in data types for parsing and creating iCalendar documents, events,
alarms, and more.

	 •	Introduction – Provides an overview of the iCalendar standard and examples of how the iCalendar objects
are used to create and parse iCalendar documents.

	 •	iCalendar Types – Provides detailed information about the data types and member tags which allow
iCalendars to be created and parsed by Lasso.

Introduction
iCalendar is a standard which defines how calendar events, to-do lists, and other time dependent data can be
shared between different products. The iCalendar format is supported by many popular personal information
management (PIM) and calendaring applications including Apple’s iCal, Microsoft Entourage, Google
calendar, and more.

Lasso has a light weight implementation of the iCalendar standard. Through the [iCal_Calendar], [iCal_Event],
[iCal_ToDo], [iCal_Attribute], and other data types Lasso supports parsing iCalendar documents, iterating through
items and attributes, merging calendars, and creating and modifying calendars, items, and attributes. Lasso
handles the low-level mechanics of the iCalendar standard, but does not enforce high-level rules which some
applications may require above and beyond the basic standard.

More information about iCalendar can be found at the following URL. Specific information about creating
calendars for import into third-party applications can be found in those applications’ documentation or by
examining calendars exported from those applications.

http://www.ietf.org/rfc/rfc2445.txt

A simple iCalendar document is shown below. This calendar includes one event which lasts from 11 to 12
a.m. on May 10, 2006. The event has an alarm scheduled which should display a reminder 15 minutes before
the event. The BEGIN and END attributes show the start and end of the calendar, event, and alarm.

BEGIN:VCALENDAR
VERSION:2.0
PRODID:Lasso 8.5.0
BEGIN:VEVENT
DTSTART:20060510T110000
DTEND:20060510T120000
SUMMARY:Important Event
UID:C0A801070c73e1B583NHsiFCE273
BEGIN:VALARM
TRIGGER;VALUE=DURATION:-PT15M
ACTION:DISPLAY
DESCRIPTION:This is a reminder of your important event.

5 1 8

L a s s o 8 . 5 L a n g u a g e G u i d e

UID:C0A801070c73e1B583oJsqFCE274
END:VALARM
END:VEVENT
END:VCALENDAR

Using the [iCal_Parse] tag on the calendar shown above, Lasso parses this iCalendar into the following logical
structure.

[Var: 'myCal' = (iCal_Parse: 'BEGIN:VCALENDAR … END:VCALENDAR')]

	 •	An [iCal_Calendar] object with two attributes (Version, ProdID) and one event item. The attributes can be found
using the [iCal_Calendar->GetAttribute] tag and the event is the first element of the [iCal_Caendar->Events] array.

[Var: 'myEvent' = $myCal->Events->First]

	 •	The event item is represented by an [iCal_Event] object with four attributes (DTStart, DTEnd, Summary, UID) and
one alarm item. The attributes can be found using the [iCal_Event->GetAttribute] tag and the alarm is the first
element of the [iCal_Event->Alarms] array.

[Var: 'myEventStart' = $myEvent->(GetAttribute: 'DTStart')]
[Var: 'myEventEnd' = $myEvent->(GetAttribute: 'DTEnd')]
[Var: 'myAlarm' = $myEvent->Alarms->First]

	 •	The alarm item is represented by an [iCal_Alarm] object with four attributes (Trigger, Action, Description, and
UID). The attributes can be found using the [iCal_Alarm->GetAttribute] tag.

[Var: 'myAlarmTrigger' = $myAlarm->(GetAttribute: 'Trigger')]

In addition to parsing iCalendars, Lasso can also assemble them using the various [iCal_…] objects. For
example, the calendar shown above can be created with the following code. Each constructor accepts a combi-
nation of name/value parameters which define the attributes of the object and items which are inserted into
the object.

[Var: ‘myCal’ = (iCal_Calendar:
		 (iCal_Event:
				 ‘DTStart’=(Date: ‘5/10/2006 11:00:00’),
				 ‘DTEnd’=(Date: ‘5/10/2006 12:00:00’),
				 ‘Summary’=’Important Event’,
				 (iCal_Alarm:
						 ‘Trigger’=(Duration: -Minute=-15),
						 ‘Action’=’DISPLAY’,
						 ‘Description’=’This is a reminder of your important event.’)))]

iCalendars can also be generated by creating empty objects and then inserting attributes and other objects
into them using [iCal_Calendar->AddAttribute] and [iCal_Calendar->Insert]. The same calendar shown above can be
created with this code.

<?LassoScript
	 Var: ‘myAlarm’ = (iCal_Alarm);
	 $myAlarm->(AddAttribute: ‘Trigger’, (Duration: -Minute=-15));
	 $myAlarm->(AddAttribute: ‘Action’, ’DISPLAY’);
	 $myAlarm->(AddAttribute: ‘Description’, ’This is a reminder of your important event.’);

	 Var: ‘myEvent’ = (iCal_Event);
	 $myEvent->(AddAttribute: ‘DTStart’, (Date: ‘5/10/2006 11:00:00’));
	 $myEvent->(AddAttribute: ‘DTEnd’, (Date: ‘5/10/2006 12:00:00’));
	 $myEvent->(AddAttribute: ‘Summary’, ’Important Event’);
	 $myEvent->(Insert: $myAlarm);

	 Var: ‘myCal’ = (iCal_Calendar);
	 $myCal->(Insert: $myEvent);
?>

If the variable $myCal is output on the page then the result is equivalent to the calendar shown in the
beginning of this example.

5 1 9

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 3 7 – i C a l e n d a r

iCalendar Types
The iCalendar tags ad types are summarized in the table below.

Table 1: iCalendar Tags and Types

Tag	 Description	

 [iCal_Parse]	 Parses a string and returns an iCal type based on the contents. This tag can return
an [iCal_Calendar], [iCal_Event], [iCal_ToDo], [iCal_Attribute], or other iCalendar
type based on the contents of the passed data.

[iCal_Calendar]	 Creates a new calendar. Name/value parameters are interpreted as attributes of
the calendar. Any [iCal_Event] or other types passed as parameters are added
as items within the calendar. Supports [iCal_Calendar->Events], [iCal_Caendar-
>ToDos], [iCal_Calendar->Journals], [iCal_Calendar->FreeBusies], [iCal_Calendar-
>TimeZones], attributes member tags, and [iCal_Calendar->Insert].

[iCal_Attribute]	 Creates an attribute of any iCal type. Requires -Name and -Value parameters.
When the value is a date also accepts optional -Type='Date', or -Type='Time'
parameter to specify that only the date or time portion should be kept. Optional
-Params parameter accepts an array of name/value pairs specifying parameters
for the attribute. Supports [iCal_Attribute->Name], [iCal_Attribute->Value], [iCal_
Attribute->Params], [iCal_Attribute->ValueType].

[iCal_Event]	 Creates a new event. Name/value parameters are interpreted as attributes of the
event. Any [iCal_Alarm] objects passed as parameters are added to the event.
Supports [iCal_Event->Alarms], attributes member tags, and [iCal_Event->Insert].

[iCal_ToDo]	 Creates a new to-do item. Name/value parameters are interpreted as attributes of
the event. Any [iCal_Alarm] objects passed as parameters are added to the to-do
item. Supports [iCal_ToDo->Alarms], attributes member tags, and [iCal_ToDo-
>Insert].

[iCal_Alarm]	 Creates a new alarm. Alarms are always inserted as part of an event or a to-do
item. Name/value parameters are interpreted as attributes of the alarm. Supports
the attributes member tags.

[iCal_Journal]	 Creates a new journal item. Name/value parameters are interpreted as attributes
of the journal. Supports the attributes member tags.

[iCal_FreeBusy]	 Creates a new free/busy item. These items are used internally by some
calendaring solution to keep track of what times have events scheduled and what
times are free. Name/value parameters are interpreted as attributes of the free/
busy item. Supports the attributes member tags.

[iCal_TimeZone]	 Creates a new time zone specification. These specify the start/end and offset
for time zones anywhere in the world. Name/value parameters are interpreted
as attributes of the time zone specification. Also accepts an [iCal_Standard] and
an [iCal_Daylight] object as parameters. Supports [iCal_TimeZone->Standards],
[iCal_TimeZone->Daylights], attributes member tags, and [iCal_TimeZone->Insert].

[iCal_Standard]	 Creates a new standard rule for a time zone. These rules are always inserted
as part of a time zone specification. Name/value parameters are interpreted as
attributes of the rule. Supports the attributes member tags.

[iCal_Daylight]	 Creates a new daylight saving time rule for a time zone. These rules are always
inserted as part of a time zone specification. Name/value parameters are
interpreted as attributes of the rule. Supports the attributes member tags.

[iCal_Item]	 This tag creates a generic iCalendar item. It is used as the parent type of [iCal_
Event], [iCal_Alarm], etc. and is never called directly.

		

Most of the iCalendar objects, with the exception of [iCal_Attribute], share common member tags. The common
member tags are detailed in the following table. The member tags for the [iCal_Attribute] object are detailed in a
subsequent table.

5 2 0

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 3 7 – i C a l e n d a r

Table 2: iCalendar Member Tags

Tag	 Description	

[…->Attributes]	 Returns an array of all the attributes from any iCalendar object.

[…->HasAttribute]	 Returns true if the iCalendar object has an attribute by the specified name.

[…->GetAttribute]	 Returns a single attribute by name from any iCalendar object. If multiple
attributes of the same name are found then an array of attributes is returned.

[…->AddAttribute]	 Adds an attribute to any iCalendar object. Requires -Name and -value
parameters. When the value is a date also accepts optional -Type='Date', or
-Type='Time' parameter to specify that only the date or time portion should
be kept. Optional -Params parameter accepts an array of name/value pairs
specifying parameters for the attribute

[…->RemoveAttribute]	 Removes an attribute by name from any iCalendar object.

[iCal_Calendar->Events]	 Returns an array of all the events from a calendar.

[iCal_Calendar->ToDos]	 Returns an array of all the to-do items from a calendar.

[iCal_Calendar->Journals]	 Returns an array of all the journal entries from a calendar.

[iCal_Calendar->FreeBusies]	 Returns an array of all the free/busy items from a calendar.

[iCal_Calendar->TimeZones]	 Returns an array of all the time zone specifications from a calendar.

[iCal_Calendar->Insert]	 Inserts a new object into a calendar. This tag requires a single parameter which
can be an [iCal_Event], [iCal_ToDo], [iCal_Journal], [iCal_FreeBusy], [iCal_
TimeZone], or [iCal_Attribute].

[iCal_Event->Alarms]	 Returns an array of all the alarms from an event.

[iCal_Event->Insert]	 Inserts a new alarm into an event. This tag requires a single parameter which can
be an [iCal_Alarm] or [iCal_Attribute].

[iCal_ToDo->Alarms]	 Returns an array of all the alarms from a to-do item.

[iCal_ToDo->Insert]	 Inserts a new alarm into an event. This tag requires a single parameter which can
be an [iCal_Alarm] or [iCal_Attribute].

[iCal_TimeZone->Standards]	 Returns an array of all the standard rules from a time zone specification.

[iCal_TimeZone->Daylights]	 Returns an array of all the daylight saving time rules from a time zone
specification.

[iCal_TimeZone->Insert]	 Inserts a new standard or daylight saving time rule into a time zone specification.
This tag requires a single parameter which can be an [iCal_Standard], [iCal_
Daylight], or [iCal_Attribute].

		

The [iCal_Attribute] object is unique among all the iCalendar objects. This type represents a single name/value
parameter from any of the other iCalendar objects. [iCal_Attribute] objects can have embedded parameters
which provide extra formatting information. The value of an [iCal_Attribute] is automatically translated to
and from built-in Lasso data types. The member tags unique to the [iCal_Attribute] object are detailed in the
following table and the equivalent Lasso data types for [iCal_Attribute] values are detailed in the subsequent
table.

Table 3: [iCal_Attribute] Member Tags

Tag	 Description	

[iCal_Attribute->Name]	 Returns the name of the attribute.

[iCal_Attribute->Value]	 Returns the value of the attribute. See the next table for details about how
iCalendar value types map into Lasso data types.

[iCal_Attribute->ValueType]	 Returns the type of value stored by the attribute. Date/time values can have a
type of DATE, TIME, DATE-TIME, or TIMESTAMP.

[iCal_Attribute->Params]	 Returns an array of name/value parameters of the attribute.
		

The following table shows how iCalendar attribute types are translated to and from Lasso’s built-in data
types. When creating an iCalendar it is important to use the proper data type so that the objects can format
the value properly.

5 2 1

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 3 7 – i C a l e n d a r

Table 4: [iCal_Attribute] Value Data Types

Tag	 Description	

BINARY	 Byte Stream – Binary data is autoamtically decode using a Base64 algorithm
and returned as a byte stream in Lasso. A byte stream passed into an attribute is
automatically encoded using the inverse Base64 algorithm.

BOOLEAN	 Boolean – Boolean values are represented as TRUE or FALSE.

DATE	 Date – Date values are returned as Lasso date types with a time of midnight.
The [iCal_Attribute] will have a type of DATE. Date values can be created by
passing a date value into [iCal_Attribute] with -Type='DATE' parameter.

DATE-TIME	 Date – Date values are returned as Lasso date types. The [iCal_Attribute] will
have a type of DATE-TIME. Date values can be created by passing a date value
into [iCal_Attribute].

DURATION	 Duration – Duration values are returned as Lasso duration types. Duration values
can be created by passing a duration into [iCal_Attribute]. Note that durations can
be periods of up to weeks and can sometimes be negative.

FLOAT	 Decimal – Floating point values are returned as Lasso decimal types. Floating
point values can be created by passing a decimal value into [iCal_Attribute].

INTEGER	 Integer – Integer values are returned as Lasso integer types. Integer values can
be created by passing an integer value into [iCal_Attribute].

PERIOD	 Pair – Periods are returned as pair container either two Lasso date types or one
Lasso date type and one duration type. Periods can be created by passing a pair
containing two Lasso date values or one date value and one duration value into
[iCal_Attribute].

RECUR	 Map – Recurrence values are returned as a map of elements. The possible
elements and values are detailed in the following table. Recurrence values can be
created by passing a map with appropriate elements into [iCal_Attribute].

TIME	 Date – Date values are returned as Lasso date types. The [iCal_Attribute] will
have a type of DATE. Date values can be created by passing a date value into
[iCal_Attribute] with -Type='TIME' parameter.

TIMESTAMP	 Date – Time stamp values are returned as Lasso date types. The [iCal_Attribute]
will have a type of TIMESTAMP. Time stamp values can be created by passing a
date value into [iCal_Attribute] with -Type='TIMESTAMP' parameter.

Others	 String – All other data types are passed to and from Lasso as strings.
		

The RECUR type is transformed into a map when its value is returned within Lasso. The following table
explains the possible elements of this map. By constructing a map with appropriate elements and passing it
as the -Value for a new [iCal_Attribute] a new recurrence attribute can be created.

Table 5: RECUR Map Elements

Tag	 Description	

FREQ	 The frequency can be one of YEARLY, MONTHLY, DAILY, HOURLY, MINUTELY,
or SECONDLY. The frequency is used with the INTERVAL to define that an event
recurs for example every 5 minutes (FREQ=MINUTELY, INTERVAL=5). Required.

INTERVAL	 The interval is used with the frequency to describe how often the event recurs.
Defaults to 1 for once per year, once per month, etc. Optional.

UNTIL	 Defines the GMT date/time at which the event should stop repeating. If the event
would repeat at this date/time then that is the last repeat. Optional.

COUNT	 Defines the maximum number of times the even should repeat. Optional.

BYSECOND	 Specifies on which seconds within a minute the event should occur. Multiple
values can be specified separated by commas without spaces.

BYMINUTE	 Specifies in which minutes within an hour the event should occur. Multiple values
can be specified separated by commas without spaces.

BYHOUR	 Specifies in which hours within a day the event should occur. Multiple values can
be specified separated by commas without spaces.

5 2 2

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 3 7 – i C a l e n d a r

BYDAY	 Specifies on which days of the week the event should occur. Possible values
include SU, MO, TU, WE, TH, FR, SA. Also accepts an optional numeric modifier
to specify a specific day within the month. 1TU (or +1TU) represents the first
Tuesday of the month, and -1MO represents the last Monday of the month.
Multiple values can be specified separated by commas without spaces.

BYMONTHDAY	 Specifies on which days of the month the event should occur. Positive values
5 or +5 represent days from the beginning of the month (1 is the first day of
the month) and negative values -5 represent days before the end of the month
(-1 is the last day of the month). Multiple values can be specified separated by
commas without spaces.

BYYEARDAY	 Specifies on which days of the year the event should occur. Positive values
represent days from the beginning of the year and negative values represent
days before the end of the year. Multiple values can be specified separated by
commas without spaces.

BYWEEKNO	 Specifies in which weeks of the year the event should occur. Positive values
represent weeks from the beginning of the year and negative values represent
weeks before the end of the year. Multiple values can be specified separated by
commas without spaces.

BYMONTH	 Specifies in which months of the year the event should occur. Values are integers
from 1 to 12. Multiple values can be specified separated by commas without
spaces.

BYDAYPOS, BYMONTHPOS, …	 Modifies the specified rule by indicating which elements of the rule's set
should be taken into account. This is translated to and from a BYSETPOS rule
immediately after the specified rule.

WKST	 Specifies on which day the week should start. Possible values include SU, MO,
TU, WE, TH, FR, SA. The default is Monday. This value is necessary when
BYWEEKNO is being used in order to determine what week fo the year it is.

		

The rules in the table above combine in complex ways to allow for just about any recurrence rule to be speci-
fied. Lasso’s iCalendar implementation does not provide a way to determine the date/time of the next recur-
rence of an event.

5 2 3

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 3 7 – i C a l e n d a r

38
Chapter 38

Process and Shell Support

This chapter describes the [OS_Process] type which allows Lasso to execute local processes or shell commands.

	 •	Overview describes the methodology of executing local processes and shell commands.

	 •	Installation describes how to install the [OS_Process] type module.

	 •	Security describes how to configure Lasso security so users can access the [OS_Process] type.

	 •	OS Process Type describes the member tags of the [OS_Process] type and provides examples of how to use
the tag on Mac OS X and Linux, how to use the tag on Windows, and how to create a custom tag which
uses the [OS_Process] type to provide specific functionality to users without opening up full use of the type
to them.

Overview
Lasso provides the ability to execute local processes through the [OS_Process] type. This type allows local
processes to be launched with an array of parameters and shell variables. Some processes will execute and
return a result immediately. Other processes can be left open for interactive read/write operations. The
[OS_Process] type enables Lasso users to do things such as execute AppleScripts, print PDF files, and to filter
data through external applications.

The [OS_Process] type works across all three platforms which Lasso supports. The UNIX underpinnings of Mac
OS X and Linux mean that those two operating systems can run much the same commands and shell scripts.
Windows presents a very different environment including DOS commands and batch files.

The [OS_Process] type is implemented in a separate module which is not installed by default. Allowing access
to the [OS_Process] type has security implications since it can be used to essentially bypass some of Lasso’s
built-in security controls. See the Installation section below for information about installing and allowing
access to the type.

Installation
The [OS_Process] type is implemented as an external module. The module is located within the
Extensions/OS_Process folder in the Lasso Professional 8 application folder. If the module is installed into the
global LassoModules folder then it will be accessible to all sites hosted by Lasso. Alternately, the module can
be installed into the LassoModules folder for a specific site in order to make this functionality available only to
that site.

The module will have one of these three names depending on which platform is being used.

Mac OS X			 OS_Process.dylib
Red Hat Linux	 OS_Process.so
Windows				 OS_Process.dll

5 2 4

L a s s o 8 . 5 L a n g u a g e G u i d e

To install the OS Process module for all sites on a server:

Open the Lasso Professional 8 application folder. Copy the module from the Extensions/OS_Process folder into
the global LassoModules folder . Restart Lasso Service and follow the instructions in the Security section below
to enable individual users to use the module.

To install the OS Process module for one site on a server:

Open the Lasso Professional 8 application folder. Copy the module from the Extensions/OS_Process folder
into the site-specific LassoModules folder. For example, the module can be enabled for use in the default site
by copying it into the LassoSites/default-1/LassoModules folder. Restart the site and follow the instructions in the
Security section below to enable individual users to use the module.

Security
A group OS Process Users is automatically created when the OS Process module is installed. Only users within
this group or the site administrator will be allowed to use the [OS_Process] type. Since the ability to execute
the [OS_Process] type can bypass some of Lasso’s built-in security controls, the users who are added to this
group should be carefully controlled.

The following security considerations should be taken into account when granting users permission to use
the [OS_Process] type by adding them to the OS Process Users group:

	 •	The user will be able to access any files which the OS user executing Lasso Service can access. This may
include files in other Web sites, files within the Lasso Professional 8 application folder, and other gloally
accessible files throughout the local file system.

	 •	The user will be able to directly access MySQL or other data sources on the machine. The user will need a
valid username and password to access these data sources through command line tools, but may be able to
bypass particular security settings established within Lasso.

	 •	The user will be able to use many local commands such as telnet, curl, ssh, etc. to access other machines
through various Internet protocols. These commands may be used to bypass restrictions on the [Net] type
built-in to Lasso.

	 •	The example at the end of this chapter shows how the [OS_Process] type can be wrapped in a protected tag
allowing only a single local process or command to be executed without giving completer permission to
access the [OS_Process] command directly.

To add a user to the OS Process Users group:

Open Lasso Site Administration and visit the Setup > Security > Users section. Select the user which should
be allowed to access the [OS_Process] type. Select OS Process Group from the list of groups and select Update to
add the user to that group.

Note: If the OS Process Group does not appear in the list of groups then the OS Process module has not been
installed properly. Follow the steps in the Installation section above to install the OS Process module. Make sure
the Lasso Service and/or the current site has been restarted.

To use the [OS_Process] type with a specific user’s permissions:

An [Inline] … [/Inline] can be used to execute the [OS_Process] type using the permissions of a specific user. the
following code executes the [OS_Process] type using the permissions of the user JohnDoe with the specified
password.

5 2 5

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 3 8 – P r o c e s s a n d S h e ll S u p p o r t

<?LassoScript
	 Inline: -Username='johndoe', -Password='mysecretpassword';
		 Var: 'os' = (OS_Process: '/bin/echo', (Array: 'Hello World!'));
		 Encode_HTML: $os->Read;
		 $os->Close;
	 /Inline;
?>

�	 Hello World!

Alternately, an [Auth] or [Auth_Admin] tag can be used to prompt the site visitor for a username and password.
This will cause all of the LassoScript code on the page to execute with the permissions of the specified
username. One of these techniques should be applied to all of the code in this chapter, although for brevity
the authentication code is not included in the individual examples.

OS Process Type
The [OS_Process] type allows a developer to create a new process on the machine and both read from and
write data to it. The process is usually closed after the [OS_Process] type is destroyed, but can optionally be left
running. The [OS_Process] type shares many of the same member tags and conventions as the file type. The
following members are supported:

Table 1: OS Process Type

Tag	 Description	

[OS_Process]	 Crates a new [OS_Process] instance.

[OS_Process->Open]	 Opens a new process. The command string should consist of any path
information required to find the process and the process name. An optional
arguments array can be given. Any arguments are converted to strings and
passed to the new process. An optional array of environment strings may be
passed in. Both of these optional arrays will be passed to the new process.
The command string should be identical to what would need to be typed on the
command line with the Lasso site folder as the current working directory.

[OS_Process->Read]	 Reads the specified number of bytes from the process. Returns a bytes object.
The number of bytes of data actually returned from this tag may be less than the
specified number, depending on the number of bytes that are actually available
to read. Calling ->Read without a byte count will read all bytes as they become
available until the peer process terminates.

[OS_Process->ReadError]	 Reads the specified number of bytes from standard error output for the process.
Returns a bytes object. Calling ->ReadError without a byte count will read all
bytes as they become available until the peer process terminates.

[OS_Process->ReadLine]	 Reads data up until a carriage return or line feed. Returns a string object created
by utilizing the current encoding set for the instance.

[OS_Process->ReadString]	 Reads the specified number of bytes from the process. Returns a string object
created by utilizing the current encoding set for the instance. Calling ->readString
without a byte count will read all bytes as they become available until the peer
process terminates.

[OS_Process->Write]	 Writes the data to the process. If the data is a string, the current encoding is
used to convert the data before being written. If the data is a bytes object, the
data is sent unaltered.

[OS_Process->SetEncoding]	 Sets the encoding for the instance. The encoding controls how string data is
written via ->write and how string data is returned via ->readString

[OS_Process->IsOpen]	 Returns true as long as the process is running. If the process was terminated,
->isOpen will return false.

[OS_Process->Detach]	 Detaches the os_process object from the process. This will prevent the process
from terminating when the os_process object is destroyed.

5 2 6

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 3 8 – P r o c e s s a n d S h e ll S u p p o r t

[OS_Process->Close]	 Closes the connection to the process. This will cause the process to terminate
unless it has previously been detached from the os_process object.

[OS_Process->CloseWrite]	 Closes the "write" portion of the connection to the process. This results in the
process' standard input file being closed.

		

Mac OS X and Linux Examples
This section includes several examples of using [OS_Process] on Mac OS X. Except for the AppleScript example,
all of these examples should also work on Linux machines. See the Installation section above for details
about how to install the OS Process module and the Security section for details about how to execute the
[OS_Process] type using the permissions of a specific user or the site administrator.

	 •	Echo – This example uses the /bin/echo command to simply echo the input back to Lasso.

<?LassoScript
	 Var: 'os' = (OS_Process: '/bin/echo', (Array: 'Hello World!'));
	 Encode_HTML: $os->Read;
	 $os->Close;
?>

�	 Hello World!

	 •	List – This example uses the /bin/ls command to list the contents of a directory.

<?LassoScript
	 Var: 'os' = (OS_Process: '/bin/ls', (Array: '.'));
	 Encode_Break: $os->Read;
	 $os->Close;
?>

�	 JDBCDrivers
JavaLibraries
LassoAdmin
LassoApps
LassoErrors.txt
LassoLibraries
LassoModules
LassoStartup
SQLiteDBs

	 •	Create File – This example uses the /usr/bin/tee command to create a file test.txt in the site folder. The
LassoScript does not generate any output except for the file.

<?LassoScript
	 Var: 'os' = (OS_Process: '/usr/bin/tee', (Array: './test.txt'));
	 $os->(Write: 'This is a test\n');
	 $os->(Write: 'This is a test\n');
	 $os->Close;
?>

	 •	Print – This example uses the /usr/bin/lpr command to print some text on the default printer. The result
in this case is a page that contains the phrase This is a test at the top. This style of printing can be used
to output text data using the default font for the printer. The lpr command can also be used with some
common file formats such as PDF files.

<?LassoScript
	 Var: 'os' = (OS_Process: '/usr/bin/lpr');
	 $os->(Write: 'This is a test');
	 $os->(Write: Bytes->(Import8Bits: 4) &);
	 $os->CloseWrite;
	 $os->Close;
?>

5 2 7

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 3 8 – P r o c e s s a n d S h e ll S u p p o r t

	 •	AppleScript – This example uses the /usr/bin/osascript' command to run a simple AppleScript. AppleScript is
a full programming language which provides access to the system and running applications in Mac OS X.
The script shown simply returns the current date and time.

<?LassoScript
	 Var: 'os' = (OS_Process: '/usr/bin/osascript', (Array: '-'));
	 $os->(Write: 'return current date');
	 $os->CloseWrite;
	 Encode_HTML: $os->Read;
	 $os->Close;
?>

�	 Tuesday, March 21, 2006 11:52:34 AM

	 •	Web Request – This example uses the /usr/bin/curl command to fetch a Web page and return the results.
[Include_URL] can be used for the same purpose, but the curl command provides some options which aren’t
available directly from within Lasso. Only the first part of the outpu is shown.

<?LassoScript
	 Var: 'os' = (OS_Process: '/usr/bin/curl', (Array: 'http://www.apple.com/'));
	 Encode_HTML: $os->Read;
	 $os->Close;
?>

�	 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
<title>Apple</title>
…

Windows Examples
This section includes several examples of using [OS_Process] on Windows. Each of the examples uses the
command-line processor CMD with the option /C to interpret an individual command. See the Installation
section above for details about how to install the OS Process module and the Security section for details
about how to execute the [OS_Process] type using the permissions of a specific user or the site administrator.

	 •	Echo – This example uses the CMD processor with an ECHO command to simply echo the input back to
Lasso.

<?LassoScript
	 Var: 'os' = (OS_Process: 'cmd', (Array: '/c ECHO Hello World!'));
	 Encode_HTML: $os->Read;
	 $os->Close;
?>

�	 Hello World!

5 2 8

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 3 8 – P r o c e s s a n d S h e ll S u p p o r t

	 •	List – This example uses the CMD processor with a DIR command to list the contents of a directory. The /B
option instructs Windows to only list the contents of the directory without extraneous header and footer
information.

<?LassoScript
	 Var: 'os' = (OS_Process: 'cmd', (Array: '/C DIR /B .'));
	 Encode_HTML: $os->Read;
	 $os->Close;
?>

�	 JDBCDrivers
JavaLibraries
LassoAdmin
LassoApps
LassoErrors.txt
LassoLibraries
LassoModules
LassoStartup
SQLiteDBs

	 •	Help – This example uses the CMD processor with a HELP command to show the help information for a
command. The start of the help file for CMD itself is shown. Running HELP without a parameter will return
a list of all the built-in commands which the command processor supports.

<?LassoScript
	 Var: 'os' = (OS_Process: 'cmd', (Array: '/C HELP cmd'));
	 Encode_HTML: $os->Read;
	 $os->Close;
?>

S�	Starts a new instance of the Windows XP command interpreter
CMD [/A | /U] [/Q] [/D] [/E:ON | /E:OFF] [/F:ON | /F:OFF] [/V:ON | /V:OFF] [[/S] [/C | /K] string]
/C Carries out the command specified by string and then terminates
/K Carries out the command specified by string but remains
/Q Turns echo off
/A Causes the output of internal commands to a pipe or file to be ANSI
/U Causes the output of internal commands to a pipe or file to be Unicode
…

	 •	Multiple Commands – This example uses the CMD processor interactively to run several commands. The
processor is started with a parameter of /Q which suppresses the echoing of commands back to the output.
The result is exactly the same as what would be provided if these commands were entered directly into the
command line shell. In order to process the results it would be necessary to strip off the header and the
directory prefix from each line.

<?LassoScript
	 Var: 'os' = (OS_Process: 'cmd', (Array: '/Q');
	 $os->(Write: 'ECHO Line One\r\n');
	 $os->(Write: 'ECHO Line Two\r\n');
	 Encode_HTML: $os->Read;
	 $os->Close;
?>

�	 Microsoft Windows XP [Version 5.1.2600]
(C) Copyright 1985-2001 Microsoft Corp.
C:\Program Files\OmniPilot Software\Lasso Professional 8\LassoSites\default-1>Line One
C:\Program Files\OmniPilot Software\Lasso Professional 8\LassoSites\default-1>Line Two

	 •	Batch File – This example uses the CMD processor to process a batch file. The contents of batch file batch.bat
is shown below. The file is assumed to be located in the folder for the current site in the Lasso Professional
8 application folder.

5 2 9

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 3 8 – P r o c e s s a n d S h e ll S u p p o r t

@ECHO OFF
CLS
ECHO This file demonstrates how to use a batch file.

The batch file is executed by simply calling its name as a command. The results of the batch file are
then output. Using a batch file makes executing a sequence of commands easy since all the code can be
perfected using local testing before it is run through Lasso.

<?LassoScript
	 Var: 'os' = (OS_Process: 'cmd', (Array: '/C batch.bat');
	 Encode_HTML: $os->Read;
	 $os->Close;
?>

�	 This file demonstrates how to use a batch file.

Security Example
This example shows how a custom tag can be used to provide access to a specific local process without
opening up access to general use of the [OS_Process] type. This technique can be used by ISPs or other shared
hosting providers in order to allow specific Lasso users to perform platform-specific tasks without opening up
security holes on the shared server.

First, the OS Process module must be installed according to the Installation instructions above. Create a user
which will have permission to execute [OS_Process] commands according to the instructions in the Security
section above. This user will only be used to authenticate the [OS_Process] type. Its password should not be
given out to any shared hosting users. For example, the user OSProcessUser could be created with the password
mysecretpassword.

A privileged custom tag to print some data can now be created as follows. An [Inline] … [/Inline] is used to
authenticate as the user who has permissions to access [OS_Process]. A custom tag is created with the -
Privileged keyword so that it hangs onto the permissions of that user. The [OS_Process] type is used within to
issue an lpr command.

<?LassoScript
	 Inline: -Username='OSProcessUser', -Password='mysecretpassword';
		 Define_Tag: 'Local_Print', -Required='Data', -Privileged;
			 Var: 'os' = (OS_Process: '/usr/bin/lpr');
			 $os->(Write: #data);
			 $os->(Write: bytes->(import8bits: 4) &);
			 $os->Closewrite;
			 $os->Close;
		 /Define_Tag;
	 /Inline;
?>

The code above is placed in a file in LassoStartup so that the defined tag is available to the users of the Lasso
site, but the actual code of the tag is not (including the secret password for the OSProcessUser account). Now,
any user of the machine can use the [Local_Print] tag to print a file on the local printer even though they do not
have explicit access to the [OS_Process] tag itself.

[Local_Print: (Include_Raw: 'mypdf.pdf')]

More information about permissions can be found in the Lasso Setup Guide and more information about
privileged custom tags can be found in the Custom Tags chapter in this guilde.

5 3 0

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 3 8 – P r o c e s s a n d S h e ll S u p p o r t

39
Chapter 39

LDAP

This chapter describes the [LDAP] type which allows Lasso to query Lightweight Directory Access Protocol
(LDAP) servers.

	 •	Overview describes the methodology of querying LDAP servers.

	 •	LDAP Type describes the member tags of the [LDAP] type.

Overview
LDAP is an industry standard method of publishing directory information within an organization. LDAP
servers are used for many different tasks. They can be used to publish the contact information for employees.
They can be used to publish publicly accessible information. LDAP servers are also used to publish authentica-
tion information so all servers within an organization can use the same usernames and passwords.

An LDAP server provides access to a directory information tree (DIT). Each element in the tree is called an
entry and has several attributes. Any element in the tree can be found using its distinguished name (DN). The
distinguished name is like the path to a file in an operating system. For example, the DN of the record for John
Doe in the directory might be as follows:

cn=John Doe, ou=People, o=LassoSoft

The DN is made up of three parts separated by commas. Each part of the DN is called a relative distinguished
name (RDN) and must be unique for all entries at that level. The RDN functions much like a primary key and
includes one or more name/value pairs which uniquely identify the element from all of its siblings.

The attributes of each entry make up the data of the entry. Every entry will have an objectClass which tells what
kind of entry it is. The remainder of the attributes will be determined by the type of directory that is being
searched, but may include first name, last name, email address, phone number, etc. The attributes are often
named with one or two character abbreviations like cn for combined name, ln for last name, fn for frist name,
or ou for operational unit. Attributes might also have longer names like email, telephonenumber, etc.

LDAP Searches
A search is defined starting at a DN within the directory tree. This DN will usually be provided by the LDAP
server administrator. The scope allows the search to be limited to the object itself (i.e. is the object contained
within the tree), children of the object, or the entire tree below the object. Some possible DNs are shown
below.

dc=omnipilot, dc=com

ou=People, o=LassoSoft

The filter actually defines the search query. It is a series of query terms (attributes and values) joined by logical
operators. The most basic filter specifies that all objects in the tree should be returned.

(objectClass=*)

5 3 1

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 3 9 – L DAP

This is actually a special case of the exists filter. This filter returns any entries which have a defined objectClass.
Similarly, all entries which have a full name attribute cn could be found with this filter.

(cn=*)

A filter can specify an attribute name, operator, and value. Any of the attributes of the entries in the directory
tree can be used in the filter. The operators include = equals, ~= sounds like, >= greater than, and <= less than.
The equals operator supports * asterisk as a wildard character allowing for contains, begsins with, and ends
with searches. Greater than and less than operators may only be supported on numeric fields. For example,
the following simple filters would find all entries whose full name started with John, ended with Doe, or were
exactly John Doe.

(cn=John*)

(cn=*Doe)

(cn=John Doe)

Two or more filters can be combined using a logical operator & and, | or, or a filter can be negated using ! not.
The following three filters would find all entries who have a first name of John and a last name of Doe, a first
name of John or a last name of Doe, and a first name which is not John and a last name which is not Doe.

(& (cn=John*) (cn=*Doe))

(| (cn=John*) (cn=*Doe))

(& (! (cn=John*)) (! (cn=*Doe)))

Note that there are no quotes around the values in the filters. The parentheses are used to delimit the values.
In order to find a value which contains parentheses (), an asterisk *, a backslash \ or a null character the
following escape sequences can be used. \2a for (, \28 for), \29 for *, \5c for \, and \00 for null.

LDAP Results
The results of an LDAP search will be an array of pairs. The first element of each pair will be the distinguised
name (DN) of the entry. The second element of each pair will be an array of pairs including the attribute
names and values for the entry. For example, a search which found entries for John Doe and Jane Doe might
contain the following elements.

[Array:
		 ‘cn=John Doe, ou=People, o=LassoSoft = (Array: ‘cn’ = ‘John Doe’, ‘mail’=’john@example.com’),
		 ‘cn=Jane Doe, ou=People, o=LassoSoft = (Array: ‘cn’ = ‘Jane Doe’, ‘mail’=’jane@example.com’)]

LDAP allows the results to be customized in two ways. A list of desired attributes can be passed with the
search. The results will only include those attributes. A wild card of asterisk * specifies that all attributes
should be returned (the default). A wild card of plus sign + specifies that only operational attributes should
be returned (these are attributes that are generally used internally by the LDAP directory). Finally, a flag
allows only attribute names to be returned without any values. By default both attribute names and values are
returned.

5 3 2

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 3 9 – L DAP

LDAP Type
The [LDAP] data type can be used to create a connection to an LDAP server and then to send queries to the
server. The tags of the data type are described in the following table.

Table 1: LDAP Tags

Tag	 Description	

[LDAP]	 Creates a new LDAP object. Accepts an optional host name and port to
immediately open a connection to a server.

[LDAP->Open]	 Opens a connection to an LDAP server. Requires a host name and port.

[LDAP->Authenticate]	 Logs into the LDAP server. Requires a username and password.

[LDAP->Search]	 Performs a search on the remote LDAP server. Requires a parameter specifying
the base of the query. Additional parameters specify the scope, filter, attributes,
and attributes-only option for the query. See the following table for details about
these parameters. Returns no value.

[LDAP->Results]	 Returns results from the last search operation as an array containing a series
of nested array and pair values. Each element in the top level array is a pair
representing an entry found in the search. The first element of the pair is the
distinguished name (DN) of the found entry. The second element of the pair is an
array of pairs containing the entry’s attribute names and values.

[LDAP->Referrals]	 Returns an array of referral strings if any are generated by the server.

[LDAP->Code]	 Returns the code generated by the previous operation. A code of 0 means
success. The most common codes are included in a chart below.

[LDAP->Close]	 Closes the connection to the LDAP server.
		

The following table details the parameters of the [LDAP->Search] tag which is used to perform queries against
the LDAP server.

Table 2: [LDAP->Search] Query Parameters

Tag	 Description	

Base	 The distinguished name (DN) of the entry at which to start the search. Required.

Scope	 The scope of the search. Optional. This parameter should be one of the following
values:
LDAP_SCOPE_BASE - Search the object itself.
LDAP_SCOPE_ONELEVEL - Search the object’s immediate children.
LDAP_SCOPE_SUBTREE - Search the object and all its descendents.

Filter	 The filter to apply to the search. Optional.

Attributes	 An array of strings specifying the attribute types to return in the search results.
Optional.
* (asterisk) may be specified in the array to indicate that all attributes are to be
returned.
+ (plus sign) may be specified in the array to indicate that all operational
attributes should be returned.
1.1 may be specified in the array to indicate that no attributes should be returned.

Attribute-Only	 A boolean indicating that only attributes and no values should be returned.
Defaults to False. Optional.

		

For example, the following code performs an LDAP query against a server ldap.example.com. The base of the
query is dc=example,dc=com. The scope is LDAP_Scope_Subtree indicating that the object and all of its desen-
dents should be searched. The filter is (objectClass=*) indicating that all object classes are to be returned. The
filter is * indicating that all attributes are to be returned. And, attribute-only is set to False indicating that both
attributes and values should be returned. After each line is executed the return code is checked to make sure
that it is 0 indicating success. If the result code is greater than 0 then an error is reported.

5 3 3

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 3 9 – L DAP

<?LassoScript
	 Var: 'myLDAP' = LDAP;

	 $myLDAP->(Open: 'ldap.example.com');
	 Fail_If: $myLDAP->Code != 0, $myLDAP->Code, 'LDAP Error ' + $myLDAP->Code;

	 $myLDAP->(Authenticate: 'myusername', 'mysecretpassword');
	 Fail_If: $myLDAP->Code != 0, $myLDAP->Code, 'LDAP Error ' + $myLDAP->Code;

	 $myLDAP->(Search: 'dc=example,dc=com'; LDAP_Scope_Subtree, '(objectClass=*)');
	 Fail_If: $myLDAP->Code != 0, $myLDAP->Code, 'LDAP Error ' + $myLDAP->Code;

	 Var: 'myResult' = $myLDAP->Results;

	 $myLDAP->Close;
?>

The results of this operation will be an array of pairs. The first element of each pair is the distinguished name
(DN) of the entry. The second element of each pair is a pair array containing the names and attributes of the
element.

Table 3: [LDAP->Code] Return Codes

Code	 Description	

0	 Success (No Error)

1	 Operations Error

2	 Protocol Error

3	 Time Limit Exceeded

4	 Size Limit Exceeded

5	 Compare False

6	 Compare True

7	 Auth Method Not Supported

8	 Strong Auth Required

10	 Referral

11	 Admin Limit Exceeded

12	 Unavailable Critical Extension

13	 Confidentiality Required

14	 SASL Bind In Progress

16	 No Such Attribute

17	 Undefined Attribute Type

18	 Inappropriate Matching

19	 Constraint Violation

20	 Attribute Or Value Exists

21	 Invalid Attribute Syntax

32	 No Such Object

33	 Alias Problem

34	 Invalid DN Syntax

36	 Alias Dereferencing Problem

48	 Inappropriate Authentication

49	 Invalid Credentials

50	 Insufficient Access Rights

51	 Busy

52	 Unavailable

53	 Unwilling To Perform

5 3 4

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 3 9 – L DAP

54	 Loop Detect

64	 Naming Violation

65	 Object Class Violation

66	 Not Allowed On Non-Leaf

67	 Not Allowed On RDN

68	 Entry Already Exists

69	 Object Class Mods Prohibited

71	 Affects Multiple DSAs

80	 Other
		

5 3 5

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 3 9 – L DAP

VI
Section VI

Concepts

This section includes chapters about programming concepts in Lasso 8.

	 •	Chapter 40: Namespaces includes information about Lasso’s tag namespaces including how to load on-
demand tag libraries.

	 •	Chapter 41: Logging includes information about how to log messages using Lasso’s built-in logging
system, how to route logged messages, and how to log data to files.

	 •	Chapter 42: Encryption includes information about Lasso’s built-in encryption, hash, and cipher tags.

	 •	Chapter 43: Control Tags includes information about tags which allow the environment in which a page
is being processed to be examined and modified.

	 •	Chapter 44: Threads includes information about Lasso’s thread lock tags and thread communication tags
including semaphores and pipes.

	 •	Chapter 45: Tags and Compound Expressions includes information about creating and running tags and
compound expressions

	 •	Chapter 46: Miscellaneous includes documentation of a number of tags that did not fit in any other
chapter.

5 3 6

L a s s o 8 . 5 L a n g u a g e G u i d e

40
Chapter 40

Namespaces

All of Lasso’s tags are categorized into namespaces that correspond roughly to the category of each tag. This
chapter includes an introduction to namespaces and the tags that allow manipulation of namespaces.

	 •	Overview includes basic information about namespaces including the built-in namespaces and how Lasso
finds tags in different scopes.

	 •	Name Space Tags includes documentation of the tags that allow namespaces themselves to be
manipulated and for on-demand tag libraries to be managed.

Overview
A namespace in Lasso is a collection of similarly named tags. The namespace of built-in tags can usually
be determined by looking at the category name preceding the underscore in the tag name. For example,
[String_ReplaceRegExp] is in the String_ namespace and [Client_IP] is in the Client_ namespace.

The underscore character _ is used as the namespace path separator. The list of namespaces immediately
preceding the actual tag name designate which namespaces should be searched for the specified tag.
Namespaces are always written as Example_ with a trailing underscore.

Scope
Lasso maintains three different scopes in which tags are defined. These correspond roughly to the three
variable scopes: global, page, and local. Every tag that is defined within Lasso exists within one of these three
scope namespaces. Each scope has its own collection of namespaces that last as long as the scope does. Each
scope also has a defualt namespace which is named with a preceding underscore as _Global_, _Page_, and
Current. They are defined as follows:

	 •	 _Global_ is where any built-in tags that are not in another namespace are defined. For example [Field] is
not in a namespace so can be found in the _Global_ namespace and may be referred to as [_Global_Field].

	 •	_Page_ which is where any custom tags defined on the current page which do not reference a namespace
are registered.

	 •	_Current_ which is an alias to the current namespace. This will reference _Global_ if called at start up,
Page if called within a Lasso page, or the namespace of a custom tag if called within a custom tag call.

Prefixing the scope namespace explicitly tells Lasso which tag to use without performing a search of the
available namespaces.

Namespace Search Order
When a tag is called Lasso searches all of the namespaces in the current scope for the specified tag. If it is not
found then the namespaces in the next higher scope is searched. By default the namespaces are searched in
the following order:

5 3 7

L a s s o 8 . 5 L a n g u a g e G u i d e

	 1	If within a custom tag call, the local scope is searched first. The scope of each surrounding tag call is
searched in order for the specified tag.

	 2	The page scope is searched next. If a tag has been defined on the current page with the desired name then
that tag is used.

	 3	The global scope is finally searched. All of the built-in tags are defined within this scope

The [Namespace_Using] … [/Namespace_Using] tag can be used to alter the default namespace search order. The
opening container tag accepts the name of a namespace that should be searched first. The remainder of the
namespaces are then searched in default order.

	 •	A series of tags within a given namespace can be referenced more simply by referencing a specific
namespace within the opening [Namespace_Using] tag. For example, a series of string operations can be
performed by specifying the String_ namespace.

[Namespace_Using: 'String_']
	 [Var: 'Test' = (LowerCase: 'Example String');
	 [Var: 'Test' = (ReplaceRegExp: $Test, -Find='\\w+', -replace=' ')]
[/NameSpace_Using]

Third-Party Namespaces
All built-in tags consist of a namespace followed by an underscore. For example [Namespace_TagName]. Tags
provided by third parties will usually have a company name prefixed to each tag name. For example a tag
provided by LassoSoft might be named [LS_Namespace_TagName].

The [Namespace_Using] tag can be used to search this third party LS_ namespace first. This allows all of the
third-party tags to be called using just [NameSpace_TagName] without requiring the company prefix on every
tag.

[Namespace_Using: 'LS_']
	 [Namespace_TagName]
	 …
[/Namespace_Using]

This technique has the added benefit of allowing tags within the LS_ namespace to implicitly override
built-in tags with the same names. For example, the tag [LS_Field] could be defined. Within appropriate
[Namespace_Using] … [/Namespace_Using] tags this tag would be used instead of the built-in [Field] tag.

[Namespace_Using: 'LS_']
	 [Field: 'First_Name']
[/Namespace_Using]

On-Demand Libraries
On-demand libraries allow collections of tags to be loaded only when they are first used. When a tag is called
that is not defined in Lasso, the LassoLibraries folder at the site and master levels within the Lasso Professional
8 application folder are searched for a Lasso page or LassoApp that defines the desired namespace.

For example, if the tag [Example_Tag] is called then Lasso will search the site level LassoLibraries folder for a file
named Example.Lasso or Example.LassoApp. If no such file is found then the master level LassoLibraries folder will
be searched.

If the library is found and defines the called tag then the tag will be executed normally. The tag definitions
within the file are all added to a namespace in the global scope so they can be used on other Lasso pages.

Many built-in tags in Lasso are installed as on-demand libraries including Cache_, Client_, Link_, Thread_, Valid_,
WAP_, and more. These tags will be loaded on their first use and will be available from then on from any
page processed by Lasso Service.

5 3 8

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 4 0 – N a m e s p a c e s

Namespace Tags
There are four tags defined within the Namespace_ namespace. Each of the tags is described in the following
table with examples of their use after.

Table 1: Namespace Tags

Tag	 Description	

[Namespace_Using] … [/Namespace_Using]

	 Uses the specified namespace as the start of the search order when looking up a
tag. Requires a single parameter which is the namespace to use.

[Namespace_Load]	 Attempts to load the specified namespace from the LassoLibraries folders.
Requires a single parameter which is the namespace to load.

[Namespace_Unload]	 Unloads the specified namespace. Requires a single parameter which is the
namespace to unload.

[Namespace_Import]	 Imports a tag or collection of tags into a namespace. The first parameter
specifies either a tag name or namespace name. The second parameter -Into
specifies the destination namespace.

		

To change the order of searched namespaces:

Use the [Namespace_Using] … [/Namespace_Using] tags. The opening tag requires one parameter which is the
name of the namespace that should be searched first. The namespace can be a built-in namespace such as
Global or _Page_ or a specific namespace such as String_ or LS_. Note that namespace names are always
written with a trailing undesrcore.

For example, the following code uses the Date_ namespace allowing date tags to be called using short tag
names.

[Namespace_Using: 'Date_']
	 [Var: 'myDate' = Date]
	 [Var: 'myDate' = (Add: $myDate, -Hour=5)]
	 [Var: 'myDate' = (Subtract: $myDate, -Hour=5)]
	 [Format: $myDate, -Format='%D %T']
[/Namespace_Using]

To load an on-demand tag library:

Use the [Namespace_Load] tag. This is not normally needed since tags will be loaded on-demand the first time
they are used, but can be useful to force a library to load explicitly. For example, the following tag would
force the thread library to load.

[Namespace_Load: 'Thread_']

To unload a namespace or an on-demand tag library:

Use the [Namespace_Unload] tag. This will cause any tags within the specified namespace to unload. If the
tags were loaded from an on-demand library then they will be reloaded when they are next used (or the
[Namespace_Load] tag can be called explicilty). For example, the following tag would force the thread library to
unload.

[Namespace_Unload: 'Thread_']

Unloading a library can be useful if an update to the library is installed in the Lasso Professional 8
application folder. The new tag definitions can be used without having to restart Lasso Service or the current
site.

5 3 9

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 4 0 – N a m e s p a c e s

To import tags from one namespace into another:

Use the [Namespace_Import] tag. This tag can be used to import single tags or all tags within a namespace
into another namespace. The tag requires two parameters: the first is the name of a tag or namespace which
should be copied and the second is the name of the namespace to import into.

The [Namespace_Import] tag is most often used within startup. This tag allows tags to be defined using a third-
party company prefix as recommended. Then the tags can be imported into other namesapces as needed.

For example, the tag [LS_Valid_PhoneNumber] could be imported into the Valid_ namespace. This would have the
effect of allowing the tag to be called as [Valid_PhoneNumber].

[Namespace_Import: LS_Valid_PhoneNumber, -into='Valid_']

5 4 0

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 4 0 – N a m e s p a c e s

41
Chapter 41

Logging

Lasso has a built-in log routing system that allows built-in messages to be routed to several destination. Lasso
provides two methods of logging errors or page accesses.

	 •	Overview describes the built-in log routing system for messages generated by Lasso.

	 •	Log Tags describes the [Log_…] tags that allow errors, warnings, details, action statements, and deprecated
warning messages from Lasso code to be written to Lasso’s internal error logs.

	 •	Log Files describes the [Log] … [/Log] tags which allow data to be written to a text file.

	 •	Log Routing describes the tags that can be used to alter the routing of messages to Lasso’s internal error
logs.

Note: See the chapter on Files for general information about writing data to files.

Overview
Lasso Professional 8 has a built-in error logging system which allows warning messages to be logged at
several different levels. Each log level can be routed to one or more destinations allowing for a great deal of
flexibility in handling

The built-in log levels include:

	 •	Error – Critical errors that affect the operation of Lasso Service. Critical errors are logged to all destination
by default. Typically, the server or site administrator will need to fix whatever is causing the critical error.

	 •	Warning – Warnings are informative messages about possible problems with the functioning of Lasso
Service. Warnings do not always require action by the server or site administrator. Warnings are logged only
to the console by default.

	 •	Detail – Detailed messages about the normal functioning of Lasso Service. Includes status messages from
the email queue and event scheduler, etc. Detail messages are logged only to the console by default.

	 •	Action Statement – The SQL statements generated by SQL data sources are logged as action statements.
Other data sources may also log their implementation-specific action statements. Action statements are
logged only to the console by default.

	 •	Deprecated – Flags any use of deprecated functionality in Lasso code. Deprecated tags are supported in
this version of Lasso, but may not be supported in a future version. Any deprecated functionality should be
updated to new, preferred syntax for best compatibility with future versions of Lasso. Deprecated messages
are logged only to the console by default.

The destinations which the log levels can be routed to include:

	 •	Database – The _Errors table in the Lasso_Internal Lasso MySQL database, viewable via the Utility > Errors >
Lasso Errors page in Lasso Administration.

	 •	Console – The Lasso Service console window. Viewable if Lasso Service is started in console mode.

5 4 1

L a s s o 8 . 5 L a n g u a g e G u i d e

	 •	LassoErrors.txt – The LassoErrors.txt file, located in the appropriate site folder in the Lasso Professional 8
application folder.

The routing of Lasso’s internal log levels can be modified in the Utility > Errors > Setup section of Site
Administration. For information on setting up Lasso’s internal error routing, see the Site Utilities chapter in
the Lasso Professional 8 Setup Guide.

See the following section on Log Tags for details about how to log messages from a Lasso solution using the
built-in error message routing system. For details about how to change the log level routing programmatically
see the subsequent Log Routing section.

Log Tags
The [Log_Critical], [Log_Warning], [Log_Detail], and [Log_Deprecated] tags are used to log custom data to the Lasso
internal error logs with a defined Lasso error level of Crtical, Warning, Detail, or Deprecated. The following
example outputs the date and time of a page request (with a literal space between) to Lasso’s internal error
logs with an error level of Detail.

[Log_Detail: (Server_Date) + ' ' + (Server_Time)]

Table 1: Lasso Error Log Tags

Tag	 Description	

[Log_Critical]	 Logs to Lasso's internal error logs with an error level assignment of Critical.
Requires the text to be logged as a parameter. Logging options for this error level
are set in Lasso Administration.

[Log_Warning] 	 Logs to Lasso's internal error logs with an error level assignment of Warning.
Requires the text to be logged as a parameter. Logging options for this error level
are set in Lasso Administration.

[Log_Detail]	 Logs to Lasso's internal error logs with an error level assignment of Detail.
Requires the text to be logged as a parameter. Logging options for this error level
are set in Lasso Administration.

[Log_SQL]	 Logs to Lasso's internal error logs with an error level assignment of Action
Statement. Requires the text to be logged as a parameter. Logging options for
this error level are set in Lasso Administration.

[Log_Deprecated]	 Logs to Lasso's internal error logs with an error level assignment of Deprecated.
Requires the text to be logged as a parameter. Logging options for this error level
are set in Lasso Administration.

[Log_Always]	 Logs to Lasso's console. This error level cannot be routed, but is always sent to
Lasso's console.

		

To log Lasso page errors to the Lasso Service console and Lasso Administration:

Use the [Log_Critical], [Log_Warning], [Log_Detail], or [Log_Deprecated] tags. This will log any information contained
in the tags in Lasso’s internal error logs with a Lasso error level of Critical, Warning, Detail, or Deprecated. The
following example will log a warning to Lasso’s internal logs if an Out Of Memory error occurs while processing
the Lasso page.

[If: (Error_CurrentError) == (Error_OutOfMemory)]
	 [Log_Warning: 'A memory error occured while processing this page.']
[/If]

� Warning: A memory error occured while processing this page.

If the Lasso Errors Database and Lasso Service Console options were selected for Warning in the Utility > Errors >
Setup page in Lasso Administration, then this message will be logged and displayed in both the Lasso Service
console window and the Utility > Errors > Lasso Errors page in Lasso Administration.

5 4 2

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 4 1 – L o g g i n g

Log Files
In addition to using the built-in log level routing system, it is sometimes desirable to create a separate log file
specific to a custom solution. The [Log] … [/Log] tags can be used to write text messages out to a text log file.

When executed, the contents of the [Log] … [/Log] container tags is appended to a specified text file. The
[Log] … [/Log] tags can write to any text file that is in the Web server root and accessible from Lasso. All returns,
tabs, and spaces between the [Log] … [/Log] tags will be included in the output data.

The following [Log] … [/Log] tags output a single line containing the date and time with a return at the end to
the file specified. The tags are shown first with a Windows path, then with a Mac OS X path.

[Log: 'C://Logs/LassoLog.txt'][Server_Date] [Server_Time]
[/Log]

[Log: '///Logs/LassoLog.txt'][Server_Date] [Server_Time]
[/Log]

The path to the directory where the log will be stored should be specified according to the same rules as
those for the file tags. See the File Tags section of this chapter for full details about relative, absolute, and
fully qualified paths on both Mac OS X and Windows.

Table 2: File Log Tags

Tag	 Description	

[Log] … [/Log]	 Logs the contents of the container tags to a specified text file. Requires the path
to the text file as a parameter: An optional -Encoding parameter specifies the
character set to use to write the log file (defaults to Mac-Roman on Mac OS X
and ISO-8859-1 on other platforms.

		

To log site visits to a file:

Use the [Server_…] and [Client_…] tags to return information about the current visitor and what page they are
visiting. The following code will log the current date and time, the visitor’s IP address, the name of the server
and the page they were loading, and the GET and POST parameters that were specified.

[Log: 'E://Logs/LassoLog.txt'][Server_Date: -Extended] [Server_Time: -Extended] [Client_IP] [Server_Name] [Response_
FilePath] [Client_GETArgs] [Client_POSTArgs]
[/Log]

See the HTTP/HTML Content and Controls chapter for more information a about the [Client_…] and
[Server_…] tags.

To automatically roll log files by date:

Include a date component in the name of the log file. Since the date component will change every day, a
new log file will be created the first time an item is logged each day. [Server_Date: -Extended] creates a safe date
format to use. The following example logs to a file named e.g. 2001-05-31.txt.

[Variable: 'Log_File' = ///Logs/' + (Server_Date: -Extended) + '.txt']
[Log: (Variable: 'Log_File'][Server_Date] [Server_Time]
[/Log]

Log Routing
The tag for setting log routing is described in the Log Preference Tag table. Log preferences can be viewed or
changed in the Utility > Errors > Setup section of Lasso Administration. Use of this tag is only necessary to
change the log settings programmatically.

5 4 3

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 4 1 – L o g g i n g

Table 3: Log Preference Tag

Tag	 Description	

[Log_SetDestination]	 The first parameter specifies a log message level. Subsequent parameters
specify the destination to which that level of messages should be logged.

		

Note: The [Log_SetDestination] tag can only be used by the global administrator. Use an [Auth_Admin] tag to authorize
use of this tag.

The first parameter of [Log_SetDestination] requires a log message level. The three available log message levels
are detailed in the Log Message Levels table.

Table 4: Log Message Levels

Level	 Description	

Log_Level_Critical	 Critical error messages that affect the proper functioning of Lasso Service or
requires action by the administrator.

Log_Level_Warning	 Informative messages about what actions are being performed by Lasso Service.
Generally do not require action by the administrator.

Log_Level_Detail	 Detailed messages about the inner workings of Lasso Service.

Log_Level_SQL	 Action statements generated by inline database actions. SQL statements are
logged at this level.

Log_Level_Deprecated	 Warnings about the use of deprecated functionality in Lasso.
		

Subsequent parameters of [Log_SetDestination] require a destination code. The three available destinations
available are detailed in Table 6: Log Destination Codes.

Table 5: Log Destination Codes

Code	 Description	

Log_Destination_Console	 Messages are logged to the Lasso Service console. Visible on Windows 2000
when Lasso Service is launched as an application and on Mac OS X when the
consoleLassoService.command script is used.

Log_Destination_File	 Messages are logged to the LassoErrors.txt file which is created in the same
folder as Lasso Service.

Log_Destination_Database	 Messages are logged to the errors table of the site database which can be
viewed in the Utility > Errors section of Lasso Administration.

		

To change the log preferences:

Use the [Log_SetDestination] tag to change the destination of a given log message level. In the following
example, detail messages are sent to the console and to the errors table of the site database.

[Auth_Admin]
[Log_SetDestination: Log_Level_Detail,
	 Log_Destination_Database, Log_Destination_Console]

To reset the log preferences:

The following four commands reset the log preferences to their default values. Critical errors are sent to all
three destinations. Warnings, detail, and deprecation warning messages are sent only to the console.

[Auth_Admin]
[Log_SetDestination: Log_Level_Critical,
	 Log_Destination_Console, Log_Destination_Database, Log_Destination_File]
[Log_SetDestination: Log_Level_Warning, Log_Destination_Console]
[Log_SetDestination: Log_Level_Detail, Log_Destination_Console]
[Log_SetDestination: Log_Level_SQL, Log_Destination_Console]
[Log_SetDestination: Log_Level_Deprecated, Log_Destination_Console]

5 4 4

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 4 1 – L o g g i n g

5 4 5

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 4 1 – L o g g i n g

42
Chapter 42

Encryption

Lasso’s built-in encryption tags allow data to be stored or transmitted securely.

	 •	Overview describes the different encryption types that Lasso supports.

	 •	Encryption Tags describes Lasso’s built-in tags for securely storing and transmitting data using industry
standard algorithms.

	 •	Cipher Tags describes tags that allow many different encryption and hash algorithms to be used within
Lasso.

	 •	Compression Tags describes tags for compressing string data for more efficient storage or transmission.

Overview
Lasso provides a set of data encryption tags which support the most commonly used encryption and hash
functions used on the Internet today. These encryption tags make it possible to interoperate with other
systems that require encryption and to store data in a secure fashion in data sources or files.

Lasso has built-in tags for the BlowFish encryption algorithm and for the SHA1 and MD5 hash algorithms.
The new BlowFish2 algorithm is implemented in an industry standard fashion in order to allow values
encrypted with Lasso to be decrypted by other BlowFish implementation or vice versa. (The original BlowFish
algorithm is also provided for backward compatibility.)

Lasso’s cipher tags provide access to a wide range of industry standard encryption algorithms. The [Cipher_List]
tag lists what algorithms are available and the [Cipher_Encrypt], [Cipher_Decrypt], and [Cipher_Digest] tags allow
values to be encrypted or decrypted or digest values to be generated.

Finally, Lasso provides a set of tags to compress or decompress data for more efficient data transmission.

Encryption Tags
LassoScript provides a number of tags which allow data to be encrypted for secure storage or transmission.
Three different types of encryption are supplied.

	 •	BlowFish is a fast, popular encryption algorithm. Lasso provides tools to encrypt and decrypt string values
using a developer-defined seed. This is the best tag to use for data which needs to be stored in a database
or transmitted securely.

Note: Lasso Professional 8 includes a new implementation of BlowFish which should be interoperable with
most other products that support BlowFish. The new algorithm is implemented as [Encrypt_BlowFish2]. The
older algorithm is still supported as [Encrypt_BlowFish] for backward compatibility.

	 •	MD5 is a one-way encryption algorithm that is often used for passwords. There is no way to decrypt data
which has been encrypted using MD5. See below for an example of how to use MD5 to store and check
passwords securely.

5 4 6

L a s s o 8 . 5 L a n g u a g e G u i d e

	 •	SHA1 is a one-way encryption algorithm that is often used for passwords. There is no way to decrypt data
which has been encrypted using SHA.

Table 1: Encryption Tags

Tag	 Description	

[Encrypt_BlowFish2]	 Encrypts a string using an industry standard BlowFish algorithm. Accepts two
parameters, a string to be encrypted and a -Seed keyword with the key or
password for the encryption.

[Decrypt_BlowFish2]	 Decrypts a string encrypted using the industry standard BlowFish algorithm.
Accepts two parameters, a string to be decrypted and a -Seed keyword with the
key or password for the decryption.

[Encrypt_BlowFish]	 Encrypts a string using the BlowFish implementation from earlier versions of
Lasso. Accepts two parameters, a string to be encrypted and a -Seed keyword
with the key or password for the encryption.

[Decrypt_BlowFish]	 Decrypts a string encrypted by the BlowFish implementation from earlier versions
of Lasso. Accepts two parameters, a string to be decrypted and a -Seed keyword
with the key or password for the decryption.

[Encrypt_MD5]	 Encrypts a string using the one-way MD5 hash algorithm. Accepts one parameter,
a string to be encrypted. Returns a fixed size hash value in hexadecimal for the
string which cannot be decrypted.

[Encrypt_HMAC]	 Generates a keyed hash message authentication code for a given input and
password. The tag requires a -Password parameter which specifies the key for
the hash and a -Token parameter which specifies the text message which is to be
hashed. These parameters should be specified as a string or as a byte stream.
The digest algorithm used for the hash can be specified using an optional -Digest
parameter. The digest algorithm defaults to MD5. SHA1 is another common
option. However, any of the digest algorithms returned by [Cipher_List: -Digest]
can be used. The output is a byte stream by default. -Base64 specifies the output
should be a Base64 encoded string. -Hex specifies the output should be a hex
format string like 0x0123456789abcdef. -Cram specifies the output should be in a
cram hex format like 0123456789ABCDEF.

		

Note: The BlowFish tags are not binary safe. The output of the tag will be truncated after the first null character.
It is necessary to use [Encode_Base64] or [Encode_UTF8] prior to encrypting data that might contain binary characters
using these tags.

BlowFish Seeds
BlowFish requires a seed in order to encrypt or decrypt a string. The same seed which was used to encrypt
data using the [Encrypt_BlowFish2] tag must be passed to the [Decrypt_BlowFish2] tag to decrypt that data. If you
lose the key used to encrypt data then the data will be essentially unrecoverable.

Seeds can be any string between 4 characters and 112 characters long. Pick the longest string possible to
ensure a secure encryption. Ideal seeds contain a mix of letters, digits, and punctuation.

The security considerations of storing, transmitting, and hard coding seed values is beyond the scope of this
manual. In the examples that follow, we present methodologies which are easy to use, but may not provide
the highest level of security possible. You should consult a security expert if security is very important for your
Web site.

Note: The BlowFish algorithm will return random results if you attempt to decrypt data which was not actually
encrypted using the same algorithm.

To store data securely in a database:

Use the [Encrypt_BlowFish2] and [Decrypt_BlowFish2] tags to encrypt data which will be stored in a database and
then to decrypt the data when it is retrieved from the database.

5 4 7

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 4 2 – E n c r y p t i o n

	 1	Store the data to be encrypted into a string variable, PlainText.

[Variable: 'PlainText' = 'The data to be encrypted.']

	 2	Encrypt the data using the [Encrypt_BlowFish2] tag with a hard-coded -Seed value. Store the result in the
variable CipherText.

[Variable: 'CipherText' = (Encrypt_BlowFish2: (Variable: 'PlainText'),
		 -Seed='This is the blowfish seed')]

	 3	Store the data in CipherText in the database. The data will not be viewable without the seed. The following
[Inline] … [/Inline] creates a new record in an Contacts database for John Doe with the CipherText.

[Inline: -Add,
		 -Database='Contacts',
		 -Table='People',
		 -KeyField='ID',
		 'First_Name'='John',
		 'Last_Name'='Doe',
		 'CipherText'=(Variable: 'CipherText')]
[/Inline]

	 4	Retrieve the data from the database. The following [Inline] … [/Inline] fetches the record from the database for
John Doe and places the CipherText into a variable named CipherText.

[Inline: -Search,
		 -Database='Contacts',
		 -Table='People',
		 -KeyField='ID',
		 'First_Name'='John',
		 'Last_Name'='Doe']
	 [Variable: 'CipherText' = (Field: 'CipherText')]
[/Inline]

	 5	Decrypt the data using the [Decrypt_BlowFish2] tag with the same hard-coded -Seed value. Store the result in
the variable PlainText.

[Variable: 'PlainText' = (Decrypt_BlowFish2: (Variable: 'CipherText'),
		 -Seed='This is the blowfish seed')]

	 6	Display the new value stored in PlainText.

[Variable: 'PlainText']

�	 The data to be encrypted.

Note: This example uses the [Encrypt_BlowFish2] and [Decrypt_BlowFish2] tags. These are the preferred BlowFish
implementation to use with Lasso. The [Encrypt_BlowFish] and [Decrypt_BlowFish] tags should only be used for
interoperability with older versions of Lasso.

To store and check encrypted passwords:

The [Encrypt_MD5] tag can be used to store a secure version of a password for a site visitor. On every
subsequent visit, the password given by the visitor is encrypted using the same tag and compared to the
stored value. If they match, then the visitor has supplied the same password they initially supplied.

	 1	When the visitor creates an account use [Encrypt_MD5] to create an encrypted version—a fixed size hash
value—of the password they supply. In the following example, the password they supply is stored in the
variable VisitorPassword and the encrypted version is stored in SecurePassword.

[Variable: 'SecurePassword' = (Encrypt_MD5: (Variable: 'VisitorPassword'))]

	 2	Store this MD5 hash value for the password in a database along with the visitor’s username.

	 3	On the next visit, prompt the visitor for their username and password. Fetch the record identified by the
visitor’s specified username and retrieve the MD5 hash value stored in the field SecurePassword.

5 4 8

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 4 2 – E n c r y p t i o n

	 4	Use [Encrypt_MD5] to encrypt the password that the visitor has supplied and compare the result to the stored,
encrypted MD5 hash value that was generated from the password they supplied when they created their
account.

[If: (Encrypt_MD5: (Variable: 'VisitorPassword')) == (Field: 'SecurePassword')]
	 Log in successful.
[Else]
	 Password does not match.
[/If]

Note: For more security, most log-in solutions require both a username and a password. The password is not
checked unless the username matches first. This prevents site visitors from guessing passwords unless they know
a valid username. Also, many log-in solutions restrict the number of login attempts that they will accept from a
client’s IP address.

Cipher Tags
Lasso includes a set of tags that allow access to a wide variety of encryption algorithms. These cipher tags
provide implementations of many industry standard encryption methods and can be very useful when
communicating using Internet protocols or communicating with legacy systems.

The table below lists the [Cipher_…] tags in Lasso. The following tables list several of the cipher algorithms
and digest algorithms that can be used with the [Cipher_…] tags. The [Cipher_List] tag can be used to list what
algorithms are supported in a particular Lasso installation.

Note: The actual list of supported algorithms may vary from Lasso installation to Lasso installation depending on
platform and system version. The algorithms listed in this manual should be available on all systems, but other
more esoteric algorithms may be available on some systems and not on others.

Table 2: Cipher Tags

Tag	 Description	

[Cipher_Encrypt]	 Encrypts a string using a specified algorithm. Requires three parameters. The
data to be encrypted, a -Cipher parameter specifying what algorithm to use,
and a -Key parameter specifying the key for the algorithm. An optional -Seed
parameter can be used to seed algorithms with a random component.

[Cipher_Decypt]	 Decrypts a string using a specified algorithm. Requires three parameters. The
data to be decrypted, a -Cipher parameter specifying what algorithm to use, and
a -Key parameter specifying the key for the algorithm.

[Cipher_Digest]	 Encrypts a string using a specified digest algorithm. Requires two parameters.
The data to be encrypted and a -Digest parameter that specifies the algorithm to
be used. Optional -Hex parameter encodes the result as a hexadecimal string.

[Cipher_List]	 Lists the algorithms that the cipher tags support. With a -Digest parameter
returns only digest algorithms. With -SSL2 or -SSL3 returns only algorithms for
that protocol.

		

The following two tables list some of the cipher algorithms that can be used with [Cipher_Encrypt] and some
of the digest algorithms that can be used with [Cipher_Digest]. Use [Cipher_List] for a full list of supported
algorithms.

Table 3: Cipher Algorithms

Algorithm	 Description	

AES	 Advanced Encryption Standard. A symmetric key encryption algorithm which
is slated to be the replacement for DES. An implementation of the Rijndael
algorithm.

DES	 Data Encryption Standard. A block cipher developed by IBM in 1977 and used as
the government standard encryption algorithm for years.

5 4 9

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 4 2 – E n c r y p t i o n

3DES	 Triple DES. This algorithm uses the DES algorithm three times in succession with
different keys.

RSA	 A public key algorithm named after Rivest, Shamir, and Adelmen. One of the
most commonly used encyrption algorithsm. Note: Lasso does not generate
public/private key pairs.

		

Table 4: Digest Algorithms

Algorithm	 Description	

DSA	 Digital Signature Algorithm. Part of the Digital Signature Standard. Can be used
to sign messages, but not for general encryption.

SHA1	 Secure Hash Algorithm. Produces a 160-bit hash value. Used by DSA.

MD5	 Message Digest. A hash function that generates a 128-bit message digest.
Replaces the MD4 and MD2 algorithms (which are also supported). Also
implemented in Lasso as [Encrypt_MD5].

		

To list all supported algorithms:

Use the [Cipher_List] tag. The following tag will return a list of all the cipher algorithms supported by Lasso

[Cipher_List]

With a -Digest parameter the tag will return a list of all the digest algorithms supported by Lasso.

[Cipher_List: -Digest]

To calculate a digest value:

Use the [Cipher_Digest] tag. The following tag will return the DSA signature for the value of a database field
Message.

[Cipher_Digest: (Field: 'Message'), -Digest='DSA']

To encrypt a value using 3DES:

Use the [Cipher_Encrypt] tag. The following tag will return the 3DES encryption for the value of a database field
Message.

[Cipher_Encrypt: (Field: 'Message'), -Cipher='3DES', -Key='My Secret Key']

Serialization Tags
LassoScript provides several tags which allow Lasso’s native data types to be transformed into an XML data
stream that can be stored in a database field, transmitted to a remote machine, or otherwise manipulated.
The [Serialize] and [Deserialize] tags are equivalent to the [Null->Serialize] and [Null->Deserialize] tags which are docu-
mented in another chapter.

Important: Built-in data types can be serialized and deserialized at any time. In order to deserialize a custom
data type the data type must be defined in the current context. Custom data types defined in the Lasso startup
folder or earlier on the page than the [Deserialize] tag will work propery.

Table 5: Serialization Tags

Tag	 Description	

[Serialize]	 Accepts a single parameter. Converts the parameter to a byte stream
representation. The returned string can be stored in a database.

[Deserialize]	 Accepts a single parameter which is a byte stream that represents a Lasso value.
Returns the value represented by the parameter.

		

5 5 0

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 4 2 – E n c r y p t i o n

To store a complex data type:

Use the [Serialize] to transform the data type into a byte stream string representation that can be stored in a
database field. Then use [Deserialize] to transform the byte stream string representation back into the original
data type. The following example shows how to convert an array into a string and then back again.

	 1	Store the array in a variable ArrayVariable.

[Variable: 'ArrayVariable'=(Array: 'one', 'two', 'three', 'four', 'five')]

	 2	Use the [Null->Serialize] tag to change the array into a string stored in TempVariable.

[Variable: 'TempVariable'=(Serialize: $ArrayVariable)]

	 3	The string representation of the array can now be changed back into the array by calling the [Deserialize] tag
with TempVariable as a parameter.

[Variable: 'ArrayVariable'=(Deserialize: $TempVariable)]

	 4	Finally, the original array is output.

[Variable: 'ArrayVariable']

�	 (Array: (one), (two), (three), (four), (five))

Compression Tags
LassoScript provides two tags which allow data to be stored or transmitted more efficiently. The [Compress]
tag can be used to compress any text string into an efficient byte stream that can be stored in a text field in a
database or transmitted to another server. The [Decompress] tag can then be used to restore a compressed byte
stream into the original string.

The compression algorithm should only be used on large string values. For strings of less than one hundred
characters the algorithm may actually result in a larger string than the source.

These tags can be used in concert with the [Null->Serialize] tag that creates a string representation of any data
type in LassoScript and the [Null->Deserialize] tag that returns the original value based on a string representation.
An example below shows how to compress and decompress an array variable.

Table 6: Compression Tags

Tag	 Description	

[Compress]	 Compresses a string parameter.

[Decompress]	 Decompresses a byte stream.
		

To compress and decompress a string:

	 1	Use the [Compress] tag on the variable InputVariable holding the string value you want to compress. The result
is a byte stream that represents the string which is stored in CompressedVariable.

[Variable: 'InputVariable'='This is the string to be compressed.']
[Variable: 'CompressedVariable'=(Compress: $InputVariable)]

	 2	The CompressedVariable can now be decompressed using the [Decompress] tag. The result is stored in
OutputVariable and finally displayed.

[Variable: 'OutputVariable'=(Decompress: $CompressedVariable)]
[Variable: 'OutputVariable']

�	 This is the string to be compressed.

5 5 1

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 4 2 – E n c r y p t i o n

To compress and decompress an array:

	 1	Store the array in a variable ArrayVariable.

[Variable: 'ArrayVariable'=(Array: 'one', 'two', 'three', 'four', 'five')]

	 2	Use the [Serialize] tag to change the array into a string stored in InputVariable.

[Variable: 'InputVariable'=(Serialize: $ArrayVariable)]

	 3	Use the [Compress] tag on the variable InputVariable holding the string representation for the array. The result
is a byte stream which is stored in CompressedVariable.

[Variable: 'CompressedVariable'=(Compress: $InputVariable)]

	 4	The CompressedVariable can now be decompressed using the [Decompress] tag. The result is a string stored in
OutputVariable.

[Variable: 'OutputVariable'=(Decompress: $CompressedVariable)]

	 5	The string representation of the array can now be changed back into the array by calling the [Deserialize] tag
with OutputVariable as a parameter.

[Variable: 'ArrayVariable'=(Deserialize: $OutputVariable)]

	 6	Finally, the original array can be output.

[Variable: 'ArrayVariable']

�	 (Array: (one), (two), (three), (four), (five))

5 5 2

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 4 2 – E n c r y p t i o n

43
Chapter 43

Control Tags

This chapter documents tags that allow Lasso pages to be scheduled for execution and tags that allow low-
level access to Lasso’s internal variables.

	 •	Authentication Tags details the tags that allow security settings to be modified.

	 •	Administration Tags details the tags that provide access to Lasso’s environment.

	 •	Scheduling Events documents how to use the [Event_Schedule] tag to schedule the loading of Lasso pages.

	 •	Process Tags documents how to programmatically control what code is processed by Lasso, and how to
pause Lasso execution.

	 •	Configuration Tags allow the configuration of Lasso to be inspected.

	 •	Page Content Tags documents the tags which allow access to the variables Lasso uses while processing a
page.

	 •	Null Data Type documents the base data type and the member tags common to all data types in Lasso.

	 •	 Page Execution Time Limit describes the built-in time limit on the length of time that Lasso pages are
allowed to execute.

	 •	Code Compilation and Caching describes the tag which can be used to remove pages from Lasso’s built-in
cache forcing them to be recompiled the next time they are called.

	 •	Page Pre- and Post-Processing describes how to execute code before every page load on a site or after a
page load.

	 •	Site Tags documents tags which provide information about the current site and can stop and start sites.

Authentication Tags
The authentication tags can be used to ensure that all of the code in a page is run by a registered user in Lasso
Security or the global administrator. The authentication tags work by performing the following tasks when
they are executed:

	 1	Check the current username and password stored in the client browser. If the username and password meet
the requirements of the authentication tag used, then the page is served normally.

	 2	Otherwise, a browser authentication dialog box is shown to the visitor.

	 3	If the client enters a valid username and password, then the page is served normally.

	 4	Otherwise, the visitor is either prompted for a username and password again or is shown an error. The
actual behavior is determined by the Web browser software.

5 5 3

L a s s o 8 . 5 L a n g u a g e G u i d e

Table 1: Authentication Tags

Tag	 Description	

[Auth]	 Allows only configured Lasso users to view the page. Prompts for a username
and password if the current visitor has not provided a valid username and
password.

	 The [Auth] tag and each of the tags below also support the following parameters:
-Realm allows the realm name to be specified.
-Basic=True/False and -Digest=True/False determine if basic or digest
authentication should be used.
-Nonce and -Opaque allow the nonce and opaque value for digest authentication
to be specifed.
-Stale allows a digest authentication to be made stale.
-NoAbort makes it so the tag will not automatically issue an abort when it is
finished processing.
-ErrorResponse specifies HTML that should be served in case an error occurs
with the authentication (not all browsers support showing this HTML so some will
simply serve a blank page).
-Transparent allows the HTML of the underlying page to be shown when the
authentication fails. Using -Transparent disables the -ErrorResponse and
-NoAbort tags.

[Auth_Admin]	 Allows only the global administrator to view the page. Prompts for a username
and password if the current visitor is not the global administrator. Also supports
all of the parameters of the [Auth] tag shown above.

[Auth_Group]	 Allows only configured Lasso users in a specified group in Lasso Security to view
the page. Requires the name of a Lasso group (or an array of group names) as
a parameter. Prompts for a username and password if the current visitor has not
provided a valid username and password. Also supports all of the parameters of
the [Auth] tag shown above.

[Auth_User]	 Allows a single specified user in Lasso Security to view the page. Requires the
name of a Lasso user (or an array of user names) as a parameter. Prompts for a
username and password if the current visitor has not provided a valid username
and password. Also supports all of the parameters of the [Auth] tag shown
above.

[Auth_Custom] 	 Allows a single user with a specified username and password to view the page.
Requires a custom username (or array of usernames), password (or array of
corresponding passwords), and realm as parameters. The custom username
does not have to be configured in Lasso Security. Also supports all of the
parameters of the [Auth] tag shown above.

[Auth_Prompt]	 This helper tag modifies the HTTP header to force the browser to prompt for
authentication. It is used internally by each of the tags above. Also supports all of
the parameters of the [Auth] tag shown above.
A custom tag reference can be passed to the -AuthTag parameter. The tag will be
passed the username and realm and should return the password for the user.

		

To prompt a visitor for authentication:

Use the [Auth] tag at the top of a Lasso page. Each visitor will need to enter a username and password which is
configured within Lasso Administration in order to view the contents of the Web page.

[Auth]

This tag can be used to ensure that only configured users visit a Lasso page. No Anonymous users or users who
do not have a valid username and password will be allowed.

To restrict a page so only the global administrator can view it:

Use the [Auth_Admin] tag at the top of a Lasso page. Each visitor will need to enter the global administrator’s
username and password in order to view the contents of the Web page.

[Auth_Admin]

5 5 4

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 4 3 – C o n t r o l T a g s

This can be used to hide Lasso pages which provide status information that only the global administrator
should be able to read or to protect custom Lasso pages that allow aspects of a Web site to be administered.

To restrict a page to users in a specific Lasso group:

Use the [Auth_Group] tag with the name of the desired group as a parameter. Each visitor will need to enter a
username and password that belongs to the specified Lasso group in order to view the contents of the Web
page.

[Auth_Group: 'Lasso_Group_Name']

To restrict a page to a specific Lasso user:

Use the [Auth_User] tag with the name of the desired user as a parameter. Each visitor will need to enter the
username and password of the Lasso user specified in order to view the contents of the Web page.

[Auth_User: 'Lasso_User_Name']

To restrict a page to a custom username and password:

Use the [Auth_Custom] tag with a custom username, password, and realm as parameters (the parameters must
be entered in this order). Each visitor will need to enter this username and password in order to view the
contents of the Web page.

[Auth_Custom: 'Custom_User_Name', 'Custom_Password', 'Custom_Realm']

This tag is useful for authenticating a user that is not necessarily configured in Lasso Security. The custom
realm will be displayed in the authentication dialog box when the user logs in, and can be used in
conjunction with other realms on the Web server.

Administration Tags
Lasso Security is generally configured through the Lasso Administration interface and related LassoApps.
However, Lasso also provides a number of tags that allow the security settings to be modified from within
Lasso pages. These tags are summarized in Table 2: Administration Tags. See the Setting Up Security chapter
of the Lasso Professional 8 Setup Guide for more information about users and groups.

Table 2: Administration Tags

Tag	 Description	

[Admin_CurrentUsername]	 Returns the name of the current user whose permissions are being used to run
the page or inline. Returns nothing for the anonymous user.

[Admin_CurrentGroups]	 Returns an array of Lasso group names that the current user belongs to.

[Admin_ListGroups]	 Lists the groups for which the current user has privileges. See authentication note
below.

[Admin_ChangeUser]	 Changes a user's password. Requires a valid Lasso username, old password,
and new password as parameters. This tag can be called by any configured
Lasso user.

[Admin_CreateUser]	 Creates a new user with the specified password. Requires a new username
and password as parameters. This tag can be called by any administrator. See
authentication note below.

[Admin_GroupAssignUser]	 Assigns the specified user to the group. Requires the name of a Lasso group and
a Lasso user as parameters. This tag can be called by a group administrator for
the group. See authentication note below.

[Admin_GroupListUsers]	 Lists the users who belong to the group. This tag can be called by a group
administrator for the group. See authentication note below.

[Admin_GroupRemoveUser]	 Removes the specified user from the group. This tag can be called by a group
administrator for the group. See authentication note below.

5 5 5

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 4 3 – C o n t r o l T a g s

[Admin_UserListGroups]	 Lists the groups to which a user belongs. This tag can be called by a group
administrator for the group. See authentication note below.

[Admin_RefreshSecurity]	 Refreshes cached security settings. This tag can be used only by the Lasso
global administrator.

[Admin_ReloadDatasource]	 Reloads a Lasso Data Source Connector. Requires the internal name or ID
number of a Lasso Data Source Connector as a parameter (as shown in Lasso
Administration). This tag can be used only by the Lasso global administrator.

[Admin_LassoServicePath]	 Returns the file path to the current site folder. The path to the Lasso application
folder can be found by appending /../../ to the result of this tag. This tag can be
used only by the Lasso global administrator.

		

Authentication Note: The tags that require group administrator access can be authenticated in two ways. They
can be called on a page that uses an [Auth_…] tag to authenticate the group administrator. Or, they can be called
with -Username and -Password parameters that specify the username and password of a group administrator. Any
tag that can be called by a group administrator can also be called by a site or server administrator. These tags
cannot be called within [Inline] … [/Inline] tags which authenticate as an administrator.

To return the current username within a Lasso page:

Use the [Admin_CurrentUsername] tag. The following example displays the current Lasso user being used within
an [Inline] tag.

[Inline: -Username='John_Doe', -Password='MyPassword']
	 [Admin_CurrentUsername]
[/Inline]

�	 John_Doe

To change the password for a user:

Use the [Admin_ChangeUser] tag. The tag takes three parameters: the username and password of an existing
user, and the new password for the user. The following example changes the password for John_Doe to
MyNewAndImprovedPassword from MyPassword. The tag returns True if the change was successful.

[Admin_ChangeUser: 'John_Doe', 'MyPassword', 'MyNewAndImprovedPassword']

�	 True

To list the groups the current user belongs to:

Use the [Admin_CurrentGroups] tag. The following example lists the groups that John_Doe belongs to.

[Inline: -Username='John_Doe', -Password='MyPassword']
	 [Admin_CurrentGroups]
[/Inline]

�	 (Array: (AnyUser), (Johns_Group))

To list the groups the current user can administer:

Use the [Admin_ListGroups] tag. The following example lists the groups that John_Doe can administer.
The username and password for John_Doe are specified using -Username and -Password parameters in the
[Admin_ListGroups] tag. Since John_Doe is the administrator of one group, Johns_Group, this one name is returned
in a single element array.

[Admin_ListGroups: -Username='John_Doe', -Password='MyPassword']

�	 (Array: (Johns_Group))

5 5 6

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 4 3 – C o n t r o l T a g s

To list the users that belong to a group:

Use the [Admin_GroupListUsers] tag. The following example lists the users that belong to the group named
Johns_Group. The username and password for an administrator of Johns_Group is specified in the call to
[Admin_GroupListUsers]. An array of usernames is returned.

[Admin_GroupListUsers: 'Johns_Group',
	 -Username='John_Doe', -Password='MyPassword']

�	 (Array: (John_Doe), (Jane_Doe), (Tex_Surname), (Bob_Peoples))

To create a new user:

Use the [Admin_CreateUser] tag. The following example creates a new user Joe_Random with the password 1234.
Joe_Random will not have any permissions beyond those assigned to AnyUsers until he is assigned to a group.
Since only a group administrator can create new users, the username and password for John_Doe are specified
in the call to [Admin_CreateUser]. The tag returns True if the user was created or False if the username already
exists.

[Admin_CreateUser: 'Joe_Random', '1234',
	 -Username='John_Doe', -Password='MyPassword']

�	 True

To add a user to a group:

Use the [Admin_GroupAssignUser] tag. The following example adds the user Joe_Random to the group Johns_Group.
This tag can only be called by a group administrator for Johns_Group so the username and password for
John_Doe are specified in the call to [Admin_GroupAssignUser]. The tag returns True if the user is successfully
added to the group.

[Admin_GroupAssignUser: 'Johns_Group', 'Joe_Random',
	 -Username='John_Doe', -Password='MyPassword']

�	 True

To remove a user from a group:

Use the [Admin_GroupRemoveUser] tag. The following example removes the user Joe_Random from the group
Johns_Group. This tag can only be called by a group administrator for Johns_Group so the username and
password for John_Doe are specified in the call to [Admin_GroupRemoveUser]. The tag returns True if the user is
successfully removed from the group.

[Admin_GroupRemoveUser: 'Johns_Group', 'Joe_Random'
	 -Username='John_Doe', -Password='MyPassword']

�	 True

To reload a data source connector:

Use the [Admin_ReloadDataSource] tag. This tag is useful if a data source has been modified and Lasso needs to
be refreshed to see the new changes, and requires Lasso global administrator permission to use. The example
below refreshes the Lasso MySQL data source connector, which has an internal ID number of 1 according to
the Setup > Data Sources > Connectors section of Lasso Administration.

[Admin_ReloadDataSource: 1]

To refresh Lasso Security:

Use the [Admin_RefreshSecurity] tag. This tag is required for new settings to go into effect if Lasso Security
is manually altered outside of using Lasso Administration. This tag requires Lasso global administrator
permission to use.

[Admin_RefreshSecurity]

5 5 7

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 4 3 – C o n t r o l T a g s

Scheduling Events
Lasso includes a built-in scheduling facility that allows URL visits to be scheduled for a specific time in the
future or to be scheduled for repeated visits. The scheduling facility loads the pages as if a client Web browser
had visited the specified URL at the specified time.

Since the URLs can reference any Lasso pages available to Lasso Service, this simple scheduling facility allows
powerful events to be scheduled that can perform any database actions or programming commands available
to Lasso.

The scheduling facility can be used to schedule any of the following events.

	 •	A Routine Maintenance page that performs database cleanup routines or optimizes the internal Lasso
MySQL databases.

	 •	A Status Email page that emails an administrator’s address with information about Lasso’s current status
and what database actions have occurred since the last status email.

	 •	A Cache Update page that performs a database search. The results of the search are stored and used
instead of the full search in order to increase performance. The cached date is updated periodically.

	 •	Events can load pages on Remote Servers in order to retrieve information, trigger an action on the remote
server, or check that the remote server is active.

The event scheduling facility is intended for scheduling events which will be executed within about a minute
of their intended execution time. It is not intended for high-precision execution of events. Please see the
Extending Lasso Guide for information about how to create custom Lasso tags that can execute with greater
precision.

Event Administration
Lasso Administration allows events to be scheduled, the event queue to be stopped and started, and
scheduled events to be viewed, modified, and deleted. See the Site Administration Utilities chapter in the
Lasso Professional 8 Setup Guide for more information.

Note: The event queue can be stopped in Lasso Administration, but will always be started again if Lasso Service
is relaunched.

Event Tags
Events are scheduled using the [Event_Schedule] tag which is described in Table 3: Scheduling Tags.

Table 3: Scheduling Tag

Tag	 Description	

[Event_Schedule]	 Schedules a URL to be loaded by Lasso at a specified time in the future or
schedules repeated loads of a specified URL.

		

The [Event_Schedule] tag accepts many different parameters which are described in Table 4: Scheduling
Parameters.

Table 4: Scheduling Parameters

Tag	 Description	

-URL	 The URL which is to be loaded when the event executes. The URL can include
URL parameters. Required.

-Start	 The date/time to execute the event or the time to start executing a repeating
event. Optional, defaults to the current time.

-End	 The date/time to stop executing a repeating event. Optional, defaults to never.

-Delay	 The number of minutes to wait between executions of a repeating event. Defaults
to not repeating if no -Delay is specified.

5 5 8

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 4 3 – C o n t r o l T a g s

-Restart	 A boolean value specifying whether an event should continue execution after a
restart. Defaults to True.

-Username	 An optional username which will be used to authenticate the request for the event
URL. Optional.

-Password	 An optional password which will be used to authenticate the request for the event
URL. Optional.

		

The parameters of the [Event_Schedule] tag interact to allow a great variety of different behaviors. The following
examples make the use of the parameters clear.

To schedule an event to execute immediately:

Use the [Event_Schedule] tag with only a -URL parameter. The event will execute within about a minute of when
it is scheduled. This allows a task specified in a separate Lasso page to be executed separately from the main
flow of the current Lasso page.

[Event_Schedule: -URL='http://www.example.com/event.lasso']

To schedule an event to happen at a specific time:

Use the [Event_Schedule] tag with a -URL parameter and a -Start parameter. The event will execute within about
a minute of the -Start time.

	 •	The following event is scheduled to execute at midnight on April 5, 2005. Since the server will likely be
restarted before that date, -Restart is set to True to ensure this event is not deleted when the server is next
restarted.

[Event_Schedule:
	 -URL='http://www.example.com/event.lasso',
	 -Start='4/5/2005 00:00:00',
	 -Restart=True]

	 •	The following event is scheduled to execute at 4:00 PM on April 5, 2005. The date/time is specified in Lasso
date format. -Restart is set to True to ensure this event is not deleted when the server is next restarted.

[Event_Schedule:
	 -URL='http://www.example.com/event.lasso',
	 -Start='4/5/2005 16:00:00'
	 -Restart=True]

	 •	The following event is scheduled to execute four hours after the page is loaded. The date/time for the -Start
parameter is generated using the [Date_Add] and [Date_GetCurrentDate] tags.

[Event_Schedule:
	 -URL='http://www.example.com/event.lasso',
	 -Start=(Date_Add: (Date_GetCurrentDate), -Hour=4)]

To schedule an event to repeat:

Use the [Event_Schedule] tag with a -URL parameter, and a -Delay parameter which specifies that the event
should repeat. -Restart is set to False. This event will not execute after the server is restarted unless we set
-Restart to True.

	 •	The following event is scheduled to repeat every fifteen minutes starting immediately.

[Event_Schedule:
	 -URL='http://www.example.com/event.lasso',
	 -Delay=15,
	 -Restart=False]

	 •	The following event is scheduled to repeat every hour on 12/25/2005. Note that -Restart is set to True so this
event will not be deleted when Lasso Service is next restarted.

5 5 9

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 4 3 – C o n t r o l T a g s

[Event_Schedule:
	 -URL='http://www.example.com/event.lasso',
	 -Start='12/25/2005 00:00:00',
	 -End='12/26/2005 00:00:00',
	 -Delay=60,
	 -Restart=True]

To schedule an event with a complex schedule:

Events which need to execute on a complex schedule must be rescheduled every time they are executed. If an
event is being rescheduled explicitly then the -Delay parameter should not be specified.

For example, the following code included in the http://www.example.com/event.lasso Lasso page will reschedule
the same Lasso page as an event depending on whether or not the condition in the [If] … [/If] tags is True. If the
condition is True then the event will be rescheduled for fifteen minutes in the future, otherwise the event will
be rescheduled for two hours in the future.

[If: (Variable: 'Reschedule') == True]
	 [Event_Schedule:
			 -URL='http://www.example.com/event.lasso',
			 -Start=(Date_Add: (Date_GetCurrentDate), -Minute=15),
			 -Restart=False]
[Else]
	 [Event_Schedule:
			 -URL='http://www.example.com/event.lasso',
			 -Start=(Date_Add: (Date_GetCurrentDate), -Hour=2),
			 -Restart=False]
[/If]

Process Tags
The [Process] tag can be used to process Lasso code which is contained within a variable or database field. The
Lasso code is processed as if it were contained in the current Lasso page at the location of the [Process] tag.
The code which is processed must be complete, all container tags must be closed within the processed code.

The [NoProcess] … [/NoProcess] tag can be used to have Lasso ignore a portion of a page. Any Lasso code
including square bracket or LassoScript syntax which is contained within the [NoProcess] … [/NoProcess] tags
will not be processed and will be passed through to the browser unchanged. This is most useful for segments
of client-side JavaScript which contains array references using square brackets or to display a sample of Lasso
code on a page.

The [Sleep] tag can be used to pause the Lasso processing of the current Lasso page for a specified number
of milliseconds. This may be useful if Lasso actions need to be synchronized with the actions of other
applications on the Web server or on other servers.

Table 5: Process Tags

Tag	 Description	

[Process]	 Processes its parameter as Lasso code.

[NoProcess] … [/NoProcess]	 Lasso will not process any Lasso code contained within this container tag.

[Sleep]	 Pauses execution of the current Lasso page for a specified number of
milliseconds.

		

Note: The [NoProcess] … [/NoProcess] tags cannot be used within a LassoScript or within code processed by the
[Process] tag. They must be typed exactly as specified here without any parameters or spaces within the square
brackets in order to work.

5 6 0

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 4 3 – C o n t r o l T a g s

To process code stored in a variable:

The following example shows how to store Lasso code in a variable and then process it using the [Process] tag.
The result is the same as if the code has been executed within the current Lasso page at the location of the
[Process] tag.

[Variable: 'Lasso_Code'=(Server_Name)]
['The current server is ']
[Process: (Variable: 'Lasso_Code')]
['.']

�	 The current server is www.example.com.

To process code stored in a database field:

The following example shows how to process code which is stored in a database variable. The result is the
same as if the code has been executed within the current Lasso page at the location of the [Process] tag. All
records from the MyCode table of the Example database are found and the code from the Code field is executed.

[Inline: -Database='Example, -Table='MyCode', -FindAll]
	 [Records]
		 [Process: (Field: 'Code')]
	 [/Records]
[/Inline]

The result will be the result of the Code field for each record.

To instruct Lasso not to process a portion of a page:

Use the [NoProcess] … [/NoProcess] tags. In the following HTML page none of the square brackets within the
JavaScript will be processed by Lasso. This allows the JavaScript to be parsed properly by the browser without
any additional work by the page developer.

<html>
	 <head>
		 <title>My Lasso Page!</title>
	 [NoProcess]
		 <script langugage="JavaScript">
			 …
		 </script>
	 [/NoProcess]
	 </head>
	 <body>
		 … Lasso code here will be processed …
	 </body>
</html>

The [NoProcess] … [/NoProcess] tags can also be used selectively around a small portion of a page that contains
square brackets, but shouldn’t be processed. For example, if you are using square brackets to decorate links
you can use the [NoProcess] … [/NoProcess] tags to ensure the contents of the square brackets is not processed.

[NoProcess][MyLink][/NoProcess]

�	 [MyLink]

To pause execution of a Lasso page for 15 seconds:

Use the [Sleep] tag with a parameter of 15000.

[Sleep: 15000]

5 6 1

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 4 3 – C o n t r o l T a g s

Null Data Type
The null data type is the base type for all other data types in Lasso. All of the tags of the null data type are
available for use with values of any data type in Lasso. Several of the member tags of the null data type such
as [Null->Type] have already been introduced.

Table 6: Null Member Tags

Tag	 Description	

[Null]	 Returns a null literal. This tag is usually used in comparisons or as a default value
for new variables.

[Null->DetachReference]	 Resets any reference value to null, detaching it from the master value and
allowing it to be reassigned without affecting the master value. See the Extending
Lasso Guide for information on references.

[Null->FreezeType]	 Freezes the type of a value so it cannot be modified. An error is thrown if a
subsequent tag attempts to change the type of the value.

[Null->FreezeValue]	 Freezes the value for a data type. An error is thrown if a subsequent tag attempts
to modify the value.

[Null->IsA]	 Requires a type name as a parameter. Returns true if the object is of that type or
inherits from that type.

[Null->Properties]	 Returns a pair containing two maps. The first element is a map of all member
variables in the type. The second element is a map of all member variables in the
type.

[Null->RefCount]	 Returns the number of variables that reference the object.

[Null->Serialize]	 Converts the value to a byte stream representation. The returned string can be
stored in a database. The [Serialize] tag can also be used for this purpose.

[Null->Deserialize]	 Accepts a single parameter which is a byte stream that represents a Lasso value.
The current value is replaced by the value represented by the parameter. The
[Deserialize] tag can also be used for this purpose.

[Null->Type]	 Returns the data type of the value.

[Null->XMLSchemaType] 	 Returns the type for the root data type in the standard Lasso types schema.
		

To return the type of any variable:

Use the [Null->Type] tag. This tag returns a string which represents the data type of the value. If the data type is
not defined then 'null' is returned. The following examples show the use of [Null->Type] on literals of different
data types.

[123->Type] � Integer
[Ouput: 123.456->Type] � Decimal
['String'->Type] � String
[Null->Type] � Null
[(Array: 1, 2, 3)->Type] � Array

To store a complex data type:

Use the [Null->Serialize] to transform the data type into a byte stream string representation that can be stored
in a database field. Then use [Null->Deserialize] to transform the byte stream string representation back into the
original data type. The following example shows how to convert an array into a string and then back again.

	 1	Store the array in a variable ArrayVariable.

[Variable: 'ArrayVariable'=(Array: 'one', 'two', 'three', 'four', 'five')]

	 2	Use the [Null->Serialize] tag to change the array into a string stored in TempVariable.

[Variable: 'TempVariable'=$ArrayVariable->Serialize]

	 3	The string representation of the array can now be changed back into the array by creating a new variable
ArrayVariable and then calling the [Null->Deserialize] tag with TempVariable as a parameter.

5 6 2

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 4 3 – C o n t r o l T a g s

[Variable: 'ArrayVariable'=Null]
[$ArrayVariable->(Deserialize: $TempVariable)]

	 4	Finally, the original array is output.

[Variable: 'ArrayVariable']

�	 (Array: (one), (two), (three), (four), (five))

Extending Lasso Note: The null data type tags are used primarily to create custom tags and custom data types.
To see more examples of null data type tag usage, see the Custom Tags and Custom Types chapters.

Page Content Tags
Lasso stores many internal values which can be accessed by a LassoScript programmer. Lasso also provides
a tag that allows access to all of the variables defined for a page as a map. These tools can be used by
LassoScript programmers to perform low-level tasks that would not be possible otherwise.

Table 7: Page Variable Tags

Tag	 Description	

[Content_Body]	 Returns the body which Lasso is assembling to return to the browser. Usually,
this tag returns the HTML which has been generated by Lasso so far. The body is
returned by reference so can be assigned or appended to.

[Content_Encoding]	 Returns the character encoding which Lasso will use when it sends the content
body to the browser. This tag is read-only, but the encoding can be changed using
the [Content_Type] tag.

[Content_Header]	 Returns the HTTP header which Lasso is assembling to return to the browser.
The header is modified by various tags including [Content_Type], [Cookie_Set]
and [Redirect_URL]. The header is returned by reference so can be assigned or
appended to.

[Tags]	 Returns a map containing every substitution, container, and process tag
registered globally in Lasso. The map does not contain custom tags defined on
the current page.

[Variables]	 Returns a map containing every variable defined in a page. Can be abbreviated
[Vars].

		

To alter the output of the current Lasso page:

Set the [Content_Body] to the desired output. In the following example, an access denied message is displayed
to the user rather than the output of the current Lasso page.

<?LassoScript
	 // This script changes the output of the page to an access denied message.
	 Content_Body = '<html>\n';
	 Content_Body += '\t<head><title>Access Denied</title></head>\n';	
	 Content_Body += '\t<body><h1>Access Denied</h1></body>\n';
	 Content_Body += '</html>\n';
?>

�	 <html>
	 <head><title>Access Denied</title></head>
	 <body><h1>Access Denied</h1></body>
</html>

Any Lasso tags or HTML code in the Lasso page after this LassoScript will be appended to the end of the
output content. An [Abort] tag can be used to halt execution of the page and output the contents of the
variable immediately.

5 6 3

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 4 3 – C o n t r o l T a g s

To alter the header of the current Lasso page:

Use the [Content_Header] tag. The following example sets the HTTP header to a 401 error with a request for
authentication. Note that each line of the header is separated by a return and line feed character. This is a
low-level tag that should only be used by developers who are familiar with the structure of HTTP response
headers.

[Content_Header = 'HTTP/1.0 401\r\nWWW-Authenticate: Basic realm="Example"\r\nServer: Lasso Professional 8']

See the Header section in the chapter on HTTP/HTML Content and Controls for more examples.

To alter the encoding of the current Lasso page:

The following example shows how to return HTML data using the Latin-1 (ISO 8859-1) character set. Some
older browsers or other Web clients may expect data to be in this character set.

[Content_Type: 'text/html; charset=iso-8859-1']

After calling this tag the [Content_Encoding] tag will return the specified character set.

[Content_Encoding]

�	 iso-8859-1

See the Header section in the chapter on HTTP/HTML Content and Controls for more examples.

To list all variables defined in the current page:

Use the [Map->Keys] tag on the map returned by [Variables] to display the name of each variable defined on
the current page. Note that variables whose names begin with an underscore should never be manipulated
directly.

[Variables->Keys]

�	 (Array: (__html_reply__), (__result_code__), (__result_message__),
(__http_header__), (__tag_registry__))

To list all substitution, container, and process tags available in Lasso:

Use the [Map->Keys] tag on the map returned by [Tags] to display the name of every tag defined globally within
Lasso.

[Tags->Keys]

The output of this code is a list of close to four hundred tags registered globally in Lasso. Please see the tag
list in Appendix A: Lasso 8 Tag List for a listing of the standard substitution tags.

Configuration Tags
Lasso provides a number of tags that allow the current configuration to be examined. These tags are
summarized in Table 9: Configuration Tags.

Table 8: Configuration Tags

Tag	 Description	

[Lasso_DatasourceIsFileMaker]	 Accepts the name of a single database. Returns True if the database is being
served through Lasso Connector for FileMaker Pro.

[Lasso_DatasourceIsMySQL]	 Returns True if a database is hosted by MySQL. Requires one string value, which
is the name of a database.

[Lasso_DatasourceIsODBC]	 Returns True if a database is hosted by ODBC. Requires one string value, which
is the name of a database.

[Lasso_DatasourceIsOpenBase]	 Returns True if a database is hosted by OpenBase. Requires one string value,
which is the name of a database.

5 6 4

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 4 3 – C o n t r o l T a g s

[Lasso_DatasourceIsOracle]	 Returns True if a database is hosted by Oracle. Requires one string value, which
is the name of a database.

[Lasso_DatasourceIsPostgreSQL]	 Returns True if a database is hosted by PostgreSQL. Requires one string value,
which is the name of a database.

[Lasso_DatasourceIsSpotlight]	 Returns True if a database is hosted by Spotlight. Requires one string value,
which is the name of a database.

[Lasso_DatasourceIsSQLServer]	 Returns True if a database is hosted by Microsoft SQL Server. Requires one
string value, which is the name of a database.

[Lasso_DatasourceIsSQLite]	 Returns True if a database is hosted by SQLite. Requires one string value, which
is the name of a database.

[Lasso_DatasourceModuleName]	 Accepts the name of a single database. Returns the name of the data source
connector for the database.

[Lasso_TagExists]	 Checks to see if a substitution or process tag is defined. Returns True or False.
Requires one parameter which is the name of the tag to be checked.

[Lasso_TagModuleName]	 Returns the name of the module in which a tag is defined. Requires one
parameter which is the name of the tag to be checked.

[Lasso_Version]	 Returns the version of Lasso Professional.
		

To check whether a tag exists:

Use the [Lasso_TagExists] tag with the tag name of the substitution or process tag to be checked. The following
example will return True if the [Email_Send] tag is defined.

[Lasso_TagExists: 'Email_Send']

�	 True

To check what module a tag is defined in:

Use the [Lasso_TagModule] tag with the name of the substitution or process tag to be checked. The following
example will return the module that defines the [NSLookup] tag, NSLookup.class.

[Lasso_TagModuleName: 'NSLookup']

�	 NSLookup.class

Page Execution Time Limit
Lasso includes a limit on the length of time that a Lasso page will be allowed to execute. This limit can help
prevent errors or crashes caused by infinite loops or other common coding mistakes. If a Lasso page runs for
longer than the time limit then it is killed and a critical error is returned and logged.

The execution time limit is set to 10 minutes (600 seconds) by default and can be modified or turned off
in the Setup > Global > Settings section of Lasso Admin. The execution time limit cannot be set below 60
seconds.

Table 9: Time Limit Tags

Tag	 Description	

[Lasso_ExecutionTimeLimit]	 Sets the time limit for an individual Lasso page.
		

The limit can be overrided on a case by case basis by including the [Lasso_ExecutionTimeLimit] tag at the top
of a Lasso page. This tag can set the time limit higher or lower for the current page allowing it to exceed the
default time limit. Using [Lasso_ExecutionTimeLimit: 0] will deactivate the time limit for the current Lasso page
altogether.

On servers where the time limit should be strictly enforced, access to the [Lasso_ExecutionTimeLimit] tag can be
restricted in the Setup > Global > Tags and Security > Groups > Tags sections of Lasso Admin.

5 6 5

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 4 3 – C o n t r o l T a g s

Asynchronous tags and compound expressions are not affected by the execution time limit. These processes
run in a separate thread from the main Lasso page execution. If a time limit is desired in an asynchronous tag
the [Lasso_ExecutionTimeLimit] tag can be used to set one.

Note: When the execution time limit is exceeded the thread that is processing the current Lasso page will be
killed. If there are any outstanding database requests or network connections open there is a potential for some
memory to be leaked. The offending page should be reprogrammed to run faster or exempted from the time
limit using [Lasso_ExecutionTimeLimit: 0]. Restarting Lasso Service will reclaim any lost memory.

Code Compilation and Caching
Lasso processes pages using a built-in compiler and automatically caches compiled pages for speed. The
compiler checks the modification time of the disk file corresponding to each Lasso page it processes and
automatically updates the cache each time a disk file is modified. The [Compiler_RemoveCachedDoc] tag can also
be used to explicitly flush a Lasso page out of Lasso’s cache and force the Lasso page to be re-compiled the
next time it is called.

For example, the following tag would remove the Lasso page /default.lasso from the cache of compiled pages.

[Compiler_RemoveCachedDoc: '/default.lasso']

Table 10: Time Limit Tags

Tag	 Description	

[Compiler_RemoveCachedDoc]	 Removes a Lasso page from Lasso's cache forcing the page to be re-compiled
the next time it is called. Should be called with the absolute path to the file.

		

Page Pre- and Post-Processing
Lasso has the ability to perform code before each page load on a site or after a page load. This makes it
possible to modify the environment in which pages run and to perform post-processing on the output which
Lasso generates.

Note: The URL rewrite feature of Lasso provides a front-end for installing pre-process actions in a site. Visit the
Setup > URL Rewrite section in Lasso Site Administration and see the section on URL rewrite in the Lasso Setup
Guide for more information.

Pre- and post-process actions can be used to:

	 •	Include a file before every page in the site runs.

	 •	Restrict all access to a site to a range of IP addresses.

	 •	Log or time all page loads on a site.

	 •	Run a redirect preprocessor to parse formatted URLs.

	 •	Optimize the HTML code that will be delivered to the browser to increase delivery speed.

Pre-process actions can only be created by the site administrator and are usually registered at startup time by
placing a file in LassoStartup. A pre-process action will run for every page on the site before any code on the
page is executed.

If a pre-process action calls the [Abort] tag then no other pre-process actions or any code on the current page
will execute. Post-process actions will still execute even if a pre-process action aborts.

Warning: Pre-process actions must be thorougly debugged before they are activated on a live server. A syntax
error in a pre-process action can cause every page on a server to fail.

Post-process actions can only be created while a page is executing. In order to have a post-process action on
every page it must be registered from a pre-process action. Post-process actions are run after all the code on
the page has executed, but before it is delivered to the Web client.

5 6 6

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 4 3 – C o n t r o l T a g s

Table 11: Pre and Post-Process Tags

Tag	 Description	

[Define_AtBegin]	 Defines a pre-process action. Can only be called by the site administrator. Usually
called in a startup item. Requires one parameter which is an invokable object.

[Define_AtEnd]	 Defines a post-process action. Can only be called on the page where the post-
process action will occur (or from a pre-process action). Requires one parameter
which is an invokable object.

		

Both [Define_AtBegin] and [Define_AtEnd] require an invokable object as a parameter. There are three common
invokable objects which are used with thise tags.

	 •	Compound Expression – A compound expression can include code written in LassoScript style. The code
does not need a return value and can reference page variables. The compound expression can be specified
directly within the [Define_AtBegin] or [Define_AtEnd] tag. The compound expression will be called without any
parameters.

[Define_AtBegin: { … Compound Expression … }]

	 •	Tag Reference – A built-in or custom tag can be referenced using the \ operator. The tag will be called
without any parameters. Custom tags must be available globally (defined at startup or in an on-demand
library) to be accessible from a pre-process action. The tag will be called without any parameters. In this
example a custom tag called [Example_Cleanup] is registered as a post-process action.

[Define_AtEnd: \Example_Cleanup]

	 •	Pair – A pair can be used to pass parameters to either a compound expression or a tag reference. The first
element in the pair should be the compound expression or tag reference. The second element in the pair
should be an array of parameters to pass to the first element.

The two precding examples are shown here as invokable pairs with parameters.

[Define_AtBegin: (Pair: { … Compound Expression … }=(Array: … Parameters …))]

[Define_AtEnd: (Pair: \Example_Cleanup=(Array: (Response_FilePath)))]

To include a file before each page in a site executes:

In LassoStartup place a .lasso Lasso page with the following code. [Define_AtBegin] is used to register the tag
[Include] with the parameter /preprocess.lasso. The code in this file will be executed before each page on the site
is executed.

[Define_AtBegin: (Pair: \Include = (Array: '/preprocess.lasso'))]

If the include defines custom tags it should be wrapped in [Namespace_Using] … [/Namespace_Using] tags so that
the tags are defined within the page namespace rather than in the global namespace.

[Define_AtBegin: { Namespace_Using: '_page_'; Include: '/preprocess.lasso'; /Namespace_Using; }]

To clean up HTML code before serving Web pages:

Use [Define_AtEnd] to call a series of regular expressions that clean up the [Content_Body] of the page. This tag
holds a reference to the text that Lasso is going to serve to the Web client. By modifying the value referenced
by this tag directly the text that will be served can be changed. In the following example a series of regular
expressions clean up extra white space in the HTML text.

5 6 7

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 4 3 – C o n t r o l T a g s

<?LassoScript
Define_AtEnd: {
	 Content_Body->trim;
	 Content_Body = (String_ReplaceRegExp: Content_Body, -Find='\r\n|\n', -Replace='\r');
	 Content_Body = (String_ReplaceRegExp: Content_Body,-Find='[\t]+', -Replace=' ');
	 Content_Body = (String_ReplaceRegExp: Content_Body, -Find=' ?\r ?', -Replace='\r');
 	 Content_Body = (String_ReplaceRegExp: Content_Body, -Find='>\r+<', -Replace='>\r<');
	 Content_Body = (String_ReplaceRegExp: Content_Body, -Find='\r\r+', -Replace='\r\r');
};
?>

To time every page load on a site:

In LassoStartup place a .lasso Lasso page with the following code. Two custom tags are defined. The first
[_at_end_timer] takes a single parameter which is the time the page started executing and logs a message at
the detail level. The second [_at_begin_timer] registers the [_at_end_timer] tag as a post-process action with an
appropriate variable. The [Define_AtBegin] tag then registered [_at_begin_timer] as a pre-process action.

<?LassoScript
	 Log_Detail: 'TIMING All page loads will be timed on this site.';

	 Define_Tag: '_at_end_timer', -Required='start';
		 Local: 'end' = _date_msec;
		 Local: 'time' = (#end - #start) / 1000.0;
		 Log_Detail: 'TIMING ' #time ' secs ' + response_filepath ' ' client_getargs ' '
				 content_type ' ' error_code ' ' error_msg;
	 /Define_Tag;

	 Define_Tag: '_at_begin_timer';
		 Define_AtEnd: (Pair: _at_end_timer = (Array: _date_msec));
	 /Define_Tag;

	 Define_AtBegin: _at_begin_timer;
?>

Site Tags
The [Site_ID] and [Site_Name] tags can be used to return the ID and name of the current site. The [Site_Restart]
tag can be used to force the current site to stop. The site will be restarted automatically when a visitor loads a
URL from the site in their browser.

Table 12: Site Tags

Tag	 Description	

[Site_ID]	 Returns the ID of the current site.

[Site_Name]	 Returns the name of the current site.

[Site_Restart]	 Halts the current site. The site will be automatically restarted when a URL from
the site is loaded by a visitor. Can only be called by the site administrator.

[Site_AtBegin]	 Returns the variable that contains the at begin tasks for a given site. Can only be
called by the site administrator.

		

The [Site_Restart] tag immediately halts the current Lasso site. It is no different than stopping the corre-
sponding Lasso Service process using the controls in Server Administration, the lasso8ctl tools, or the Services
control panel. The tag performs an implicit [Abort] on every page in the site that is currently processing. Since
the [Site_Restart] tag requires administrator permissions it is necessary to either use [Auth_Admin], wrap the tag
in a -Privileged custom tag, or surround the tag by an [Inline] … [/Inline] which provides the site adminstrator
username and password.

5 6 8

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 4 3 – C o n t r o l T a g s

The following tags can only be called from code that is running in the Server Administration site 0. There is
generally no need for a Lasso programmer to call these tags. Please contact LassoSoft if you need more details
about how the Server Administration code works.

Table 13: Server Tags

Tag	 Description	

[Server_SiteStart]	 Requires one parameter which is the ID of a site to be started.

[Server_SiteStop]	 Requires one parameter which is the ID of a site to be stopped.

[Server_SiteIsRunning]	 Requires one parameter which is the ID of a site. Returns True or False.
		

5 6 9

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 4 3 – C o n t r o l T a g s

44
Chapter 44

Threads

This chapter documents how to share access to resources between multiple threads, how to list and
manipulate the currently running threads in Lasso, and how to send messages between threads.

	 •	Introduction provides background information about threads.

	 •	Atomic Operations shows how to easily control access to shared resources.

	 •	Thread Tools includes information about tags to list running threads, abort threads, and change the
priority threads.

	 •	Thread Synchronization explains advanced methodology for synchronizing and sharing resources between
threads.

	 •	Thread Communication explains how to send messages and data between threads.

Introduction
Lasso is a fully multi-threaded environment. Each page is parsed and executed within its own thread,
asynchronous custom tags are executed in their own threads, and background processes such as the email
queue or schedule watcher are executed in their own threads.

The list of currently executing threads within a site can be viewed within Lasso Site Administration in the
Utility > Threads section.

It is important in a multi-threaded environment to synchronize access to resources such as files, global
variables, or database records so that two threads do not attempt to modify the same resource at the same
time. Communication between threads is discussed in the section that follows.

Consider a Lasso page which maintains a global variable recording how many times the page has been
visited. At the top of the page the variable is displayed to the visitor. At the bottom of the page the variable
is incremented by one. Everything will work fine as long as the page is only loaded by one visitor at a time.
However, if the page is loaded by two visitors who overlap a situation can develop where the following
sequence of events happens.

Thread Example

	 1	Visitor A loads the Lasso page by loading the URL in their Web browser.

	 2	Page A starts processing with the value of the global variable, e.g. 100.

	 3	Visitor B loads the Lasso page by loading the URL in their Web browser.

	 4	Page B starts processing with the value of the global variable, e.g. 100. This is the same value as what visitor
A received.

	 5	Page A finishes processing and the global variable is set to a new value, e.g. 101. The new value is based on
the value of the variable that was fetched at the top of the page.

5 7 0

L a s s o 8 . 5 L a n g u a g e G u i d e

	 6	Page B finishes loading and the global variable is set to a new value, also 101. The new value is based on
the value of the variable that was fetched at the top of the page and does not take into account the fact that
visitor A’s page load has already modified the variable.

At the end of the process the global variable has effectively lost track of one visitor. This particular example
could be fixed by reading and incrementing the variable at the top of the page, but for other resources it is
necessary to restrict access so only one thread or page can have access to the resource at a time.

Atomic Operations
An atomic operation allows only one instance of the code contained within to execute at a time. The
[Thread_Atomic] … [/Thread_Atomic] tags can be used to designate an atomic operation. If the operation is called
from multiple page loads or threads then the latter calls will block automatically until the first instance of the
operation has finished running.

The opening [Thread_Atomic] tag requires a single parameter which designates a variable that will be used to
control when the contents of the container tag can execute. Usually, a global variable will be passed to this
tag ensuring that the global will only be accessed by one executing page load or thread at a time. However, a
reference to any variable or shared resource can be used as the basis for the atomic lock.

The following example uses a global to store an array. The code within the [Thread_Atomic] … [Thread_Atomic]
container inserts a value into the array, sorts the array, and then returns the first value from the array.

[Global: 'Ex_Array' = (Array)]
[Thread_Atomic: (Global: 'Ex_Array')]
	 [(Global: 'Ex_Array')->(Insert: #Value)]
	 [(Global: 'Ex_Array')->Sort]
	 [Return: (Global: 'Ex_Array')->First]
[/Thread_Atomic]

If this code is called by multiple visitors loading the page at the same time then the inserts and sorts could be
interleaved so one instance of the code inserted a value after the other instance had already sorted the array.
The [Thread_Atomic] … [Thread_Atomic] tags ensures that the tags within the container completes before the next
execution of the container can begin.

Table 1: Atomic Tags

Type	 Description	

[Thread_Atomic] … [/Thread_Atomic]	 Allows only one instance of the code contained within to execute at a time.
Requires a single parameter which is a global variable (or other reference) that is
used as the basis for the atomic lock.

		

The -Atomic keyword can also be used within custom tag definitions to control global access to a tag or per-
instance access to a data type. See the chapter on Custom Tags and Custom Types for more information.

5 7 1

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 4 4 – T h r e a d s

Thread Tools
Lasso can provide information about the current thread and about all threads executing in the current Lasso
site. The tags in the following table provide information about Lasso’s currently executing threads program-
maticaly. Threads can be aborted or have their priority changes. The list of currently executing threads within
a site can also be viewed within Lasso Site Administration in the Utility > Threads section.

Table 2: Thread Tools

Type	 Description	

[Thread_GetCurrentID]	 Returns the ID of the currently executing thread. This thread will represent the
current page load or an asynchronous process.

[Thread_List]	 Returns an array of IDs for all threads which are currently executing in the Lasso
site. Note that some threads execute very fast so this list may be out of date by
the time it is returned by this tag.

[Thread_Abort]	 Aborts a specified thread. Requires the ID of the thread to abort (defaults to the
current thread). Requires site administrator privilege to abort any thread. Other
users may only abort threads which were created by the same user.

[Thread_Exists]	 Returns true if the specified thread is currently executing. Requires the ID of the
thread to check.

[Thread_Info]	 Returns a map of information about the specified thread. Requires the ID of the
thread to examine (defaults to the current thread). The map contains elements for
the ID, Name, and StartTime of the thread.

[Thread_GetPriority]	 Returns the priority of the specified thread. Requires the ID of the thread to
examine.

[Thread_SetPriority]	 Sets the priority of the specified thread. Requires the ID of the thread to check
and the new integer priority for the thread. The priority can be any integer
between [Thread_Priority_Low] and [Thread_Priority_High]

		

Thread List
The [Thread_List] tag simply provides an array of the IDs of all the currently executing threads in Lasso. These
IDs can then be passed to the [Thread_Info] tag to get more information about what each thread is doing.
Since some threads execute very fast so this list may be out of date by the time it is returned by this tag.

[Thread_List]

�	 array: (178659840), (178503168), (178496000), (178510336), (178408448), (-1610551960)

The thread list should always contain at least five IDs. These includes IDs for the background event scheduler,
email queue handlers, and session manager. One of the threads returned by the [Thread_List] tag will be the
current thread. The ID of this thread can be determined using the [Thread_GetCurrentID] tag.

[Thread_GetCurrentID]

�	 178659840

The [Thread_Exists] tag can be used to determine if a thread ID is still executing. On a busy server many of the
IDs returned by the [Thread_List] tag may already have finished executing before the [Thread_Exists] tag can be
called just milliseconds later.

[Thread_Exists: 178496000]

�	 True

5 7 2

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 4 4 – T h r e a d s

Thread Info
Information about any of the currently executing threads can be returned by the [Thread_Info] tag. The result is
a map with three elements named ID, Name, and StartTime. The name will be the file path to the page that is
being loaded, the name of an executing asynchronous tag, or a default which simply identifies the thread ID.
The info for the current thread can be returned by calling [Thread_Info] without a parameter.

[Thread_Info]

�	 map: (name)=(THREAD 178326016), (id)=(178326016), (startTime)=(03/06/2006 18:56:57)

The info for background processes can be returned by calling [Thread_Info] with the IDs of the other running
threads. For example, this thread ID returns information about one of the background email queue processes
which run as long as Lasso Service is operational. The thread below has been running for two hours longer
than the thread above.

[Thread_Info: 178496000]

�	 map: (name)=(SMTP: Email Queue (Main)), (id)=(178496000), (startTime)=(03/06/2006 16:54:19)

If a thread has already finished executing when the [Thread_Info] tag is called then it will return an empty map.

Aborting Threads
Any thread can be aborted by calling [Thread_Abort] with its ID. If called with a parameter then [Thread_Abort]
aborts the current thread and is indistinguishable from calling the [Abort] tag. The site administrator can abort
any thread which is currently running in the Lasso site. Other users can only abort threads that were started
by the same user. The following tag would abort the background email queue process whose info is shown
above.

[Thread_Abort: 178496000]

Aborting a thread has two stages. First, Lasso attempts to abort the thread gracefully by waiting until the
current operation completes and allowing the thread to clean up all of its allocated memory and resources.

If the thread does not abort gracefully within a time limit then the thread is terminated forcefully. When a
thread is terminated it may leave memory and other resources in an indeterminate state. Lasso will be unable
to reclaim the lost memory until it restarts. This is a form of memory leak.

If possible, asynchronous processes should be written in such a way that they can be aborted by sending
a single to the thread (see the section on Thread Communication Tools later in this chapter) rather than
simply aborting them.

Thread Priorities
Each executing thread has a priority which determines how preferentially the thread is treated by the oper-
ating system’s scheduler. High priority threads will tend to execute faster than low priority threads. However,
the scheduler will generally ensure that all threads are eventually executed. There is no guarantee that a high
priority thread will necessarily finish before a low priority thread.

Thread priorities are specified by integers within a range from [Thread_Priority_Low] to [Thread_Priority_High].
The actual values for these limits will vary from operating system to operating system. [Thread_Priority_Default]
returns an integer in the middle of this range which represents the default priority for new threads.

Table 3: Thread Priorities

Type	 Description	

[Thread_Priority_Default]	 The default integer priority for all Lasso threads.

[Thread_Priority_High]	 Returns the maximum integer priority value for threads. High priority threads are
executed preferentially over lower priority threads.

[Thread_Priority_Low]	 Returns the minimum integer priority value for threads. Low priority threads are
executed deferentially to higher priority threads.

		

5 7 3

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 4 4 – T h r e a d s

The [Thread_GetPriority] tag returns the current priority for a thread. By default this will return the ID
of the currently executing thread. The return value should be the same value as that returned by
[Thread_Priority_Default] unless the thread priorities have been modified.

[Thread_GetPriority]

�	 31

The priority of the current thread can be changed using [Thread_SetPriority]. The following code will set the
current thread to the maximum possible priority. Note that the ID of the thread whose priority is to be
manipulated must be passed into this tag.

[Thread_SetPriority: Thread_GetCurrentID, Thread_Priority_High]

Thread Synchronization
The following table lists the tags which Lasso provides to synchronize access to shared resources between
threads. When possible, it is recommended to use the [Thread_Atomic] … [/Thread_Atomic] tags described earlier.
However, these tools provide more fine grained control which may be necessary for certain applications.

Table 4: Thread Synchronization Tools

Type	 Description	

[Thread_Lock]	 A simple per-thread lock which allows sequential access to a shared resource.

[Thread_Semaphore]	 A counter that can be incremented or decremented to provide multiple threads
access to a shared resource.

[Thread_RWLock]	 A lock that allows multiple readers, but only one writer for a shared resource.
		

Thread Lock
A [Thread_Lock] allows multiple pages or asynchronous tags to use a shared resource sequentially. A
[Thread_Lock] is usually created and stored in a global variable so all pages or tags can access it. The
[Thread_Lock] has two member tags.

Table 5: [Thread_Lock] Member tags:

Tag	 Description	

[Thread_Lock->Lock]	 Accepts an optional parameter which is the number of milliseconds to wait before
timing out. Returns True if the lock was successful or False if the timeout value
was reached.

[Thread_Lock->Unlock]	 Unlocks a previously established lock. If there is a thread waiting for a lock then it
will be allowed to continue.

		

To control concurrent access to a shared resource:

In the following example, a global variable Counter is used by a Web page to store the number of times that
the Web page has been accessed. A [Thread_Lock] is used to ensure that only one page accesses the variable at a
time. A timeout of 1000 (one second) is used to ensure that no page ends up waiting too long for access to the
variable.

In a page in the LassoStartup folder the following two variables are defined. Counter is the global variable that
will store the number of times the page has been loaded. Counter_Lock is the [Thread_Lock] that allows for
sequential access to the variable.

[Global: 'Counter' = 0]
[Global: 'Counter_Lock' = (Thread_Lock)]

5 7 4

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 4 4 – T h r e a d s

In the Lasso page that visitors will load the following code attempts to lock Counter_Lock. The Counter is only
modified if the attempt to get the lock is successful.

[If: (Global: 'Counter_Lock')->(Lock: 1000) == True]
	 [(Global: 'Counter') += 1]
	 [(Global: 'Counter_Lock')->Unlock]
[/If]

The timeout can be used to weigh the importance of having an accurate counter against the length of delay
that a site visitor should be subjected to in a busy site. With a simple example like this the timeout will likely
never be reached even on a very busy site.

Use of [Thread_Lock] is entirely voluntary and can be used to handle access to any shared resource. It is up
to the site designer to create the necessary [Thread_Lock] variables and then use them when accessing shared
resources.

Thread Semaphore
A [Thread_Semaphore] is a thread lock which has a counter. The
[Thread_Semaphore] is initialized with a maximum number of concurrent accesses that can occur.
[Thread_Semaphore] has two member tags which are used to increment or decrement the number of current
accesses.

Table 6: [Thread_Semaphore] Member Tags

Tag	 Description	

[Thread_Semaphore->Increment]	 Requires a single parameter which is the amount to increment the semaphore.
Does not return until the semaphore can be incremented by that amount. A
second, optional parameter specifies the number of milliseconds to wait before
timing out.

[Thread_Semaphore->Decrement]	 Requires a single parameter which is the amount to decrement the semaphore.
		

To allow a fixed number of accesses to a shared resource:

A [Thread_Semaphore] can be used with an appropriate maximum value. For example, a page which displays
site-wide statistics might take a long time to load so it is desirable to only allow five users to access the page
at the same time. A semaphore can be used to block any additional users from seeing the page until one or
more of the other users’ page loads complete.

The following code would be placed into the LassoStartup folder in order to store the semaphore in a global
variable. The semaphore is set to only allow five concurrent users.

[Global: 'Page_Semaphore' = (Thread_Semaphore: 5)]

On the page which displays the site wide statistics the semaphore is incremented at the top of the page (with
a timeout of 5 seconds) and then decremented at the bottom. If more than five users are already loading the
page then the increment at the top will pause until one of the users’ page finishes.

[If: (Global: 'Page_Semaphore')->(Increment: 1, 5000)]
	 … Contents of the Page …
	 [(Global: 'Page_Semaphore')->(Decrement: 1)]
[Else]
	 <p>Page is busy. Try again later.
[/If]

5 7 5

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 4 4 – T h r e a d s

Thread Read/Write Lock
A [Thread_RWLock] is a thread lock which allows an unlimited number of simultaneous reads to occur on a
shared resource, but only allows one thread to write to the resource at a time. Write access will not be granted
until all reads and writes have completed. Read access will not be granted as long as the write access is
currently in use. [Thread_RWLock] has four member tags which are used to establish and release read access and
write access.

Table 7: [Thread_RWLock] Member Tags

Tag	 Description	

[Thread_RWLock->ReadLock]	 Establishes a read lock. If a write lock is currently in place then the tag will pause
until the write lock is released. Since read locks are not exclusive it will not pause
if additional read locks have already been granted.

[Thread_RWLock->ReadUnlock]	 Releases a read lock.

[Thread_RWLock->WriteLock]	 Establishes a write lock. If one or more read locks or a write lock is in place then
the tag will pause until the locks are released.

[Thread_RWLock->WriteUnlock]	 Releases a write lock.
		

To control write access to a resource while allowing multiple reads:

Most resources can be accessed by multiple threads which only need to read from the resource, but require
that only one client write to the resource at the same time. In the following example a global variable
contains a set of server-wide preferences that can be read by many pages at the same time, but must only be
modified by one page at a time.

In a page in the LassoStartup folder the following two variables are defined. Preferences is the global variable
that will store server-wide preferences such as the administrator’s email address and a count of how many
page loads there have been. Preferences_Lock is the [Thread_RWLock] that controls access to the variable.

[Global: 'Preferences' = (Map: 'Email' = 'administrator@example.com')]
[Global: 'Preferences_Lock' = (Thread_RWLock)]

In each Lasso page in the site a read lock is established on the preferences. As many Lasso pages as are needed
can concurrently read the preferences.

[(Global: 'Preferences_Lock')->(ReadLock)]
	 … Contents of the Page …
[(Global: 'Preferences_Lock')->(ReadUnlock)]

In a page which modifies the preferences a write lock needs to be established. The following code first
releases the read lock, then establishes a write lock, modifies the global Preferences variable, and finally
releases the write lock and re-establishes the read lock for the remainder of the page.

[(Global: 'Preferences_Lock')->(ReadUnlock)]
	 [(Global: 'Preferences_Lock')->(WriteLock)]
		 [(Global: 'Preferences')->(Insert: 'Email' = (Action_Param: 'Email'))]
	 [(Global: 'Preferences_Lock')->(WriteUnlock)]
[(Global: 'Preferences_Lock')->(ReadLock)]

In the example above, the [Thread_RWLock] tags are specified without a timeout value. The page which is
loaded by the visitor who wants to change the preferences will simply idle until each of the pages which have
established a read lock are finished loading.

Thread Communication
The previous section documented methods for sharing data between threads using global variables. Often it
is desirable to not just share data, but to push data from thread to thread. This section documents techniques
for sending signals and data between threads.

5 7 6

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 4 4 – T h r e a d s

Table 8: Thread Communication Tools

Type	 Description	

[Thread_Event]	 A simple signalling method which allows threads to idle until they receive a signal
to continue.

[Thread_Pipe]	 Allows variables and data objects to be sent from thread to thread. The
foundation of more complex messaging systems.

		

Thread Events
Thread events are simple signals that are either in an active or inactive state. One or more threads can wait
for a signal to occur. A triggering thread can cause one or all of the threads waiting for the signal to continue
processing. No data can be passed using thread events.

Table 9: [Thread_Event] Member Tags:

Tag	 Description	

[Thread_Event->Wait]	 Accepts an optional timeout value in milliseconds. If a signal is received before
the timeout then True is returned otherwise False is returned. With no timeout
value the tag will pause forever.

[Thread_Event->Signal]	 Allows one thread which is waiting for this signal to continue.

[Thread_Event->SignalAll]	 Allows all threads which are waiting for this signal to continue.
		

To create an asynchronous tag that waits for a signal:

Create a [Thread_Event] signal in a page variable. Within a custom asynchronous tag, wait until the signal is
triggered before continuing.

In the following example a custom tag waits for one second for the page to reach the end. It then logs
whether the page completed in one second or not to the console using the [Log_Warning] tag. At the top of the
page the custom tag and the signal are defined. The custom tag is called to start the one second timer. At the
bottom of the page the signal is triggered.

[Global: 'mySignal' = (Thread_Event)]
[Define_Tag: 'OneSecond', -Async]
	 [If: (Global: 'mySignal')->(Wait: 1000) == True]
		 [Log_Warning: 'The page took less than 1 second to load.']
	 [Else]
		 [Log_Warning: 'The page took more than 1 second to load.']
	 [/If]
[/Define_Tag]
[OneSecond]

 … Page Contents …

[(Global: 'mySignal')->Signal]

Each time the page loads one of the messages will be logged to the console depending on how long the page
took to process.

Thread Pipes
Thread pipes allow data to be passed from thread to thread. The [Thread_Pipe] type has two member tags.

Table 10: [Thread_Pipe] Member Tags:

Tag	 Description	

[Thread_Pipe->Set]	 Accepts a value which will be placed into the pipe. A subsequent (or waiting) call
to [Thread_Pipe->Get] will retrieve the value.

5 7 7

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 4 4 – T h r e a d s

[Thread_Pipe->Get]	 Accepts an optional parameter which is a timeout value in milliseconds. If an
object is waiting in the pipe or is placed in the pipe before the timeout value then
it is returned. Otherwise null is returned when the timeout value is reached. If the
timeout value is omitted then the tag will wait forever for an object to arrive.

		

To create an asynchronous tag that will process messages:

Create a [Thread_Pipe] in a global variable and an asynchronous tag in the LassoStartup folder. The
asynchronous tag will idle until an event is placed into the pipe. For this example, the tag will log each
received event to the console, but more complex processing is possible.

In a page in the LassoStartup folder the [Thread_Pipe] and custom tag [Ex_Watcher] are defined. The custom
tag has a [While: True] loop that ensures that it loops forever since the condition will always be true. The
[Thread_Pipe->Get] tag has a timeout value of 10000 (10 seconds) so it can send a Still Waiting… message to the
console. If a message of Abort is received then the tag aborts without doing any further processing.

[Global: 'myPipe'= (Thread_Pipe)]
[Define_Tag: 'Ex_Watcher', -Async]
	 [While: True]
		 [Local: 'Message' = (Global: 'myPipe')->(Get: 10000)]
		 [Select: #Message]
			 [Case: 'Abort']
				 [Return]
			 [Case: Null]
				 [Log_Warning: 'Message: Still Waiting…']
			 [Case]
				 [Log_Warning: 'Message: ' + #Message]
		 [/Select]
	 [/While]
[/Define_Tag]
[Ex_Watcher]

In a Lasso page a message can be sent to the watcher by placing it into the pipe using the [Thread_Pipe->Set]
tag. For example, the following code places a message saying I Got It! into the pipe. The message will appear in
the console immediately, but no results will be returned to the page.

[(Global: 'myPipe')->(Set: 'I Got It!')]

5 7 8

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 4 4 – T h r e a d s

45
Chapter 45

Tags and Compound Expressions

This chapter documents advanced programming techniques.

	 •	Tag Data Type introduces the tag data type and its member tags.

	 •	Compound Expressions shows how tags can be created using simple expression notation.

	 •	LassoScript Parsing introduces the Lasso type which parses Lasso files allowing them to be inspected
programmatically or displayed using syntax coloring within a Web browser.

Tag Data Type
Tags are represented by Lasso as objects which belong to a data type. Just like arrays or maps, tag objects have
member tags which allow them to be manipulated. Tags can be stored in variables or in complex data types
such as maps or arrays.

Since calling a tag, e.g. [Action_Params], returns the value that results when the tag is run rather than a reference
to the tag, special steps must be taken to get a reference to the tag itself. Tag objects can be found in four
ways.

	 •	\ Symbol – The \ symbol can be used to find a tag object. For example, \Field will return a reference to the
[Field] tag and \Action_Params will return a reference to the [Action_Params] tag. The following code stores a
reference to [Action_Params] in a variable.

[Variable: 'myActionParamsTag' = \Action_Params]

	 •	Tags Map – Lasso maintains a global tag map which can be retrieved using the [Tags] tag. An individual tag
can be referenced using the
[Map->Find] tag. For example, the following code stores a reference to [Action_Params] in a variable.

[Variable: 'myActionParamsTag' = Tags->(Find: 'Action_Params')]

	 •	Data Type Properties – Each instance of a data type maintains a list of properties for that instance which
can be retrieved using the
[Null->Properties] tag. These include both instance variables and member tags. For example, the following
code stores a reference to the [Array->Get] tag in a variable.

[Variable: 'myGetTag' = Array->Properties->Second->(Find: 'Get')]

	 •	Compound Expressions – These are discussed in the next section. Compound expressions allow tags to be
created on the fly. For example, the following code stores a compound expression that returns the number
5 in a variable.

[Variable: 'myTag' = { Return: 5; }]

5 7 9

L a s s o 8 . 5 L a n g u a g e G u i d e

Table 1: Tag Data Type Member Tags

Tag	 Description	

[Tag->Invoke]	 Executes the tag as if it had been called normally. The parameters passed to this
tag are passed as the parameters for the tag.

[Tag->Run]	 Executes the tag as if it had been called normally. The parameters to this tag are
discussed in the table that follows.

[Tag->Eval]	 Evaluates a tag or compound expression in the current context. No parameters
can be passed to the tag or compound expression.

[Tag->asType]	 Executes the tag as a type initializer. Accepts the same parameters as [Tag-
>Run]

[Tag->asAsync]	 Executes the tag in a new thread. Accepts the same parameters as [Tag->Run].

[Tag->Description]	 Returns the description of the tag if defined.

[Tag->ParamInfo]	 Returns an array of information about the parameters which the tag requires.
Each element of the array has members ParamName, ParamType, and
IsRequired.

[Tag->ReturnType]	 Returns the type of value the tag will return.
		

The [Tag->Run] tag is most commonly used with built-in Lasso tags and with custom tags. This tag accepts the
parameters outlined in the following table.

Table 2: [Tag->Run] Parameters

Parameter	 Description	

-Params	 An array of parameters to pass to the tag. Can be omitted if the tag does not
require any parameters.

-Owner	 Identifies the variable which contains the data type that should be operated on,
i.e. the object that would be specified to the left of the -> symbol. Required for
member tags.

-Name	 Name of the tag. Many built-in Lasso tags such as [Math_…], [String_…],
[Server_…], etc. behave differently depending on what tag name they are called
with. The -Name parameter is required for these tags to operate properly.

		

Note: Technically any data type can be passed instead of an array as the value for -Params. However, only an array
will satisfy required parameters and be made available as local variables within the custom tag. For best results
an array should always be used.

To run a tag:

Use the [Tag->Run] tag on a stored reference to the tag which is to be run. The following examples each retrieve
a tag from the [Tags] or [Null->Properties] map and then run it using appropriate parameters.

	 •	The [Action_Params] tag can be called as follows. First a reference to the tag is stored in a variable, then
[Tag->Run] is called on the stored reference. It is always best to specify the -Name parameter explicitly since it
is required by many built-in tags.

[Variable: 'myActionParamsTag' = Tags->(Find: 'Action_Params')]
[$myActionParamsTag->(Run: -Name='Action_Params')]

�	 (Array: (Pair: (-Nothing)=()), (Pair: (-OperatorLogical)=(and)),
(Pair: (-MaxRecords)=(50)), (Pair: (-SkipRecords)=(0)))

 	 •	The [Array->Get] tag can be called by retrieving the tag from the [Array->Properties] map and then calling it
using [Tag->Run] with the array that is to be acted upon referenced in the -Owner parameter.

[Variable: 'myArray' = (Array: 'Alpha', 'Beta', 'Gamma')]
[Variable: 'myGetTag' = Array->Properties->Second->(Find: 'Get')]
[$myGetTag->(Run: -Params=(Array: 2), -Owner=$myArray, -Name='Get')]

�	Beta

5 8 0

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 4 5 – T a g s a n d C o m p o u n d E x p r e s s i o n s

The previous examples demonstrate how to use the tag member tags to execute tags, but each example is easy
enough to write using simple LassoScript. The following example demonstrates how tag references can be
used to create a new type of custom tag that can operate on each element of an array.

To run a tag on each element of an array:

Create a custom tag which accepts an array and a reference to a tag as parameters. The referenced tag will be
used on each element of the array in turn. The custom tag [Ex_VisitArray] is defined as follows.

[Define_Tag: 'Ex_VisitArray', -Required='myArray', -Required='myTag']
	 [Iterate: #myArray, (Local: 'myItem')]
		 [#myItem= #myTag->(Run: -Params=(Array: #myItem))]
	 [/Iterate]
[/Define_Tag]

This tag can now be used to apply a tag to each element of an array. For example, it could be used to replace
each element of an array by the value of a variable of the same name. An array and three variables are created
and the [Variable] tag is found in the [Tags] map.

[Variable: 'theArray' = (Array: 'Alpha', 'Beta', 'Gamma')]

[Variable: 'Alpha' = 100, 'Beta' = 1234, 'Gamma' = 987]

[Ex_VisitArray: $theArray, Tags->(Find: 'Variable')]

[Variable: 'theArray']

�	 (Array: 100, 1234, 987)

Combined with the use of compound expressions which are described in the next section this can be a very
powerful technique for batch processing of data which is stored in an array.

To get information about a tag:

The [Tag->Description], [Tag->ParamInfo], and [Tag->ReturnType] tags can be used to get information about a tag. For
properly defined tags this information can prove invaluable in determining how to use an unknown tag.

The following example shows the definition of a tag [myTag] and then the information that can be retrieved
about it.

[Define_Tag: 'Ex_Repeat',
		 -Required='String', -Type='string',
		 -Optional='Repeat', -Type='integer',
		 -ReturnType='String',
		 -Description='[Ex_Repeat: String, Integer] => String']
	 [Return: #String * (Integer: (Local: 'Repeat'))]
[/Define_Tag]

Description: [Encode_HTML: \Ex_Repeat->Description]

Returns: [Encode_HTML: \Ex_Repeat->ReturnType]

Params [Iterate: \Ex_Repeat->ParamInfo, (Var: 'param')]
	
[Loop_Count]: [Encode_HTML: $param->ParamName]
	 [If: $param->ParamType == 'null'] (Any) [Else] ([Encode_HTML: $param->ParamType]) [/If]
	 [If: $param->IsRequired]Required[/If]
[/Iterate]

�	Description: [Ex_Repeat: String, Integer] => String
Returns: String
Params:
1: String (string) Required
2: Repeat (integer)

5 8 1

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 4 5 – T a g s a n d C o m p o u n d E x p r e s s i o n s

Compound Expressions
Compound expressions allow for tags to be created within Lasso code and executed immediately. Compound
expressions can be used to process brief snippets of Lasso code inline within another tag’s parameters or can
be used to create reusable code blocks.

Evaluating Compound Expressions
A compound expression is defined within curly braces { }. The syntax within the curly braces should match
that for LassoScripts using semi-colons between each Lasso tag. For example, a simple compound expression
that adds 6 to a variable myVariable would be written as follows. The expression can reference page variables.

[Variable: 'myExpression' = { $myVariable += 6; }]

The compound expression will not run until it is asked to execute using the [Tag->Eval] tag. The expression
defined above can be executed as follows.

[Variable: 'myVariable' = 5]
[$myExpression->Eval]
[Variable: 'myVariable']

�	11

A compound expression returns values using the [Return] tag just like a custom tag. A variation of the
expression above that simply returns the result of adding 6 to the variable, without modifying the original
variable could be written as follows.

[Variable: 'myExpression' = { Return: ($myVariable + 6); }]

This expression can then be called using the [Tag->Eval] tag and the result of that tag will be the result of the
stored calculation.

[Variable: 'myVariable' = 5]
[$myExpression->Eval]

�	11

Alternately, the expression can be defined and called immediately. For example, the following expression
checks the value of a variable myTest and returns Yes if it is True or No if it is False. Since the expression is
created and called immediately using the [Tag->Eval] tag it cannot be called again.

[Variable: 'myTest'= True]
[Encode_HTML: { If: $myTest; Return: 'Yes'; Else; Return: 'No'; /If; }->Eval]

�	Yes

Running Compound Expressions
The same conventions for custom tags may be used within a compound expression provided it is executed
using the [Tag->Run] tag. Compound expressions which are run can access the [Params] array and define local
variables.

For example, the following expression accepts a single parameter and returns the value of that parameter
multiplied by itself. The expression is formatted similar to a LassoScript using indentation to make the flow
of logic clear.

[Variable: 'myExpression' = {
	 Local: 'myValue' = (Params->(Get: 1));
	 Return: #myValue * #myValue;
}]

This expression can be used as a tag by calling it with the [Tag->Run] tag with an appropriate parameter. The
following example calls the stored tag with a parameter of 5.

5 8 2

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 4 5 – T a g s a n d C o m p o u n d E x p r e s s i o n s

[Encode_HTML: $myExpression->(Run: -Params=(Array: 5))]

�	25

When combined with the [Ex_VisitArray] tag that was defined in the previous section, a compound expression
can be used to modify every element of an array in place. In the following example, the compound
expression above is used to square every element of an array.

[Variable: 'myArray' = (Array: 1, 2, 3)]
[Ex_VisitArray: $myArray, $myExpression]

�	 (Array: (1), (4), (9))

LassoScript Parsing
Lasso includes a Lasso parser data type that accepts a Lasso file or string containing a LassoScript snippet as
a parameter. The Lasso parser data type parses the Lasso code and its member tags can be used to inspect the
parsed form of the Lasso code.

This data type makes it possible to programmatically inspect Lasso files, checking what tags are used, whether
tags are properly opened and closed, simple syntax checking, and more. It also makes it possible to display
Lasso code to site visitors in a Web browser using syntax coloring.

Table 3: Lasso Parser Type Tag

Tag	 Description	

[Lasso_Parser]	 The Lasso_Parser type requires a string containing Lasso code or a [File] object
representing a Lasso file. By default only the Lasso code in a file is considered.
Optional parameters allow -Delimiters and -Plaintext to be included in the parsed
representation of the file as well.

		

Note: The [Lasso_Parser] type was previously the [LDML] tag. The name was changed in Lasso Professional 8.0.6.

The [Lasso_Parser] type accepts either a string containing some source code or a [File] object referencing a Lasso
file as a parameter. It parses all of the Lasso code and generates a list of tokens representing each delimiter,
keyword, tag name, parameter, symbol, etc. within the LassoScript source.

To parse a Lasso file:

In this example the following Lasso code is stored in a file named Info.Lasso.

<?LassoScript
	 '
Address: ' + Client_Address;
?>

The file is parsed and the individual tokens within are output on individual lines using this code. The
[Lasso_Parser] tag is called using [Include_Raw] to read in the raw source of the Info.Lasso file. The -Delimiters
and -Plaintext keywords are specified to include tag starts and ends and HTML text within the parsed output.
[Iterate] … [/Iterate] is used to cycle through all the tokens in the source and output each one.

<?LassoScript
	 Var: 'Tokens' = Lasso_Parser(Include_Raw('test.lasso'), -Delimiters, -Plaintext);
	 '
Token Count: ' + $Tokens->Size;
	 '
Char Length: ' + $Tokens->Length;
	 Iterate($Tokens, Var('Token'));
		 '
' + Loop_Count + ': ' + Encode_HTML($Token);
	 /Iterate;
?>

When the code above is run the output is as follows. The file contains five tokens and is 51 characters long.
Each of the five tokens is output individually.

5 8 3

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 4 5 – T a g s a n d C o m p o u n d E x p r e s s i o n s

➜	Token Count: 5
Char Length: 51
1: <?LassoScript
2:
Address:
3: +
4: Client_Address
5: ?>

The member tags of the Lasso parser data type can be used to get more information about the individual
tokens within the source code. The following table lists the available member tags and then examples of how
to use those member tags follow.

Table 4: Lasso Parser Type Member Tags

Tag	 Description	

[Lasso_Parser->HasMore]	 Returns True if the source has more tokens. Used with [Lasso_Parser->Next] to
advanced through the tokens.

[Lasso_Parser->Next]	 Advances the current token and returns the text of the now-current token.

[Lasso_Parser->Position]	 Returns the position of the current token as determined by [Lasso_Parser->Next].

[Lasso_Parser->TokenType]	 Returns the type of the current token or if given an integer position the type of
that token. See the following table for a list of possible types.

[Lasso_Parser->Offset]	 Returns the character offset of the current token or if given an integer position
the character offset of that token.

[Lasso_Parser->TokenLength]	 Returns the character length of the current token or if given an integer position
the character length of that token.

[Lasso_Parser->Length]	 Returns the length in characters of the source.

[Lasso_Parser->Size]	 Returns the number of tokens in the source.

[Lasso_Parser->Get]	 Requires a single integer position. Gets the specified token from the source.
		

The member tags of the Lasso parser type are split into three groups.

	 •	The [Lasso_Parser->Length] tag simply returns the length of the source code in characters. You can also output
the source code by casting the Lasso parser object to string as in [String: $Tokens].

	 •	The [Lasso_Parser->Get] and [Lasso_Parser->Size] tags are implemented for [Iterate] compatibility. These tags
can be used to quickly inspect the tokens within the source code.

	 •	More information about each individual token can be returned using the [Lasso_Parser->HasMore] tag within
a [While] … [/While] condition and the [Lasso_Parser->Next] tag to advance through the tokens. The following
code will display much the same output as the [Iterate] example above.

<?LassoScript
	 Var: 'Tokens' = Lasso_Parser(Include_Raw('test.lasso'), -Delimiters, -Plaintext);
	 While($Tokens->HasMore);
		 '
' + Loop_Count + ': ' + Encode_HTML($Tokens->Next);
	 /While;
?>

➜	1: <?LassoScript
2:
Address:
3: +
4: Client_Address
5: ?>

Additional member tags provide information about each token. The [Lasso_Parser->Position] tag returns the
position of the current token. The [Lasso_Parser->TokenType] tag returns the type of the current token (see
the following table for a full list of possible t ypes). The [Lasso_Parser->Offset] tag returns the character offset
within the source of the current token and the [Lasso_Parser->TokenLength] tag returns the length in characters
of the current token.

5 8 4

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 4 5 – T a g s a n d C o m p o u n d E x p r e s s i o n s

A more complete example than that above will output significantly more information about each token
within the source. The type of each token and the character offset and length of each token are output.

<?LassoScript
	 Var: 'Tokens' = Lasso_Parser(Include_Raw('test.lasso'), -Delimiters, -Plaintext);
	 While($Tokens->HasMore);
		 '
' + Loop_Count + ': ' + Encode_HTML($Tokens->Next);
		 ' - ' + $Tokens->TokenType;
		 ' (' + $Tokens->Offset + ', ' + $Tokens->TokenLength + ')';
	 /While;
?>

➜	1: <?LassoScript - TAG_START (0,15)
2:
Address: - LITERAL (16,13)
3: + - OPERATOR (31,1)
4: Client_Address - KEYWORD (33,14)
5: ?> - TAG_END (49,2)

An example of using the token type to perform syntax coloring is included after the table of token types.

	 •	The [Lasso_Parser->TokenType], [Lasso_Parser->Offset], and [Lasso_Parser->TokenLength] tags can also be passed
an integer position parameter to return information about tokens in arbitrary order. The output of the
following LassoScript is identical to the LassoScript above.

<?LassoScript
	 Var: 'Tokens' = Lasso_Parser(Include_Raw('test.lasso'), -Delimiters, -Plaintext);
	 Loop($Tokens->Size);
		 '
' + Loop_Count + ': ' + Encode_HTML($Tokens->Get(Loop_Count));
		 ' - ' + $Tokens->TokenType(Loop_Count);
		 ' (' + $Tokens->Offset(Loop_Count) + ', ';
		 $Tokens->TokenLength(Loop_Count) + ')';
	 /Loop;
?>

➜	1: <?LassoScript - TAG_START (0,15)
2:
Address: - LITERAL (16,13)
3: + - OPERATOR (31,1)
4: Client_Address - KEYWORD (33,14)
5: ?> - TAG_END (49,2)

Token Types
The types reported by the [Lasso_Parser->TokenType] tag do not map precisely to the terminology used in the
Lasso documentation. Check the types in the following table carefully to be sure that each token is being
used in the expected fashion.

Table 5: Lasso Parser Token Types

Tag	 Description	

TAG_START	 An opening square bracket [or <?LassoScript or a semi-colon within a
LassoScript. Only included if the -Delimiters keywword is specified in the [Lasso_
Parser] tag.

TAG_END	 A closing square bracket] or ?>. Only included if the -Delimiters keywword is
specified in the [Lasso_Parser] tag.

KEYWORD	 An unquoted literal such as a tag or type name, variable name, constant, etc.

PARAMETER	 A keyword parameter which starts with a hyphen and does not have a value.

PARAMS_START	 A colon : which divides a tag name from a parameter list in colon syntax.

VALUE_START	 An equal sign = which divides a name/keyword from a value in a single
parameter.

PARAM_END	 A comma , which ends a single parameter within a parameter list.

5 8 5

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 4 5 – T a g s a n d C o m p o u n d E x p r e s s i o n s

OPERATOR	 A mathematical, logical, member, or comparison symbol: + - * / % += -= *= /= %=
++ -- = := == != === !== > >= < <= && || -> & # \ @.

GROUP_START	 An opening parenthsis (. Used in expressions and for parameter lists in comma
syntax.

GROUP_END	 A closing parenthesis). Used in expressions and for parameter lists in comma
syntax.

LITERAL	 A literal string value.

NUMBER	 A literal integer or decimal value.

PLAINTEXT	 Any HTML or other text not included within a Lasso tag or LassoScript. Only
included if the -PlainText keywword is specified in the [Lasso_Parser] tag.

BLOCK_START	 An opening brace { for a compound expression.

BLOCK_END	 A closing brace } for a compound expression.
		

To syntax color Lasso code:

The token types can be used to provide syntax coloring for Lasso code. The following example shows a quick
method simply by outputing each token type using a different color.

<?LassoScript
	 Var: 'Tokens' = Lasso_Parser(Include_Raw('test.lasso'), -Delimiters, -Plaintext);
	 While($Tokens->HasMore && (loop_count < 10));
		 Var('Token' = $Tokens->Next);
		 Select($Tokens->TokenType);
			 Case('TAG_START');
				 '
' + Encode_HTML($Token) + '';
			 Case('TAG_END');
				 '
' + Encode_HTML($Token) + '';
			 Case('OPERATOR');
				 '
' + Encode_HTML($Token) + '';
			 Case('KEYWORD');
				 '
' + Encode_HTML($Token) + '';
			 Case('LITERAL');
				 '
' + Encode_HTML($Token) + '';
			 Case;
				 '
' + Encode_HTML($Token) + '';
		 /Select;
	 /While;
?>

➜	<?LassoScript

Address:
+
Client_Address
?>

5 8 6

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 4 5 – T a g s a n d C o m p o u n d E x p r e s s i o n s

46
Chapter 46

Miscellaneous Tags

This chapter documents several tags which do not logically fit into any other chapter in the Lasso 8 Language
Guide.

	 •	Name Server Lookup documents the [NSLookup] tag.

	 •	Validation Tags describes tags which validate credit card numbers, email addresses, and URLs.

	 •	Unique ID Tags describes the [Lasso_UniqueID] tag.

Name Server Lookup
The [NSLookup] tag is implemented using LJAPI (Lasso Java API). In order to use the [NSLookup] tag, Java must
be configured properly. Please see the Setting Site Preferences chapter and the configuration chapters of the
Lasso Professional 8 Setup Guide for more information.

Table 1: Name Server Lookup Tag

Tag	 Description	

[NSLookup]	 Requires a single parameter. Returns the IP address if the parameter is a host
name or the host name if the parameter is an IP address.

		

To find the IP address of a specific host name:

Use the [NSLookup] tag with the host name as its parameter. The following example returns the IP address for
www.example.com.

[NSLookup: 'www.example.com'] � 127.0.0.1

To find the host name for a specific IP address:

Use the [NSLookup] tag with the IP address as its parameter. The following example returns the host name for
the IP address 127.0.0.1.

[NSLookup: '127.0.0.1'] � www.example.com

Validation Tags
Lasso provides a set of tags which can be used to validate various text formats. These tags are summarized in
Table 2: Valid Tags.

5 8 7

L a s s o 8 . 5 L a n g u a g e G u i d e

Table 2: Valid Tags

Tag	 Description	

[Valid_CreditCard]	 Accepts a single string parameter containing a credit card number. Returns True
if the credit card number is valid according to the ROT-13 algorithm.

[Valid_Date]	 Accepts a single string parameter containing a date. Returns True if the date is in
a format that Lasso can parse or False otherwise.

[Valid_Email]	 Accepts a single string parameter containing an email address. Returns True if
the email address appears to be in a valid format.

[Valid_URL]	 Accepts a single string parameter containing a URL. Returns True if the URL
appears to be in a valid format.

		

Note: See the String Operations chapter for information about the [String_Is…] tags that can be used to
determine what type of data strings contain.

To check whether a credit card number is valid:

The [Valid_CreditCard] tag provides a quick check for the basic validity of a credit card number, but can only
ensure that a card is of the right format, not that an account is active or has available credit. The following
code checks the fake credit card number 8888 8888 8888 8888 and predictably returns False.

[Valid_CreditCard: '8888888888888888'] � False

Unique ID Tags
The [Lasso_UniqueID] tag can be used to create a simple unique ID. The ID created by the [Lasso_UniqueID] tag
has a very high probability of being unique since it is based on the current date and time, the IP address of
the current visitor, and a random component.

Unique IDs are usually used to identify a particular record in a database. When a new record is added, one
field is set to the value from [Lasso_UniqueID] and that same value is stored in a variable. When the record
needs to be retrieved from the database, [Lasso_UniqueID] can be used again.

Table 3: Unique ID Tag

Tag	 Description	

[Lasso_UniqueID]	 Returns a unique ID.
		

Server Tags
The following tags provide useful information when logging to the console. The type of output can be
selected by specifying an optional parameter.

Table 4: Server Tags

Tag	 Description	

[Server_Date]	 Returns the current date. Accepts a parameter -Short, -ShortY2K, -Abbrev, or
-Long.

[Server_Day]	 Returns the current weekday. Accepts a parameter -Short or -Long.

[Server_Time]	 Returns the current time. Accepts a parameter -Short, -Long, -Extended.
		

5 8 8

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 4 6 – M i s c e ll a n e o u s T a g s

VII
Section VII

Protocols

This section includes chapters about various Internet protocols and how they can be accessed through Lasso.

	 •	Chapter 47: Sending Email discusses how to send email from Lasso (including HTML email and attach-
ments) and how to access SMTP server directly.

	 •	Chapter 48: POP discusses how to download email from POP servers and parse MIME messages.

	 •	Chapter 49: HTTP/HTML Content and Controls discusses Lasso’s tags for including content from remote
Web servers, using FTP, setting and retriving cookie values, caching data, modifying the HTTP header,
parsing the incoming request header, and more.

	 •	Chapter 50: XML-RPC discusses how XML-RPC procedures can be called from within Lasso or served by
Lasso.

	 •	Chapter 51: SOAP discusses how SOAP procedures can be called from within Lasso or served by Lasso.

	 •	Chapter 52: Wireless Devices discusses how WML files can be created and served to wireless browsers
such as cell phones or PDAs.

	 •	Chapter 53: AJAX and LJAX discusses tags and JavaScript functions which enable dynamic updates for
Web pages without reloads.

	 •	Chapter 54: DNS discusses tags for querying DNS servers to look up IP addresses, host names, or MX
records.

5 8 9

L a s s o 8 . 5 L a n g u a g e G u i d e

47
Chapter 47

Sending Email

This chapter describes how to send email using Lasso.

	 •	Overview introduces the SMTP email sending system.

	 •	Sending Email describes the [Email_Send] tag.

	 •	Email Status describes how to get information about messages sent using the [Email_Send] tag.

	 •	Composing Email describes the [Email_Compose] tag which can be used to create more complex emails with
multiple attachments and parts.

	 •	SMTP Type describes the SMTP type that is used to actually send messages to remote servers.

Note: The following Chapter 43: POP documents how to download email from a POP server using Lasso.

Overview
Lasso includes a built-in system for queuing and sending email messages to SMTP servers. Email messages
can be sent to site visitors to notify them when they create a new account or to remind them of their login
information. Email messages can be sent to administrators when various errors or other conditions occur.
Email messages can even be sent in bulk to many email addresses to notify site visitors of updates to the Web
site or other news.

Email messages are queued using the [Email_Send] tag. All outgoing messages are stored in tables of the
Site database. The queue can be examined and started or stopped in the Utility > Email section of Site
Administration.

Lasso’s email system checks the queue periodically and sends any messages which are waiting. If the email
system encounters an error when sending an email then it stores the error in the database and requeues the
message. If too many errors are encountered then the message send will be cancelled.

By default, Lasso sends queued messages directly to the SMTP server which corresponds to each recipient
address. This means that a single message may end up being sent to multiple SMTP servers in order to deliver
it to each recipient. Lasso can also be configured to route all messages through a local SMTP server in the
Utility > Email > Setup section for Site Administration. An optional SMTP AUTH username and password
allows Lasso to authenticate with the SMTP server in order to send messages. Lasso will use DIGEST or
CRAM-MD5 authentication if the local SMTP server supports it.

It is also possible to specify SMTP hosts directly within the [Email_Send] tag. This can be useful if different
SMTP servers need to be used for different purposes. For example, if one SMTP server needs to be used for
internal company email and another for general Internet users.

Note: If a local SMTP server is being used then Lasso must either have valid SMTP AUTH credentials or
be otherwise allowed to send unrestricted messages through the SMTP server. Consult the SMTP server
documentation for details about how to setup SMTP AUTH security or how to allow specific IP addresses to relay
messages.

5 9 0

L a s s o 8 . 5 L a n g u a g e G u i d e

By default Lasso will send up to 100 messages to each SMTP server every connection. Lasso will open up to 5
outgoing SMTP connections at a time. Lasso selects messages to send in priority order, but once it connects to
an SMTP server it delivers as many messages as possible. This means that a batch send to an SMTP server will
contain high priority messages as well as medium and low priority messages.

Important: The maximum size of an email message including all attachments should be less than 8MB using the
[Email_Send] tag. If necessary, larger messages can be sent using the [Email_Immediate] tag described in the Email
Composing section.

The email system is administered using the Utility > Email section of Site Administration. The Email Queue
can be inspected and any errors which have occurred can be reviewed. Email messages can be queued
manually using the Send Email page. The preferences for the email system, such as how often the queue
is checked for messages or how many times messages are requeued if an error is detected, can be modified
using the Setup page.

Note: Lasso’s email system is written in LassoScript using the network tags. All of the source code for the email
system is included open source within the code for Startup.LassoApp.

Upgrading Note: The -Email.… command tags from Lasso 3 will not operate in Lasso 8.

Email Structure
The structure of a composed email message will depend on what type of message is being sent. Lasso
supports the following structure variations depending on what parameters are specified in the [Email_Send] or
[Email_Compose] tags.

	 •	Plain Text – Simple messages specified with a -Body parameter are sent as a single text/plain part with no
boundaries.

	 •	HTML – Simple HTML messages with an -HTML parameter are sent as a single text/html part with no bound-
aries.

	 •	HTML with Plain Text – Messages which have both an -HTML parameter and a -Body parameter are sent as
multipart/alternative messages with both text/plain and text/html parts.

	 •	HTML with Embedded Images – Messages which use -HTMLImages replace the text/html part with a
multipart/related part with enclosed text/html and inline attachment parts.

	 •	Attachments – Messages with attachments are sent multipart/mixed and include the text/plain, text/html,
multipart/alternative, or multipart/related part which is appropriate based on the type of message and the attach-
ment parts.

See each of the following sections for details about how other [Email_Send] and [Email_Compose] parameters
affect the composition of each part.

Sending Email
The [Email_Send] tag is used to send email messages from Lasso. This tag supports the most common types
of email including plain text, HTML, HTML with a plain text alternative, embedded HTML images, and
attachments.

Table 1: Email Tag

Tag	 Description	

[Email_Send]	 Queues an email message.
		

Plain Text Messages
The [Email_Send] tag accepts many parameters. The basic parameters for sending plain text messages are shown
in the table below. Additional parameters for sending HTML email, adding attachments, controlling character
set, etc. are included in a subsequent tables.

5 9 1

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 4 7 – S e n d i n g E m a i l

Table 2: [Email_Send] Parameters

Keyword	 Description	

-To	 The recipient of the message. Multiple recipients can be specified by separating
their email addresses with commas. Required.

-From	 The sender of the message. Required.

-Subject	 The subject of the message. Required.

-Body	 The body of the message. Either a -Body or -HTML part (or both) is required.
See the following section on HTML Messages for details about how to create
HTML and mixed message.

-CC	 Carbon copy recipients of the message. At least one of -To, -CC, or -BCC is
required.

-BCC	 Blind carbon copy recipients of the message. At least one of -To, -CC, or -BCC is
required.

		

To send an email message:

Use the [Email_Send] tag with the desired parameters. The -From parameter must be set to a valid email address.
The -Subject parameter must be set to the desired subject for the email message. One or more recipients must
be specified using the -To, -CC, and -BCC parameters. The body of the message can be specified using any of
the three methods described here.

	 •	An email can be sent with a hard-coded body by specifying the message directly within the [Email_Send] tag.
The following example shows an email sent to example@example.com with a hard-coded message body.

[Email_Send:
	 -To='example@example.com',
	 -From='example@example.com',
	 -Subject='An Email',
	 -Body='This is the body of the email.']

	 •	The body of an email message can be assembled in a variable in the current Lasso page and then sent using
the [Email_Send] tag. The following example shows a variable Email_Body which has several items added to it
before the message is finally sent.

<?LassoScript
	 Variable: 'Email_Body' = 'This is the body of the email';
	 $Email_Body += '\nSent on: ' + (Server_Date) + ' at ' + (Server_Time);
	 $Email_Body += '\nCurrent visitor: ' + (Client_Username) + ' at ' + (Client_IP);

	 Email_Send:
		 -To='example@example.com',
		 -From='example@example.com',
		 -Subject='An Email',
		 -Body=$Email_Body;
?>

	 •	A Lasso page on the Web server can be used as the message body for an email message using the
[Include] tag. A Lasso page created to be a message body should contain no extra white space. The following
example shows a Lasso page format.lasso which is contained in the same folder as the current Lasso page
being used as the message body for an email. Any Lasso tags within format.lasso will be executed before the
email is sent.

[Email_Send:
	 -To='example@example.com',
	 -From='example@example.com',
	 -Subject='An Email',
	 -Body=(Include: 'format.lasso')]

5 9 2

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 4 7 – S e n d i n g E m a i l

To send an email message to multiple recipients:

Email can be sent to multiple recipients by including their addresses as a comma delimited list in the -To
parameter, the -CC parameter, or the -BCC parameter. Multiple -To, -CC, or -BCC parameters are not allowed.

	 •	The following example shows an [Email_Send] tag with two recipients in the -To parameter. The recipients
email addresses are specified with a comma between them example@example.com, somone@example.com. No
extraneous information such as the recipients real names should be included.

[Email_Send:
	 -To='example@example.com, someone@example.com',
	 -From='example@example.com',
	 -Subject='An Email',
	 -Body=(Include: 'format.lasso')]

	 •	The following example shows an [Email_Send] tag with one recipient in the -To parameter and two recipients
in the -CC parameter. The carbon copy parameter is generally used to include recipients who are not the
primary recipient of the email, but need to be informed of the correspondence. The addresses for the
carbon copied recipients are stored in variables and concatenated together with a comma between them
using a + symbol.

[Variable: 'President'='president@example.com']
[Variable: 'Someone'='someone@example.com']
[Email_Send:
	 -To='example@example.com',
	 -CC=($President + ',' + $Someone),
	 -From='example@example.com',
	 -Subject='An Email',
	 -Body=(Include: 'format.lasso')]

	 •	The following example shows an [Email_Send] tag with one recipient in the -To parameter and two recipients
in the -BCC parameter. The Blind Carbon Copy parameter can be used to send email to many recipients
without disclosing the full list of recipients to everyone who receives the email. Each recipient will receive
an email that contains only the address in the -To parameter announce@example.com.

[Email_Send:
	 -To='announce@example.com',
	 -BCC='example@example.com, someone@example.com',
	 -From='example@example.com',
	 -Subject='An Email',
	 -Body=(Include: 'format.lasso')]

HTML Messages
HTML messages can be sent from Lasso by specifying the HTML body for the message using the -HTML param-
eter. Images can be embedded in the email message using the -HTMLImages parameter. If a message includes
both an -HTML parameter and a -Body parameter then it will be sent as a multipart/alternative message so mail
clients which do not recognize HTML messages will see only the plain text part.

Table 3: HTML Message [Email_Send] Parameters

Keyword	 Description	

-HTML	 The HTML part of the message. Either a -Body or -HTML part (or both) is
required.

-HTMLImages	 Specifies a list of files which will be used as images for the HTML part of an
outgoing message. Accepts either an array of file paths or an array of pairs
which include a file name as the first part and the data for the file as the second
part. Optional.

		

To send HTML email:

HTML email can be easily sent using the [Email_Send] tag using any of the following methods.

5 9 3

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 4 7 – S e n d i n g E m a i l

	 •	An HTML Lasso page can be sent as the body of the message by using [Include] as the parameter to the -HTML
parameter of [Email_Send]. Image references or URLs in the HTML Lasso page should be specified fully
qualified including the http:// prefix and server name. Alternately, images can be embedded within the email
using the -HTMLImages parameter shown below.

[Email_Send:
	 -To='example@example.com',
	 -From='example@example.com',
	 -Subject='A HTML Email',
	 -HTML=(Include: 'email_body.html')]

For example, the following HTML would reference an example Web page and an image which shows a
coupon graphic. Both addresses are fully specified since they will need to be loaded from within the email
client without any other information about the Web server. Note that any Lasso tags inside the Lasso page
will be processed by Lasso before it is served.

<h2>Money Saving Coupon</h2>
<p>
	 Print out the money saving coupon below or click on it to order directly from our Web site.

	
		
	
</p>

	 •	A plaintext/HTML alternative email can be sent by specifying both a -Body parameter and an -HTML
parameter. The text of both parts should be equivalent. Recipients with text-based email clients will see the
text part while recipients with HTML-based email clients will see the HTML part.

[Email_Send:
	 -To='example@example.com',
	 -From='example@example.com',
	 -Subject='A Multi-Part Email',
	 -Body=(Include: 'format.lasso'),
	 -HTML=(include: 'email_body.html')]

If equivalent text and HTML parts can’t be generated then it is preferable to send just an HTML part. Email
clients which don’t render HTML will display the raw HTML to the user, but this is preferable to seeing a
message which simply says that the message was sent as HTML. The text part for the email message shown
above might read as follows.

Money Saving Coupon
Click on the following link to display a money saving coupon which can be printed and used in our store or to order directly
from our Web site.
<http://www.example.com/couponoffer.html>

	 •	HTML messages can include embedded images using the -HTMLImages parameter. This parameter can be
specified with either a single file name or an array of file names. Within the email message the images can
be referenced in two ways.

If the [Email_Send] contains the parameter -HTMLImages=(Array: '/apache_pb.gif') then Lasso will automatically fix
any HTML tags that have that same image referenced in their src parameter. Note that the path must
be exactly the same for Lasso to be able to make this replacement.

[Email_Send:
	 -To='example@example.com',
	 -From='example@example.com',
	 -Subject='An HTML Email With Embedded Image',
	 -HTML='<h2>Embedded Image</h2>
 ',
	 -HTMLImages=(Array: '/apache_pb.gif');

5 9 4

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 4 7 – S e n d i n g E m a i l

Alternately, the Content-ID of the embedded image should be referenced in the tag following a cid:
prefix. Lasso automatically uses the image file name as the Content-ID without any path information so the
same image referenced above can also be referenced like this.

[Email_Send:
	 -To='example@example.com',
	 -From='example@example.com',
	 -Subject='An HTML Email With Embedded Image',
	 -HTML='<h2>Embedded Image</h2>
 ',
	 -HTMLImages=(Array: '/apache_pb.gif');

Images which are generated programatically can be embedded in an HTML message by specifying a pair
including the name of the image and the data of the image. In the example below the image data comes
from the [Include_Raw] tag, but it could also be generated using the [Image] tags or retrieved from a database
field. Note that the name of the image does not have to match, but the name which is specified in the first
part of the pair should be used within the HTML body.

 [Email_Send:
	 -To='example@example.com',
	 -From='example@example.com',
	 -Subject='An HTML Email With Embedded Image',
	 -HTML='<h2>Embedded Image</h2>
 ',
	 -HTMLImages=(Array: ‘myimage.gif' = (Include_Raw: ‘apache_pb.gif’));

Attachments
Lasso allows files to be sent as attachments with outgoing email messages. Any file that Lasso can read can be
sent as an attachment. Images which are to be displayed inline within an HTML message should be specified
using the -HTMLImages parameter described above.

Table 4: Attachment [Email_Send] Parameters

Keyword	 Description	

-Attachments	 Specifies a list of files which will be attached to the outgoing message. Accepts
either an array of file paths or an array of pairs which include a file name as the
first part and the data for the file as the second part. Optional.

		

To send attachments with an email message:

Files can be included as attachments to email messages using the -Attachments parameter. This parameter takes
an array of file paths as a value. When the email is sent, each file is read from disk and encoded using Base-64
encoding. The recipient’s email client will automatically decode the attached files and make them available.

Important: The maximum size of an email message including all attachments must be less than 8MB using the
[Email_Send] tag. If necessary, larger messages can be sent using the [Email_Immediate] tag described in the Email
Composing section.

The following example shows a pair of files being sent with an email message. The attachments are named
MyAttachment.txt and MyAttachment2.text. They are located in the same folder as the Lasso page which is sending
the email. These text files will not be processed by Lasso before they are sent.

[Email_Send:
	 -To='example@example.com',
	 -From='example@example.com',
	 -Subject='An Email with Two Attachments',
	 -Body='This is the body of the Email.',
	 -Attachments=(Array: 'MyAttachment.txt', 'MyAttachment2.txt')]

5 9 5

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 4 7 – S e n d i n g E m a i l

Files can be generated programmatically and attached to an email message by specifying a pair including the
name of the file and the contents of the file. For example, the following [Email_Send] tag uses the [PDF_Doc] tag
to to create a PDF file. The generated PDF file is sent as an attachment without it ever being written to disk.

[Var:'MyFile'=(PDF_Doc: -Size='A4', -Margin=(Array: 144.0, 144.0, 72.0, 72.0))]
[$MyFile->(Add: (PDF_Text:'I am a PDF document', -Font=(PDF_Font: -Face='Helvetica', -Size=36)))]

[Email_Send:
	 -To='example@example.com',
	 -From='example@example.com',
	 -Subject='An Email with a PDF',
	 -Body='This is the body of the Email.',
	 -Attachments=(Array: 'MyPDF.pdf' = $MyFile->Data)]

The [Image] tags, [Include_Raw] tag, [Include] tag, or the [Field] tag can also be used to programmatically generate
attachments

Email Merge
Lasso can merge values into email messages just before it sends them. This allows a single email message to
be composed and then customized for several recipients. The [Email_Send] tag accepts two parameters which
make email merge possible. The

Table 5: Email Merge [Email_Send] Parameters

Keyword	 Description	

-Tokens	 Specifies a map of token names and values which will be merged into the email
message. The same tokens will be used on every message.

-Merge	 Specifies a map of email addresses. Each email address should have as its value
a map of token names and values. The values in this merge map will override
those in the tokens map if both are specified.

		

tIn order to use the -Tokens and -Merge parameters the email message must contain one or more email
tokens. The preferred method of specifying tokens is to use the [Email_Token] tag. In plain text messages or
messages that can’t be processed through Lasso the #TOKEN# marker can be used instead. For example, the tag
[Email_Token: 'FirstName'] corresponds to the marker #FirstName#.

Table 6: Email Tokens

Keyword	 Description	

[Email_Token]	 Email tokens can be created using the [Email_Token] tag. This tag requires a
single value which is the name of the email token.

#TOKEN#	 Email tokens can also be specified in pound signs. The name of the token should
only contain letters, numbers, or underscores.

		

For example, an email message can be marked up with email tokens for the first name and last name of the
recipient. The start of the message, stored in a file called body.lasso might be as follows.

Dear [Email_Token: 'FirstName'] [Email_Token: 'LastName'],
…

The email message is going to be sent to two recipients John Doe at john@example.com and Jane Doe at
jane@example.com. The merge map is constructed as follows. Each element of the map includes an email
address as the key and a map of token values as its value.

[Var: 'myMergeTokens' = (Map:
	 'john@example.com' = (Map: 'firstname' = 'John', 'lastname' = 'Doe'),
	 'jane@example.com' = (Map: 'firstname' = 'Jane', 'lastname' = 'Doe'),
)]

5 9 6

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 4 7 – S e n d i n g E m a i l

A default token map can also be constructed. The values from this map would be used if any tokens are
missing from the email address specified maps shown above.

[Var: 'myDefaultTokens' = (Map: 'firstname' = 'Lasso User', 'lastname' = '')]

The [Email_Send] tag would be written as follows. The email message is being sent to two recipients. The tag
references body.lasso as the -Body of the email message with the included [Email_Token] tags, -Merge specifies
$MyMergeTokens, and -Tokens specifies $MyDefaultTokens.

[Email_Send:
	 -To='john@example.com, jane@example.com',
	 -From='example@example.com',
	 -Subject='Mail Merge,
	 -Body=(Include: 'body.lasso'),
	 -Merge=$myMergeTokens,
	 -Tokens=$myDefaultTokens]

The message to John Doe would contain this text.

Dear John Doe,
…

Advanced Parameters
This section includes parameters for [Email_Send] that are not required for sending basic email messages, but
are useful in specific situations. These parameters allow attachments to be included with email messages or
for the headers of the outgoing message to be modified. In general, these parameters should only be used if
required.

Table 7: Advanced [Email_Send] Parameters

Keyword	 Description	

-Priority	 Specifies the priority of the message. Values include 'High' or 'Low'. Default is
'Medium'. Optional.

-ReplyTo	 The email address that should be used for replies to this message. Optional.

-Sender	 The email address that should be reported as the sender of this message.
Optional.

-ContentType	 The value for the Content-Type header of the message. Optional.

-TransferEncoding	 The value for the Transfer-Encoding header of the message. Optional.

-CharacterSet	 The character set in which the message should be encoded. Optional.

-ContentDisposition	 Can be set to 'inline' in order to embed all attachments inline. Defaults to
'attachment'.

-ExtraMIMEHeaders	 A pair array which defines extra MIME headers that should be added to the email
message. Optional.

-Immediate	 If specified then the email is sent immediately without using the outgoing
message queue. This option can be used for messages which have very large
attachments.

-Date	 This optional parameter can be used to set when the email should be sent.
The parameter expects a Lasso date object as its value. If a date in the past is
specified then the email will be sent immediately. Optional.

		

To change the priority of a sent message:

Specify a -Priority parameter in the [Email_Send] tag. High priority messages will tend to be send faster than lower
priority messages. Low priority messages will tend to be sent after all higher priority messages.

5 9 7

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 4 7 – S e n d i n g E m a i l

Most messages should be sent at the default priority. Sending bulk messages like a newsletter at Low priority
will ensure that the normal email from the site is sent as soon as possible rather than waiting for the entire
newsletter to be sent first. High priority should be reserved for time dependent messages such as confirmation
emails that a site visitor will be looking for immediately within their email client.

To send a message with a Reply-To and Sender header:

The -ReplyTo and -Sender parameters can be used. The -ReplyTo parameter specifies a different address from the
-From address which should be used for replies. Most email clients will use this address when composing
a response to a message. The -Sender parameter allows an alternate sender from the -From address to be
specified. This can be useful if a message is forwarded by Lasso, but the original sender should still be
recorded.

[Email_Send:=
	 -To='example@example.com',
	 -From='example@example.com',
	 -ReplyTo='repsonses@example.com',
	 -Sender='otheruser@example.com',
	 -Subject='An Email',
	 -Body=(Include: 'format.lasso')]

To send a message with extra headers:

The -ExtraMIMEHeaders parameter can be used to send any additional parameters that are required. The value
should be an array of name/value pairs. Each of the pairs will be inserted into the email as an additional
header.

[Email_Send:=
	 -To='example@example.com',
	 -From='example@example.com',
	 -ReplyTo='repsonses@example.com',
	 -Sender='otheruser@example.com',
	 -Subject='An Email',
	 -Body=(Include: 'format.lasso'),
	 -ExtraMIMEHeaders=(Array: 'Header' = 'Value', 'Header' = 'Value')]

Alternate SMTP Servers‘
By default all sent email will be transmitted directly to the SMTP servers of the recipients. However, if email
must be sent through multiple specific SMTP servers then the host, port, and SMTP AUTH username and
password can be specified directly within each [Email_Send] tag.

Table 8: SMTP Server [Email_Send] Parameters

Keyword	 Description	

-Host	 Optional SMTP host through which to send messages. Default is the host defined
in Lasso Administration.

-Port	 Optional SMTP port. Defaults to 25.

-Username	 Specifies the username for SMTP AUTH if required by the SMTP server. If
specified a -Passwod is also required. Optional.

-Password	 Specifies the password for SMTP AUTH if required by the SMTP server. If
specified a -Username is also required. Optional.

-Timeout	 Specifies the timeout for the SMTP server in seconds. Optional
		

To use an alternate SMTP server:

Specify the -Host in the [Email_Send] tag directly. If required the port of the SMTP server can be changed
with the -Port parameter. An SMTP AUTH username and password can be provided with the -Username and
-Password parameters. And, the -Timeout for the SMTP server can be changed in seconds.

5 9 8

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 4 7 – S e n d i n g E m a i l

[Email_Send: -Host='mail.example.com',
	 -Username='SMTPUSER',
	 -Password='MySecretPassword',
	 -To='example@example.com',
	 -From='example@example.com',
	 -Subject='An Email',
	 -Body=(Include: 'format.lasso')]

Email Status
Email messages which are sent using the [Email_Send] tag are stored in an outgoing email queue temporarily
and then sent by a background process. Any errors encountered when sending a message can be viewed in the
Utility > Email > Email Queue section of Lasso Site Administration.

However, it is often desirable to get information about a message that was sent programatically without
examining the queue table. The tags in the following table allow the status of a recently sent message to be
examined.

Table 9: Email Composing and Queuing Tags

Tag	 Description	

[Email_Result]	 Can be called immediately after an [Email_Send] tag to get a unique ID string for
the message that was queued.

[Email_Status]	 Accepts an ID from the [Email_Result] tag and returns the status of the queued
message: sent, queued, or error.

		

Note: The email sender may take from a few seconds to longer to send an email message. Calling [Email_Status]
immediately after calling [Email_Send] will always return queued. The [Email_Status] tag must be called after a short
delay in order to return the true status of the message as sent or error.

The following example shows an [Email_Send] tag that sends a message. The [Email_Result] tag is called
immediately after [Email_Send] to store the unique ID of the message that was sent. After a delay of 30 seconds
the [Email_Status] tag is called to see if the message was successfully sent.

[Email_Send:
	 -To='example@example.com',
	 -From='example@example.com',
	 -Subject='An Email',
	 -Body='This is the body of the email.']
[Var: 'myEmail' = Email_Result]
[Sleep: 30000]
[Email_Status: $myEmail]

In a practical solution the unique ID returned by [Email_Result] would be stored in a session variable or in a
database table and then would be checked some time later using [Email_Status] to see if the email message was
sent or if the address it was sent to was invalid.

Composing Email
The [Email_Send] tag handles all of the most common types of email that can be sent through Lasso including
plaintext messages, HTML messages, HTML messages with a plain text alternative messages, and messages
with attachments.

For more complex messages structures the [Email_Compose] object can be used directly to create the MIME text
of the message. The message can then be sent with the [Email_Queue] tag. Both of these tags are used internally
by [Email_Send].

5 9 9

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 4 7 – S e n d i n g E m a i l

[Email_Compose] accepts the same parameters as [Email_Send] except those which specify the SMTP server and
priority of the outgoing message. After creating an email object with [Email_Compose], member tags can be
used to add additional text parts, html parts, attachments, or generic MIME parts. This allows very complex
email structures to be created with a lot more control than [Email_Send] provides.

[Email_Compose] can also be used to create email parts. When this tag is called without a -To, -From, or -Subject
then a MIME part is created rather than a complete email message. This part can then be fed into the
[Email_Compose->AddPart] tag or into the -Attachments or -HTMLImages parameters to place the part within a
complex email message.

The [Email_Queue] tag is designed to be fed an [Email_Compose] object. It requires three parameters, the -Data,
-From, and -Recipients attributes of the [Email_Compose] object. In addition, SMTP server parameters and the
sending priority can be specified just like in [Email_Send]. Queued emails must be less than 8MB in size
including all encoded attachments.

The [Email_Immediate] tag takes the same parameters as the [Email_Queue] tag, but sends the message
immediately rather than adding it to the email queue. This tag can be used to send messages larger than 8MB
if required. A status of sent or an error will still be added to the queue, but the body of the sent message
will not be included. Use of the [Email_Immediate] tag is not recommended since it bypasses the priority, error
handling, and connection handling features of the email sending system.

Table 10: Email Composing and Queuing Tags

Tag	 Description	

[Email_Batch] … [/Email_Batch]	 Temporarily suspends some back-end operations of the email queue so that
a batch of email messages can be queued quickly. Any messages which are
already queued will continue to send while this tag is open.

[Email_Compose]	 Creates an email object. Accepts the same parameters as [Email_Send]: -To,
-From, -Body, -HTML, -Subject etc. If -To, -From, and -Subject are not specified
then a MIME part is created, otherwise a full MIME email is created.

[Email_Compose->AddAttachment]	 Adds an attachment to an email object.The data of the attachment can be
specified directly in the -Data parameter or the path to a file can be specified in
the -Path parameter. The name of the attachment can be specified in the -Name
parameter.

[Email_Compose->AddTextPart]	 Adds a text part to an email object. The text of the part can be specified
directly in the -Data parameter or the path to a file can be specified in the -Path
parameter.

[Email_Compose->AddHTMLPart]	 Adds an HTML part to an email object. The text of the HTML part can be
specified directly in the -Data parameter or the path to a file can be specified in
the -Path parameter.

[Email_Compose->AddPart]	 Adds a generic part to an email object. Requires a parameter -Data which
specifies the data for the part. the part must be properly formatted as a MIME
part. No formatting or encoding will be performed.

[Email_Compose->Data]	 Returns the MIME text of the composed email.

[Email_Compose->From]	 Returns the from address of the composed email.

[Email_Compose->Recipients]	 Returns a list of recipients of the composed email.

[Email_Queue]	 Queues a message for sending. Requires either an [Email_Compose] object
or a -Data parameter including the MIME text of the email to send, -From
specifying the from address for the email, and -Recipients an array of recipients
for the email. Can also accept -Priority and SMTP server -Host, -Port, -Timeout,
-Username, and -Password parameters. A different -Tokens parameter can be
specified for each queued message to perform email merge.

[Email_Immediate]	 The same as [Email_Queue], but sends the message immediately without storing
it in the database. A -Tokens parameter can also be specified and email merge
will be performed just before sending the message.

6 0 0

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 4 7 – S e n d i n g E m a i l

[Email_Merge]	 Allows the email merge operation to be performed on any text. Requires two
parameters: the text which is to be modified and a -Tokens parameter which
specifies a map of tokens to be replaced in the text. Optional -TransferEncoding
and -Charset parameters specify what type of encoding should be applied to the
merged tokens.

		

To send a batch of messages:

The [Email_Batch] … [/Email_Batch] tag can be used when a number of messages need to be queued all at once.
The tag temporarily suspends some back-end operations of the email queue so that the messages can be
queued faster. When the closing tag is processed the queue is allowed to resume sending the queue messages.

The example below shows how an inline might be used to find a collection of email addresses. The
[Email_Batch] … [/Email_Batch] tags ensure that the messages are queued as fastly as possible.

[Email_Batch]
	 [Inline: -Search, …]
		 [Records]
			 [Email_Send: -From='sender@example.com', -To=(Field: 'email_address'), …]
		 [/Records]
	 [/Inline]
[/Email_Bath]

Note: The email merge tags which are discussed earlier in this chapter can also be used to send an email
message to a collection of recipients quickly.

To compose an email message:

The [Email_Compose] object can be used to compose an email message. In this example a simple email message
is created in a variable message.

<?LassoScript
	 var: 'message' = (Email_Compose:
		 -To='example@example.com',
		 -From='example@example.com',
		 -Subject='Example Message',
		 -Body='Example Message');
?>

The text of the composed email message can be viewed by outputing the variable $message to the page. Note
that [Encode_HTML] should always be used since certain headers of the email message use angle brackets
to surround values. Also, HTML <pre> … </pre> tags make it a lot easier to see the formatting of the email
message.

<pre>[Encode_HTML: $message]</pre>

Additional text or html parts or attachments can be added using the appropriate member tags with the
$message variable. For example, an attachment can be added using the [Email_Compose->AddAttachment] tag as
follows:

<?LassoScript
	 $message->(AddAttachment: -Path='ExampleFile.txt');
?>

To queue an email message:

An email message that was created using the [Email_Compose] object can be queued for sending using the
[Email_Queue] tag. The following example shows how to send the email message created above. The three
required parameters -Data, -From, and -Recipients can all be fetched from the members of the [Email_Compose]
object.

6 0 1

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 4 7 – S e n d i n g E m a i l

<?LassoScript
	 Email_Queue:
		 -Data=$message->Data,
		 -From=$emessage->From,
		 -Recipients=$message->Recipients;
?>

The [Email_Queue] tag will send to the default SMTP server set up in the Utility > Email > Setup section of Site
Administration. If the email needs to be sent to a different SMTP server the -Host, -Port, -Timeout, -Username, and
-Password parameter can be used just as they can with the [Email_Send] tag.

SMTP Type
All communication with remote SMTP servers is handled by a data type called [Email_SMTP]. These
connections are normally handled automatically by the [Email_Send], [Email_Queue], [Email_Immediate], and
background email sending process.

The [Email_SMTP] type can be used directly for low-level access to remote SMTP servers, but this is not
generally necessary.

Table 11: SMTP Tags

Tag	 Description	

[Email_SMTP]	 Creates a new SMTP connection object.

[Email_SMTP->Open]	 Requires a -Host that specifies the SMTP host to connect to. Also accepts
optional -Port, -Username, -Password, and -Timeout parameters

[Email_SMTP->Send]	 Sends a single message to the SMTP server. Requires a -Message parameter
with the MIME data for the message, -Recipients with an array of recpient email
address, and -From with the email address of the sender.

[Email_SMTP->Command]	 Sends a raw command to the SMTP server. The -Send parameter specifies the
command to send. The -Expects parameter specifies the numeric result code
that is expected as a result. This tag normally returns True or False depending
on whether the expected result code was found. The -Read parameter can be
specified to have it return the result from the SMTP server.

[Email_SMTP->Close]	 Closes the connection to the remote server.

[Email_MXLookup]	 This tag takes a domain as a parameter and returns a map that describes the MX
server for the domain. The map includes the domain, host, username, password,
timeout, and SSL preference for the MX server.

		

To lookup an SMTP server:

Use the [Email_MXLookup] tag. This tag returns a map that describes the preferred MX server for the domain.
An example lookup for AOL is shown below. If the administrator has entered routes into Lasso Site
Administration then that information will be returned by this tag. Otherwise, the first time an MX record is
looked up it will be cached and the same information will be returned on subsequent lookups.

[Email_MXLookup: 'aol.com']

�	 map: (domain)=(aol.com), (password)=(), (host)=(mailin-02.mx.aol.com), (ssl)=(), (cache)=(3), (username)=(), (timeout)=(),
(route)=(0)

To communicate with an SMTP server:

The [Email_SMTP] object can be used to send one or more messages directly to an SMTP server. In the
following example a message is created using the [Email_Compose] tag. That message is then sent to an example
SMTP server smtp.example.com using an SMTP AUTH username and password. Once the message is sent the
connection is closed.

6 0 2

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 4 7 – S e n d i n g E m a i l

This example does not perform any error checking and only sends one message. The actual source code
for the built-in email sender background process presents a good example of how this code looks in a full
working solution.

<?LassoScript

	 local: 'message' = (Email_Compose:
		 -To='example@example.com',
		 -From='example@example.com',
		 -Subject='Example Message',
		 -Body='Example Message');

	 local: 'smtp' = (email_smtp);
	 #smtp->(open:
		 -host='smtp.example.com',
		 -port=25,
		 -username='SMTPUSER',
		 -password='mysecretpassword',
		 -timeout=60);
	 #smtp->(send:
		 -from=#message->from,
		 -recipients=#message->recipients,
		 -message=#message->data + '\r\n');
	 #smtp->close;

?>

6 0 3

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 4 7 – S e n d i n g E m a i l

48
Chapter 48

POP

Lasso provides tags that allow email to be downloaded from POP servers and for the downloaded messages
to be parsed.

	 •	Overview describes basics of POP email downloading.

	 •	POP Type describes the [Email_POP] type in detail.

	 •	Email Parsing describes how to use the [Email_Parse] type to parse downloaded emails.

	 •	Helper Tags describes a number of helper tags that are used internally by the email tags, but can be of
general use as well.

Overview
Lasso allows messages to be downloaded from an account on a POP email server. This enabled developers to
create solutions such as:

	 •	A list archive for a mailing list.

	 •	A Web mail interface allowing users to check POP accounts.

	 •	An auto-responder which can reply to incoming messages with information.

Lasso’s flexible POP implementation allows messages to be easily retrieved from a POP server with a minimal
amount of coding. In addition, Lasso allows the messages available on the POP server to be inspected
without downloading or deleting them. Mail can be downloaded and left on the server so it can be checked
by other clients (and deleted at a later point if necessary).

All messages are downloaded as raw MIME text. The [Email_Parse] type can be used to extract the different
parts of the downloaded messages, inspect the headers of the downloaded messages, or to extract attachments
from the downloaded messages.

Note: Lasso does not support downloading email from IMAP servers.

POP Type
The [Email_POP] type is used to establish a connection to a POP email server, inspect the available messages,
download one or more messages, and to mark messages for deletion.

6 0 4

L a s s o 8 . 5 L a n g u a g e G u i d e

Table 1: [Email_POP] type

Tag	 Description	

[Email_POP]	 Creates a new POP object. Requires a -Host parameter. Optional -Port and
-Timeout parameters. -APOP parameter selects authentication method. If -
Username and -Password are specified then connection is opened to server with
authentication. -Get parameter specifies what command to perform when calling
[Email_POP->Get].

[Email_POP->Size]	 Returns the number of messages availble for download

[Email_POP->Get]	 Performs the command specified when the object was created. UniqueID by
default, or can be set to Retrieve, Headers, or Delete.

[Email_POP->Delete]	 Marks the current message for deletion. Optionally accepts a position to mark a
specific message.

[Email_POP->Retrieve]	 Retrieves the current message from the server. Optionally accepts a position to
retrieve a specific message. Optional second parameter specifies the maximum
number of lines to fetch for each email.

[Email_POP->UniqueID]	 Gets the Uniquid ID of the current message from the server. Optionally accepts a
position to get the Unique ID of a specific message.

[Email_POP->Headers]	 Gets the headers of the current message from the server. Optionally accepts a
position to get the headers of a specific message.

[Email_POP->Close]	 Closes the POP connection, performing any specified deletes.

[Email_POP->Cancel]	 Closes the POP connection, but does not perform any deletes.

[Email_POP->NOOP]	 Sends a ping to the server. Allows the connection to be kept open without timing
out.

[Email_POP->Authorize]	 Requires a -Username and -Password parameter. Optional -APOP parameter
specifies whether APOP authentication should be used or not. Opens a
connection to the server if one is not already established.

		

Note: As of Lasso Professional 8.0.2 any of the tags that accept a position will also accept a Unique ID as a
parameter.

Methodology
The [Email_POP] type is intended to be used with the [Iterate] … [/Iterate] tags to quickly loop through all
available messages on the server. The [Email_POP->Size] parameter returns the number of available messages.
The [Email_POP->Get] parameter fetches the current message by default or can be set to retrieve the UniqueID
of the current message, the Headers of the current message, or even to Delete the current message.

The -Host, -Username, and -Password should be passed to the [Email_POP] object when it is created. The -Get
parameter specifies what command the [Email_POP->Get] tag will perform. In this case it is set to UniqueID (the
default).

[Var: 'myPOP' = (Email_POP:
		 -Host='mail.example.com',
		 -Username='POPUSER',
		 -Password='MySecretPassword',
		 -Get='UniqueID')]

The [Iterate] … [/Iterate] tags can then be used on the myPOP object. For example, this code will download and
delete every message from the target server. The variable myMSG is set to the unique ID of each message in
turn. The [Email_POP->Retrieve] tag fetches the current message and the [Email_POP->Delete] tag marks it for
deletion.

6 0 5

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 4 8 – POP

[Iterate: $myPOP, (Var: 'myID')]
	 [Var: 'myID']

	 [$myPOP->(Retrieve)]
	 [$myPOP->(Delete)]
	 <hr>
[/Iterate]

Both [Email_Pop->Retrieve] and [Email_POP->Delete] could be specified with the current [Loop_Count] as a
parameter, but it is unnecessary since they pick up the loop count from the surround [Iterate] … [/Iterate] tags.

This example only downloads the text of the messages and displays it. Most solutions will need to use the
[Email_Parse] object defined below to parse the downloaded messages before they can be processed.

None of the deletes will actually be performed until the connection to the remote server is closed. The
[Email_POP->Close] tag performs all deletes and closes the connection. The [Email_POP->Cancel] tag closes the
connection, but cancels all of the marked deletes.

[$myPOP->Close]

Examples
This section includes examples of the most common tasks that are performed using the [Email_POP] type. See
the Email Parsing section that follows for examples of downloading messages and parsing them for storage in
a database.

To download and delete all emails from a POP server:

Open a connection to the POP server using [Email_POP] with the appropriate -Host, -Username, and -Password.
The following example shows how to use [Email_POP->Retrieve] and [Email_POP->Delete] to download and delete
each message from the server.

<?LassoScript
	 Var: 'myPOP' = (Email_POP:
		 -Host='mail.example.com',
		 -Username='POPUSER',
		 -Password='MySecretPassword');
	 Iterate: $myPOP, (Var: 'myID');
		 Var: 'myMSG' = $myPOP->(Retrieve);
		 … Process Message …
		 $myPOP->(Delete);
	 /Iterate;
	 $myPOP->Close;
?>

Each downloaded message can be processed using the techniques in the Email Parsing section that follows or
can be stored in a database.

To leave mail on server and only download new messages:

In order to download only new messages it is necessary to store a list of all the unique IDs of messages that
have already been downloaded from the server. This is usually done by storing the unique ID of each message
in a database. As messages are inspected the unique ID is compared to see if the message is new or not. No
delete of messages is performed in this example.

For the purposes of this example, it is assumed that unique IDs are being stored in a variable array called
myUniqueIDs. For each waiting message this variable is checked to see if it contains the uniqueID of the current
message. If it does not then the message is downloaded and the unique ID is inserted into myUniqueIDs.

6 0 6

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 4 8 – POP

<?LassoScript
	 Var: 'myPOP' = (Email_POP:
		 -Host='mail.example.com',
		 -Username='POPUSER',
		 -Password='MySecretPassword');
	 Iterate: $myPOP, (Var: 'myID');
		 If: ($myUniqueIDs >> $myID);
			 Var: 'myMSG' = $myPOP->(Retrieve);
			 $myUniqueIDs->(Insert: $myID);
			 … Process Message …
		 /If;
	 /Iterate;
	 $myPOP->Close;
?>

To inspect message headers:

The [Email_POP->Headers] command can be used to fetch the headers of each waiting email message. This
allows the headers to be inspected prior to deciding which emails to actually download. In the following
example the headers are fetched with [Email_POP->Headers] and two variable needDownload and needDelete are set
to determine whether either action should take place.

<?LassoScript
	 Var: 'myPOP' = (Email_POP:
		 -Host='mail.example.com',
		 -Username='POPUSER',
		 -Password='MySecretPassword',
		 -Get='UniqueID');
	 Iterate: $myPOP, (Var: 'myID');
		 Var: 'needDownload' = False;
		 Var: 'needDelete' = False;
		 Var: 'myHeaders' = $myPOP->(Headers);
		 … Process Headers and set needDownload or needDelete to True …
		 If: $needDownload;
			 $myPOP->(Retrieve);
		 /If;
		 If: $needDelete:
			 $myPOP->(Delete);
		 /If;
	 /Iterate;
	 $myPOP->Close;
?>

The downloaded headers can be processed using the techniques in the Email Parsing section that follows.

Email Parsing
Each of the messages which is downloaded from a POP server is returned in raw MIME text form. This section
describes the basic structure of email messages, then the [Email_Parse] tag that can be used to parse them into
headers and parts, and finally some examples of parsing messages.

Email Structure
The basic structure of a simple email message is shown below. The message starts with a series of headers. The
headers of the message are followed by a blank line then the body of the message.

The Received headers are added by each server that handles the message so there may be many of them. The
Mime-Version, Content-Type, and Content-Transfer-Encoding specify what type of email message it is and how it is
encoded. The Message-ID is a unique ID given to the message by the email server. The To, From, Subject, and
Date fields are all specified by the sending user in their email client (or in Lasso using [Email_Send].

6 0 7

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 4 8 – POP

Received: From [127.0.0.1] BY example.com ([127.0.0.1]) WITH ESMTP;
	 Thu, 08 Jul 2004 08:07:42 -0700
Mime-Version: 1.0
Content-Type: text/plain; charset=US-ASCII;
Message-Id: <8F6A8289-D0F0-11D8-B21D-0003936AD948@example.com>
Content-Transfer-Encoding: 7bit
From: Example Sender <example@example.com>
Subject: Test Message
Date: Thu, 8 Jul 2004 08:07:42 -0700
To: Example Recipient <example@example.com>

This is the email message!

The order of headers is unimportant and each header is usually specified only once (except for the Received
headers which are in reverse chronological order). A header can be continued on the following line by
starting the second line with a space or tab. Beyond those standard headers shown here, email messages can
also contain many other headers identifying the sending software, logging SPAM and virus filtering actions, or
even adding meta information like a picture of the sender.

A more complex email message is shown below. This message has a Content-Type of multipart/alternative. The
body of the message is divided into two parts: one text part and one HTML part. The parts are divided using
the boundary specified in the Content-Type header (---=_NEXT_fda4fcaab6).

Each of the parts is formatted similarly to an email message. They have several headers followed by a blank
line and the body of the part. Each part has a Content-Type and a Content-Transfer-Encoding which specify the type
part (either text/plain or text/html) and encoding.

Received: From [127.0.0.1] BY example.com ([127.0.0.1]) WITH ESMTP;
	 Thu, 08 Jul 2004 08:07:42 -0700
Mime-Version: 1.0
Message-Id: <14501276655.1089394748105@example.com>
From: Example Sender <example@example.com>
Subject: Test Message
Date: Thu, 8 Jul 2004 08:07:42 -0700
To: Example Recipient <example@example.com>
Content-Type: multipart/alternative; boundary="---=_NEXT_fda4fcaab6";

-----=_NEXT_fda4fcaab6
Content-Type: text/plain; charset=ISO-8859-1
Content-Transfer-Encoding: 8bit

This is the text part of the email message!

-----=_NEXT_fda4fcaab6
Content-Type: text/html; charset=ISO-8859-1
Content-Transfer-Encoding: 8bit

<html>
	 <body>
		 <h3>This is the HTML part of the email message!</h3>
	 </body>
</html>

-----=_NEXT_fda4fcaab6--

Attachments to an email message are included as additional parts. Typically, the file that is attached is
encoded using Base 64 encoding so it appears as a block of random letters and numbers. It is possible for
one part of an email to itself have a Content-Type of multipart/alternative and its own boundary. In this way, very
complex recursive email structures can be created.

Lasso allows access to the headers and each part (including recursive parts) of downloaded email messages
through the [Email_Parse] type.

6 0 8

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 4 8 – POP

[Email_Parse] Type
The [Email_Parse] type requires the raw MIME text of an email message as a parameter. It returns an object
whose member tags can be used to inspect the headers and parts of the email message. Outputting an
[Email_Parse] type to the page will result in a message formatted with the most common headers and the
default body part. [Email_Parse] can be used with [Iterate] … [/Iterate] tags to inspect each part of the message in
turn.

Table 2: [Email_Parse] type

Tag	 Description	

[Email_Parse]	 Parses the raw MIME text of an email. Requires a single string parameter.
Outputs the raw data of the email if displayed on the page or cast to string.

[Email_Parse->Headers]	 Returns an array of pairs containing all the headers of the message.

[Email_Parse->Header]	 Returns a single specified header. Requires one parameter, the name of the
header to be returned. See also the shortcuts for specific headers listed below.
If -Extract is specified then any comments in the header will be stripped. If -
Comment is specified then only the comments will be returned. If -SafeEmail
is specified then the email address will be obscured for display on the Web. If
-NoDecode is specified then the raw header is returned without quoted-printable
or binhex decoding.
This tag returns an array if multiple headers with the same name are found. -Join
can be optionally specified to combine the values in the array into a string.

[Email_Parse->Mode]	 Returns the mode from the Content-Type for the message. Usually either text or
multipart.

[Email_Parse->Body]	 Returns the body of the message. Optional parameter specifies the prefered
type of body to return (e.g. text/plain or text/html). If the body is encoded using
Quoted-Printable or Base64 encoding then it is automatically decoded before
being returned by this tag.

[Email_Parse->Size]	 Returns the number of parts in the message.

[Email_Parse->Get]	 Returns the specified part of the message. Requires a position parameter. The
part is returned as an [Email_Parse] object that can be further inspected.

[Email_Parse->Data]	 Returns the raw data of the message.

[Email_Parse->RawHeaders]	 Returns the raw data of the headers.

[Email_Parse->Recipients]	 Returns an array containing all of the email addresses in the To, Cc, and Bcc
headers.

		

The following tags are shortcuts which return the value for the corresponding header from the email message.
The Bcc header will always be empty for received emails.

[Email_Parse->To]				 [Email_Parse->From]
[Email_Parse->CC]			 [Email_Parse->Bcc]
[Email_Parse->Subject]			 [Email_Parse->Date]
[Email_Parse->Content_Type]		 [Email_Parse->Boundary]
[Email_Parse->Charset]			 [Email_Parse->Content_Disposition]
[Email_Parse->Content_Transfer_Encoding]

Note: The tags [Email_Parse->To], [Email_Parse->From], [Email_Parse->Cc], and [Email_Parse->Bcc] headers also accept
-Extract, -Comment, and -SafeEmail parameters like the [Email_Parse->Header] tag. These tags join multiple parameters
by default, but -Join=Null can be specified to return an array instead.

Examples
This section includes examples of the most common tasks that are performed using the [Email_Parse] type. See
the preceding POP Type section for examples of downloading messages from a POP email server.

6 0 9

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 4 8 – POP

To display a downloaded message:

Simply use the [Email_Parse] tag on the downloaded message and display it on the page. The [Email_Parse]
object will output a formatted version of the email message including a plain text body if one exists.

The following example shows how to download and display all the waiting messages on an example POP
mail server. The unique ID of each downloaded message is shown as well as the output of [Email_Parse] in
<pre> …</pre> tags.

<?LassoScript
	 Var: 'myPOP' = (Email_POP:
		 -Host='mail.example.com',
		 -Username='POPUSER',
		 -Password='MySecretPassword');
	 Iterate: $myPOP, (Var: 'myID');
		 Var: 'myMSG' = $myPOP->(Retrieve);
?>

		 <h3>Message: [Var: 'myID']</h3>
		 <pre>[Email_Parse: $myMSG]</pre>
		 <hr />

<?LassoScript
	 /Iterate;
	 $myPOP->Close;
?>

To inspect the headers of a downloaded message:

There are three ways to inspect the headers of a downloaded message.

	 •	The basic headers of a message can be inspected using the shortcut tags such as [Email_Parse->From],
[Email_Parse->To], [Email_Parse->Subject], etc. The following example shows how to display the basic headers
for a message. The variable $myMSG is assumed to be the output from an [Email_POP->Retrieve] tag.

[Var: 'myParse' = (Email_Parse: $myMSG)]

To: [Encode_HTML: $myParse->To]

From: [Encode_HTML: $myParse->From]

Subject: [Encode_HTML: $myParse->Subject]

Date: [Encode_HTML: $myParse->Date]

�	 To: Example Recipient <example@example.com>
From: Example Sender <example@example.com>
Subject: Test Message
Date: Thu, 8 Jul 2004 08:07:42 -0700

These headers can be used in conditionals or other code as well. For example, this conditional would
perform different tasks based on whether the message is to one address or another.

[Var: 'myParse' = (Email_Parse: $myMSG)]
[If: $myParse->To >> 'mailinglist@example.com']
	 … Store the message in the mailingt list database …
[Else: $myParse->To >> 'help@example.com']
	 … Forward the message to technical support …
[Else]
	 … Unknown recipient …
[/If]

	 •	The value for any header, including application specific headers, headers added by mail processing
gateways, etc. can be inspected using the [Email_Parse->Header] tag. For example, the following code can
check whether the message has Spam Assassin headers.

6 1 0

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 4 8 – POP

[Var: 'myParse' = (Email_Parse: $myMSG)]
[Var: 'Spam_Version' = $myParse->(Header: 'X-Spam-Checker-Version')]
[Var: 'Spam_Level' = $myParse->(Header: 'X-Spam-Level)]
[Var: 'Spam_Status' = $myParse->(Header: 'X-Spam-Status)]

Spam Version: [Encode_HTML: Spam_Version]

Spam Level: [Encode_HTML: $Spam_Level]

Spam Status: [Encode_HTML: $Spam_Status]

�	 Spam Version: SpamAssassin 2.61
Spam Level:
Spam Status: No, hits=-4.6 required=5.0 tests=AWL,BAYES_00 autolearn=ham

The spam status can then be checked with a conditional in order to ignore any messages that have been
marked as spam (note that the details will depend on what server-side spam checker and version is being
used).

[If: $Spam_Status >> 'Yes']
	 … It is spam …
[Else]
	 … It is not spam …
[/If]

	 •	The value for all the headers in the message can be displayed using the [Email_Parse->Headers] tag. The
following example shows

[Var: 'myParse' = (Email_Parse: $myMSG)]
[Iterate: $myParse->Header, (Var: 'Header')]
	
[Encode_HTML: $Header->First]: [Encode_HTML: $Header->Second]
[/Iterate]

�	 Received: From [127.0.0.1] BY example.com ([127.0.0.1]) WITH ESMTP;
	 Thu, 08 Jul 2004 08:07:42 -0700
Mime-Version: 1.0
Content-Type: text/plain; charset=US-ASCII;
Message-Id: <8F6A8289-D0F0-11D8-B21D-0003936AD948@example.com>
Content-Transfer-Encoding: 7bit
From: Example Sender <example@example.com>
Subject: Test Message
Date: Thu, 8 Jul 2004 08:07:42 -0700
To: Example Recipient <example@example.com>

To find the different parts of a downloaded message:

	 •	The [Email_Parse->Body] tag can be used to find the plaintext and HTML parts of a message. The following
example shows both the plaintext and HTML parts of a downloaded message.

[Var: 'myParse' = (Email_Parse: $myMSG)]
<pre>[Encode_HTML: $myMSG->(Body: 'text/plain']</pre>
<hr />[$myMSG->(Body: 'text/html)]<hr />

	 •	The [Email_Parse->Size] and [Email_Parse->Get] tags can be used with the [Iterate] … [/Iterate] tags to inspect every
part of an email message in turn. This will show information about plaintext and HTML parts as well as
information about attachments. The headers and body of each part is shown.

[Var: 'myParse' = (Email_Parse: $myMSG)]
[Iterate: $myParse, (Var: 'myPart')]
	 [Iterate: $myPart->Header, (Var: 'Header')]
		
[Encode_HTML: $Header->First]: [Encode_HTML: $Header->Second]
	 [/Iterate]
	
[Encode_HTML: $myPart->Body]
	 <hr />
[/Iterate]

6 1 1

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 4 8 – POP

To extract the attachments of a downloaded message:

Attachments of a multipart message appear as parts with a Content-Disposition of attachment. The name of the
attachment can be found by looking at the name field of the Content-Type header. The data for the attachment
is returned as the body of the part.

The attachments can be extracted and written out as files that recreate the attached file or they can be stored
in a database, processed by the [Image] tags, or served immediately using [File_Serve].

The following example finds all of the attachments for a message using the [Iterate] … [/Iterate] tags
can be used to cycle through each part in the message inspecting the Content-Disposition using
[Email_Parse->Content_Disposition]. The name [Email_Parse->(Content_Type: 'name')] and data [Email_Parse->Body]
of each part that includes an attachment is used to write out a file using [File_Create] and [File_Write] which
recreates the attachment.

[Var: 'myParse' = (Email_Parse: $myMSG)]
[If: $myParse->Mode >> 'multipart']
	 [Iterate: $myParse, (Var: 'myPart')]
		 [If: $myParse->Content_Disposition >> 'attachment']
			 [Var: 'myFileName' = $myParse->(Content_Type: 'name')]
			 [Var: 'myFileData' = $myParse->Body]
			 [File_Create: '/Attachments/' + $myFileName]
			 [File_Write: '/Attachments/' + $myFileName, $myFileData]
		 [/If]
	 [/If]
[/Iterate]

Note: In order for this code to work the current user must have permission to create files in the Web server root.
The Attachments folder should already exist and Lasso should have permission to write to it. Also, only attachments
which have file extensions that are allowed in Site Administration will be written.

To store a downloaded message in a database:

Messages can be stored in a database in several different ways depending on how the messages are going to
be used later.

	 •	The simple headers and body of a message can be stored by placing the [Email_Parse] object directly in an
inline.

<?LassoScript
	 Var: 'myPOP' = (Email_POP:
		 -Host='mail.example.com',
		 -Username='POPUSER',
		 -Password='MySecretPassword');
	 Iterate: $myPOP, (Var: 'myID');
		 Var: 'myMSG' = $myPOP->(Retrieve);
		 Var: 'myParse' = (Email_Parse: $myMSG);

		 Inline: -Add,
				 -Database='example,'
				 -Table='archive',
				 'email_format' = $myParse.
		 /Inline;

	 /Iterate;
	 $myPOP->Close;
?>

	 •	Often it is desirable to store the common headers of the message in individual fields as well as the different
body parts. This example shows how to do this.

6 1 2

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 4 8 – POP

<?LassoScript
	 Var: 'myPOP' = (Email_POP:
		 -Host='mail.example.com',
		 -Username='POPUSER',
		 -Password='MySecretPassword');
	 Iterate: $myPOP, (Var: 'myID');
		 Var: 'myMSG' = $myPOP->(Retrieve);
		 Var: 'myParse' = (Email_Parse: $myMSG);

		 Inline: -Add,
				 -Database='example,'
				 -Table='archive',
				 'email_format' = $myParse.
				 'email_to' = $myParse->To,
				 'email_from' = $myParse->From,
				 'email_subject' = $myParse->Subject,
				 'email_date' = $myParse->Date,
				 'email_cc' = $myParse->CC,
				 'email_text' = $myParse->(Body: 'text/plain'),
				 'email_html' = $myParse->(Body: 'text/html');
		 /Inline;

	 /Iterate;
	 $myPOP->Close;
?>

	 •	The raw text of messages can be stored using [Email_Parse->Data]. It is generally recommend that the raw text
of a message be stored in addition to the more friendly format. This allows additional information to be
extracted from the message later if required.

<?LassoScript
	 Var: 'myPOP' = (Email_POP:
		 -Host='mail.example.com',
		 -Username='POPUSER',
		 -Password='MySecretPassword');
	 Iterate: $myPOP, (Var: 'myID');
		 Var: 'myMSG' = $myPOP->(Retrieve);
		 Var: 'myParse' = (Email_Parse: $myMSG);

		 Inline: -Add,
				 -Database='example,'
				 -Table='archive',
				 'email_text' = $myParse.
				 'email_raw' = $myParse->Data;
		 /Inline;

	 /Iterate;
	 $myPOP->Close;
?>

Ultimately, the choice of which parts of the email message need to be stored in the database will be solution
dependent.

6 1 3

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 4 8 – POP

Helper Tags
The email tags use a number of helper tags for their implementation. The following table describes a number
of these tags and how they can be used independently.

Table 3: Email Helper Tags

Tag	 Description	

[Email_Extract]	 Strips all comments out of a MIME header. If specified with a -Comment
parameter returns the comments instead. Used as a utility tag by [Email_Parse-
>Header].

[Email_FindEmails]	 Returns an array of all email addresses found in the input. Used as a utility tag
by [Email_Parse->Recipients].

[Email_SafeEmail]	 Obscures an email address by returning the comment portion or only the
username before the @ character. Used as a utility tag by [Email_Parse-
>Header].

[Email_TranslateBreaksToCRLF]	 Translates all return characters and line feeds in the input into \r\n pairs.
		

Note: The Encoding chapter includes documentation of additional helper tags including [Encode_QuotedPrintable],
[Decode_QuotedPrintable], [Encode_QHeader], and [Decode_QHeader].

[Email_Extract]
[Email_Extract] allows the different parts of email headers to be extracted. Email headers which contain email
addresses are often formatted in one of the three formats below.

john@example.com
"John Doe" <john@example.com>
john@example.com (John Doe)

In all three of these cases the [Email_Extract] tag will return john@example.com. The angle brackets in the second
example identify the email address as the important part of the header. The parentheses in the third example
identify that portion of the header as a comment.

If [Email_Extract] is called with the optional -Comment parameter then it will return john@example.com for the first
example and John Doe for the two following examples.

[Email_SafeEmail]
[Email_SafeEmail] returns an obscured email address. This tag can be used to safely display email headers on the
Web without attracting email address harvesters.

If the input contains a comment then it is returned. Otherwise, the full header is returned. In either case, if
the output contains an @ symbol then only the portion of the address before the symbol is returned. This
would result in the following output for the example headers above.

➜	 john
John Doe
John Doe

6 1 4

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 4 8 – POP

49
Chapter 49

HTTP/HTML Content
and Controls

This chapter describes the tags which can be used to send and receive files with remote HTTP and FTP servers,
include files from remote HTTP and HTTPS servers, interpret HTTP requests, alter the HTTP headers of
responses, and to redirect clients to another URL.

	 •	Include URLs describes how to include files from remote Web servers, including SSL-protected servers.

	 •	Redirect URL describes how to forward clients to a different URL.

	 •	HTTP Tags describes how to perform HTTP requests to another Web server.

	 •	FTP Tags describes how to perform FTP requests to an FTP server.

	 •	Cookie Tags describes how to set and retrieve cookies from a Web client

	 •	Caching Tags describes how to cache Lasso page content using Lasso.

	 •	Server Push describes how to enable progressive download of HTML pages.

	 •	Header Tags describes the tags which allow the current HTTP response headers to be modified.

	 •	Request Tags describes the tags which return information about the current HTTP request and allow the
HTTP header of the response to be manipulated.

	 •	Client Tags describes the tags which return information about the current Web client.

	 •	Server Tags describes the tags which return information about the current Web server.

Include URLs
The [Include_URL] tag allows data from another Web server to be included into the contents of a page which
is being served to a visitor. This can include HTTP or HTTPS servers. The [Include_URL] tag is replaced by
the contents of the remote Web page. Optional parameters allow GET or POST parameters, authentication
information, or extra MIME headers to be sent along with the request. Other optional parameters also allow
for the MIME headers of the response to be retrieved.

The [Include_URL] tag can be used for any of these purposes.

	 •	To fetch a remote Web page to show to a site visitor. Lasso can be used as a proxy that retrieves the remote
page, performs some processing, then sends the page to the visitor.

	 •	To incorporate a portion of a remote Web page into a Lasso page. A remote Web page can be retrieved, the
desired content extracted, and placed into a Lasso page.

	 •	[Include_URL] can also be used in pages on the same Web server in which Lasso is running.

	 •	To trigger an action in a remote Web application server. [Include_URL] could be used to trigger a CGI on
another Web server.

	 •	To trigger an action in a remote Web application server protected via SSL. [Include_URL] could be used to
initiate a credit card transaction at a secure HTTPS processing site.

6 1 5

L a s s o 8 . 5 L a n g u a g e G u i d e

	 •	To trigger an action on the same Web server in which Lasso is running. The [Event_Schedule] tag uses
[Include_URL] to call Lasso pages at the designated time.

Implementation Note: The [Include_URL] tag is implemented in Lasso 8 using libCURL 7.9.5 with OpenSSL for
communication with HTTP and HTTPS servers. For more information on libCURL, visit http://curl.sourceforge.net. For
more information on OpenSSL, visit http://www.openssl.org.

Table 1: Include URL Tag

Tag	 Description	

[Include_URL]	 Includes a Web page from a remote HTTP or HTTPS server, or from the local
server. Requires the target URL as a value parameter and accepts many optional
parameters.

		

The [Include_URL] tag accepts many parameters which define how the remote page should be fetched. These are
summarized in Table 2: [Include_URL] Parameters.

Code which is returned by [Include_URL] will be HTML encoded by default. Specify -EncodeNone so fetched
HTML code will be rendered as part of your Web page. Code which is included with [Include_URL] will not
undergo further processing by Lasso unless the [Process] tag is called explicitly on the results.

Table 2: [Include_URL] Parameters

Parameter	 Description	

URL	 Specifies the URL which is to be fetched. Required.

-POSTParams	 Specifies an array or map of POST parameters. Optional. The request will be
sent using the POST method if this parameter is included. -POSTParams can
also be used to post a string to a remote server.

-GETParams	 Specifies an array or map of GET parameters. Optional.

-SendMIMEHeaders	 Specifies an array of additional MIME headers that should be included with the
request. Optional.

-Username	 Specifies the username that should be used to authenticate the request.
Optional.

-Password	 Specifies the password that should be used to authenticate the request.
Passwords are encoded in Base 64. Optional.

-RetrieveMIMEHeaders	 Specifies the name of a variable which will be set to an array containing all of the
MIME headers in the response. Optional.

-NoData	 Specifies that the data from the request should not be returned. Optional.

-VerifyPeer	 If specified then Lasso will perform a mor rigorous check of the remote server's
SSL certificate if the HTTPS protocol is being used. Optional.

-SSLCert	 Specifies the file path to your certificate. No Lasso security will be checked for
this file path. The default certificate format is PEM and can be changed with -
SSLCertType. Optional.

-SSLCertType 	 The format of your certificate. Supported formats are PEM and DER. Defaults to
PEM. Optional.

-SSLKey	 Specifies the file path to your private key. No Lasso security will be checked
for this file path. The default key format is PEM and can be changed with -
SSLKeyType. Optional.

-SSLKeyType	 The format of your private key. Supported formats are PEM and DER. Optional.

-SSLKeyPasswd	 The required password for the -SSLKey private key. Optional.

-Timeout	 An integer containing the maximum time in seconds that Lasso will allow the
transfer operation to take. This will limit both the initial connection timeout and the
amount of time the connection will wait to receive incoming data. Optional.

-ConnectTimeout	 The maximum time in seconds to allow for the connection to the server. This only
limits the connection phase, once it has connected, this option is of no more use.
Set to zero to disable connection timeout (it will then only timeout on the system's
internal timeouts). Optional.

		

6 1 6

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 4 9 – HTTP / HTM L C o n t e n t a n d C o n t r o l s

Note: Connection timeouts on OS X will wait for only half the time specified.

To include a URL into the current Lasso page:

Use the [Include_URL] tag with the URL of the remote page. The following example shows how to include
LassoSoft’s front page.

[Include_URL: 'http://www.lassosoft.com/']

The port of a Web server may also be specified in the URL.

[Include_URL: 'http://www.lassosoft.com:80/']
[Include_URL: 'http://www.lassosoft.com:1024/']
[Include_URL: 'http://www.lassosoft.com:8180/']

To include a URL from a password-protected HTTPS server into the current Lasso page:

Use the [Include_URL] tag with the -Username and -Password parameters (recommended). The following example
shows how to include an SSL-protected page.

[Include_URL: 'https://store.example.com/', -Username='my_username', -Password='my_password']

This can also be achieved without the use of the -Username and -Password parameters by submitting the
username and password in the URL.

[Include_URL: 'my_username:my_password@https://store.example.com']

To simulate an HTML form submission:

An HTML form submission can be simulated using the [Include_URL] tag with the -POSTParams parameter.
The inputs of the form should be included as name/value parameters within an array. The following form is
shown below as an equivalent [Include_URL] tag.

<form action="http://www.example.com/response.lasso" method="POST">
	 <input type="hidden" name="-Database" value="Example">
	 <input type="hidden" name="-Table" value="Contacts">
	 <input type="hidden" name="-KeyField" value="ID">
	 <p><input type="submit" name="-FindAll" value=Find All Records"">
</form>

The form inputs are assembled into an array as follows.

[Variable: 'POST_Params' = (Array: -Database='Example',
	 -Table='Contacts', -KeyField='ID', -FindAll='Find All Records')]

This variable can then be included in the [Include_URL] tag. The following tag will include the contents of the
Lasso page response.lasso with the results of the -FindAll action.

[Include_URL: 'http://www.example.com/response.lasso',
	 -POSTParams=(Variable: 'POST_Params')]

To process an included URL:

Often it is necessary to do some post-processing on an included URL in order to extract a portion of the page.
Most included pages will have <html>, <head> and <body> tags which are redundant since they are specified
in the Lasso page which is including the remote page. The following code extracts everything between the
opening <body> tag and closing </body> tag using a regular expression.

[Variable: 'Page_Text' = (Include_URL: 'http://www.lassosoft.com/')]
[String_ReplaceRegExp: (Variable: 'Page_Text'),
	 -Find='[\\s\\S]*<body[^>]*>([\\s\\S]*)</body>[\\s\\S]*',
	 -Replace='\\1']

Note: See the String Operations chapter for more information about regular expressions.

6 1 7

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 4 9 – HTTP / HTM L C o n t e n t a n d C o n t r o l s

The regular expression will match the entire included file. [\\s\\S]* will match all characters until the <body> tag
which is written as <body[^>]*> so that any parameters of the <body> tag will be included. The parenthesized
expressions ([\\s\\S]*) matches the contents of the body tag which is ended by </body>. Finally, [\\s\\S]* matches
all other characters until the end of the file.

The replacement is simply \\1 which replaces the entire expression with the contents of the first parenthesized
expression, the contents of the <body> … </body> tags.

Redirect URL
The [Redirect_URL] tag can be used to send a client to a different URL. Processing of the current page stops
as soon as [Redirect_URL] is called (except for [Handle] … [/Handle] tags which execute normally). [Redirect_URL]
works by altering the HTTP response header which is returned to the client. The use of [Redirect_URL] may
override specific settings made using the [Content_Header] tag. [Redirect_URL] cannot be used on a page below a
[Server_Push] tag.

The parameter to [Redirect_URL] must be a full URL and should include the explicit protocol, e.g. http://.
Specifying an absolute or relative path to another Lasso page on the Web server will not work. For example,
to reference the home page of the Web server www.example.com, the following full URL would be used.

http://www.example.com/default.lasso

By default the [Redirect_URL] tag will generate a 302 FOUND temporary redirect which informs the visiting
browser or crawler that the desired page has moved, but the browser should reload the current URL on
subsequent efforts. If -Type='Moved' or -Type='301' is specified then the tag will generate a 301 MOVED permanent
redirect which informs the visiting browser or crawler that the desired page should be looked for in the new
location. Some browsers may update their bookmarks when they encounter a permanent redirect and some
site crawlers will use that information to permanently update their indexes.

The [Redirect_URL] tag will perform an [Abort] automatically so no code after the tag will normally be processed.
The -NoAbort parameter can be used to suppress the abort if necessary.

Table 3: Redirect URL Tag

Tag	 Description	

[Redirect_URL]	 Accepts a single parameter which is a URL to which the client should be sent.
Optional -Type parameter can be set to 'Moved' or '301' to generate a permanent
redirect. Optional -NoAbort tag suppresses the built-in [Abort] so code after the
tag can execute.

		

To redirect a client to another page:

Specify the full URL of the page to which the client should be redirected within a [Redirect_URL] tag.

	 •	The following examples show how to redirect a client to Microsoft’s or Apple’s Web sites.

[Redirect_URL: 'http://www.microsoft.com/']

[Redirect_URL: 'http://www.apple.com/']

	 •	The following example shows how to redirect a client to the login page login.lasso contained in the root
folder of the www.example.com Web site.

[Redirect_URL: 'http://www.example.com/login.lasso']

	 •	The following example shows how to perform a permanent redirect from a page login.lasso to a new /login/
directory. Since -Type='Moved' is specified this redirect will be seen as permanent by most browsers and site
crawlers..

[Redirect_URL: 'http://www.example.com/login/default.lasso', -Type='Moved']

6 1 8

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 4 9 – HTTP / HTM L C o n t e n t a n d C o n t r o l s

	 •	The following example shows how to redirect a client to another page redirect.lasso in the same folder as the
current page. The [Server_Name] and [Response_Path] tags are used to return the name of the current server
and the path to the current response page.

[Redirect_URL: 'http://' + (Server_Name) + (Response_Path) + 'redirect.lasso']

HTTP Tags
Lasso 8 provides HTTP protocol tags that allow developers to send and receive files via HTTP. These tags can
generally be used for programmatically uploading and downloading files to and from another Web server.

Implementation Note: The [HTTP_…] tags are implemented in Lasso 8 using libCURL 7.9.5. For more information
on libCURL, visit http://curl.sourceforge.net.

Table 4: HTTP Tags

Tag	 Description	

[HTTP_GetFile]	 Downloads a file from a remote HTTP server. Requires the -URL parameter,
which is the URL from which the file will be downloaded, and the -File parameter,
which is the name and path to the local file to be created. Optional -Username
and -Password parameters may be used to specifiy a username and password
needed to log in to the remote HTTP server. This tag is similar to [Include_URL],
except that the file is written to disk rather than being output inside a Lasso page.

		

File Permissions Note: The current Lasso user must have adequate file and folder permissions to copy a file or
write to folder on the local machine. The same file permissions are required for [HTTP_…] tags as the [File_…] tags.
See the Files and Logging chapter for more information.

To download a file from an HTTP server:

Use the [HTTP_GetFile] tag. The following example downloads a file named download.zip from the URL
http://www.example.com/download.zip to the local documents folder.

[HTTP_GetFile: -URL='http://www.example.com/download.zip', -File='/documents/download.zip']

To download a file from a password-protected HTTP server on a non-default port:

Use the [HTTP_GetFile] tag with the -Username and -Password parameters. The following example downloads
a file named download.zip at http://www.example.com:1024/private/download.zip where a username and password are
required to access to the private folder.

[HTTP_GetFile: -URL='http://www.example.com:1024/private/'download.zip, -File='/documents/download.zip', -Username='my_
username', -Password='my_password']

FTP Tags
Lasso 8 also provides FTP protocol tags that allow developers to send and receive files via FTP. These tags can
generally be used for programmatically uploading and downloading files to and from an FTP server.

Note: These tags do not make Lasso Professional 8 an FTP server, but allow Lasso Professional 8 to put and get
files from other FTP servers similar to an FTP client.

Implementation Note: The [FTP_…] tags are implemented in Lasso 8 using libCURL 7.9.5. For more information
on libCURL, visit http://curl.sourceforge.net.

6 1 9

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 4 9 – HTTP / HTM L C o n t e n t a n d C o n t r o l s

Table 5: FTP Tags

Tag	 Description	

[FTP_PutFile]	 Uploads a local file up to a remote FTP server. Requires the -URL parameter,
which is the URL folder and file name of the file to be uploaded, and the -File
parameter, which is the path to the local file to be uploaded. Optional -Username
and -Password parameters may be used to specifiy a username and password
needed to log in to the remote FTP server.

[FTP_GetFile]	 Downloads a file from a remote FTP server. Requires the -URL parameter, which
is the URL from which the file will be downloaded, and the -File parameter, which
is the name and path to the local file to be created. Optional -Username and -
Password parameters may be used to specifiy a username and password needed
to log in to the remote FTP server.

[FTP_GetListing]	 Lists all files accessible to the current user in the remote FTP server URL folder.
Outputs an array of maps for each file entry containing the file name, type
(directory, file, or link), modification date/time, and size in bytes (for files only).
Requires the -URL parameter, which is the URL of the folder to be listed. Optional
-Username and -Password parameters may be used to specifiy a username
and password needed to log in to the remote FTP server. The username and
password values often determine which files are shown by the FTP server. If
-NoEPSV is specified then expanded passive mode will not be used. Use this
option if Lasso cannot connect using the default settings.

		

File Permissions Note: The current Lasso user must have adequate file and folder permissions to copy a file or
write to a folder on the local machine. The same file permissions are required for [FTP_…] tags as the [File_…] tags.
See the Files and Logging chapter for more information.

To upload a file to an FTP server:

Use the [FTP_PutFile] tag. The following example uploads a file named myfile.zip to the URL ftp://ftp.example.com.

[FTP_PutFile: -URL='ftp://ftp.example.com/myfile.zip', -File='/documents/myfile.zip']

To upload a file to a password-protected FTP server:

Use the [FTP_PutFile] tag with the -Username and -Password parameters. The following example uploads a file
named myfile.zip to ftp://ftp.example.com/private/ which requires a username and password to access the private
folder.

[FTP_PutFile: -URL='ftp://ftp.example.com/private/myfile.zip', -File='/documents/myfile.zip', -Username='my_username', -
Password='my_password']

To download a file from an FTP server:

Use the [FTP_GetFile] tag. The following example downloads a file named download.zip from the URL
ftp://ftp.example.com/download.zip.

[FTP_GetFile: -URL='ftp://ftp.example.com/download.zip', -File='/documents/download.zip']

To download a file from a password-protected FTP server:

Use the [FTP_GetFile] tag with the -Username and -Password parameters. The following example downloads a file
named download.zip from ftp://ftp.example.com/private/donwload.zip where a username and password are required to
access the private folder.

[FTP_GetFile: -URL='ftp://ftp.example.com/private/download.zip', -File='/documents/download.zip', -Username='my_username',
-Password='my_password']

To list all files available in a folder on a password-protected FTP server:

Use the [FTP_GetListing] tag with the -Username and -Password parameters. The following example lists all files in
the ftp://ftp.example.com/private/ folder that are available to the my_username user.

6 2 0

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 4 9 – HTTP / HTM L C o n t e n t a n d C o n t r o l s

[FTP_GetListing: -URL='ftp://ftp.example.com/private/', -Username='my_username', -Password='my_password']

 �	[Array: (Map: 'FileName'='download.zip',
 'FileSize'='101k',
 'FileType'='File',
 'FileType'='2002-09-29 15:30:00'),
 (Map: 'FileName'='More_Files',
 'FileType'='File',
 'FileType'='2002-09-12 12:14:39')]

Note: The modification date for each file using the [FTP_GetListing] tag will be returned using the date format that
is used by the remote FTP server.

Cookie Tags
Cookies allow small amounts of information to be stored in the Web browser by Lasso. Each time another
page on the same server is loaded, all stored cookies are sent back to Lasso. Multiple cookies can be stored
in a client’s Web browser and then retrieved on subsequent pages. Cookies can be used to store a client’s
authentication information, customer ID, site preferences, or even an entire shopping cart. Lasso’s sessions
make automatic use of cookies to store each client’s session ID so server-side variables can be made persistent
from page to page.

Please see the Sessions chapter for an introduction to sessions and the Cookies section of the Web
Application Fundamentals chapter for a technical introduction to cookies.

Cookies are reliant on support from the client’s Web browser for much of their functionality. Preferences for
when cookies expire and what domains can retrieve a cookie can be established using the [Cookie_Set] tag, but
those preferences must be enforced by the client’s Web browser in order for them to have any effect. Clients
can even turn off cookie support altogether in most Web browsers.

Cookies are communicated to and from the Web server in the HTTP response header and subsequent
HTTP requests. Cookies are not available in the page within which they were set, they are only available in
subsequent pages loaded by the same client.

Table 6: Cookie Tags

Tag	 Description	

[Cookie]	 Returns the value for a named cookie. Accepts one required parameter, the name
of the cookie whose value should be returned.

[Cookie_Set]	 Sets a cookie with a given name and value. See the table below for details about
this tag's parameters.

[Client_CookieList]	 Returns a string which contains every cookie sent along with the current HTTP
request.

[Client_Cookies]	 Returns a pair array containing every cookie sent along with the current HTTP
request.

		

Setting Cookies
Cookies are set using the [Cookie_Set] tag. The one required parameter of the tag is a user-defined name/value
parameter specifying the name of the cookie and the value which is to be stored under that name. However,
it is recommended that all parameters of the [Cookie_Set] tag be specified in order to ensure compatibility with
the greatest range of Web browsers.

6 2 1

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 4 9 – HTTP / HTM L C o n t e n t a n d C o n t r o l s

Table 7: [Cookie_Set] Parameters

Tag	 Description	

Name/Value	 A name/value parameter defines the name of the cookie and the value which
should be stored under that name. Required.

-Expires	 The number of minutes until the cookie expires. Optional. If left blank, most
cookies expire when the client quits their Web browser application. A negative
value instructs a Web browser to expire a cookie immediately.

-Domain	 The domain of the cookie. Cookies will only be sent to servers with this domain.
Optional, but recommended.

-Path	 The path of the cookies. Cookies will only be sent to pages which are in
subfolders of this path. Optional, but recommended.

-Secure	 If specified then the cookie will only be transmitted back through secure HTTPS
protocol.

		

The total number of characters of the name/value parameter and all other parameters of the [Cookie_Set] tag
must be less than 2048 characters. The name of the cookie must be less than 1024 characters. The value of the
cookie must be less than 1024 characters. The -Expires parameter should be no more than 10 digits. The -Path
and -Domain parameters should be no more than 256 characters each.

Note: The parameters required for the [Cookie_Set] tag vary depending on what Web clients are being used
by site visitors. In general, it is safest to specify each of -Expires, -Domain, and -Path in order to ensure maximum
compatibility.

To set a cookie:

Use the [Cookie_Set] tag with each of the parameters defined. The following example shows how to create a
cookie named Cookie_Name with the value Cookie_Value for the domain example.com with an expiration time of
24 hours (1440 minutes). The path is set to / so all pages in the site will have access to the cookie.

[Cookie_Set: 'Cookie_Name'='Cookie_Value',
	 -Domain='example.com',
	 -Path='/',
	 -Expires=1440]

The example above shows -Domain set to example.com. Setting -Domain to the name of the domain rather than
to the name of a particular Web server ensures that any server within the domain can retrieve the cookie. For
example, mail.example.com and images.example.com could retrieve Cookie_Name set above.

To set a cookie that can be retrieved by another Web server:

The -Domain parameter can be used to define that a cookie be returned to another Web server. This can be
useful for interactions where a customer needs to be tracked as they move between different Web servers.

The following example shows how a cookie can be set so that it will be served to the server www.otherserver.com.
This cookie will not be sent to subsequent pages loaded on the current server by the client. It will only be
served to www.otherserver.com when they visit that Web server.

[Cookie_Set: 'Cookie_Name'='Cookie_Value',
	 -Domain='otherserver.com',
	 -Path='/',
	 -Expires=1440]

Note: Many Web browsers have a preference which prohibits cookies being set which will be read by a different
server. If the -Domain parameter is not specified to the same domain as the Web server hosting Lasso Service then
the cookie may not be set in all Web browsers.

6 2 2

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 4 9 – HTTP / HTM L C o n t e n t a n d C o n t r o l s

To delete a cookie:

Cookies can be deleted by setting the -Expires parameter to a negative number or by resetting the value of the
cookie. It is good practice to delete cookies which are no longer needed. Some Web browsers do not delete
expired cookies properly so extra data may end up being sent to the Web server with every URL request. The
following example shows how to delete the cookie Cookie_Name by setting it to the empty string '' and setting
its expiration to -1.

[Cookie_Set: 'Cookie_Name'='',
	 -Domain='example.com',
	 -Path='/',
	 -Expires=-1]

Retrieving Cookies
Cookies are retrieved by name. However, only cookies which were sent by the client’s Web browser along with
the current HTTP request can be retrieved by Lasso. The Web browser determines what cookies to send based
on the domain, path, and expiration set for each cookie. The implementation differs from browser to browser
so some client’s may not support all types of cookies.

To retrieve a cookie:

If a cookie is available it can be retrieved using the [Cookie] tag. This tag accepts a single parameter which is
the name of the cookie to be retrieved. The tag will return an empty string if the cookie is not defined. The
following code returns the value Cookie_Value for the cookie Cookie_Name.

[Cookie: 'Cookie_Name'] � Cookie_Value

To retrieve all cookies:

There are two ways to retrieve a list of all cookies that have been sent along with the current HTTP request.

	 •	Use [Client_Cookies] to return an array of all cookies set for the current HTTP request. [Client_Cookies] returns a
pair array where each pair contains the name and value of a cookie. The following example shows how to
display all cookies that are currently set using [Loop] … [/Loop] tags. The result is the single Cookie_Name with
value Cookie_Value.

[Loop: (Client_Cookies->Size)]
	 [Variable: 'Temp_Cookie' = (Client_Cookies->(Get: (Loop_Count)))]
	
[Encode_HTML: $Temp_Cookie->First + ': ' + $Temp_Cookie->Second]
[/Loop]

�	
Cookie_Name: Cookie_Value

	 •	Use [Client_CookieList] to return a string that contains the names and values of all cookies set for the current
HTTP request. This tag can be used for debugging purposes to quickly display a list of all cookies. The
cookies are returned separated by semi-colons ; with the name of the cookie separated from the value by an
equal sign =. The following example shows a single cookie Cookie_Name with value Cookie_Value.

[Client_CookieList] � Cookie_Name: Cookie_Value;

To check if a cookie is set:

Use the [Array->Find] tag to search through the [Client_Cookies] tag. If the [Array->Find] returns a pair value then
the cookie is set. If it returns Null then the cookie is not set. Using this method is more reliable than simply
calling [Cookie] with the name of a cookie since it is impossible to tell whether a returned value of the empty
string '' is due to a cookie not being set or due to a cookie being set to the empty string. The following
example returns True since the cookie Cookie_Name is set.

[If: (Client_Cookies)->(Find: 'Cookie_Name') != Null] True [/If]

 �	True

6 2 3

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 4 9 – HTTP / HTM L C o n t e n t a n d C o n t r o l s

Checking for Cookie Support
Since cookies can be deactivated within a client’s Web browser it is important to check whether cookies are
supported before allowing a client to view portions of a Web site that require cookies. The following code
will perform a check for cookie support by setting a cookie and then redirecting the client to another page
which checks the cookie value.

To check whether cookies are supported:

The page cookie_set.lasso contains a [Cookie_Set] tag that sets a cookie Test_Cookie to the value Test_Value and a
[Redirect_URL] tag which sends the client to the page cookie_check.lasso.

[Cookie_Set: 'Test_Cookie'='Test_Value',
	 -Domain='example.com',
	 -Path='/']
[Redirect_URL: 'http://www.example.com/cookie_check.lasso']

The page cookie_check.lasso checks to see if the cookie is set using the [Array->Find] tag on [Client_Cookies]. If it is
set, it redirects the user to the default page of the Web site default.lasso. If cookies are not supported then the
user is redirected to the page error.lasso which contains a warning message.

[If: (Client_Cookies)->(Find: 'Cookie_Name') != Null]
	 [Redirect_URL: 'http://www.example.com/default.lasso']
[Else]
	 [Redirect_URL: 'http://www.example.com/error.lasso']
[/If]

Caching Tags
New content caching tags in Lasso Professional 8 allow a portion of a page to be cached either to a global
variable or to a session. Lasso is able to cache the output of dynamic Lasso code and data source queries, as
well as the values of named Lasso variables for later use. These tags allow developers to reduce database and
server load by having Lasso only recalculate various portions of a page periodically.

The first time a page with [Cache] … [/Cache] tags is hit, the contents of the tags are remembered for a specified
period of time. The Lasso cache can be set to refresh itself at scheduled time intervals, or when certain
conditions are met.

Important: When using the cache tags, it is important to know that any dynamic changes that occur in cached
Lasso code will be ignored, and only the original cached values will be output until the cache expires.

Caching Output Values
Lasso allows the values output by dynamic Lasso code to be cached so that the dynamic operations (such
as a data query) are not performed again until the cache expires or is dumped. This is accomplished by
surrounding the code to cache with the [Cache] … [/Cache] container tags, which are described below.

Table 8: [Cache] Tag

Tag	 Description	

[Cache] … [/Cache]	 Container tag used for caching elements on a page in Lasso's internal cache.
Requires a -Name parameter which specifies the name of the cache, and several
optional parameters may be used as shown in the following table.

		

The optional parameters for the [Cache] … [/Cache] container tags are described in Table 9: [Cache] Tag
Parameters.

Note: Only one of -Expires and -Condition should be specified. If a -Condition is specified then the -Expired parameter
will be ignored.

6 2 4

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 4 9 – HTTP / HTM L C o n t e n t a n d C o n t r o l s

Table 9: [Cache] Tag Parameters

Tag	 Description	

-Name 	 Specifies the name of the cache. The name of the cache identifies the cached
contents so it can be referenced on several pages. This is the only required
parameter.

-Expires 	 Specifies how many seconds the cached contents should last. If the cached
contents is older than the time interval specified, then new content values will be
cached on the next page load. Can only be used if no -Condition is specified.

-Condition	 Allows arbitrary refresh conditions to be specified. If a -Condition is specified then
-Expires will be ignored. Accepts a boolean value of True or False and refreshes
the contents immediately when True. Conditional expressions may be used to
output the required True or False value. For example, -Condition=((Action_Param:
'Refresh') == 'Yes') refreshes the cache if the action param is equal to Yes.

-Session 	 Specifies the name of a session that the cached content should be stored in.
This allows the cached content to be user specific. If no -Session parameter is
specified, then the content will be stored in a global variable instead.

-UseGlobal 	 Can be used in concert with -Session to store cached data in both a global
variable and a session. All caches are stored in a global variable by default if
neither
-Session or -UseGlobal is specified.

-Key	 Can be used to secure a cache on a server. Requires a password string value.
Once a cache has been created with a -Key parameter and value, the cache will
only be returned if subsequent [Cache_…] tags contain the same -Key parameter
and value. Optional.

		

Restart Note: Caches stored in global variables do not persist between restarts. They must be refreshed the first
time they are hit on a Lasso page. Global variables are used by default unless a -Session parameter is specified.

To cache content with an expiration:

Surround the portion of your page that you wish to cache with the [Cache] … [/Cache] container tags using
the -Expires parameter. In the example below, the output of the data source query surrounded by the
[Cache] … [/Cache] tags will be stored in a global variable, and then output consistently with each page refresh
(without performing the data source query again) until the cache expires 3600 seconds later.

[Cache:
	 -Name='Cache_Name',
	 -Expires=3600]

	 [Inline: -Database='Contacts', -SQL='Select * from people where ID < 3']
		 [Field:'First_Name'] [Field:'Last_Name'] - [Field:'Company']

	 [/Inline]

[/Cache]

�	 ✪John Doe - LassoSoft
 Jane Doe - LassoSoft

To cache content with no expiration:

Use the [Cache] … [/Cache] tags without the -Expires parameter. The example below shows a cached data source
query that never expires. This means that the first result set out put by the contained [Inline] … [/Inline] tags will
be the results that are always output.

[Cache:
	 -Name='Cache_Name']

	 [Inline: -Database='Contacts', -SQL='Select * from Contacts.People']
		 [Field:'First_Name'] [Field:'Last_Name'] - [Field:'Company']

	 [/Inline]

6 2 5

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 4 9 – HTTP / HTM L C o n t e n t a n d C o n t r o l s

[/Cache]

�	 ✪John Doe - LassoSoft
 Jane Doe - LassoSoft

To cache content to a session instead of a global variable:

Use the [Cache] … [/Cache] tags with the -Session parameter. This stores the cached data in a session instead of a
global variable, which means that the cached data will expire when the session expires. In the example below,
a [Date] tag cached will expire in three hours when the session expires.

[Session_Start: -Name='Session_Name', -Expires=3600]

[Cache:
	 -Name='Cache_Name',
	 -Session='Session_Name']

[Date]

[/Cache]

�	 ✐9/29/2003 19:13:00

To cache content to both a session and a global variable:

Use the [Cache] … [/Cache] tags with both the -Session and -UseGlobal parameters. This will store the data in both
a session and a global variable for maximum control over the cache. In the example below, a [Date] tag cached
will never expire unless both the cache is dumped in Lasso Administration and the end-user deletes their
session cookie.

[Session_Start: -Name='Session_Name']

[Cache:
	 -Name='Cache_Name',
	 -Session='Session_Name',
	 -UseGlobal]

[Date]

[/Cache]

�	 ✐9/29/2003 19:13:00

To conditionally refresh a page:

Use the [Cache] … [/Cache] tags with the -Condition parameter. The example below conditionally refreshes the
cache if the value of [Action_Param:'Cache'] is equal to Yes.

[Cache:
	 -Name='Cache_Name',
	 -Condition=((Action_Param:'Cache') == 'Yes')]

[Date]

[/Cache]

�	 ✐9/29/2003 21:57:00

Note: If a -Condition is specified then the -Expires parameter of the opening [Cache] tag will be ignored.

6 2 6

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 4 9 – HTTP / HTM L C o n t e n t a n d C o n t r o l s

To create a secure cache:

Use the [Cache] … [/Cache] tags with the optional -Key parameter. The example below creates a cache named
Cache_Name with a key value of password. Only subsequent cache tags containing the parameter -Key='password'
will be able to access this cache.

[Cache:
	 -Name='Cache_Name',
	 -Expires=3600,
	 -Key='password']

	 [Inline: -Database='Contacts', -SQL='Select * from people where ID < 3']
		 [Field:'First_Name'] [Field:'Last_Name'] - [Field:'Company']

	 [/Inline]

[/Cache]

Cache Control Tags
Additional cache control tags allow values stored in caches to be programmatically fetched and emptied.
These tags are described in the following table.

Note: These tags are utility functions that allow a cache to be manipulated without using the [Cache] … [/Cache]
tags. In general the [Cache] … [/Cache] tags should be used directly unless one of these specific functions is
needed.

Table 11: Cache Control Tags

Tag	 Description	

[Cache_Fetch]	 Outputs the contents of a Lasso cache. Requires a
-Name parameter, which specifies the name of the cache. An optional -Session
parameter specifies the session that contains the cache, if applicable.

[Cache_Store] 	 Requires a -Name parameter and a -Content parameter that specifies the new
content for the cache. Optional -Session parameter specifies teh session that
contains the cache, if applicable.

[Cache_Empty]	 Clears a specified cache. The cached contents will be forced to reload at the next
page load. Requires a
-Name parameter which specifies the name of the cache. An optional -Session
parameter specifies the session that contains the cache, if applicable.

[Cache_Delete]	 Deletes a specified cache as if it had never been stored. Requires a -Name
parameter which specifies the name of the cache. An optional -Session
parameter specifies the session that contains the cache, if applicable.

[Cache_Exists]	 Checks whether a cache needs a refresh or not. Requires a -Name parameter
which specifies the name of the cache. The -Expires parameter works the same
as it does in the cache container tags. An optional -Session parameter specifies
the session that contains the cache, if applicable.

		

To return the contents of a cache:

Use the [Cache_Fetch] tag, where the name of the cache to return is specified in the -Name parameter. The
example below returns the value of a cached [Date] tag in a cache named Cache_Name.

[Cache_Fetch: -Name='Cache_Name']

�	 09/29/2003 19:13:00

To empty a cache:

Use the [Cache_Empty] tag, where the name of the cache to empty is specified in the -Name parameter.

[Cache_Empty: -Name='Cache_Name']

6 2 7

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 4 9 – HTTP / HTM L C o n t e n t a n d C o n t r o l s

Controlling Caches in Lasso Administration
The Lasso global administrator has global control over all caches stored on the Lasso Professional 8 server.
The Utility > Cache section of Lasso Administration provides information about all current caches, allows
caches to be reset, and allows preferences for the caching mechanism to be set.

For more information, see the Site Administration Utilities chapter in the Lasso Professional 8 Setup Guide.

Note: Caches stored in sessions are not visible in Lasso Administration and do not maintain statistics.

Server Push
The [Server_Push] tag can be used to progressively download HTML content to a client that supports
progressive downloads. All data in the Lasso page up until the location of the [Server_Push] tag is sent to the
client, but processing of the page continues normally. Multiple [Server_Push] tags can be used to send a page
to a client in as many segments as desired.

Note: Some Web servers do not support [Server_Push]. These Web servers buffer all output from Lasso and
stream it to the Web clients themselves.

Most Web browsers will accept progressive downloads only if the [Server_Push] tag is placed outside of any
HTML container tags (except for <html> … </html> and <body> … </body>). In particular, the [Server_Push] tag
should not be used within <table> … </table> tags.

Lasso buffers the output of container tags such as [Records] … [/Records] and custom container tags. The
[Sever_Push] tag can only be used outside of these container tags. The [Server_Push] tag can be used within
[Loop] … [/Loop], [While] … [/While], [Iterate] … [/Iterate], [If] … [Else] … [/If], [Protect] … [/Protect], [Handle] … [/Handle],
[Select] … [Case] … [/Select], and [Encode_Set] … [/Encode_Set] tags.

Warning: The [Server_Push] tag is incompatible with the [Content_Header], [Content_Type], [Redirect_URL], [Cookie_Set],
and [Session_Start: -UseCookie] tags. These tags should not be used on pages which are being sent progressively
using [Server_Push].

Table 12: Server Push Tag

Tag	 Description	

[Server_Push]	 Instructs Lasso to send as much of the current Lasso page to the client as
possible.

		

To progressively download a page:

Use the [Server_Push] tag to send sections of the page as they are finished processing. The following
example uses a [Server_Push] to force the first part of the page to download, then performs a search using
[Inline] … [/Inline] tags. The header of the page should be visible while the search completes.

<h2>Search Results</h2>
[Server_Push]
[Inline: -Database='Contacts',
		 -Table='People',
		 -KeyField='ID',
		 -FindAll]
	 [Records]
		
[Field: 'First_Name'] [Field: 'Last_Name']
	 [/Records]
[/Inline]

6 2 8

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 4 9 – HTTP / HTM L C o n t e n t a n d C o n t r o l s

Header Tags
The header tags allow the contents of the HTTP response header to be modified before the results of the
current Lasso page are served to the visitor. In addition to the tags described in Table 13: Header Tags, the
[Cookie_Set] tag, [Redirect_URL] tag, and [Server_Push] tag also alter the HTTP response header.

The [Content_Type] and [Content_Header] tags should be included as the first tags in a Lasso page whenever
possible. This ensures that any additional tags that modify the HTTP response header will modify the header
defined by these tags.

Lasso uses the character set specified in the [Content_Type] tag to determine how to encode the results of
processing a Lasso page before transmitting them to the client’s Web browser. By default Lasso will transmit
all results in the Unicode single-byte standard UTF-8. See below for examples of how to set the character
set to something different. The character set which Lasso will use for the current page can be returned using
[Content_Encoding].

Table 13: Header Tags

Tag	 Description	

[Content_Type]	 Sets the MIME type of the current HTTP response.

[Content_Header]	 Returns a reference to the HTTP header of the current Lasso page. Can be used
to inspect or modify the HTTP header.

		

Content Type
Use the [Content_Type] tag to set the MIME type for a Lasso page and to set the character set which will be used
to transmit the results to the client. The client’s Web browser will use this content type and character set to
determine how to display the returned data to the client. The [Content_Type] tag should be one of the first tags
within a Lasso page.

To set the content type of a Lasso page:

	 •	The following example shows how to return HTML data in a Lasso page encoded using UTF-8. This is the
default state for the [Content_Type] tag.

[Content_Type: 'text/html; charset=UTF-8']

	 •	The following example shows how to return HTML data using the Latin-1 (ISO 8859-1) character set. Some
older browsers or other Web clients may expect data to be in this character set.

[Content_Type: 'text/html; charset=iso-8859-1']

	 •	The following example shows how to return XML data in a Lasso page with the text/xml MIME type and
UTF-8 character set. See the XML chapter for more information.

[Content_Type: 'text/xml; charset=utf-8']

	 •	The following example shows how to return WML data in a Lasso page with the text/vnd.wap.wml MIME type
and UTF-8 character set. This tag is used when serving data to WAP browsers. See the Wireless Devices
chapter for more information.

[Content_Type: 'text/vnd.wap.wml; charset=utf-8']

Header Tag
If the [Content_Header] tag are used within a Lasso page, then the HTTP response header will be set to the value
referenced by this tag. This is a low-level tag that should only be used by developers who are familiar with the
structure of HTTP response headers.

6 2 9

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 4 9 – HTTP / HTM L C o n t e n t a n d C o n t r o l s

The [Content_Type], [Redirect_URL], [Server_Push] and [Cookie_Set] tags can all be used to modify portions of the
HTTP response header. These tags are the preferred method for modifying the portions of the header that
they affect.

Rules for use of the [Content_Header] tag:

	 •	The literal string HTTP must appear within the value passed to the [Content_Header] tag.

	 •	The first line of a header is a status line that has the following form, HTTP/Version Status_Code Status_Message.
For example a soft redirect using the HTTP/1.0 standard is specified as follows.

HTTP/1.0 302 FOUND

	 •	Returns within the [Content_Header] tags should be carriage return/line feed pairs.

	 •	No empty lines should appear within the value passed to the [Content_Header] tag.

	 •	No spaces are allowed at the start of any line within the value passed to the [Content_Header] tag.

Headers set using the [Content_Header] tag must follow the standards defined by the World Wide Web
Consortium. Please see their documentation of the HTTP standard for more information.

http://www.w3c.org/

To redirect a user to another URL:

Use the [Content_Header] tag. The following header will redirect the client to the URL specified on the Location
line. The URI line is included for compatibility with older browsers. Notice that the destination is U R I, not
U R L. The first line resets the header and the subsequent lines append additional lines to the header separated
by \r\n returns.

[Content_Header = 'HTTP/1.0 302 FOUND']
[Content_Header += '\r\nLocation: http://www.example.com/default.lasso']']
[Content_Header += '\r\nURI: http://www.example.com/default.lasso']
[Content_Header += '\r\nServer: Lasso Professional 8']

Note: The [Redirect_URL] tag, documented earlier in this chapter, can also be used to redirect a visitor to a
different URL.

To submit a form without reloading the page:

Use the [Content_Header] tag with a 204 partial content response. The 204 response instructs the client’s Web
browser that an action has been taken, but that the current rendered page should not be altered. The user can
then enter another item into the form and submit it again.

[Content_Header = 'HTTP/1.0 204']
[Content_Header += '\r\nServer: Lasso Professional 8'r]

To request authentication information from a client:

Use the [Content_Header] tag with a 401 unauthorized response. The 401 response instructs the client’s Web
browser that authentication is required to access the desired resource. The WWW-Authenticate line in the
header names the realm which the user is attempting to access so subsequent requests for authentication
information will properly retrieve stored passwords as defined by the features of the client’s Web browser. The
following code asks for authentication for a realm named Example.

[Content_Header = 'HTTP/1.0 401']
[Content_Header += '\r\nWWW-Authenticate: Basic realm="Example"']
[Content_Header += '\r\nServer: Lasso Professional 8']

The first time a client’s Web browser receives this response it will check for a stored password or prompt
the client to enter a username and password for the specified realm. If the client’s Web browser receives the
same response again (or sometimes after several authentication attempts) it will assume that the user is not
authorized to access the page in question.

Note: See the Authentication Tags section of the Control Tags chapter for information about Lasso tags that
automatically prompt for authentication information.

6 3 0

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 4 9 – HTTP / HTM L C o n t e n t a n d C o n t r o l s

Request Tags
Lasso includes a number of tags that return information about the current HTTP request. These tags can be
used to inspect the URL, GET arguments, POST arguments, form method, or even the raw HTTP request.
These tags are summarized in Table 14: Request Tags.

Table 14: Request Tags

Tag	 Description	

[Client_ContentLength]	 Returns the length in characters of the current POST parameters.

[Client_ContentType]	 Returns the MIME type requested by the current HTTP request.

[Client_FormMethod]	 Returns the method used to load the current page, either GET or POST.

[Client_GETArgs]	 Returns a string containing all the arguments passed along with the URL in the
current request.

[Client_GETParams]	 Returns a pair array containing an element for each parameter passed along with
the URL in the current request.

[Client_Headers]	 Returns the text of the HTTP request which called this page.

[Client_Password]	 Returns the password specified by the current client.

[Client_POSTArgs]	 Returns a string containing all the arguments passed along with the URL as a
POST parameter in the current request.

[Client_POSTParams]	 Returns a pair array containing an element for each parameter passed along with
the URL as a POST parameter in the current request.

[Client_Username]	 Returns the username specified by the current client.

[Response_FileExists]	 Returns True if the response file specified in the URL exists. This can be used to
determine if a virtual URL is being accessed.

[Response_FilePath]	 Returns the path to the file which is being served from the Web server root.

[Response_LocalPath]	 Returns the path to the Web server root.

[Include_CurrentPath]	 Returns the path to the current Lasso page which is being processed. This will be
the same as [Response_FilePath] for files which are being processed directly, but
different for include and library files.

[Response_Path]	 Returns the folder from which the current file is being served relative to the Web
server root.

[Response_Realm]	 Returns the name of the current realm reported by the Web server.
		

To provide a link to the current Web page:

The [Response_FilePath] tag can be used to provide a link that reloads the current Web page. The following
example provides a simple link that reloads the current Web page without any GET or POST parameters.

 Reload this page

To check whether the current Lasso page is being loaded directly or as an include:

Compare the value of the [Response_FilePath] and [Include_CurrentPath] tags. If they agree then the page is being
loaded directly, otherwise the page is being loaded as an include or library file.

[If: Response_FilePath == Include_CurrentPath]
	 This page was loaded directly.
[Else]
	 This page was loaded as an include.
[/If]

To display the current GET parameters:

Use the [Loop] … [/Loop] tags and the [Array->Get] tag to loop through the [Client_GetParams] array. The results are
shown for the following URL: http://www.example.com/default.lasso?name1=value1&name2=value2.

6 3 1

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 4 9 – HTTP / HTM L C o n t e n t a n d C o n t r o l s

[Loop: (Client_GetParams)->Size]
	 [Variable: 'GET_Variable' = (Client_GetParams)->(Get: (Loop_Count))]
	
[Encode_HTML: $GET_Variable->First] = [Encode_HTML: $GET_Variable->Second]
[/Loop]

�	
name1 = value1

name2 = value2

The same methodology can be used for the output of the [Client_PostParams] tag.

To accept only POST parameters:

Check the [Client_FormMethod] tag to see whether it equals GET or POST. If it is not set to the desired value then
redirect the client to another page. The following code redirects the user to error.lasso if the current page is not
loaded with POST parameters.

[If: (Client_FormMethod) != 'POST']
	 [Redirect_URL: 'http://www.example.com/error.lasso']
[/If]

Note: It is possible to load a page with both POST and GET parameters so a complete solution needs to check
that a POST form method was used and scan the GET parameters.

Client Tags
Lasso includes a number of tags that return information about the current client including what type of
browser they are using and where their client machine is located. These tags are summarized in Table 15:
Client Tags.

Table 15: Client Tags

Tag	 Description	

[Client_Address]	 Returns the host name of the current client.

[Client_Browser]	 Returns the type of browser used by the current client.

[Client_IP]	 Returns the IP address of the current client.

[Client_Type]	 Returns the type of browser used by the current client.

[Client_URL]	 Returns the URL which the client loaded in their browser.
		

Note: Lasso also includes a set of [WAP_…] tags that return information about clients using WAP browsers. See
the Wireless Devices chapter for more information.

To check whether a client is using a specific browser:

The [Client_Browser] tag can be used to return the type of browser the client is using. The following example
checks whether the browser type contains Netscape and displays an appropriate message if it does.

[If: (Client_Browser) >> 'Netscape']
	
You are using a supported Netscape browser.
[Else]
	
You are using an unsupported browser of type: [Client_Browser].
[/If]

Server Tags
Lasso provides a number of tags which return information about the current Web server. The information
returned by the tags in Table 16: Server Tags can be used to determine whether a page is being served
normally or securely or to output information to log files.

6 3 2

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 4 9 – HTTP / HTM L C o n t e n t a n d C o n t r o l s

Table 16: Server Tags

Tag	 Description	

[Server_Name]	 Returns the name of the current server.

[Server_Port]	 Returns the port which the current request is being served. Usually 80 for normal
HTTP requests or 443 for secure HTTPS requests.

		

To check whether a page is being served securely:

Check the output of the [Server_Port] tag. Most Web servers serve normal HTTP traffic on port 80 and secure,
SSL encrypted HTTPS traffic on port 443. The following example displays a reassuring message if the page is
being served securely or a warning if the page is not being served securely.

[If: (Server_Port) == 80]
	 <p>Warning: this page is not being served securely.
[Else: (Server_Port) == 443]
	 <p>Don't panic: this page was served securely.
[Else]
	 <p>Caution: this page is served from an unknown port.
[/If]

To log information about server requests to a log file:

Use the [Server_…] and [Client_…] tags to return information about the current visitor and what page they are
visiting. The following code will log the current date and time, the visitor’s IP address, the name of the server
and the page they were loading, and the GET and POST parameters that were specified.

[Log: 'E://Logs/LassoLog.txt']
[Date]
[Client_IP] [Server_Name] [Response_FilePath]
[Client_GETArgs] [Client_POSTArgs]
[/Log]

See the Files and Logging chapter for more information a about the [Log] … [/Log] tags.

6 3 3

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 4 9 – HTTP / HTM L C o n t e n t a n d C o n t r o l s

50
Chapter 50

XML-RPC

Lasso can host XML-RPC methods or can call methods hosted on other servers.

	 •	 Overview introduces XML-RPC methods.

	 •	Calling a Remote Procedure discusses how to use the [XML_RPCCall] tag to call a remote procedure.

	 •	Creating Procedures instructions can be found in the Custom Tags chapter.

	 •	Processing an Incoming Call discusses the low-level details of how incoming XML-RPC calls can be
processed.

Overview
XML-RPC is a standard which allows remote procedure calls to be made between different servers on the
Internet. A remote procedure call is similar to a CGI call (i.e. via [Include_URL]) to a different machine on the
Internet, but by passing the parameters of the procedure call and results in a standard XML format, XML-RPC
is more flexible than traditional CGIs.

One way to think of XML-RPC in Lasso is that it is a method of calling a Lasso tag which happens to be
located on a different Web server. Lasso can act as both ends of an XML-RPC call, enabling two Lasso servers
to communicate with each other, or communication can be established between a Lasso server and another
server that supports XML-RPC.

The first part of this section documents how to use the [XML_RPCCall] tag to make remote procedure calls. This
technique is sufficent to make use of XML-RPC methods that are available on other servers. The second part
of this section documents the low-level [XML_RPC] object and its methods for calling and responding to XML-
RPC requests.

Calling a Remote Procedure
A remote procedure can be called using the [XML_RPCCall] tag. This tag uses the low-level XML-RPC data type
to create a remote procedure call and to evaluate the results.

Table 1: [XML_RPCCall] Tag

Tag	 Description�

[XML_RPCCall]	 Calls a remote procedure and returns the result. Accepts three parameters. -Host
is the URL of the remote host. -Method is the method to be called. -Params is an
array of parameters to be passed to the remote server.

		

The -Host parameter defaults to the current host. The -Method parameter is required, but defaults to Test.Echo for
testing purposes. The -Params parameter is only required if the method requires parameters.

6 3 4

L a s s o 8 . 5 L a n g u a g e G u i d e

Errors are returned from the tag through the [Error_CurrentError]. This tag will report [Error_NoError] if no error
occured. Otherwise it will print out a detailed error message. The result of the [XML_RPCCall] tag when an error
occurs is always Null.

To call a remote procedure:

Use the [XML_RPCCall] tag. In the following example the Test.Echo method on the current Lasso server is called.
This method simply echoes its parameters back to the caller. The path to have Lasso process an incoming
XML-RPC request is /Lasso/RPC.LassoApp.

[XML_RPCCall: -Host='http://127.0.0.1/Lasso/RPC.LassoApp',
	 -Method='Test.Echo', -Params='Hello World!']

�	 Hello World!

To list all available methods on a server:

Lasso supports a number of built-in XML-RPC methods. These are listed in the XML-RPC Built-In Methods
table. A list can be obtained direct from Lasso using the XML-RPC method System.ListMethods. Sample output
is shown below.

[XML_RPCCall: -Host='http://127.0.0.1/Lasso/RPC.LassoApp',
	 -Method='System.ListMethods']

�	 (Array: (System.ListMethods), (System.MethodHelp), (System.MethodSignature), (System.MultiCall), (Test.Echo),

To call multiple methods on a server:

The System.MultiCall method can be used to call multiple methods on a remote server in a single request. This
enables several XML-RPC methods to be called without the overhead of making individual HTTP connections
to the remote server.

The following example performs two Test.Echo calls in a single System.MultiCall method.

[XML_RPCCall: -Host='http://127.0.0.1/Lasso/RPC.LassoApp',
	 -Method='System.MultiCall', -Params=(Array:
		 (Map: 'MethodName'='Test.Echo', 'Params'='Hello World!'),
		 (Map: 'MethodName'='Test.Echo', 'Params'='Hello Again.'))]

�	 (Array: (Array: 'Hello World!'), (Array: 'Hello Again.'))

Note that the results are returned as an array with the return value of each particular method as an element.

Built-In Methods
Lasso supports a number of built-in XML-RPC methods which most XML-RPC processors are expected to
have available. These built-in methods are implemented in Startup.LassoApp located in the LassoStartup folder.

Table 2: XML-RPC Built-In Methods

Method	 Description�

System.ListMethods	 Returns an array of method names available on the server.

System.MethodHelp	 Requires a method name as parameter. Returns a description of what the
method does.

System.MethodSignature	 Returns an error message since Lasso does not support message signatures.

System.MultiCall	 Requires an array of maps each with a MethodName and a Params element.
Returns an array of results for each of the individual methods.

Test.Echo	 Echoes the parameters back to the caller.
		

Note: Lasso also defines a series of validator methods used to test the XML-RPC functionality for proper
adherence to the standard.

6 3 5

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 5 0 – XM L - RP C

XML-RPC and Built-In Data Types
Lasso automatically translates between XML-RPC data types and Lasso’s built-in data types. The XML-RPC
and Built-In Data Types table provides details about how data types are converted. Since Lasso performs two
way conversions XML-RPC calls to a Lasso server can be made without concern for data type conversions.

Table 3: XML-RPC and Built-In Data Types

XML-RPC Data Type	 Lasso Equivalent�

<i4> or <int>	 Integer. XML-RPC supports only 32-bit signed integers.

<double>	 Decimal. Double precision floating point number.

<boolean>	 Boolean.

<dateTime.iso8601>	 Date. Lasso automatically parses and formats XML-RPC date/times.

<string> or <base64>	 String. Lasso stores both character and binary data in the string data type.

<struct>	 Map. Individual <member> tags become elements of the map with <name> as
the key and <value> as the value.

<array>	 Array. Each <value> becomes an element of the array.
		

Note: Lasso supports 64-bit signed integers and greater floating point precision than many XML-RPC servers.

XML-RPC Data Type

Table 4: XML-RPC Data Type

Tag	 Description�

[XML_RPC]	 Creates an XML_RPC object. Accepts an array of parameters for an outgoing
XML_RPC call or for an incoming XML_RPC call that is to be processed.

		

Lasso supports calling a remote procedure through the [XML_RPC] data type. An instance of the [XML_RPC] data
type is created with the parameters for the XML-RPC call, then the [XML_RPC->Call] tag is used to initiate the
call and retrieve the results.

Table 5: [XML_RPC] Call Tag

Tag	 Description	

[XML_RPC->Call]	 Calls a remote procedure. Requires two parameters. -URI is the location of the
remote server. -Method is the name of the method to call on the remote server.
The parameters of the request come from the XML_RPC object.

		

Note: The -URI parameter stands for Universal Resource Identifier.

To call a remote procedure using XML-RPC:

This example calls a remote procedure GetPrice which is available on a remote Lasso server at
http://rpc.example.com/RPC.LassoApp. The remote procedure returns the price for a product based on name. The
example has three steps: creating the [XML_RPC] object, calling the remote procedure, and interpreting the
results.

	 1	Store the parameters for the remote procedure call in an [XML_RPC] parameter. The GetPrice procedure
requires a single parameter which is the name of a product.

[Variable: 'MyRPC' = (XML_RPC: 'Widget')]

	 2	Call the GetPrice remote procedure on the desired server. The results are stored in a variable MyResults.

[Variable: MyResults= $MyRPC->(Call: -Method='GetPrice',
	 -URI='http://rpc.example.com/RPC.LassoApp')]

6 3 6

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 5 0 – XM L - RP C

	 3	Process the results. The first element of the returned array will be the price for the product. Finally, the
price is displayed.

[Variable: 'Price' = $myResults->(Get: 1)]
$[Variable: 'Price']

�	 $35.95

Creating Procedures
See the Custom Tags chapter for information about creating XML-RPC procedures that external Web
application servers can call.

Processing an Incoming Call
Lasso can processing incoming remote procedure calls in two ways.

	 •	A custom tag can be created using the [Define_Tag] … [/Define_Tag] tags with the -RPC parameter. The custom
tag will be automatically made available through the RPC.LassoApp.

	 •	Any Lasso page can be used as the target for remote procedure calls. The methods of the [XML_RPC] data
type can be used to interpret and process incoming calls.

The use of custom tags is the easiest way to process incoming remote procedure calls. Lasso handles the
process of interpreting the method and parameters of each call and automatically returns the results to the
caller. All XML-RPC calls are made to a single URL, i.e. http://www.example.com/RPC.LassoApp, making it easy to
document what remote procedure calls the server supports.

Note: The creation of custom tags is covered in detail in the Custom Tags chapter.

To process remote procedure calls using a custom tag:

This example demonstrates how to create the GetPrice procedure used in the calling example. A custom
tag named [GetPrice] will be created which accepts a single parameter, searches the Products table of a
Store database, and returns the result. The -RPC parameter in the opening [Define_Tag] tag ensures that this
procedure will be available through RPC.LassoApp.

[Define_Tag: 'GetPrice', -RPC, -Requires='Product']
	 [Inline: -Search,
			 -Database='Store',
			 -Table='Products',
			 'Product'=#Product]
		 [Return: (Field: 'Price')]
	 [/Inline]
[/Define_Tag]

The tag can be called from a remote Lasso Professional 8 server using the [XML-RPC] tags. A call to
the GetPrice remote procedure on the server at http://rpc.example.com/ would look like as follows.

[Variable: MyResults= (XML_RPC: 'Widget')->(Call: -Method='GetPrice',
	 -URI='http://rpc.example.com/RPC.LassoApp')]
[Variable: 'Price' = $myResults->(Get: 1)]
$[Variable: 'Price']

�	 $35.95

If more control is required beyond that provided by the built-in XML-RPC processing capabilities of Lasso
then a custom Lasso page can be created which processes incoming XML-RPC requests using the method of
the [XML_RPC] data type directly.

6 3 7

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 5 0 – XM L - RP C

An incoming XML-RPC request appears as a CGI call with POST parameters. An [XML_RPC] object should
be initialized with the array of POST parameters from the [Client_POSTArgs] tag. The method and parameters
of the incoming XML-RPC request can then be fetched with the member tags detailed in the [XML_RPC]
Processing Tags table.

Table 6: [XML_RPC] Processing Tags

Tag	 Description	

[XML_RPC->GetMethod]	 Returns the method for an incoming XML_RPC request.

[XML_RPC->GetParams]	 Returns an array of parameters for an incoming XML_RPC request.

[XML_RPC->Response]	 Returns a response to an incoming [XML_RPC] request. Accepts two
parameters. -Full is either True or False and determines whether full headers
should be returned. -Fault is either True or False and determines whether an
error response is returned.

		

To process an incoming XML-RPC request on a custom Lasso page:

There are three steps to process an incoming XML-RPC request. First, the incoming request is parsed and the
method and parameters are extracted. Second, the method and parameters are processed. Finally, the results
are formatted and returned to the caller.

	 1	The incoming XML-RPC request is processed by passing [Client_POSTArgs] to the [XML_RPC] tag. The
method and parameters of the incoming request are then extracted with the [XML_RPC->GetMethod] and
[XML_RPC->GetParams] tags.

[Variable: 'myRPC' = (XML_RPC: (Client_POSTArgs))]
[Variable: 'myMethod' = $myRPC->GetMethod]
[Variable: 'myParameters' = $myRPC->GetParameters]

	 2	Since a single Lasso page might process many different XML-RPC methods [Select] … [Case] … [/Select] tags
are used to determine what code to process.

[Select: $myMethod]
	 [Case: 'GetPrice']
		 [Inline: -Search,
				 -Database='Store',
				 -Table='Products',
				 'Product'=$MyParameters]
			 [Variable: 'Response'=(Field: 'Price')]
		 [/Inline]
[/Select]

	 3	The response is sent back to the caller of the remote procedure by outputting the result of the
[XML_RPC->Response] tag with the results of the remote procedure. -Full is set to True so full HTTP headers
will be returned to the caller and -Fault is set to False indicating that the XML-RPC call was successful.

[Variable: 'myRPC' = (XML_RPC: $Result)]
[$myRPC->(Response: -Full=True, -Fault=False)]

6 3 8

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 5 0 – XM L - RP C

51
Chapter 51

SOAP

This chapter includes information about calling SOAP procedures hosted on remote machines and on
hosting SOAP procedures through Lasso.

	 •	Overview introduces the SOAP protocol.

	 •	Methodology describes how SOAP procedures on remote servers are called and how incoming procedure
calls are processed.

	 •	Calling SOAP Procedures discusses how remote SOAP procedures can be defined as custom tags within
Lasso and easily called.

	 •	Defining SOAP Procedures discusses how SOAP procedures can be defined within Lasso so remote servers
can call them.

	 •	Low-Level Details includes information about how SOAP procedures are called and served.

Overview
The Simple Object Access Protocol (SOAP) is a standard which allows remote procedure calls to be
made between different servers on the Internet. A remote procedure call is similar to a CGI call (i.e. via
[Include_URL]) to a different machine on the Internet, but by passing the parameters of the procedure call and
results in a standard XML format, SOAP is more flexible than traditional CGIs.

Lasso’s support for SOAP allows remote procedures to be represented locally by automatically created custom
tags. These SOAP tags are called just like any tags in Lasso, but they do all the work of formatting parameters,
accessing the remote machine, and parsing the results automatically.

Similarly, Lasso can provide remote procedures that other machines can call. Remote procedures can be
created as custom tags using the -SOAP parameter. Once a tag is defined it will be available as a remote
procedure automatically.

This chapter includes information about calling SOAP remote procedures hosted on other machines than
Lasso Service, information about creating procedures in Lasso that other machines can call, and low-level
details about how Lasso processes both incoming and outgoing SOAP calls.

Note: The XML-RPC chapter includes information about how to create and call remote procedures using XML-
RPC.

Methodology

Web application servers which provide SOAP procedures that others can call through the Internet usually
publish information about the available SOAP procedures in two ways.

	 •	Human readable documentation is provided for manual coders. This documentation usually includes
details about what procedures are available, what parameters they take, and what return values they have.
This documentation often has examples of the XML SOAP envelopes that are passed back and forth to
make a procedure call.

6 3 9

L a s s o 8 . 5 L a n g u a g e G u i d e

	 •	WSDL is an XML format that describes the available SOAP procedures in a machine readable format. Lasso
publishes a WSDL document for the procedures that are made available by Lasso Service at the following
URL.

	 http://www.exmaple.com/RPC.LassoApp?WSDL

In order to call remote SOAP procedures Lasso parses the WSDL document from the remote server in order
to determine the proper structure for the SOAP envelope.

It may often be necessary to examine both the human readable documentation provided by a remote
application server and the raw XML of the WSDL document in order to determine exactly what requirements
the remote server has for SOAP calls.

Calling a SOAP Procedure
This section shows the low-level details of how a SOAP procedure is called. The following section Calling
SOAP Procedures includes instructions for how to use Lasso’s built-in SOAP support to making calling
SOAP procedures as easy as calling a custom tag.

A SOAP procedure on a remote server is called by formatting a SOAP envelope using the appropriate XML
tags and namespaces. The envelope is then sent as POST data to the remote application server and a result
SOAP envelope is parsed.

For example, a SOAP envelope for a procedure that suggests spelling corrections for a word might look as
follows (this is adapted from the Google API). The XML is made more complicated by the inclusion of
required XML namespace parameters, but the basic structure is a SOAP envelope that includes a SOAP body
which defines the remote procedure being called doSpellingSuggestion and includes the parameter for this
procedure in <phrase> … </phrase>.

<SOAP-ENV:Envelope
		 xmlns:SOAP-ENV='http://schemas.xmlsoap.org/soap/envelope/'
		 xmlns:xsi='http://www.w3.org/1999/XMLSchema-instance'
		 xmlns:xsd='http://www.w3.org/1999/XMLSchema'>
	 <SOAP-ENV:Body>
		 <ns1:doSpellingSuggestion
				 xmlns:ns1='urn:GoogleSearch'
				 SOAP-ENV:encodingStyle='http://schemas.xmlsoap.org/soap/encoding/'>
			 <phrase xsi:type='xsd:string'>bleu wrld</phrase>
		 </ns1:doSpellingSuggestion>
	 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

This SOAP envelope is sent to the remote server as POST data. This can be accomplished in Lasso using
[Include_URL] with the -PostParams parameter. The response that comes back is itself a SOAP envelope. The
following response contains a single spelling suggestion as doSpellingSuggestionResponse in a <return> … </return>
tag.

<SOAP-ENV:Envelope
		 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
		 xmlns:xsi="http://www.w3.org/1999/XMLSchema-instance"
		 xmlns:xsd="http://www.w3.org/1999/XMLSchema">
	 <SOAP-ENV:Body>
		 <ns1:doSpellingSuggestionResponse
				 xmlns:ns1="'urn:GoogleSearch'"
				 SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
			 <return xsi:type="xsd:string">blue world</return>
		 </ns1:doSpellingSuggestionResponse>
	 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

If an error occurs while processing the SOAP procedure then a SOAP fault is sent instead of a successful
response. The SOAP fault includes an error code, error string, and error factor.

6 4 0

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 5 1 – SOAP

<SOAP-ENV:Envelope
		 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
		 xmlns:xsi="http://www.w3.org/1999/XMLSchema-instance"
		 xmlns:xsd="http://www.w3.org/1999/XMLSchema">
	 <SOAP-ENV:Body>
		 <SOAP-ENV:Fault>
			 <faultcode>-1</faultcode>
			 <faultstring>Unknown Error</faultstring>
			 <faultactor>Unknown Error</faultactor>
		 </SOAP-ENV:Fault>
	 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

The built-in tools in Calling SOAP Procedures allow most of these details to be hidden. Calling a remote
SOAP procedure is made as easy as calling a custom tag. However, it is important to understand how SOAP
procedures are being called in order to be able to troubleshoot SOAP communications.

Processing a SOAP Procedure
This section shows the low-level details of how a SOAP procedure is processed. The following section
Defining SOAP Procedures includes instructions for how to use Lasso’s built-in SOAP support to making
defining and processing SOAP procedures as easy as creating a custom tag.

A SOAP procedure is processed by parsing the incoming SOAP envelope and SOAP body and determining
what procedure is being referenced and what parameters are being passed. The incoming SOAP envelope can
be found in [Client_PostParams]. If the procedure is not defined on the Lasso server or invalid parameters are
passed then a SOAP fault must be returned.

If the procedure is defined then it is called with the parameters and the results are returned with appropriate
formatting in a SOAP envelope with a SOAP body. The results are usually returned using [File_Serve] to serve
XML data or by using [Content_Type: 'text/xml'].

See the preceding section for examples of an incoming SOAP envelope, a SOAP response envelope, and a
SOAP fault response.

The built-in tools in Defining SOAP Procedures allow most of these details to be hidden. Defining and
processing a remote SOAP procedure is made as easy as creating a custom tag. However, it is important
to understand how SOAP procedures are normally processed in order to be able to troubleshoot SOAP
communications.

Calling SOAP Procedures
Remote SOAP procedures are represented in Lasso by SOAP tags which are created using the [SOAP_DefineTag]
tag. Once a SOAP tag has been defined it can be called like any other tag in Lasso. This section describes how
to create SOAP tags and how to use them to easily call remote procedures.

The information required to create a SOAP tag needs to be collected as follows:

	 •	Use the documentation from the remote Web application server to determine what procedures are
available. Note that procedure names are usually case sensitive.

	 •	Check what format the parameters of the desired procedure needs to be in. Are the parameters sent as
simple string, integer, or decimal types or do they have XSD types?

	 •	Determine the location of the server’s WSDL document. This is usually a URL. For example, the location
of a Lasso server’s WSDL document is http://www.example.com/RPC.LassoApp?WSDL. The WSDL document tells
Lasso how to call the SOAP procedures available on the server.

	 •	How are the results returned from the remote SOAP procedure? A set of tags can be used to automatically
parse the results and return just the desired values.

This information is used throughout the rest of this section in order to define a local SOAP tag.

6 4 1

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 5 1 – SOAP

Table 1: SOAP Tags

Processor	 Description	

[SOAP_DefineTag]	 Creates a custom tag which calls a remote SOAP procedure. See the table in
the section Defining a SOAP Tag below for a list of parameters which are
required by this tag.

[Define_Tag: -SOAP]	 Creates a custom tag which can be called from other servers. See the section on
Defining SOAP Procedures below and the chapter on Custom Tags for
more information.

[SOAP_LastRequest]	 A debugging tag which outputs the last SOAP envelope which was created to call
a remote SOAP procedure.

[SOAP_LastResponse]	 A debugging tool which outputs the last SOAP envelope which was created in
response to an inocming SOAP call.	

		

Defining a SOAP Tag
The first step in defining a SOAP tag is to fetch the WSDL document for the server that provides the desired
SOAP procedure. Consult the documentation for the SOAP procedure to find out what this URL is. It typically
looks something like the following example or http://www.example.com/RPC.LassoApp?WSDL for Lasso servers.

Table 2: [SOAP_DefineTag] Parameters

Processor	 Description	

-LocalTagName	 The name of the local tag to be created. This is the name of the tag which will be
created within Lasso to call the remote procedure. Required.

-Namespace	 The namespace for the local tag to be created. Optional.

-OperationName	 The name of the remote SOAP procedure. This is the name of the procedure
on the remote machine and is usually found in the SOAP documentation or the
WSDL. Required.

-WSDL	 The WSDL which describes the remote procedures available. The parameter
must be an XML type. Required.

-Defaults	 A map of default values for procedure parameters. Optional. Default values
can be overrided in the actual SOAP procedure call, but the override must use
-Name=Value syntax. Unnamed parameters will never override values with a
default.

-Procs	 An array of processors to apply to the SOAP return value. See the section on
Processing Return Values below for more information about the processors
which are available. Optional.

		

The example code in this section calls a local SOAP procedure called Example_Repeat. This procedure is
defined using the following code. Note that this code is not defining a custom tag which will be called within
Lasso, but a SOAP procedure which can be called from remote servers. The use of [Define_Tag] … [/Define_Tag] to
create SOAP procedures is explained in the following section on Defining SOAP Procedures.

[Define_Tag: 'Example_Repeat', -SOAP,
		 -Required='text', -Type='string',
		 -Required='count', -Type='integer',
		 -ReturnType='string']
	 [Return: (#text * #count)]
[/Define_Tag]

The WSDL document for the local server is fetched using [Include_URL] and then parsed using the [XML] tag.
The result is stored in a variable so this WSDL document can be used multiple times if necessary.

[Var('WSDL' = xml(include_url('http://www.example.com/RPC.LassoApp?WSDL')))]

6 4 2

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 5 1 – SOAP

Note: It is sometimes desirable to fetch the WSDL document once and store it locally either by pasting it directly
into the Lasso code or by storing it in a local file. Then this local copy of the WSDL can be referenced rather than
requiring it to be fetched live each time.

The local tag which will call the SOAP procedure is defined using [SOAP_DefineTag]. The tag requires four
parameters: the name of the tag to be created and the namespace in which to create it, the WSDL document
defined above, and the -OperationName to call (the SOAP procedure name). In addition, the tag has two
optional parameters a map of default parameters and an array of procedures for processing the return values.

The following example references a procedure Example_Repeat on the server identified by the WSDL fetched
above. A tag named [Ex_Repeat] is created by this tag (Ex_ is the namespace and Repeat is the tag name).
The -Defaults parameter specifies default values to use if the count is not specified. The -Procs parameter uses
[Proc_Lasso] to return the value from the Lasso defined SOAP procedure. See below for more details about
how to process return values.

[SOAP_DefineTag(
	 -LocalTagName='Repeat',
	 -Namespace='Ex_',
	 -WSDL=$WSDL,
	 -OperationName='Example_Repeat',
	 -Defaults=Map('count'=1),
	 -Procs=Proc_Lasso)]

Now this tag can be called the same as any built-in or custom tag. For example, the following tag call would
contact the server and return the result for the example text. The parameters here are passed by name as a
simple string and integer. Some SOAP procedures require parameters to be passed as a particular procedure
specific type. See below for more details about how to format parameters.

[Ex_Repeat: -Text='I love Lasso! ', -Count=4]

➜	 I love Lasso! I love Lasso! I love Lasso! I love Lasso!

It is recommended that all parameters for a SOAP tag be use explicit names as keyword/value pairs. This
helps clarify to the end-user which values are going to be submitted without guessing how unnamed param-
eters are going to map. Also, if a parameter has a default, like -Count above, then the parameter must be speci-
fied with a name in order to override the default.

SOAP Parameters
The parameters which are passed to the SOAP procedure are determined by three factors. Lasso steps through
each parameter which is specified in the WSDL for the specified tag and checks the following locations for
the specific parameter:

	 •	If the parameter is specified in the SOAP tag call as a keyword/value then its value is used. For example,
in the following tag call a parameter named text is passed explicitly. This is the recommended form for all
parameters passed to a SOAP tag.

[Ex_Repeat: -Text='The message to be repeated!']

	 •	If the parameter has a value in the -Defaults map from the [SOAP_DefineTag] call then that value is used. For
example, in the above tag definition the -Count parameter is given a value of 1. Defaults are very useful since
they allow parameters which do not often change to be hard-coded into the tag definition.

	 •	If the parameter is not found in the SOAP tag call or in the defaults then the next unnamed parameter
from the SOAP tag call is used as the parameter value. This allows simple SOAP tags that accept only a
single parameter to be called as follows. Note, however, for this to work the default would need to be
removed from the tag definition! This should only be used for simple SOAP calls, such as those with one
required parameter and no defaults.

[Ex_Repeat: 'The message to be repeated!']

If a SOAP procedure does not have all the required parameters or if they are of the wrong type then the SOAP
procedure will fail with a SOAP fault. See the following sections for details about how to create parameters
using procedure specific types.

6 4 3

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 5 1 – SOAP

Parameter Types
Lasso will automatically cast its built-in data types to appropriate formats for use as SOAP parameters.
Procedures that expect string, decimal, integer, or other simple data types can often be called without any
special preparations.

However, many SOAP procedures requires that parameters be specified using a specific XML type. Lasso
allows these parameters to be created using the [XSD_GenerateType] tag. The [XSD_GenerateType] tag requires
two parameters: the name of the namespace for which it is generating a type and the name of the type (or
element) that is to be created.

The [XSD_GenerateType] tag can only be called after the WSDL for the specified namespace has been loaded
by defining a tag using [SOAP_DefineTag] with the appropriate -WSDL parameter. The [XSD_GenerateType] tag is
generally called immediately after [SOAP_DefineTag].

Within a WSDL document a pair of <types> … </types> tags will define a number of types each named in
<element> … </element> tags. For example, the following WSDL fragment (which has been simplified by
removing some namespace identifiers) defines a complex type named Message which contains a single string
value.

<types>
	 <schema targetNamespace="http://www.example.com">
		 <element name="Message">
			 <complexType>
				 <sequence>
					 <element minOccurs="0" maxOccurs="1" name="msg" type="string" />
				 </sequence>
			 </complexType>
		 </element>
	 </schema>
</types>

Lasso can use this information from the WSDL to create a template for the Message data type. The following
code creates an instance of Message in the variable $message. The msg part of the created type is then set to a
string value.

[Var('message' = XSD_GenerateType('http://www.example.com', 'Message'))]
[$msg->msg = 'I love Lasso! ']

Finally, this created parameter can be passed to a tag created using [SOAP_DefineTag]. The tag will format the
parameter properly so the remote server can parse the data in the type it expected.

[Ex_SOAPTag: -Text=$Message]

The particulars of which types will be available within a given WSDL and whether the remote server will
require that parameters be specified using custom types will vary depending on the SOAP procedures being
used. It is necessary to consult the documentation of the SOAP procedure and sometimes to view the source
of the WSDL document to determine what is required.

Note: The [XSD_GenerateType] tag can only be called after the WSDL for the specified namespace has been
loaded by defining a tag using [SOAP_DefineTag] with the appropriate -WSDL parameter.

Processing Return Values
The return value from a SOAP procedure is always a SOAP envelope with a SOAP body or a SOAP fault. By
default Lasso automatically tries to translate the returned values from a SOAP procedure to built-in data
types, but it is often necessary to use the -Procs parameter to specify an array of processors which can extract
the desired values from the SOAP procedure’s return value.

The -Procs parameter accepts an array of custom tag references or invokable data types. Each element of the
array is invoked in turn. The SOAP body is passed to the first processor as a string. Each subsequent processor
is passed the result of the previous processor. This allows complex transformations to be performed on the
return value of a SOAP procedure by linking processors.

6 4 4

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 5 1 – SOAP

Lasso provides a collection of [Proc_…] types which are designed for use in a -Procs array. These types convert
the return values to native Lasso data types, perform array manipulations, and allow XPaths or regular
expressions to be applied to the SOAP result. The following table lists all of the built-in processors including
details about how to call each one. This is followed by several examples of using one or more processors to
process typical SOAP return values.

If only one processor is needed the -Procs parameter also accepts a single processor rather than an array.

Table 3: Built-In Processors

Processor	 Description	

Proc_Convert	 Converts XML data to a built-in Lasso type instance. Returns an array of type
instances each with a ->Result member. Called as (Proc_Convert) with no
parameters.

Proc_ConvertOne	 Converts the first child of XML data to a built-in type instance. Returns a single
type instance with a ->Result member. Called as (Proc_ConvertOne) with no
parameters.

Proc_ConvertBody	 Converts each child of XML data to a built-in type instance. Returns an array of
type instances each with a ->Result member. This is the default processor. Called
as (Proc_ConvertBody) with no parameters.

Proc_Extract	 Executes [XML->Extract] with an XPath parameter. Returns an array of XML
values. Called as (Proc_Extract: 'XPath').

Proc_ExtractOne	 Executes [XML->ExtractOne] with an XPath parameter. Returns a single XML
value. Called as (Proc_ExtractOne: 'XPath').

Proc_Find	 Executes ->Find with a named key. Called as (Proc_Find: 'key'). This processor
will return an element from a map or a data member from a data type.

Proc_First	 Executes ->First on an array. Called as (Proc_First).

Proc_ForEach	 Executes a specified processor on each element in an array. Called as (Proc_
ForeEach: …proc…) where the parameter is a processor.

Proc_Get	 Executes ->Get with an integer position parameter. Called as (Proc_Get: #).

Proc_Join	 Executes ->Join on an array. Called as (Proc_Join: ' ') where the string parameter
is the value that should be inserted between each array element. Returns a
string.

Proc_Lasso	 Converts the data to a built-in Lasso type instance. This processor is designed
to be used when calling a SOAP procedure hosted on a Lasso server. Called as
(Proc_Lasso) with no parameters. Returns any built-in Lasso type.

Proc_Last	 Executes ->Last on an array. Called as (Proc_Last).

Proc_Null	 Performs no action. This can be used to override the default behavior. This
processor results in the raw XML of the SOAP body being returned.
Called as (Proc_Null) with no parameters.

Proc_RegExp	 Executes [String_FindRegExp] on the data with a regular expression parameter.
Called as (Proc_RegExp: 'Regular Expression'). Returns a string.

Proc_XML	 Converts the data to the XML type. Called as (Proc_XML) with no parameters.

Proc_XSLT	 Executes [XML->Transform] on the data with an XSLT parameter.
Called as (Proc_XSLT: 'XSLT').

		

Some common -Procs values are included here as examples showing what the result would be for the
[Ex_Repeat] tag in each case.

	 •	With no -Procs parameter the default of Proc_ConvertBody will be used. The result is an array of simple data
types which includes the result of the SOAP procedure in their ->Return members. Simply outputting the
result will display an array type names without the actual results.

[Ex_Repeat: -Text='I love Lasso! ', -Count=4] ➜ Array: (Example_RepeatResponse)

The actual results can be shown by displaying the ->Return member for each element in the array. In this
case the ->Return member of the first element of the array is shown.

[(Ex_Repeat: -Text='I love Lasso! ', -Count=4)->First->Return] ➜ I love Lasso! I love Lasso! I love Lasso! I love Lasso!

6 4 5

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 5 1 – SOAP

More complex SOAP procedures may have more complex return values. The ->Properties of the elements in
the result array can be inspected to see what members are available. These properties show that the result
has one member variable Return and no member tags.

[(Ex_Repeat: -Text='I love Lasso! ', -Count=4)->First->Properties] ➜ Pair: (Map: (Return)=(StringStringStringString))=(Map)

	 •	The raw XML value of the body can be returned using Proc_Null.

-Procs=Array(Proc_Null)

➜	 <SOAP-ENV:Body>
	 <m:Example_RepeatResponse xmlns:m="http://www.omnipilot.com/services/LassoService.wsdl">
		 <m:return xsi:type="lp7tns:stringType">StringStringStringString</m:return>
	 </m:Example_RepeatResponse>
</SOAP-ENV:Body>

	 •	A single return value from a Lasso-based SOAP procedure can be returned using Proc_Lasso. Note that an
array is not required.

-Procs=Proc_Lasso

[Ex_Repeat: -Text='I love Lasso! ', -Count=4] ➜ I love Lasso! I love Lasso! I love Lasso! I love Lasso!

	 •	Extracting the text value of the body can be accomplished using Proc_Extract with an XPath of //text(). This
will extract the text value of every sub-element of the body. The result of this code will be an array

-Procs=Array(Proc_Extract("//text()"))

[Ex_Repeat: -Text='I love Lasso! ', -Count=4] ➜ Array: (I love Lasso! I love Lasso! I love Lasso! I love Lasso!)

The result of using Proc_Extract will be an array. The text values can be joined into a single string by adding
Proc_Join. The parameter to Proc_Join will be inserted between each text value.

-Procs=Array(Proc_Extract("//text()"), Proc_Join(''))

[Ex_Repeat: -Text='I love Lasso! ', -Count=4] ➜ I love Lasso! I love Lasso! I love Lasso! I love Lasso!

	 •	A regular expression can be applied against the body using Proc_RegExp. The raw XML will need to be
examined using Proc_Null first so an appropriate regular expression can be generated. This code finds the
non-empty contents of an XML tag.

-Procs=Array(Proc_RegExp('(?<=>)\\S.*?\\S(?=<)'))

[Ex_Repeat: -Text='I love Lasso! ', -Count=4] ➜ Array: (I love Lasso! I love Lasso! I love Lasso! I love Lasso!)

The result of using Proc_RegExp will be an array. The text values can be joined into a single string by adding
Proc_Join. The parameter to Proc_Join will be inserted between each text value.

-Procs=Array(Proc_Extract("//text()"), Proc_Join(''))

[Ex_Repeat: -Text='I love Lasso! ', -Count=4] ➜ I love Lasso! I love Lasso! I love Lasso! I love Lasso!

Defining SOAP Procedures
Custom tags can be automatically made available to remote servers by specifying the -SOAP parameter
when the tag is created. Any tag which is specified as a remote procedure call will be accessible through
RPC.LassoApp which is located in the LassoStartup folder. The LassoApp handles all of the translation of
parameters and the return value to and from XML.

It is recommended that all SOAP procedures be named like normal Lasso tags using only alphanumeric
characters and underscores. Periods and hyphens are not allowed by some SOAP implementations so these
characters should not be used.

6 4 6

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 5 1 – SOAP

SOAP tags require that each required and optional parameter be assigned a type using the -Type parameter
and that the return type of the tag be specified using the -ReturnType parameter. The parameter and return
types are used to automatically translate incoming SOAP requests into appropriate Lasso data types and to
properly describe the return value.

When called, remote procedure call tags will be executed using the permissions of the Anonymous user. If
the tags require additional permissions a username and password must be written into an [Inline] … [/Inline]
container within the tag or the tag must accept a username and password as parameters.

Tags are called within the context of a page load of the RPC.LassoApp. Tags can access global variables, but will
not be able to access any page variables from the page where they were defined. RPC and SOAP tags function
essentially as asynchronous tags described elsewhere in this chapter.

To create a SOAP tag:

Use the -SOAP parameter in the opening [Define_Tag] tag. In the following example a method Example_Repeat is
created which returns text repeated count number of times. Both -Required parameters are followed by -Type
parameters and the -ReturnType for the tag is specified.

[Define_Tag: 'Example_Repeat', -SOAP,
		 -Required='text', -Type='string',
		 -Required='count', -Type='integer',
		 -ReturnType='string']
	 [Return: (#text * #count)]
[/Define_Tag]

The tag can be called from a remote server server that supports SOAP. This tag could be called from within
Lasso using [SOAP_DefineTag] to reference the procedure name and automatically generated WSDL file for
Lasso Service.

[Var('WSDL' = XML(Include_URL('http://localhost/RPC.LassoApp?WSDL')))]
[SOAP_DefineTag(
		 -LocalTagName='Repeat',
		 -Namespace='Ex_',
		 -WSDL=$WSDL,
		 -OperationName='Example_Repeat',
		 -Procs=Proc_Lasso)]

Now the SOAP tag [Ex_Repeat] can be called. The request will be routed to Lasso Service and the answer will
be returned.

[Ex_Repeat: 'String', 4]

➜	 StringStringStringString

Of course, the ultimate advantage is that the SOAP procedure can be defined on one Lasso Service machine
using [Define_Tag] with the -SOAP parameter and then the procedure can be called as a custom tag from any
other Lasso Service machine by creating a SOAP tag with [SOAP_DefineTag].

Low-Level Details
This section details the low-level details of calling a SOAP procedure and responding to a SOAP procedure.
It is generally preferable to use the high-level interfaces defined earlier in this chapter if possible, but these
implementation details can be useful if one needs to provide compatibility with a server that has a non-
standard SOAP implementation or for debugging.

Calling a Remote SOAP Procedure
A remote procedure can be called using the [Include_URL] tag with an appropriatly formated XML SOAP
envelope. The SOAP envelope should be included in the documentation of the SOAP service and can be
easily modified to include different parameters using Lasso’s string tools.

6 4 7

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 5 1 – SOAP

To call a remote SOAP procedure:

This example calls a spell checking procedure that is available as a SOAP service. The input to the SOAP
service are the words to be spell checked and the response includes one or more suggestions for proper
spellings.

	 1	Format the SOAP envelope according to the documentation for the service. There is a lot of XML in the
envelope, but only one part needs to be customized in order to craft different spell check requests. The
words bleu wrld in the <phrase> … </phrase> tags will be spell checked. Additional spell check requests can be
created by changing these words and no other parts of the envelope.

<SOAP-ENV:Envelope
		 xmlns:SOAP-ENV=\'http://schemas.xmlsoap.org/soap/envelope/\'
		 xmlns:xsi=\'http://www.w3.org/1999/XMLSchema-instance\'
		 xmlns:xsd=\'http://www.w3.org/1999/XMLSchema\'>
	 <SOAP-ENV:Body>
		 <ns1:doSpellingSuggestion
				 xmlns:ns1=\'urn:GoogleSearch\'
				 SOAP-ENV:encodingStyle=\'http://schemas.xmlsoap.org/soap/encoding/\'>
			 <phrase xsi:type=\'xsd:string\'>bleu wrld</phrase>
		 </ns1:doSpellingSuggestion>
	 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

	 2	Store the envelope in a variable. Here the envelope is simply placed in a variable. Different SOAP requests
can be constructed using search/replace on a template envelope or by appending the start of the envelope,
the phrase to be checked, and the end of the envelope together.

[Variable: 'SOAP_Envelope' = '<SOAP-ENV:Envelope … ']

	 3	Use [Include_URL] to send the SOAP envelope to the appropriate URL. The SOAP envelope must be sent as
a POST like form parameters using the -PostParams parameter of [Include_URL]. The content-type of the request
must be set to text/xml using the -SendMIMEHeaders parameter. The result will be stored in a variable.

[Variable: 'Result' = (Include_URL: 'http://soap.example.com/SpellCheck/',
		 -PostParams=$SOAP_Envelope,
		 -SendMIMEHeaders=(Array: 'content-type'='text/xml'))]

	 4	The result will either include a fault code or proper response. First, check to see if it is a fault code
and display an appropriate error message. The code below uses the [XML->Extract] tag with an XPath of
//faultcode and //faultstring to extract these XML entities if they exist. The [Protect] … [/Protect] tags will ensure that
if there is no fault code the error is suppressed.

[Variable: 'XMLResult' = (XML: $Result)]
[Protect]
	 [Variable: 'FaultCode' = $XMLResult->(Extract: '//faultcode')->(Get:1)->Contents]
	 [Variable: 'FaultString' = $XMLResult->(Extract: '//faultstring')->(Get:1)->Contents]
[/Protect]
[Encode_HTML: $FaultString + ' (' + $FaultCode ')']

If an error occurs this will result in an error message like the following. This error indicates that one of the
namespace entries in the SOAP envelope is missing.

�	 Unable to determine object id from call: is the method element namespaced? (SOAP-ENV:Server.BadTargetObjectURI)

	 5	Finally, the results of a successful operation are formatted for output. The results are extracted from the
<return> tag using the [XML->Extract] tag with an XPath of //return. The resulting array is looped through to pull
the contents out of each return tag and create the final output for the client.

6 4 8

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 5 1 – SOAP

[Variable: 'XMLResult' = (XML: $Result)]
[Variable: 'Output' = '']
[Protect]
	 [Iterate: $XMLResult->(Extract: '//return'), (Var: 'temp')]
		 [$Output += $Temp->Contents + ' ']
	 [/Iterate]
[/Protect]
[Encode_HTML: 'Suggestions: ' + $Output]

T results of a successful SOAP call are displayed below. The suggested spelling is correct.

�	 Suggestions: LassoSoft

Note: This example is based on the Google spell checking service, but has been simplified to provide a more
concise example.

Processing an Incoming SOAP Call
Lasso can processing incoming SOAP remote procedure calls in two ways.

	 •	A custom tag can be created using the [Define_Tag] … [/Define_Tag] tags with the -SOAP parameter. The custom
tag will be automatically made available through the RPC.LassoApp. All parameters of the tag must have
explicit types defined using -Type parameters and the return type of the tag must be defined using the
-ReturnType parameter.

	 •	Any Lasso page can be used as the target for remote procedure calls through the GET method. The URL
parameters are interpreted normally and a SOAP envelope is returned as a result.

The use of custom tags is the easiest way to process incoming SOAP remote procedure calls. Lasso handles
the process of interpreting the method and parameters of each call and automatically returns the results to
the caller. All SOAP calls are made to a single URL, i.e. http://www.example.com/RPC.LassoApp, making it easy to
document what remote procedure calls the server supports.

Note: The creation of custom tags is covered in detail in the Custom Tags chapter.

To process SOAP remote procedure calls using a custom tag:

This example demonstrates how to create a GetPrice procedure. A custom tag named [GetPrice] will be created
which accepts a single parameter, searches the Products table of a Store database, and returns the result.

The -SOAP parameter in the opening [Define_Tag] tag ensures that this procedure will be available through
RPC.LassoApp as a SOAP procedure. The -Type parameter is required to specify the type of the Product parameter.
The -ReturnType parameter specifies what type the return value of the tag will be.

[Define_Tag: 'GetPrice', -SOAP,
		 -Requires='Product', -Type='String',
		 -ReturnType='String']
	 [Inline: -Search,
			 -Database='Store',
			 -Table='Products',
			 'Product'=#Product]
		 [Return: (Field: 'Price')]
	 [/Inline]
[/Define_Tag]

The tag can be called from a remote Lasso Professional 8 server using the techniques documented earlier.

To process an incoming SOAP request in a custom Lasso page:

If more control is required beyond that provided by the built-in XML-RPC processing capabilities of Lasso
then a custom Lasso page can be created which processes incoming SOAP requests directly. An incoming
SOAP request appears either as a GET request with URL parameters or as a CGI call with a SOAP envelope in
the POST parameters.

6 4 9

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 5 1 – SOAP

	 •	SOAP procedures can be called using GET parameters in a URL. These parameters can be processed using
[Action_Param] just like any URL parameters. The response to the SOAP procedure should be a properly
formated SOAP envelope or SOAP fault code with a content type of text/xml.

In the following code the GetPrice method is implemented for the following URL. In this example the price
for a Widget will be returned.

http://www.example.com/SOAP/GetPrice.Lasso?Product=Widget

The code of the page performs the database search and returns a SOAP envelope with a <return> tag if the
result is good or fault tags if the result is undefined.

[Content_Type: 'text/xml']
[Inline: -Search,
		 -Database='Store',
		 -Table='Products',
		 'Product'=(Action_Param: 'Product')]
	 [Variable: 'Response'=(Field: 'Price')]
[/Inline]
<?xml version='1.0' encoding='UTF-8'?>
<SOAP-ENV:Envelope
		 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
		 xmlns:xsi="http://www.w3.org/1999/XMLSchema-instance"
		 xmlns:xsd="http://www.w3.org/1999/XMLSchema">
<SOAP-ENV:Body>
[If: $Response != '']
	 <ns1:GetPrice
			 xmlns:ns1="http://www.example.com/SOAP/GetPrice.Lasso"
			 SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
		 <return xsi:type="xsd:string">[Variable: 'Response']</return>
	 </ns1:doSpellingSuggestionResponse>
[Else]
	 <SOAP-ENV:Fault>
		 <faultcode>ERROR</faultcode>
		 <faultstring>No Price Found</faultstring>
		 <faultactor>[Response_FilePath]</faultactor>
	 </SOAP-ENV:Fault>
[/If]
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

	 •	SOAP procedures can be called by embedding a SOAP enveloped as the POST parameter in a Web request.
The raw POST parameter can be fetched using [Client_PostArgs]. This returns a string that can be fed into the
[XML] tag for further processing.

In the following example this SOAP envelope will be considered a valid request. The product is contained
in <product> tags and in this example the price for a Widget should be returned.

<SOAP-ENV:Envelope
		 xmlns:SOAP-ENV=\'http://schemas.xmlsoap.org/soap/envelope/\'
		 xmlns:xsi=\'http://www.w3.org/1999/XMLSchema-instance\'
		 xmlns:xsd=\'http://www.w3.org/1999/XMLSchema\'>
<SOAP-ENV:Body>
	 <ns1:GetPrice
			 xmlns:ns1s=\'http://www.example.com/SOAP/GetPrice.Lasso\'
			 SOAP-ENV:encodingStyle=\'http://schemas.xmlsoap.org/soap/encoding/\'>
		 <product xsi:type=\'xsd:string\'>Widget</product >
	 </ns1:GetPrice>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

The incoming request is parsed using the following code. At the end, the variable Product contains the name
of the product whose price should be returned. The [Protect] … [/Protect] tags ensure that the absence of
<product> tags does not cause a syntax error.

6 5 0

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 5 1 – SOAP

[Variable: 'SOAPEnvelope' = (Client_PostArgs)]
[Variable: 'XMLEnvelope' = (XML: $SOAPEnvelope)]
[Varialbe: 'Price' = '']
[Protect]
	 [Variable: 'Price' = $XMLEnvelope->(Extract: '//product')->(Get:1)->Contents]
{/Protect]

The rest of the page performs the database search and returns a SOAP envelope with a <return> tag if the
result is good or fault tags if the result is undefined.

[Content_Type: 'text/xml']
[Inline: -Search,
		 -Database='Store',
		 -Table='Products',
		 'Product'=(Variable: 'Product')]
	 [Variable: 'Response'=(Field: 'Price')]
[/Inline]
<?xml version='1.0' encoding='UTF-8'?>
<SOAP-ENV:Envelope
		 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
		 xmlns:xsi="http://www.w3.org/1999/XMLSchema-instance"
		 xmlns:xsd="http://www.w3.org/1999/XMLSchema">
<SOAP-ENV:Body>
[If: $Response != '']
	 <ns1:GetPrice
			 xmlns:ns1="http://www.example.com/SOAP/GetPrice.Lasso"
			 SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
		 <return xsi:type="xsd:string">[Variable: 'Response']</return>
	 </ns1:doSpellingSuggestionResponse>
[Else]
	 <SOAP-ENV:Fault>
		 <faultcode>ERROR</faultcode>
		 <faultstring>No Price Found</faultstring>
		 <faultactor>[Response_FilePath]</faultactor>
	 </SOAP-ENV:Fault>
[/If]
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

6 5 1

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 5 1 – SOAP

52
Chapter 52

Wireless Devices

This chapter describes how to create pages in the Wireless Markup Language (WML) which can be served to
clients using Wireless Application Protocol (WAP) browsers.

	 •	Overview introduces wireless devices.

	 •	Formatting WML describes how to specify the MIME type and encode data for wireless browsers.

	 •	WAP Tags describes the tags in Lasso that allow the characteristics of a WAP client to be returned.

	 •	WML Example shows how to create a page which a WAP client can use to search a database and retrieve
the results.

Overview
Lasso provides support for serving data to cellular phones and personal digital assistants that support the
Wireless Application Protocol (WAP) and the Wireless Markup Language (WML). Serving data to WAP devices
(e.g. WAP browsers) is conceptually the same as serving pages to Web browsers, but there are some special
considerations that need to be taken into account.

WAP devices require pages to be formatted using the XML-based Wireless Markup Language. Documentation
of this language is beyond the scope of this manual. Please consult a book on WAP/WML for more
information about how to create pages in WML. Since WML is based on XML, many XML books also contain
information about WML.

Lasso does not serve pages to WAP browsers directly. Instead, most WAP browsers communicate with a
gateway that contacts Lasso for WML pages and images. The gateway is responsible for performing some
manipulation of WML pages and images to ensure they are formatted properly for the WAP browser. A WML-
based Web site built using the tags described in this chapter will produce code that is very friendly to the
gateway and ensures high fidelity of the site when it is viewed using a WAP browser.

Note: Since WML is based on XML all of the techniques in the following chapter on XML can be used on WML
content.

Formatting WML
WAP browsers require pages to be sent using the MIME type of text/vnd.wap.wml and a UTF-8 character set. The
[Content_Type] tag can be used to set the MIME type and character set of a page served by Lasso. This tag simply
adjusts the header of the page served by Lasso, it does not perform any conversion of the data on the page.

To specify a Lasso page contains WML:

Use the following tag as the very first line of any files which will be served to WAP browsers. Notice that the
tag accepts only a single parameter, the charset argument which is appended to the MIME type argument with
a semi-colon ;.

6 5 2

L a s s o 8 . 5 L a n g u a g e G u i d e

[Content_Type: 'text/vnd.wap.wml; charset=utf-8']

To serve WML:

WML data can be served using the [XML_Serve] tag with the optional -Type parameter set to text/vnd.wap.wml.
When the [XML_Serve] tag is used all processing of the current page halts and the parameter of the tag is
returned as the contents of the page. This is useful to prevent any stray comments or characters from being
sent to WML browsers.

The following example serves some simple WML data in place of the current Lasso page. No tags after
the [XML_Serve] tag will be processed.

[Variable: 'WMLData' = '<?xml version="1.0" encoding="utf-8" ?>
	 <wml>
		 <card name="card_one">
			 <p>Hello WAP user!</p>
		 </card>
	 </wml>']

[XML_Serve: $WMLData, -Type='text/vnd.wap.wml']

To format WML:

The data served by Lasso should be formatted using WML. Most WML pages have the following format, an
<?XML … ?> declaration followed by <wml> … </wml> tags that surround one or more <card> … </card> tags. The
contents of the <card> … </card> tags are formatted like tiny HTML pages. The following example shows a
WML file with a single card.

[Content_Type: 'text/vnd.wap.wml; charset=utf-8']
<?xml version="1.0" encoding="utf-8" ?>
<wml>
	 <card name="card_one">
		 <p>Hello WAP user!</p>
	 </card>
</wml>

Most HTML text-formatting tags can be used to format WML pages although the actual set of tags supported
may differ from browser to browser. Tables can be used to format data into columns. All tags in WML have an
opening and a closing tag. All paragraph tags <p> … </p> must be closed. A tag which opens and then closes
immediately can be written with a slash before the trailing angle bracket,
</br> can be written
.

Every parameter of a tag must have a value. For example, the <input> tag for a check box takes a parameter
checked="" rather than the simple checked parameter which HTML allows.

<input type="checkbox" name="Field_Name" value="Value" checked="">

To specify WML links:

Links can be included using the anchor convention to link to cards within the same document or a different
document. The following code would create a link to the card defined above if it were inserted into another
card in the same document.

 Link to card one

If the card defined above was saved in a document named default_wml.lasso then the following link inserted
into a card in another document would link directly to it. Both the name of the document and the name of
the card are included in the link.

 Link to card one

6 5 3

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 5 2 – W i r e l e s s D e v i c e s

To specify WML forms:

Forms can be included in WML documents using most of the form input tags. Since WAP browser screens are
usually very small, only a few form elements can usually be shown on screen at the same time. Also, since
most WAP browsers have limited text capabilities it is often desirable to place options in <select> … </select>
tags rather than having the client type them in. The following code shows a form that contains a single
button. When the form is submitted, the card Card_One in default_wml.lasso is returned as the result.

<form action="default_wml.lasso#card_one" method="POST">
	 <p><input type="submit" name="-Nothing" value="Submit Form"></p>
</form>

To encode data for WML:

The data displayed in WML pages should be XML encoded. The [Encode_Set] … [/Encode_Set] tags can be used
to change the default encoding for all substitution tags in an entire WML page. The following example shows
a WML page with an enclosing set of [Encode_Set] … [/Encode_Set] tags. The value of the [Variable] tag will be
XML encoded, ensuring that it displays properly in a WAP browser.

[Content_Type: 'text/vnd.wap.wml; charset=utf-8']
<?xml version="1.0" encoding="utf-8">
[Encode_Set: -EncodeXML]
	 <wml>
		 <card name="card_one">
			 <p>[Variable: 'WML_Data']</p>
		 </card>
	 </wml>
[/Encode_Set]

Tags which return XML tags should not have their values encoded. Tags which return XML data require an
-EncodeNone encoding keyword in order to ensure that the angle brackets and other markup characters are not
encoded into XML entities. The following example shows a variable that returns an entire <card> … </card>. The
[Variable] tag has an -EncodeNone keyword so the angle brackets within the WML data are not encoded.

[Content_Type: 'text/vnd.wap.wml; charset=utf-8']
[Variable: 'WML_Data' = '<card name="card_one"><p>Hello WAP user!</card>']
<?xml version="1.0" encoding="utf-8">
[Encode_Set: -EncodeXML]
	 <wml>
		 [Variable: 'WML_Data', -EncodeNone]
	 </wml>
[/Encode_Set]

WAP Tags
Lasso 8 includes a set of tags that return information about WAP clients. These tags allow a Lasso developer to
determine if the current client is using a WAP browser and to determine the size of the screen and how many
buttons the browser supports.

The tags are summarized in Table 1: WAP Tags. None of the tags return a value if the current client is not
using a WAP browser or if the WAP browser does not report the appropriate information in their WAP
request. The [WAP_IsEnabled] tag should always be used first to determine if the client is a WAP browser before
the other tags are used.

6 5 4

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 5 2 – W i r e l e s s D e v i c e s

Table 1: WAP Tags

Tag	 Description	

[WAP_IsEnabled]	 Returns True if the current client is using a WAP enabled browser.

[WAP_MaxButtons]	 Returns the number of buttons supported by the current client's WAP browser.

[WAP_MaxColumns]	 Returns the number of text columns in the screen of the current client's WAP
browser.

[WAP_MaxHorzPixels]	 Returns the width of the screen in pixels of the current client's WAP browser.

[WAP_MaxRows]	 Returns the number of text lines in the screen of the current client's WAP
browser.

[WAP_MaxVertPixels]	 Returns the height of the screen in pixels of the current client's WAP browser.

[XML_Serve]	 Returns WML data in place of the current Lasso page. The first parameter is the
WML data to be served. -Type parameter should be set to text/vnd.wap.wml

		

To display a different page if a client is WAP enabled:

Use the [WAP_IsEnabled] tag to check whether a client is using a WAP browser or not. The following code
returns the file default_wml.lasso if the user is using a WAP browser or the file default_html.lasso if they are using a
normal Web browser.

[If: (WAP_IsEnabled)]
	 [Content_Type: 'text/vnd.wap.wml; charset=utf-8']
	 [Include: 'default_wml.lasso']
[Else]
	 [Include: 'default_html.lasso']
[/If]

To choose a graphic based on the size of a WAP browser screen:

Use the [WAP_MaxHorzPixels] and [WAP_MaxVertPixels] tags to determine the size of the client’s screen. The
following example displays a different graphic if the client’s screen is less than 72 pixels in height or width, if
it is less than 144 pixels in height or width, or if it is larger.

[if: (WAP_MaxHorzPixels) <= 72 || (WAP_MaxVertPixels) <= 72]
	
[Else: (WAP_MaxHorzPixels) <= 144 || (WAP_MaxVertPixels) <= 144]
	
[Else]
	
[/If]

WML Example
The following example shows how to create a page that allows a client to search a database through a WAP
browser. The client will be able to search a database named Contacts for either the First_Name or Last_Name and
will receive a list of Phone_Numbers in response.

The example is given first in a square bracket version using marked up WML code. The second version uses
LassoScript and the [XML_Serve] tag to serve programmatically created WML.

Square Bracket Version
The initial page default.lasso includes a check to see whether the client is using a WAP browser or not. If they
are not using a WAP browser then they are forwarded to an error page using the [Redirect_URL] tag.

[If: (WAP_IsEnabled) == False]
	 [Redirect_URL: 'errror.lasso']
[/If]

6 5 5

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 5 2 – W i r e l e s s D e v i c e s

The remainder of the initial page is a card called form that contains an HTML form which allows the user
to search the database for either a First_Name or a Last_Name. When the form is submitted the results card of
response.lasso is returned.

[Content_Type: 'text/vnd.wap.wml; charset=utf-8']
<?xml version="1.0" encoding="utf-8">
[Encode_Set: -EncodeXML]
	 <wml>
		 <card name="form">
			 <form action="response.lasso#results" method="POST">
					 First: <input type="text" name="First_Name" value=""/>
					
Last: <input type="text" name="Last_Name" value=""/>
					
<input type="submit" name="-Nothing" value="Submit"/>
			 </form>
		 </card>
	 </wml>
[/Encode_Set]

The results page response.lasso contains an [Inline] … [/Inline] that performs the actual search. It retrieves the
values for First_Name and Last_Name using [Action_Param] tags. The search results are sorted first by Last_Name,
then by First_Name. None of the [Field] tags require encoding keywords since the default encoding for the page
is set to XML encoding using [Encode_Set] … [/Encode_Set] tags. An error message is returned if no records are
found. A link is provided to return to the search page default.lasso so a new search can be performed.

[Content_Type: 'text/vnd.wap.wml; charset=utf-8']
<?xml version="1.0" encoding="utf-8">
[Encode_Set: -EncodeXML]
	 <wml>
		 <card name="results">
			 [Inline: -Database='Contacts',
					 -Table='People',
					 -KeyField='ID',
					 'First_Name' = (Action_Param: 'First_Name'),
					 'Last_Name' = (Action_Param: 'Last_Name'),
					 -SortField='Last_Name',
					 -SortField='First_Name',
					 -Search]
				 [If: (Found_Count) <= 0]
					
No phone numbers were found.
				 [/If]
				 [Records]
					
[Field: 'First_Name'] [Field: 'Last_Name'] [Field: 'Phone_Number']
				 [/Records]
			 [/Inline]
			
 Search Again
		 </card>
	 </wml>
[/Encode_Set]

LassoScript Version
The initial page default.lasso includes a check to see whether the client is using a WAP browser or not. If they
are not using a WAP browser then they are forwarded to an error page using the [Redirect_URL] tag.

<?LassoScript
	 If: (WAP_IsEnabled) == False;
		 Redirect_URL: 'errror.lasso';
	 /If;
?>

6 5 6

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 5 2 – W i r e l e s s D e v i c e s

The remainder of the initial page is a card called form that contains an HTML form which allows the user
to search the database for either a First_Name or a Last_Name. When the form is submitted the results card of
response.lasso is returned.

<?LassoScript
	 Variable: 'WML_Content' = <?xml version="1.0" encoding="utf-8">
	 $WML_Content += '<wml><card name="form">';
	 $WML_Content += '<form action="response.lasso#results" method="POST">';
	 $WML_Content += 'First: <input type="text" name="First_Name" value=""/>';
	 $WML_Content += '
Last: <input type="text" name="Last_Name" value=""/>';
	 $WML_Content += '
<input type="submit" name="-Nothing" value="Submit"/>';
	 $WML_Content += '</form></card></wml>';

	 XML_Serve: $WML_Content, -Type='text/vnd.wap.wml';
?>

The results page response.lasso contains an [Inline] … [/Inline] that performs the actual search. The actual response
is collected in the WML_Content variable. The [Field] tags have encoding explicitly set.

<?LassoScript
	 Variable: 'WML_Content' = <?xml version="1.0" encoding="utf-8">';
	 $WML_Content += '<wml><card name="results">';
	 Inline: -Search, -Database='Contacts', -Table='People', -KeyField='ID',
			 'First_Name' = (Action_Param: 'First_Name'),
			 'Last_Name' = (Action_Param: 'Last_Name'),
			 -SortField='Last_Name', -SortField='First_Name';
		 If: (Found_Count) <= 0;
			 $WML_Content += '
No phone numbers were found.';
		 /If;
		 Records;
			 $WML_Content += '
' + (Field: 'First_Name', -EncodeXML) + ' ';
			 $WML_Content += (Field: 'Last_Name', -EncodeXML) + ' ';
			 $WML_Content += (Field: 'Phone_Number', -EncodeXML);
		 /Records;
	 /Inline;
	 $WML_Content += '
 Search Again ';
	 $WML_Content += '</card></wml>';

	 XML_Serve: $WML_Content, -Type='text/vnd.wap.wml';
?>

6 5 7

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 5 2 – W i r e l e s s D e v i c e s

53
Chapter 53

AJAX and LJAX

This chapter documents the LJAX methodology which makes using AJAX techniques in a Lasso-based Web site
easy. These techniques can be used in addition to popular AJX client-side libraries like script.aculo.us to create
a full dynamic experience for site visitors.

	 •	Overview presents an introduction to AJAX and the role which LJAX plays in creating dynamic Lasso driven
Web sites.

	 •	LJAX Methodology walks through a common LJAX scenario showing how data flows back and forth
between the server and the Web client.

	 •	LJAX JavaScript Library documents the JavaScript functions which Lasso provides for client-side LJAX
functionality.

	 •	LJAX Tags documents the Lasso tags which allow parts of a document to be tagged as dynamic targets.

	 •	LJAX Example presents an example of how the LJAX methodology can be used to create a simple dynamic
Web form.

Overview
AJAX stands for Asynchronous JavaScript and XML, but has come to represent set of techniques for making
Web sites more dynamic. AJAX is sometimes referred to as Web 2.0 and many of the techniques were
previously bundled under the DHTML moniker.

AJAX uses a combination of JavaScript and its ability to modify the Document Object Model (DOM) and
Cascading Stylesheets (CSS) of a page to dynamically update the contents of a We page without performing a
refresh of the entire page. The XMLHttpRequest JavaScript object (or AcrtiveX control) is used to asynchronously
fetch new content for the Web page and then that new content is merged into the page.

The flow of data in pre-AJAX Web sites involves the transmission of URLs or HTML form data to the server
and the return of whole HTML Web pages to the client. The client submits a URL to the Web server, receives
an HTML Web page, displays the page to the site visitor, waits until the user clicks on another URL, submits
the URL to the Web server, etc.

The flow of data in an AJAX Web site contains a tighter loop. AJAX Web sites still transmit URLs or HTML
form data to the server, but the return values can be either whole HTML Web pages or small fragments of
data which are to be merged dynamically into the current displayed Web page. When the site visitor clicks
on a URL it is sent to the server in a back channel, an HTML fragment is received and parsed, and the current
displayed Web page is updated in-place without reloading.

By tightening this loop the amount of data which needs to be passed back and forth to the Web server can be
reduced (or at least targeted to the particular area of the Web page the visitor is concentrated on). An AJAX
Web site can be made to feel much more responsive than a traditional Web site. The responsiveness can make
an AJAX Web site feel like a “real” desktop user interface.

6 5 8

L a s s o 8 . 5 L a n g u a g e G u i d e

LJAX stands for Lasso, JavaScript, and XHTML and is Lasso’s built-in implementation of AJAX. The LJAX tools
are comprised of two parts: a client-side JavaScript library and a server-side collection of tags. On the client-
side a JavaScript function allows HTML form submissions or link clicks to redirected into a dynamic refresh
of a portion of the current Web page. The dynamic area of a Web page is called a target. On the server-side,
several Lasso tags allow a page to be divided into portions which are associated with one or more target name.

LJAX implements one type of AJAX workflow, but there are many other possible workflows. Popular AJAX
libraries implement not just the asynchronous communication and dynamic refreshes for which AJAX got its
name, but also special visual effects, advanced user interface concepts like drag and drop, and dynamic page
updates which are handled entirely client-side without any server interaction. LJAX is intended to complement
third party libraries and to help tie those libraries to more familiar Lasso methodologies.

LJAX Methodology
Implementing the LJAX methodology on a Lasso-based Web site requires the following three steps.

	 1	The client-side JavaScript library is included on the Web page using HTML <script> tags.

	 2	The Lasso page is marked up with [LJAX_Target] … [/LJAX_Target], [LJAX_Start], and [LJAX_End] tags which iden-
tify portions of the page with a target name. These tags are also used to identify portions of the page that
should be executed when any target name is loaded or when the page is loaded with no target name.

Any Lasso code before the [LJAX_Start] tag will be executed, but the output will be discard. Similarly, any
Lasso code after the [LJAX_End] tag will be executed, but the otuput will be discarded. Together these tags
define the portion of the page which may be updated dynamically.

Within this portion [LJAX_Target] … [/LJAX_Target] tags can be used to further segment the page into indi-
vidual targets which will be updated dynamically. JavaScript calls can be used to update one or more of
these targets.

The code which is contained within each target must be valid XHTML code. One or more elements in the
XHTML code must have an ID which will be used to match the element to a corresponding element in the
current Web page.

	 3	HTML forms or anchor tags which should trigger a dynamic refresh (and not a whole page reload) are
modified to call the client-side JavaScript function Lasso.includeTarget() from the appropriate handler attri-
butes such as onclick, onchange, or onsubmit.

The Lasso.includeTarget() function handles the back channel communication to the Lasso server, parsing the
XHTML fragment which is served, and merging any elements with an ID over the corresponding element in
the current Web page.

Note: Submitting a form using LJAX does not currently support file uploads. Forms with file uploads should use
the traditional form submission method.

LJAX JavaScript Library
Lasso includes a JavaScript library which implements several JavaScript functions which perform the client-
side work required by LJAX. The provided functions are listed in the table below.

The JavaScript library must be loaded by the site visitor’s Web browser. This is accomplished using an XHTML
script tag as follows. Some browsers require that the script tag have an explicit closing tag so this tag should
always be written as shown, not using the shortcut <script … />.

<script type="text/javascript" src="/LJAX.LassoApp"></script>

6 5 9

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 5 3 – A J AX a n d L J AX

Table 1: LJAX JavaScript Functions

Function	 Description	

Lasso.includeTarget()	 This function is designed to be called from a JavaScript handler. It fetches the
current page with the specified targets, parses the XHTML generated by Lasso,
and then merges any elements with an ID onto like elements on the current page
dynamically. Any <script> … </script> blocks within the XHTML will be processed
as JavaScript after the merges have occured.
The tag requires one parameter which is the name of a target or an array of
targets which should be updated. The tag also accepts a list of options as a
second parameter. The options for this tag are detailed in a following table.

		

A basic call to Lasso.includeTarget() within an anchor tag looks as follows. The function is called within an
onclick handler which will be triggered when the user clicks on the link with their mouse. The target of
MyTarget is specified and the options specify that the arguments from the URL in the anchor tag should be
passed as the action parameters of the LJAX request.

 Click Here

A basic call to Lasso.includeTarget() within a form looks as follows. The function is called within an onsubmit
handler which will be triggered when the user submits the form by clicking on a submit button or by typing
return into a text input. The target of MyTarget is specfied and the options specify that the arguments from the
form should be passed as the action parameters of the LJAX request.

<form response="default.lasso" method="post" onsubmit="return Lasso.includeTarget('MyTarget', {args: this});">
	 <input type="hidden" name="param" value="value" />
	 <input type="submit" name="action" value="Submit Form" />
</form>

The options parameter for the Lasso.includeTarget() function can include several values in addition to the args
value. The available options are detailed in the following table.

Table 2: Lasso.includeTarget() Options

Function	 Description	

args	 The argument string or an element such as a form, anchor or other input element
that will be used to create the argument string which will be sent with the request

func	 If this optional function is provided, it will be called to handle the resulting data.
This function will be passed the XMLHttpRequest object used for the request and
the value of the 'param' parameter

param	 The parameter which is passed to the 'func' to handle the resulting data. This is
only utilized if 'func' is provided

afterFunc	 This optional function will be called, with the XMLHttpRequest as it's only
parameter after completing the include.

argsoverride	 Optional object containing the values that will be substituted for the matching
values found in the 'args' object. For example, if argsoverride contained a
property x with a value of y, and the args object was a form which contained an
input field x, the value of y would be used regardless of the actual value of x in
the form.

		

When the Lasso.IncludeTarget() tag is called it generates an asynchronous request for the LJAX.LassoApp file.
The URL of the current page is passed as the source parameter and an [Include] tag is used to load this page.
If you are using virtual URLs which cannot be referenced through the [Include] tag then you should modify
the Lasso.SRC attribute directly as follows. In the code below the Lasso.SRC attribute is set explicitly to a file
named /index.lasso which handles all incoming Web requests.

<script type="text/javascript" src="/LJAX.LassoApp"></script>
<script type="text/javascript">
	 Lasso.SRC = 'include.lasso';
</script>

6 6 0

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 5 3 – A J AX a n d L J AX

LJAX Tags
Lasso defines several tags which allow part of a page to be designated as a target for the Lasso.includeTarget()
function.

Table 3: LJAX Tags

Tag	 Description	

[LJAX_Target] … [/LJAX_Target]	 This tag identifies part of a Lasso page with a target. The -Target parameter
specifies a target name or an array of target names. -AnyTarget specifies that
the contents should be executed for any target. -NoTarget specifies the content
should be executed when the page is called without a target.

[LJAX_Include]	 The first parameter is the name of a file to include. Accepts the same parameters
as [LJAX_Target] in order to decide whether the file should be included or not.

[LJAX_HasTarget]	 Accepts the same parameters as [LJAX_Target] and returns true if those
parameters are a match for the current page load. This tag can be used in
custom conditionals where it might be difficult to rewrite the code to use [LJAX_
Target] … [/LJAX_Target] instead.

[LJAX_Start]	 This tag marks the start of the dynamic portion of an LJAX page. Any Lasso
code before this tag will be executed, but the output will be discarded.

[LJAX_End]	 This tag marks the end of the dynamic portion of an LJAX page. Any Lasso code
after this tag will be executed, but the output will be discarded.

		

Depending on the arrangement LJAX tags different parts of a Lasso page will be loaded for normal, non-LJAX,
page loads and when Lasso.includeTarget() is loading a page with a specified target. The following scenarios are
possible.

	 •	Parts of the page before an [LJAX_Start] tag or after an [LJAX_End] tag will always be executed, but their
output will only be returned to the browser on normal page loads.

… Always Loaded (Output suppressed for LJAX calls) …
[LJAX_Start]
… Always Loaded (Output returned for LJAX calls) …
[LJAX_End]
… Always Loaded (Output suppressed for LJAX calls) …

	 •	Parts of the page which are not contained within [LJAX_Target] … [/LJAX_Target] tags will be executed
whenever the page is loaded either as a whole Web page or with an LJAX target.

… Always Loaded …
[LJAX_Target] … [/LJAX_Target]
… Always Loaded …

	 •	Parts of the page surrounded by [LJAX_Target: -NoTarget] … [/LJAX_NoTarget] tags will only be executed when
the page is loaded as a whole Web page. These portions of the page will not be executed when the page is
loaded with any LJAX target. -NoTarget can be used to designate the non-dynamic portion of the Web page
including the HTML head elements, opening body tag, navigation elements, etc.

[LJAX_Target: -NoTarget]
	 … Whole Web Page Only …
[/LJAX_Target]

	 •	Parts of the page surrounded by [LJAX_Target: -AnyTarget] … [/LJAX_Target] tags will only be executed when the
page is loaded with an LJAX target. These portions of the page will not be executed when the page is loaded
as a whole Web page. -AnyTarget can be used to designate portions of the page that should be included in
every dynamic fragment. These tags can be used to surround [LJAX_Target] … [/LJAX_Target] tags for specific
targets. Or, these might include new content for elements on the page which are not updated indepen-
dently, but are updated as a side effect of any other update.

6 6 1

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 5 3 – A J AX a n d L J AX

[LJAX_Target: -AnyTarget]
	 … Any LJAX Target …
[/LJAX_Target]

	 •	Parts of the page which are surrounded by [LJAX_Target: -Target='MyTarget'] …[/LJAX_Target] tags which refer-
ence a particular target will only be loaded when the page is loaded with that specific LJAX target.
[LJAX_Target] … [/LJAX_Target] tags can be nested with the outer tags using -AnyTarget or a list of targets and
inner tags referencing only particular targets in order to create a hierarchy of content some of which is
generated for any of a number of targets and other of which is generated for only specific targets.

[LJAX_Target: -Target='MyTarget']
	 … MyTarget Only …
[/LJAX_Target]

[LJAX_Target: -AnyTarget]
	 … Any LJAX Target …
	 [LJAX_Target: -Target='MyTarget'] … MyTarget Only … [/LJAX_Target]
	 … Any LJAX Target …
[/LJAX_Target]

[LJAX_Target: -Target=(Array: 'MyTarget', 'YourTarget')]
	 … Both MyTarget and YourTarget …
	 [LJAX_Target: -Target='MyTarget'] … MyTarget Only … [/LJAX_Target]
	 [LJAX_Target: -Target='YourTarget'] … YourTarget Only … [/LJAX_Target]
	 … Both MyTarget and YourTarget …
[/LJAX_Target]

	 •	The -NoTarget option can be used in addition to a -Target parameter to create a portion of a Web page which
loads either when the page is loaded as a whole Web page or when the page is loaded with the specific
target or targets. Note that a -NoTarget container cannot be nested within an -AnyTarget container (or vice
versa).

[LJAX_Target: -Target='MyTarget', -NoTarget]
	 … MyTarget or Whole Web Page …
[/LJAX_Target]

	 •	The [LJAX_HasTarget] tag can be used with normal [If] … [/if] conditionals. The following conditional works
identically to [LJAX_Target: -AnyTarget] … [/LJAX_Target].

[If: (LJAX_HasTarget: -AnyTarget)]
	 … Any LJAX Target …
[/If]

A typical structure for a Web page with a dynamic target will be as follows. The opening <html> tag, head
elements, opening <body> tag, and visible page header are all included before the [LJAX_Start] tag. The closing
</body> and </html> tags are specified after the [LJAX_End] tag. The dynamic portion of the page is defined by
[LJAX_Target: -Target='MyTarget', -NoTarget] … [/LJAX_Target] tags surrounding a <div> with an ID of MyTarget. This
<div> will be loaded when the whole Web page is loaded without a target and will also be the only part of the
Web page returned when the Web page is loaded with a target of MyTarget.

	 <html>
		 <head><title>My Page Title</title> … Head Elements … </head>
	 	 <body>
			 <h2>My Page Title</h2>
[LJAX_Start]
[/LJAX_Target: -Target='MyTarget', -NoTarget]
			 <div id="MyTarget">
				 … Dynamic Content For MyTarget …
			 </div>
[/LJAX_Target]
[LJAX_End]
		 </body>
	 </html>

6 6 2

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 5 3 – A J AX a n d L J AX

LJAX Example
This section includes a simple example of how LJAX can be used to create a dynamic search form. Since AJAX
is an evolving standard more examples will be included in the Lasso Examples Pack and posted in LassoSoft’s
Tips of the Week.

http://www.lassosoft.com/addons

http://www.lassosoft.com/totw

Search forms are one of the most common interfaces on the Web. The user is initially presented with an
empty form. They fill out one or more text fields and submit the form. The browser transmits their search
parameters to the Web server. The results of the form are calculated and a response page is returned to the
browser.

The following page creates a simple search form with an input for first name, an input for last name, and a
submit button. When the site visitor submits the form their inputs are echoed back along with the date/time
they submitted the form, and an inline (not shown) would be called to generate a result set from the data
source.

<html>
	 <head>
		 <title>LJAX Example</title>
	 </head>
	 <body>
		 <form response=”[Response_FilePath]”>
			 First: <input type=”text” name=”first” value=”[Action_Param: ‘first’]” />

			 Last: <input type=”text” name=”last” value=”[Action_Param: ‘last’]” />

			 <input type=”submit” name=”action” value=”Search”/>
		 </form>
		 <hr />
		 <div id=”dynamic”>
		 [If: ((Action_Param: ‘action’) >> ‘search’)]
			 First: [Action_Param: ‘first’]

			 Last: [Action_Param: ‘last’]

			 Date: [Date]
			 … Inline Search Results …
		 [/If]
		 </div>
	 </body>
</html>

Note: Submitting a form using LJAX does not currently support file uploads. Forms with file uploads should use
the traditional form submission method.

This page can be LJAX-enabled so that submitting the form does not reload the entire page, but only refreshes
the results portion of the page (below the <hr /> tag). The result is a page which responds to the site visitor
faster since the database results can be communicated directly without reloading the head of the page and
the search form. On a simple example like this the overhead is not too great, but in a real-world Web site the
overhead of the site template can be very large compared to the size of the actual database results.

The code below shows an LJAX-enabled version of this page. The non-dynamic portions of the page either
precede the [LJAX_Start] tag, follow the [LJAX_End] tag, or are wrapped in [LJAX_Target: -NoTarget] … [/LJAX_Target]
tags. This tells Lasso that those portions of the page should only be served on the initial page load, not on
subsequent dynamic refreshes.

Note that the <div> … </div> which contains the search results has an ID. Lasso uses the ID to match up the
dynamic contents with the static elements of the page. Each dynamic element on the page should have a
unique ID. This div is wrapped in [LJAX_Target: -Target='dynamic', -NoTarget] … [/LJAX_Target] tags. This tells Lasso
that this portion of the page should be returned on the initial page load and also when the target dynamic is
requested.

6 6 3

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 5 3 – A J AX a n d L J AX

The head of the page includes a script tag which references the LJAX.LassoApp. This LassoApp returns a
JavaScript page which implements the Lasso.includeTarget() function and other helper functions.

Finally, the form tag has an onsubmit handler which calls return !Lasso.includeTarget(‘dynamic’, {args:this}). This
handler says that when the form is submitted the Lasso.includeTarget() function should be called with a target
of dynamic and using the arguments of the current form, this. The result of this function is True if the dynamic
refresh is successful and False otherwise. The exclamation point inverts this result so the form is only
submitted if the dynamic refresh fails. If the dynamic refresh succeeds then the form submit is ignored (since
it has already been taken care of).

<html>
	 <head>
		 <title>LJAX Example</title>
		 <script src=”LJAX.LassoApp” type=”text/javascript”></script>
	 </head>
	 <body>
		 <form response=”[Response_FilePath]” onsubmit=”return !Lasso.includeTarget(‘dynamic’, {args:this});”>
			 First: <input type=”text” name=”first” value=”[Action_Param: ‘first’]” />

			 Last: <input type=”text” name=”last” value=”[Action_Param: ‘last’]” />

			 <input type=”submit” name=”action” value=”Search”/>
		 </form>
		 <hr />
[LJAX_Start]
[LJAX_Target: -Target=’dynamic’, -NoTarget]
		 <div id=”dynamic”>
		 [If: ((Action_Param: ‘action’) >> ‘search’)]
			 First: [Action_Param: ‘first’]

			 Last: [Action_Param: ‘last’]

			 Date: [Date]
			 … Inline Search Results …
		 [/If]
		 </div>
[/LJAX_Target]
[LJAX_End]
	 </body>
</html>

When the site visitor uses this form the Lasso.includeTarget() function is called. This results in the current
page being called with an LJAX target of dynamic. All of the page is ignored except for the central
[LJAX_Target] … [/LJAX_Target] contents. The result is an XHTML fragment containing only the search results. For
example, searching for John Doe would return this fragment.

<ljax>
	 <div id="dynamic">
		 First: John

		 Last: Doe

		 Date: 05/23/2006 11:21:58
		 … Inline Search Results …
	 </div>
</ljax>

Lasso sees the ID of the returned div and searches the current Web page for the same ID. It finds the corre-
sponding div from the initial page load and merges the new contents of the div over the old contents of the
div. The effect to the site visitor is that the div is automatically refreshed with new results without the page
reloading.

6 6 4

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 5 3 – A J AX a n d L J AX

54
Chapter 54

DNS

Lasso provides several tags which allow Domain Name Servers to be queried.

	 •	Overview provides an introduction of the DNS system and what types of information is available.

	 •	DNS Lookup documents the [DNS_Lookup] tag.

Overview
The Domain Name System (DNS) is an essential part of the Internet infrastructure which maps friendly
domain names like www.lassosoft.com to machine friendly IP addresses like 127.0.0.1. Every URL which is
entered into a Web browser or email address which is entered into an email client is first looked up through
the DNS system to determine what actual server to submit the request or route the message to.

DNS servers can handle many different types of requests. Some of the most common are listed here.

	 •	* – Returns all available information about the domain name. The results of this type are returned in
human readable form.

	 •	A – This is the most common type of request and simply returns the IP address which corresponds with
the domain name.

	 •	CNAME – This is a request for the common name associated with a domain name.

	 •	MX – This is a request for the mail server that is associated with a domain name. A prioritized list of mail
servers are returned.

	 •	NS – This is a request for the name servers which are responisble for providing definitive information
about domain name.

	 •	PTR – This type allows a reverse lookup to be performed which returns the domain name which is
associated with an IP address.

	 •	TXT – Domain name servers can store additional information about any domain name. Specially
formatted domain names are sometimes used as keys which will return useful information when queried
with this type.

Any query can return either a single value or an array of values. For example, a single domain name may be
served by a collection of Web servers. When the A record for that domain name is looked up a list of servers
will be returned. The DNS server may round-robin the list of servers so a different server is on top for each
request. This effectively spreads traffic among all the servers in the pool more or less evenly.

Domain Names
Domain names are written as a series of words separated by periods. Reading from left to right the domain
name gets progressively more general. In a typical three word domain name like www.lassosoft.com the first
word represents a particular machine or a particular service, the second word represents the domain in which
the machine or service resides, and the third word represents the top-level domain which has authorized use
of that domain name.

6 6 5

L a s s o 8 . 5 L a n g u a g e G u i d e

Top-level domains are controlled by an organization which has been designated by the IANA (Internet
Assigned Name Authority). .com and .net are two common general purpose top-level domains, .edu is a top-
level domain reserved for educational institutions, .gov is a top-level domain reserved for U.S. government
institutions, .org is a top-level domain reserved for non-profit organizations.

Each country has its own top level domain defined by its standard two letter abbreviation. .us is the top-level
domain for the United States, .uk is the top-level domain for the United Kingdom, .cn is the top-level domain
for China. The domain .to is actually the country domain for Tonga. Each country decides how it wants to
assign domain names within their own top-level domain. Some have created virtual top-level domains like
.com.uk, .org.uk, .edu.uk, etc.

IP Addresses
IP addresses consist of four numbers from 0 to 255 separated by periods. Each number represents a single 8
bit integer and the entire IP address represents a 32 bit integer. There are thus effectively about 4 billion IP
addresses. A typical IP address appears as follows.

127.0.0.1

IPv6
in order to expand the range of IP addresses which are available a new Internet Protocol has been imple-
mented and is in the process of being adopted. This is version 6 of the Internet Protocol and is abbrevi-
ated IPv6. The most recent versions of Windows, Mac OS X, and Linux all support IPv6 addresses. The DNS
lookup tags in Lasso do not support IPv6 addresses at this time. IPv6 addresses are essentially 128 bit inte-
gers. A typical IPv6 address may appear as follows.

fe80:0000:0000:0000:0000:0000:0000:0000

DNS Lookup
A DNS server can be queried using the [DNS_Lookup] tag. The result will be an array, string, or a [DNS_Response]
data type which can be inspected using its member tags.

Table 1: DNS Lookup Tags

Tag	 Description	

[DNS_Lookup]	 This tag is used to query the DNS server for information about a specific domain
name. The parameters for this tag are described in a following table.

[DNS_Response]	 An object of this data type can be returned in response to a [DNS_Lookup]
depending on its parameters. The member tags of this type are described in a
following table.

		

The [DNS_Lookup] tag is called in order to return information about a domain name or IP address. The
[DNS_Response] type can be returned as a result of calling [DNS_Lookup], but should never need to be called
directy.

Table 2: [DNS_Lookup] Parameters

Tag	 Description	

-Name	 The domain name to look up or the IP address for a reverse lookup. Required.

-Type	 The type of data to look up. Defaults to * if -Name is a domain name or PTR
if -Name is an IP address. Possible values include *, A, NS, MD, MF, CNAME,
SOA, MB, MG, MR, NULL, WKS, PTR, HINFO, MINFO, MX, TXT, AXFR, MAILB,
MAILA.

6 6 6

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 5 4 – DNS

-Class	 The class in which to perform the lookup. Defaults to IN which represents the
Internet DNS system. Searching other classes is very rare. Possible values
include *, IN, CS, CH.

-NoRecurse	 By default the local DNS server will automatically query other DNS servers to
find the answer to a request. If this parameter is included then the query will only
return information which is known directly by the local DNS server.

-Inverse	 Sets the inverse bit in the DNS query.

-Status	 Sets the status bit in the DNS query.

-HostName	 The name of a specific DNS server to query. Defaults to the DNS server set up in
the OS. Optional.

-Format	 If specified a string is returned which describes the response from the DNS
server.

-BitFormat	 If specified a string is returned which shows the low-level bit representation of
the response from the DNS server.

-ShowResponse	 If specified the response is returned as [DNS_Response] object which can be
inspected using the member tags described in the table that follows.

-FormatQuery	 If specified the query is not actually performed, but a string is returned which
describes the query that was constructed.

-BitQuery	 If specified the query is not actually performed, but a string is returned which
shows the low-level bit representation of the query that was constructed.

-ShowQuery	 If specified the query is not actually performed, but a [DNS_Response] object
representing the query is returned.

		

The result of the [DNS_Lookup] tag depends on what type of query was performed and what parameters were
passed to the tag. The following return values are possible.

	 •	When called with a domain name, most types will return an array of IP addresses which are in the same
order as they were reported by the DNS server. Note that an array will be returned even if only one IP
address was reported. An empty array will be returned if information about the specified domain name
could not be found.

[DNS_Lookup: 'www.lassosoft.com', -type='A'] � array('216.242.238.28')

	 •	Reverse lookups which are performed when an IP address is passed to the [DNS_Lookup] tag or when the
PTR type is specified return an array of domain names. An empty array will be returned if no domain name
could be found for the specified IP address.

[DNS_Lookup: '216.242.238.28'] � array('www.lassosoft.com')

	 •	MX lookups return an array of pairs. The first element of each pair is a priority and the second element of
each pair is an IP address. The mail servers should be used in order of priority to provide fallback if the
preferred mail servers cannot be reached.

[DNS_Lookup: 'www.lassosoft.com', -Type='MX'] � array(pair(10='216.242.238.28'))

	 •	If -Format, -BitFormat, -FormatQuery, or -BitQuery are specified then a string surrounded by HTML <pre> … </pre>
tags is returned. The following output shows the human readable response to a DNS request.

[DNS_Lookup: 'www.lassosoft.com', -Format]

�	 Length: 131
ID: 146
Type: Answer
Flags: RD, RA
Counts: QD 1, AN 1, NS 2, AR 2
QD 1: www.lassosoft.com. * *
AN 1: www.lassosoft.com. CNAME IN 86400 www.lassosoft.com.
NS 1: lassosoft.com. NS IN 86400 ns2.starmark.com.
NS 2: lassosoft.com. NS IN 86400 ns1.starmark.com.
AR 1: ns1.starmark.com. A IN 12418 216.242.238.2
AR 2: ns2.starmark.com. A IN 12418 216.242.238.3

6 6 7

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 5 4 – DNS

The following output shows the low-level bit formatting of a DNS response. The actual response is about
32 lines long.

[DNS_Lookup: 'www.lassosoft.com', -BitFormat]

�	 00000000 10011110 00000000 10111101 	 | 0 158 0 189 	 | 	 |
10000001 10000000 00000000 00000001 	 | 129 128 0 1 	 | 	 |
00000000 00000001 00000000 00000010 	 | 0 1 0 2 	 | 	 |
00000000 00000010 00000010 00110010 	 | 0 2 2 50 	 | 2 	 |
00111000 00000011 00110010 00110011 	 | 56 3 50 51 	 | 8 2 3	 |
00111000 00000011 00110010 00110100 	 | 56 3 50 52 	 | 8 2 4	 |
00110010 00000011 00110010 00110001 	 | 50 3 50 49 	 | 2 2 1	 |
00110110 00000111 01101001 01101110 	 | 54 7 105 110 	 | 6 i n	 |
…

	 •	If -ShowResponse or -ShowQuery are specified then a [DNS_Response] object is returned. The member tags of
[DNS_Response] can be used to further interrogate or manipulate the DNS results. Usually, this type of inter-
action is only required when debugging low-level details about a DNS response or when implementing
additional DNS services.

Table 3: [DNS_Response] Member Tags

Tag	 Description	

[DNS_Response->Format]	 Returns a formatted display of the entire response from the DNS server.

[DNS_Response->BitFormat]	 Returns a formatted display of the raw bits returned by the DNS server.

[DNS_Response->Answer]	 Returns the answer from the DNS server. This differs based on the type.

[DNS_Response->Data]	 Returns the raw byte stream.
		

6 6 8

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 5 4 – DNS

VIII
Section VIII

LassoScript

This section includes instructions for extending the functionality of Lasso by creating compiled LassoApps
and with custom tags, custom data types, and custom data source connectors written in LassoScript.

	 •	Chapter 55: LassoScript Introduction includes general information about extending Lasso’s functionality.

	 •	Chapter 56: LassoApps includes an introduction to LassoApps and instructions for compiling and serving
LassoApps.

	 •	Chapter 57: Custom Tags discusses how to create new tags in LassoScript including substitution tags, asyn-
chronous tags, and remote procedures.

	 •	Chapter 58: Custom Types discusses how to create new data types in LassoScript including sub-classing
and symbol overloading.

	 •	Chapter 59: Custom Data Sources discusses how to create new data sources in LassoScript.

Lasso can also be extended using C/C++ or Java. See the following sections on the Lasso C/C++ API (LCAPI)
or Lasso Java API (LJAPI) for more information.

6 6 9

L a s s o 8 . 5 L a n g u a g e G u i d e

55
Chapter 55

LassoScript Introduction

This chapter presents a road map to the different ways that Lasso can be extended using LassoScript.

	 •	Overview describes the different methods that can be used to extend Lasso and how programming in
LassoScript differs from programming in C/C++ using LCAPI or Java using LJAPI.

	 •	LassoApps describes how Lasso solutions can be packaged as compiled LassoApps for easy distribution
and installation.

	 •	Custom Tags describes how new tags can be created in LassoScript including looping container tags and
asynchronous tags.

	 •	Custom Types describes how new data types can be created in LassoScript including sub-classing built-in
types, overloading built-in symbols, and more.

	 •	Custom data sources describes how new data sources can be created in LassoScript by impementing a
custom data type and registering it with Lasso at startup.

Overview
Lasso provides a number of different mechanisms through which new functionality can be added directly to
the language. Lasso has long been extensible through C/C++ and Java APIs, but is now fully extensible using
LassoScript itself to create new functionality.

Deciding which set of APIs or tags to use to extend Lasso depends on the programming skills of the developer
and on what functionality is being implemented.

	 •	LassoScript – Extending Lasso in LassoScript as documented in this section is the easiest for most Lasso
developers. It does not require any skills beyond a knowledge of LassoScript and it does not require any
tools beyond Lasso. Using the techniques described in the chapters that follow new tags, data types, and
data source connectors can be implemented entirely in LassoScript.

	 •	LCAPI – The Lasso C/C++ Application Programming Interface allows new tags, data types, and data
source modules to be created in C/C++. The primary advantages of coding in C/C++ are that the speed of
the executed code will be the best possible and that the developer can access many C/C++ code libraries
to make implementing some APIs very easy. The drawback is that C/C++ modules must be compiled
separately (and may require different support libraries) for each platform that Lasso supports.

	 •	LJAPI – The Lasso Java Application Programming Interface allows new tags, data types, and data source
modules to be created in Java. The primary advantages of coding in Java are the wide selection of
libraries available for the language and the fact that Java modules generally work cross-platform without
modification.

6 7 0

L a s s o 8 . 5 L a n g u a g e G u i d e

LassoApps
LassoApps are entire Lasso solutions that are compiled into a single file. LassoApps can include both
LassoScript pages and images. Since the LassoApp is shipped as a single file it is very easy to install in an end-
user’s system. And, since LassoApps are compiled the end-user is not able to see the raw source that makes up
the solution.

LassoApps can be used in four ways. They can be used in place of LassoScript pages by placing the LassoApp
in the Web server root and calling it like a Web page. LassoApps can be placed in the LassoApps folder for a
site and then loaded using a virtual URL. LassoApps can be placed in LassoStartup and used to execute code
when Lasso initializes. Finally, LassoApps can be used as tag libraries by placing them in the LassoLibraries
folder for a site.

See the following chapter on LassoApps for additional information.

Custom Tags
Custom tags are new Lasso tags which are written in LassoScript using the [Define_Tag] … [/Define_Tag] tags.
Custom tags which are defined within a LassoScript page are immediately available below where they are
defined. Custom tags can also be defined in LassoStartup to be made available to all pages execute in Lasso.
Or, custom tags can be defined in a tag library in LassoLibraries to be loaded on-demand.

Custom tags can be used to implement any of the built-in tag types including substitution tags, process tags,
container tags, looping container tags, asynchronous process tags, or privileged tags.

See the following chapter on Custom Tags for additional information.

Custom Types
Custom types are new data types which are written in LassoScript using the [Define_Type] … [/Define_Type] tags.
Custom types can inherit from built-in types or from other custom types. Custom types can overload built-in
symbols such as + - * / == >> and feature automatic type conversions when required.

See the following chapter on Custom Types for additional information.

Custom Data Sources
New data sources can be implemented entirely in LassoScript. The data sources are implemented as a custom
type that defines a special set of member tags. The custom type is registered at start by placing the code which
defines it in LassoStartup. The data source is then available in Lasso Administration and in any [Inline] … [/Inline]
tags the same as any built-in data source or data source implemented in C/C++ or Java.

See the following chapter on Custom Data Sources for additional information.

6 7 1

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 5 5 – L a s s o S c r i p t I n t r o d u c t i o n

56
Chapter 56

LassoApps

This chapter discusses how to develop, build, serve, and administer LassoApps.

	 •	Overview describes LassoApps and their benefits for distributing Lasso-based solutions.

	 •	Administration explains how to enable LassoApp serving and how LassoApps are cached.

	 •	Serving LassoApps explains how LassoApps are served including how to serve LassoApps from the Web
server root and the LassoApps folder in the Lasso Professional 8 application folder.

	 •	Preparing Solutions documents how to prepare a Lasso-based solution for conversion into a LassoApp.

	 •	Building LassoApps explains how to use LassoApp Builder in Lasso Site Administration or the
[LassoApp_Create] tag to build a LassoApp.

	 •	Tips and Techniques provides helpful information about how to create professional quality LassoApps.

Overview
LassoApps allow entire Lasso-based solutions, including Lasso pages and image files, to be packaged into a
single archive file with a .LassoApp extension. A compiled LassoApp can be easily distributed and executed on
any machine running Lasso Professional 8.

Important – Although it is difficult to extract the original LassoScript from a LassoApp it is possible to see the
strings that are referenced within the LassoApp. LassoApps should be used to protect your LassoScript code, but
are not a recommended method of storing passwords or other sensitive data.

LassoApps offer the following benefits:

	 •	Performance – LassoApps are loaded into RAM and cached for efficient serving. All Lasso pages within the
LassoApp are pre-parsed and served without additional disk accesses. LassoApp solutions generally provide
better performance than their non-LassoApp counterparts.

	 •	Size – LassoApps are stored efficiently as a single file. The overhead associated with multiple format and
image files is reduced. Redundant data within Lasso pages is optimized so only a single copy of duplicate
strings is stored.

	 •	Flexibility – LassoApps can be served from within the Web server root as normal Lasso pages or they can
be served from within the LassoApps folder in the Lasso Professional 8 application folder. LassoApps can
also be loaded at startup or used as tag libraries.

	 •	Security – The code within a LassoApp is stored securely in a byte-compiled form. It is not possible to
extract Lasso pages and code from a LassoApp.

	 •	Portability – A LassoApp is an ideal way to distribute a solution by copying and installing a single file with
all internal paths intact. LassoApps are fully cross platform. They can be created on either Mac OS X or
Windows 2000 and then deployed on either platform without modifications.

LassoApps are stored in a custom binary file format with a .LassoApp extension. LassoApps can be created
programmatically using the [LassoApp_Create] tag or through the LassoApp Builder located in Lasso Site
Administration.

6 7 2

L a s s o 8 . 5 L a n g u a g e G u i d e

LassoApps can be used for any of the following purposes:

	 •	Packaged Solutions – LassoApps enable developers to create packaged solutions that can be easily
installed by end-users and served by any copy of Lasso Professional 8. LassoApps are placed in the Web
serving folder and referenced like a Lasso-based Lasso page or served from the LassoApps folder in the Lasso
Professional 8 application folder.

	 •	Client Solutions – LassoApps enable developers to deliver solutions to clients in a convenient, secure
package. This is ideal so clients can evaluate the functionality of a solution without requiring access to the
source code. LassoApps are placed in the Web serving folder and referenced like a Lasso-based Lasso pageor
served from the LassoApps folder in the Lasso Professional 8 application folder.

	 •	Tag Libraries – LassoApps can define a set of tags in a particular namespace and be installed into the
LassoLibraries folder in the Lasso Professional 8 application folder. Lasso will automatically load the
LassoApp and all the tags it contains if any of the tags within it are called.

	 •	Startup Libraries – LassoApps can be installed into the LassoStartup folder in the Lasso Professional 8
application folder. The default page of the LassoApp will be executed as a library when Lasso Service starts
up and can define custom tags or perform initialization code.

	 •	Secure Includes – LassoApps can be included into other Lasso pages using the [Include] or [Library] tag.
LassoApps can be used to define custom tags or to provide HTML code in a secure manner.

See the sections that follow for information about enabling LassoApps within Lasso Site Administration,
preparing an existing solution for compilation as a LassoApp, and detailed instructions about building
LassoApps.

Table 1: LassoApp Tags

Tag	 Description	

[LassoApp_Create]	 Creates a LassoApp. Requires three parameters: the -Root of the LassoApp, the
-Entry page or default page, and the -Result path where to write the completed
LassoApp.

[LassoApp_Dump]	 Removes a LassoApp from the cache. Removes a specific LassoApp if a name is
specified or all LassoApps if no name is specified.

[LassoApp_Link]	 Defines a link to a file within a LassoApp. This tag must be used to mark all links
in HTML anchor, form, and image tags and Lasso page references in [Include]
and [Library] tags.

-ResponseLassoApp	 Returns a specific page from a LassoApp.
		

Default LassoApps
Lasso Professional 8 relies on LassoApps for all of its administration interfaces, online documentation, and
server start-up code. Lasso Professional 8 ships with the following LassoApps.

	 •	ServerAdmin.LassoApp – The Lasso Server Administration interface pre-installed in the LassoApps folder
within the Lasso Professional 8 application folder. This LassoApp is used to configure Lasso’s server-wide
preferences and to create sites.

	 •	SiteAdmin.LassoApp – The Lasso Site Administration interface pre-installed in the LassoApps folder within
the Lasso Professional 8 application folder. This LassoApp is used to configure Lasso Security, to establish
the global preferences of a site, to browse existing databases, to monitor the email and event queues, and to
create new databases and LassoApps.

	 •	DatabaseBrowser.LassoApp – The database browser allows site visitors to browse through any databases
that they have permission to access. This LassoApp is pre-installed in the LassoApps folder within the Lasso
Professional 8 application folder.

	 •	GroupAdmin.LassoApp – The Group Administration interface is pre-installed in the LassoApps folder
within the Lasso Professional 8 application folder. This LassoApp allows group administrators to create
users and assign them to groups and for users to change their passwords.

6 7 3

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 5 6 – L a s s o A p p s

	 •	LDMLReference.LassoApp – The Lasso Reference is the definitive source for information about each tag
in Lasso Dynamic Markup Language. This LassoApp is pre-installed in the LassoApps folder within the Lasso
Professional 8 application folder.

	 •	RPC.LassoApp – This LassoApp responds to incoming remote procedure calls using the XML-RPC format.
This LassoApp is pre-installed in the LassoApps folder within the Lasso Professional 8 application folder.

	 •	Startup.LassoApp – This LassoApp defines custom tags and performs initialization for Lasso Security, the
email sender, and the event queue. This LassoApp is installed in the LassoStartup folder and must be present
for Lasso Service to start.

The code for each of these LassoApps can be found within the Documentation Folder > 2 - Language Guide
> LassoApps folder. This code is provided as-is without any warranty or support.

Warning: Do not compile LassoApps with the same name as the LassoSoft supplied LassoApps (e.g.
Startup.LassoApp or SiteAdmin.LassoApp). LassoSoft cannot provide any support for customized versions of these
LassoApps or for Lasso Professional 8 installations which make use of customized versions of these LassoApps.

Administration
This section discusses how to enable or disable LassoApp support and how administer the LassoApp cache
using Lasso tags and within Lasso Site Administration.

Enabling LassoApp Support
Lasso Site Administration includes a global setting to enable or disable LassoApp support. This setting can be
found in the Setup > Global Settings > LassoApps section of Lasso Site Administration.

When LassoApp support is disabled only the LassoApps which ship with Lasso Professional 8 can be
served (including Admin.LassoApp, GroupAdmin.LassoApp, LDMLReference.LassoApp, and Startup.LassoApp in the
LassoStartup folder.

Please see the Site Utilities chapter of the Lasso Professional 8 Setup Guide for more information about
enabling or disabling LassoApp support.

LassoApp Cache
LassoApps are cached in RAM for efficient serving. Each LassoApp only needs to be read from disk once and
from then on is served from high-speed memory. LassoApps are read from disk automatically the first time
they are called so there is no need to pre-load them (unless the fastest performance is required on the first
load).

Since LassoApps are only read from disk the first time they are called it is necessary to ask Lasso to dump any
LassoApps that need to be re-read from disk. For example, this is necessary if a new version of a LassoApp is
copied into the Web serving folder.

LassoApps can be removed from the cache using the Cache page in the Setup > Global Settings >
LassoApps section of Lasso Site Administration. See the Site Utilities chapter of the Lasso Professional 8
Setup Guide for more information. LassoApps can also be removed from the cache programatically using the
following steps.

To remove a LassoApp from the cache:

Use the [LassoApp_Dump] tag with the name of the LassoApp. The following example shows how to remove a
LassoApp named MySolution.LassoApp from the cache. The LassoApp will be read from disk the next time the
LassoApp is called.

[LassoApp_Dump: 'MySolution.LassoApp']

6 7 4

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 5 6 – L a s s o A p p s

To remove all LassoApps from the cache:

Use the [LassoApp_Dump] tag without any parameters The following example shows how to remove all
LassoApps from the cache. Each LassoApp will be read from disk the next time it is called.

[LassoApp_Dump]

To preload a LassoApp into the cache:

LassoApps can be preloaded into the cache by calling them from a Web browser or by using the [Include_URL]
tag. The following example shows how to preload a LassoApp named MySolution.LassoApp using [Include_URL].

[Include_URL: 'http://www.example.com/Lasso/MySolution.LassoApp']

If a LassoApp will be used frequently on the server it can be preloaded using the [Event_Schedule] tag in a Lasso
page in LassoStartup. The following code would preload a LassoApp named MySolution.LassoApp five minutes
after Lasso Service is started. The delay is specified so the other initialization steps have a chance to complete
before the LassoApp is loaded.

[Event_Schedule: -URL='http://www.example.com/MySolution.LassoApp',
	 -Delay=5]

Serving LassoApps
LassoApps can be served the same way as Lasso pages. They can be served from the Web server root or the
LassoApps folder in the Lasso Professional 8 application folder, included in other Lasso pages, or placed in the
LassoStartup folder and executed at startup. This section includes information about how to use LassoApps in
each of these situations.

Web Serving Folder
LassoApps which are placed in the Web serving folder are served like any Lasso-based Lasso pages. When they
are referenced by name in HTML anchor tags, HTML form actions, [Include] or [Library] tags, or as the target of a
-Response… tag. The entry page for the LassoApp is always the page that is served.

Since LassoApps are cached, only one copy of each named LassoApp can be served from a single site in Lasso
Professional 8. If a second LassoApp with the same name is called the cached copy of the first LassoApp will
be served in its place. It is important to ensure that multiple copies of the same LassoApp are identical or
unexpected results can occur.

LassoApps Folder
LassoApps which are placed in the LassoApps folder in the Lasso Professional 8 application folder are served
when they are referenced by name in HTML anchor tags, HTML form actions, [Include] or [Library] tags, or as the
target of a -Response… tag. The entry page for the LassoApp is always the page that is served.

Since LassoApps are cached, only one copy of each named LassoApp can be served from a single site in Lasso
Professional 8. If a second LassoApp with the same name is called the cached copy of the first LassoApp will
be served in its place. It is important to ensure that multiple copies of the same LassoApp are identical or
unexpected results can occur.

LassoApp Links
The links in the entry page must be marked with the [LassoApp_Link] tag in order to reference other files
contained within the LassoApp. See the section on Preparing Solutions for more details.

The [LassoApp_Link] tag modifies internal links to be of the form LassoAppName.FileNumber.LassoApp. For example,
the link to the entry page of a LassoApp named MySolution.LassoApp would be formated as follows in the
source of the LassoApp.

 Entry Page

6 7 5

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 5 6 – L a s s o A p p s

After the LassoApp is compiled, this link will be changed to the following code. The number referenced in the
link is determined when the LassoApp is compiled. This number should not be relied on since it may change
if the LassoApp is recompiled.

 Entry Page

The conversion of links marked [LassoApp_Link] is handled automatically. No further action beyond marking
internal links with the [LassoApp_Link] tag is required. The site visitor will be able to visit any pages which can
be reached from the entry page within the LassoApp and will be able to view any linked images within the
LassoApp.

To reference pages in a LassoApp from outside the LassoApp:

Individual pages within a LassoApp can be referenced using the -ResponseLassoApp tag as a parameter to the
LassoApp name. For example, the entry page (e.g. default.lasso) of the MySolution.LassoApp LassoApp could be
referenced explicitly using the following link.

 Entry Page

The path specified for the -ResponseLassoApp tag should be relative to the folder which was compiled into
the LassoApp. The -ResponseLassoApp tag should not be used as part of a database action or to specify the
response file for a database action. It should only be used to return a specific Lasso page or image file from
within a LassoApp.

Note: By using this technique, even files and images within a LassoApp which cannot be reached from the entry
page can be viewed if the visitor knows the path to the file they want to view within the LassoApp.

Database Action Responses
The entry page of a LassoApp can be used as the response to a database action by specifying the path to the
LassoApp as the parameter for any of the -Response… command tags. The following form returns the entry file
of MySolution.LassoApp as the response to a -FindAll action.

<form action="Action.Lasso" method="POST">
	 <input type="hidden" name="-FindAll" value="">
	 <input type="hidden" name="-Database" value="Contacts">
	 <input type="hidden" name="-Table" value="People">
	 <input type="hidden" name="-Response" value="MySolution.LassoApp">
	 <input type="submit" name="-FindAll" value="Find All People">
</form>

Note: The -ResponseLassoApp tag cannot be used in conjunction with a database action to return a particular page
from within a LassoApp. Only the entry page of a LassoApp can be returned as the result of a database action.

Lasso Libraries Folder
A LassoApp can define a set of custom tags which are all in the same namespace for on-demand loading.
The LassoApp should be named with the same name as the namespace of the tags. For example, a LassoApp
named Example.LassoApp could define a set of custom tags in the Example_ namespace [Example_TagOne],
[Example_TagTwo], etc.

When Lasso is asked to execute a tag that has not yet been defined it checks in the LassoLibraries folder for a
tag library with the name of the namespace of the desired tag. The entry page of a matching LassoApp will be
loaded defining all of the tags within.

Note: All of the tags must be defined within the entry page of the LassoApp.

6 7 6

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 5 6 – L a s s o A p p s

Lasso Startup Folder
The entry page of a LassoApp can be executed when Lasso Service starts up by placing the LassoApp file
within the LassoStartup folder inside the Lasso Professional 8 application folder. The entry file can include
as many other files within the LassoApp as it needs in order to perform the desired actions. For example,
the Startup.LassoApp LassoApp located in the LassoStartup folder executes code which defines a number of
custom tags (e.g. [Email_Send], [Include_URL]) in Lasso Professional 8. Because Startup.LassoApp is located in the
LassoStartup folder, these custom tags are automatically available upon startup.

Preparing Solutions
Any Lasso-based solution can be compiled into a LassoApp following these preparation instructions. These
steps require changes to be made to each Lasso page which needs to link to another file within the LassoApp
and requires files that need to remain user customizable to be stored and referenced outside the LassoApp.

The following steps need to be performed to prepare a solution for compilation as a LassoApp.

	 •	The entire solution must be contained in a single folder including all Lasso pages and image files which
will be compiled into the LassoApp. The folder should only contain text and GIF or JPEG image files.

	 •	The solution must have a single entry point. One file will be loaded when the LassoApp is called, this file
must reference other files within the LassoApp either through HTML links, HTML form actions, redirects or
[Include] tags.

	 •	All links to files or images within the LassoApp must be marked with the [LassoApp_Link] tag. This tag
changes relative paths to a LassoApp specific format.

Preparing Links
The biggest change required to make most solutions ready to be compiled as a LassoApp is to mark all
of the links which reference other files within the solution with the [LassoApp_Link] tag. All HTML anchor
 … , image , and form <form> … </form> tags which reference other files within the
LassoApp need to be marked as well as [Include] and [Library] tags. The [LassoApp_Link] tag is processed when the
solution is compiled into a LassoApp.

Named anchors, links to targets within the same file, mailto links to email addresses, and links to Web sites on
other servers do not need to be marked with the [LassoApp_Link] tag.

The [LassoApp_Link] tag can be safely used in any Lasso solution whether it is compiled into a LassoApp or not.
When used in a non-compiled solution the [LassoApp_Link] simply returns the specified link value unchanged.

Note: The [LassoApp_Link] tag cannot be used within custom tags or custom data types. Since a custom tag could
be called from a different LassoApp than the one in which it is defined (e.g. if a custom tag is defined in the
LassoStartup folder, there is no way for Lasso to determine to which LassoApp the [LassoApp_Link] tag should refer.
See the end of this section for tips on working with custom tags within LassoApps.

To prepare links to other files within the LassoApp:

	 •	Anchor tags which reference other files within the LassoApp need to be marked with the [LassoApp_Link] tag.
The [LassoApp_Link] tag will accept any relative path which is legal within an HTML anchor tag including
those which contain ../ to reference files higher in the folder structure. The following example shows an
HTML anchor tag that references a file named default.lasso contained in a folder named People.

 People Page

After being marked with the [LassoApp_Link] tag this anchor tag appears as follows.

 People Page

Note: Do not mark named anchors, links to targets within the same file, mailto links to email addresses, or
links to Web sites on other servers with the [LassoApp_Link] tag.

6 7 7

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 5 6 – L a s s o A p p s

	 •	Image tags should be marked with the [LassoApp_Link] tag if the referenced image is contained within
the compiled LassoApp. The following example shows an HTML image tag that references a file named
boat.gif contained in a folder named Images.

After being marked with the [LassoApp_Link] tag this anchor tag appears as follows.

	 •	The action parameter for HTML <form> tags should be marked with the [LassoApp_Link] tag if it reference
a Lasso page explicitly. The following example shows an HTML <form> tag that references a file named
result.lasso which is contained in the same folder as the current page.

<form action="result.lasso" method="POST">
	 …
</form>

After being marked with the [LassoApp_Link] tag this HTML <form> tag appears as follows.

<form action="[LassoApp_Link: 'result.lasso']" method="POST">
	 …
</form>

	 •	If an HTML <form> tag references Action.Lasso as its action then the value parameter for the appropriate
<input> tag for the -Response command tag should be marked with the [LassoApp_Link] tag. The following
example shows an HTML <form> tag that references Action.Lasso. The response for the form is specified as
response.lasso in a hidden input for the -Response command tag.

<form action="Action.Lasso" method="POST">
	 <input type="hidden" name="-Response" value="response.lasso">
	 …
</form>

After being marked with the [LassoApp_Link] tag the hidden input appears as follows.

<form action="Action.Lasso" method="POST">
	 <input type="hidden" name="-Response"
		 value="[LassoApp_Link: 'response.lasso']">
	 …
</form>

	 •	The file parameter for an [Include] or [Library] tag needs to be marked using the [LassoApp_Link] tag. The
following examples show an [Include] tag for a file named include.lasso and a [Library] tag for a file library.lasso.

[Include: 'include.lasso']

[Library: 'library.lasso']

After being marked with the [LassoApp_Link] tag the tags appear as follows.

[Include: (LassoApp_Link: 'include.lasso')]

[Library: (LassoApp_Link: 'library.lasso')]

	 •	The response parameter for a [Link_…] tag needs to be marked using the [LassoApp_Link] tag. For example,
the [Link_DetailURL] tag accepts a -Response parameter which specifies the Lasso page that should be returned
when the link is selected. The following example shows a [Link_DetailURL] tag used within an HTML anchor
<a> tag.

 …

After being marked with the [LassoApp_Link] tag, the [Link_DetailURL] tag appears as follows.

<a href="[Link_DetailURL: -Response=(LassoApp_Link: 'response.lasso'),
	 -Table='People']"> …

6 7 8

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 5 6 – L a s s o A p p s

Notice that only the name of the response page is marked with the [LassoApp_Link] tag, not the entire
href attribute of the anchor tag.

To reference files within a LassoApp from a custom tag:

The [LassoApp_Link] tag cannot be used within custom tags and custom data types. The following techniques
can be used to reference files within a LassoApp from custom tags or custom data types.

	 •	References to files can be stored in variables and referenced by variable name within a custom tag. In the
following example a reference to a file include.lasso is stored in a variable named IncludeFile. This variable is
then referenced within a custom tag.

[Variable: 'IncludeFile' = (LassoApp_Link: 'include.lasso')]
…
[Define_Tag: 'myInclude']
	 [Return: (Include: $IncludeFile)]
[/Define_Tag]

	 •	References to LassoApp files can be passed into custom tags as parameters. In the following example a
reference to a file include.lasso is passed as a parameter to a custom tag.

[Define_Tag: 'myInclude', -Required='IncludeFile']
	 [Return: (Include: #IncludeFile)]
[/Define_Tag]
…
[myInclude: (LassoApp_Link: 'include.lasso')]

Building LassoApps
LassoApps can be built programmatically using the [LassoApp_Create] tag or can be built using
LassoApp Builder provided in the Build > LassoApp Builder section of Lasso Site Administration.

Lasso Site Administration
In order to build a LassoApp using LassoApp Builder, the folder containing the files which will be compiled
into the LassoApp must be within the Web server root or placed in the Lasso Admin/BuildLassoApps folder within
the site folder of the current site (located within the Lasso Professional 8 application folder).

The path to the root of the LassoApp is entered or the name of the folder to be converted to a LassoApp is
selected from a pop-up menu. The name of the entry file within the folder must also specified. Any errors
which occur are reported within the interface. If successful, the completed LassoApp is created in the parent
of the source folder. The LassoApp will have the same name as the source folder with .LassoApp appended.

See the Site Administration Utlities chapter of the Lasso Professional 8 Setup Guide for complete
documentation of LassoApp Builder.

To create a LassoApp using LassoApp Builder:

	 1	Place all of the files which will be compiled into the LassoApp into a single folder. The folder should
only contain Lasso pages and image files. All of the Lasso pages should have been prepared following the
instructions in the Preparing Solutions section of this chapter.

For example, place the Lasso pages within a folder named MySolution. This folder contains the entry file
default.lasso, a folder of included sub-files, and a folder of images.

Note: All of the files within the source folder will be compiled into the LassoApp even if some of the files are
never referenced. In order to create the smallest LassoApps possible, any files which are not needed should
be removed from the source folder prior to compiling a LassoApp

	 2	Note the location of the MySolution folder within the Web server root or place the folder MySolution into the
Admin/BuildLassoApps folder within the Lasso Professional 8 application folder.

	 3	Load Lasso Site Administration in a Web browser and go to the Build > LassoApp Builder section.

6 7 9

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 5 6 – L a s s o A p p s

http://www.example.com/SiteAdmin.LassoApp

	 4	Enter the path to the MySolution folder or choose MySolution from the pop-up menu and ensure that the entry
file is default.lasso. Select the Create LassoApp button to create the LassoApp in the Admin/BuildLassoApps
folder. Or, select the Download LassoApp button to download the created LassoApp through the Web
browser.

Note: If the name of the source folder is not present in the pop-up menu select the Refresh button.

	 5	If any errors are reported, correct them within the Lasso pages of the solution and then return to Lasso Site
Administration to build the LassoApp again. The LassoApp Builder must complete without any errors in order
for a LassoApp file to be created.

	 6	The completed LassoApp will be in the Admin/BuildLassoApps folder named MySolution.LassoApp or will be
downloaded through the Web browser. This file should be copied into the Web serving folder and can then
be loaded through a Web browser. If this solution were placed at the root of the Web serving folder it could
be loaded through the following URL.

http://www.example.com/MySolution.LassoApp

[LassoApp_Create] Tag
In order to build a LassoApp using the [LassoApp_Create] tag the files which will be compiled into a LassoApp
need to be placed in a single folder on the same machine as Lasso Service.

The parameters for the [LassoApp_Create] tag are detailed in Table 2: [LassoApp_Create] Tag Parameters. An
example of using the tag to create a LassoApp follows. The [LassoApp_Create] tag will return 0 if it is successful
creating a LassoApp or an error message otherwise. The tag will replace an existing LassoApp file if the -Result
parameter specifies a file that already exists.

Table 2: [LassoApp_Create] Tag Parameters

Parameter	 Description	

-Root	 The folder which contains the files that will be compiled into the LassoApp.

-Entry	 The default Lasso page within the LassoApp which will be loaded when the
LassoApp is called. Should be specified relative to the root folder.

-Result	 The destination file name for the created LassoApp. Must end in the file suffix
.LassoApp.

		

To create a LassoApp using the [LassoApp_Create] tag:

	 1	Place all of the files which will be compiled into the LassoApp into a single folder. The folder should
only contain Lasso pages and image files. All of the Lasso pages should have been prepared following
the instructions in the Preparing Solutions section of this chapter. This folder contains the entry file
default.lasso, a folder of included sub-files, and a folder of images.

	 2	Create a Lasso page which contains the following [LassoApp_Create] tag. This tag will build a LassoApp
named MySolution.LassoApp stored at the same location as the root folder defined above. The entry file for the
LassoApp will be default.lasso immediately inside the MySolution folder.

The [LassoApp_Create] tag would be as follows.

[LassoApp_Create: -Root='/MySolution/',
	 -Entry='default.lasso',
	 -Result=''/MySolution.LassoApp']

	 3	If any errors are reported, correct them within the Lasso pages of the solution and then reload the Lasso
page to build the LassoApp again.

	 4	The completed LassoApp should have been created within the Web serving root and can be loaded through
the following URL.

http://www.example.com/MySolution.LassoApp

6 8 0

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 5 6 – L a s s o A p p s

Tips and Techniques
This section presents a number of tips and techniques which can make creating professional quality
LassoApps easier.

Naming Conventions
LassoApps should be named with the identifier of the company that created the LassoApp followed by
the name of the solution. For example, if LassoSoft shipped a phone book LassoApp it could be named
LS_PhoneBook.LassoApp. This ensures that the LassoApp name will not conflict with LassoApps created by other
companies.

Warning: Do not compile LassoApps with the same name as the LassoSoft supplied LassoApps (e.g.
Startup.LassoApp or Admin.LassoApp). LassoSoft cannot provide any warranty or support for customized versions
of these LassoApps or for Lasso Professional 8 installations which make use of customized versions of these
LassoApps.

Run-Time Errors
Errors which occur when a LassoApp is executing are reported the same way they are for any Lasso pages. It is
important to thoroughly test a LassoApp to ensure that all errors are caught and properly reported to the site
visitor. The [Protect] … [/Protect], [Handle] … [/Handle] and [Fail] tags can be used to trap for errors and handle them
so that the errors are not reported to the site visitor.

Auto-Building Databases
If a LassoApp requires a database table to store solution-specific data it can be created automatically by the
LassoApp using the [Database_Create…] tags. Using this technique ensures that a LassoApp can be shipped as a
single file and cuts down on the installation required by the end-user.

	 •	LassoApps can safely create tables in the Site database within any installation of Lasso Professional 8. This
database is the appropriate place to store both preferences and solution-specific data.

	 •	Tables created in the Site database should follow a naming convention which includes the name of the
LassoApp in each table name. For example, a LassoApp named MySolution.LassoApp could create tables
named MySolution_Preferences and MySolution_Data. Using a clear naming convention ensures that the global
administrator knows why individual tables were created and ensures that different LassoApps do not create
tables with the same name.

	 •	If necessary, the LassoApp may need to ask for additional permissions in order to create new tables or
to gain access to the tables that have been created. See the section on Lasso Security below for more
information.

	 •	Always check to make sure that a table does not exist before creating a new table. A LassoApp should never
overwrite data in the Site table without explicitly ensuring that the administrator wants to do so.

Lasso Security
LassoApps are executed with the permissions of the current site visitor the same as any Lasso pages. If a
LassoApp needs to have access to databases, tables, or tags that can be secured in Lasso Site Administration
then it should check that the appropriate permissions are present before executing.

Tags

If a LassoApp requires access to tags which can be secured in Lasso Site Administration such as the [Admin_…]
tags, [Database_Create…] tags, [File_…] tags, [Email_Send] or [Event_Schedule] tags, it should first check to be sure
those tags are allowed by the current user before executing. The following code will check to be sure the
[Email_Send] tag is available and display an error message if it is not.

6 8 1

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 5 6 – L a s s o A p p s

[If: (Lasso_TagExists: 'Email_Send') == False]
	
Error: The tag Email_Send is required in order for this LassoApp to execute.
	 Please enable it within Lasso Site Administration before proceeding.
[/If]

LassoApps can be created even if the tags they require are not present when they are built and compiled.
However, syntax errors will be reported when the LassoApp is served or executed.

Databases and Tables

If a LassoApp requires access to certain databases or tables it should first check to be sure they are available
to the current user before executing. The following code will check to be sure the People table of the
Contacts database is available.

[Inline: -Database='People', -Table='Contacts', -Show]
	 [If: (Error_CurretError) != (Error_NoError) || (Field_Name: -Count) == 0]
		
Error: The People table of the Contacts database is required
			 in order for this LassoApp to execute. Please enable it within Lasso
			 Administration before proceeding.
	 [/If]
[/Inline]

Groups and Users

The [Admin_…] tags can be used to create new users and assign them to a group. These tags are essential if
Lasso Security is going to be used to handle multiple user accounts for a LassoApp. Since there is no tag
to create a group and assign it permissions, the documentation for a LassoApp solution will need to walk
a Lasso global administrator through creating a group with the proper name, assigning permissions, and
creating a group administrator.

Lasso Startup
If code needs to be executed when Lasso Service starts up, then a LassoApp can be placed within the
LassoStartup folder within the Lasso Professional 8 application folder. Usually, a solution that requires startup
code would consist of two LassoApps, one that installs in LassoStartup and a second that defines the user
interface for the solution.

6 8 2

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 5 6 – L a s s o A p p s

57
Chapter 57

Custom Tags

This chapter introduces custom tags and shows how they can be created entirely in LassoScript.

	 •	Overview introduces the concepts behind custom tags including naming conventions, namespaces,
parameter references, and error reporting.

	 •	Custom Tags describes how to create custom tags including information about processing parameters and
using local variables.

	 •	Container Tags describes how to create custom container tags and looping container tags.

	 •	Web Services, Remote Procedure Calls, and SOAP describes how to create tags that function as remote
procedure calls through XML-RPC or SOAP and how to call those tags from another server.

	 •	Atomic Tags describes how to create atomic tags which control access to shared resources.

	 •	Asynchronous Tags describes how to create custom asynchronous process tags and background processes.

	 •	Overloading Tags describes how to use criteria to determine which tag will execute and how to redefine
built-in Lasso tags.

	 •	Constants describes how to create constants in LassoScript.

	 •	Libraries describes how to package sets of custom tags for distribution including how to create on-demand
tag libraries.

Overview
Lasso Professional 8 allows Web developers to extend LassoScript by creating custom tags programmed using
Lasso tags.

Custom tags have the following features:

	 •	Custom tags operate just like built-in substitution tags. They can be used in nested expressions, return data
of any data type, and allow the use of encoding keywords.

	 •	Custom process, substitution, or container tags can be created.

	 •	They can be created in any Lasso page and used instantly.

	 •	They are written in LassoScript. No programming experience or knowledge of a programming language
other than LassoScript is required.

	 •	They can be collected into libraries of tags which can be loaded into any Lasso page using the [Library] tag.

	 •	Custom tags can be used as the target for remote procedure calls enabling communication between Web
servers.

	 •	Existing tags can be redefined.

	 •	Tags can be defined with criteria for when they will run. This allows the same tag name to be used with
different parameters and makes it easy to redefine tags for custom purposes.

	 •	They can be defined in a Lasso page or library within the LassoStartup folder, making them available to all
pages processed by Lasso.

6 8 3

L a s s o 8 . 5 L a n g u a g e G u i d e

	• Atomic tags automatically block when they are called from separate page loads or threads. This allows for controlled
access to shared resources such as global variables, network connections, etc.

	 •	Asynchronous tags allow operations to be performed in a separate thread so the current Lasso page is
served as fast as possible to the site visitor.

Custom data types can also be created in LassoScript. See the Custom Types chapter for more information.

Possible Uses
Custom tags can be used in any of the following ways:

	 •	To define a new tag that can be called like any built-in Lasso tags

	 •	To reuse a portion of LassoScript code several times in the same Lasso page.

	 •	To create a macro which allows the same HTML code to be reused several times without being retyped.

	 •	To structure the logic of complex calculations using local variables and tag parameters.

	 •	To redefine and customize existing Lasso tags.

	 •	To defer processing of some code until after the visitor has already received the Lasso page.

	 •	To allow remote Web servers to make remote procedure calls to Lasso through XML-RPC.

Naming Conventions
Lasso Professional 8 has support for tag namespaces. All custom tags which are created by a developer should
be defined in a namespace unique to the developer. For example, if LassoSoft was providing a custom tag
which wrapped code with HTML bold tags it might be placed in the LS_ namespace and named [LS_Bold]. All
of the tags in this guide will be defined in the Ex_ namespace meaning Example.

RPC Note: Tags which will be used for XML-RPC are typically named with a group named followed by a method,
e.g. group.method.

Parameter References
All values are passed to and from custom tags by reference (unless the -Copy keyword is specified for specific
parameters when creating the custom tag). This improves the speed and efficiency of custom tags by reducing
the number of times that data needs to be copied. Parameter references make tags that perform operations on
their parameters possible, but require careful programming in order to avoid unintended side-effects.

Lasso is an object-oriented system and every value in a given Lasso page can be thought of as an object.
Variables are simply references to objects and it is possible to have multiple references to the same object.

For example, the [Iterate] … [/Iterate] tag accepts two parameters. The first is an array of values. The second is a
variable that will be set as a reference to each element in the array in turn. The values are not copied out of
the array, but the variable points to each value in turn. If the variable modifies the value then that new value
is automatically modified in the array as well. This code modifies each element in an array to be uppercase.

[Var: 'myArray' = (Array: 'one','two','three')]
[Iterate: $myArray, (Var: 'myItem')]
	 [Var: 'myItem' = (String_Uppercase: $myItem)]
[/Iterate]
[$myArray]

�	 Array: (ONE), (TWO), (THREE)

Custom tags work similarly. The following rules defined how values are passed to and from custom tags.

	 •	All values passed into a custom tag are passed by reference. References are stored in local variables with the
same name as the parameter and in a [Params] array.

	 •	If the -Copy keyword is used after specifying a named parameter with the -Required or -Optional keywords then
that single parameter is passed into the custom tag by copy.

6 8 4

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 5 7 – C u s t o m T a g s

	 •	Any modifications of the values in the automatically created local variables or the [Params] array will result
in the original values outside the custom tag being modified.

	 •	It is recommended to use a set of uniquely named local variables within the custom tag so as not to
interfere with the parameters passed by reference. The values of parameters can be copied into the local
variables making their modifications safe.

	 •	Local variables are created new for each custom tag call. References to local variables do not persist from
tag call to tag call.

	 •	All values are returned from a custom tag by reference. Normally this will be a reference to a local variable.
Since a new set of local variables are created each time a tag is called the return value is safe.

	 •	The return value can also be a reference to one of the input parameters or to a page or global variable. In
this case any further modifications to the return value after the custom tag has returned will be reflected in
the original value.

These rules are illustrated in the many examples that follow.

Error Reporting
Lasso has a flexible error reporting system which can be used to control the amount of information provided
to the site visitor when an error occurs. Since custom tags are self-contained it is often desirable to develop
and debug them independent of the site on which they are used.

The [Lasso_ErrorReporting] tag can be used with the -Local keyword to set the error reporting level for the current
custom tag. Using this tag the error level can be set to Full while developing a tag in order to see detailed error
messages.

[Lasso_ErrorReporting: 'Full', -Local]

Once the custom tag is debugged and ready for deployment the error reporting level can be adjusted to
None in order to effectively suppress any details about the coding of the custom tag from being reported.

[Lasso_ErrorReporting: 'None', -Local]

See the Error Controls chapter in the Language Guide for additional details about the [Lasso_ErrorReporting] tag
and other error control tags.

Custom Tags
Custom tags can be created in LassoScript using the [Define_Tag] … [/Define_Tag] tags. The following table details
the tags that are used to create custom tags. These tags are used to process the parameters of the custom tag
and to return values from the custom tag.

Custom substitution and process tags can be created in any Lasso page and will be available immediately.
Custom container tags can only be created in the LassoStartup folder. See the section on Libraries for
information about how to create libraries of tags, load tags in LassoStartup, and create tags which can be used
by any Lasso page.

It is not possible to create custom command tags using LassoScript. Command tags are implemented in data
source modules. See the documentation on LCAPI later in this book for more information.

See the Custom Types chapter for information about creating custom data types and member tags.

Table 1: Tags For Creating Custom Tags

Tag	 Description	

[Define_Tag]	 Defines a new substitution tag or a new member tag if used within a type
definition. Requires a single parameter, the name of the tag to be defined. Other
parameters are defined in Table 2: [Define_Tag] Parameters.	

[Local]	 Sets or retrieves the value of a local variable within a custom tag definition.

[Local_Defined]	 Checks to see if a local variable has been defined within a custom tag definition.

6 8 5

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 5 7 – C u s t o m T a g s

[Local_Remove]	 Removes a local variable.

[Locals]	 Returns a map of all the local variables which have been defined within a custom
tag definition.

[Params]	 Returns an array of all the parameters which were passed to the custom tag.

[Params_Up]	 Returns an array of all the parameters which were passed to the custom tag
which called the current custom tag.

[Return]	 Returns a value from a custom tag. No further processing is performed.

[Run_Children]	 Process the contents of a custom tag created with the -Container option.

[Tag_Name]	 Returns the name of the current tag.
		

The parameters for the [Define_Tag] … [/Define_Tag] tags are detailed in the following table. The type of tag
created, required parameters, return data type, and more are all specified in the opening [Define_Tag] tag.

Table 2: [Define_Tag] Parameters

Tag	 Description	

'Tag Name'	 The name of the tag to be defined. Required.

-Namespace	 The name of the namespace in which the tag is defined. Optional. If not specified
then tags will be placed in the current namespace.

-Async	 Specifies that the tag should be run asynchronously. Asynchronous tags cannot
return a value. Optional.

-Atomic	 Specifies that the tag should run atomically. Only one instance of that tag will be
allowed to run. Any other page loads or threads that call the tag will block until
the first instance has finished running.

-Container	 Specifies that the tag is a container tag. [Run_Children] can be used if this
parameter is specified. Optional. See also -Looping for looping container tags.

-Copy	 Specifies that the preceding -Required or -Optional parameter should be copied
rather than passed by reference.

-Criteria	 Specifies the criteria under which the tag will run. If the criteria is not met then
the next tag in the calling chain will be used instead. Optional.

-Description	 A brief description of the tag. Can include calling instructions, author of the tag,
etc. Optional.

-EncodeNone	 Specifies that the return value of the tag should not be encoded by default. If this
keyword is not specified then the return value will be HTML encoded by default.

-Looping	 Specifies that the tag is a looping container tag. [Run_Children] can be used
if this parameter is specified. Optional. See also -Container for non-looping
container tags.

-Optional	 Names an optional parameter of the tag. Optional.

-Priority	 Requires the value 'High', 'Low', or 'Replace'. Specifies whether the tag should
replace an existing tag with the same name or be placed before or after existing
tags in the calling chain. Optional.

-Privileged	 Specifies that the custom tag should run with the privileges of the current user
rather than with the privileges of the user who ultimately calls the custom tag.

-Required	 Names a required parameter of the tag. If the parameter is not specified then an
error will result. Optional.

-ReturnType	 Specifies the type of the return value of the tag. If a value of different type is
returned then an error is generated.

-RPC	 Specifies that the tag should be made available to remote Web servers as a
remote procedure call. The tag can then be accessed through RPC.LassoApp.

-SOAP	 Specifies that the tag should be made available to remote Web servers as a
SOAP operation.The tag can then be accessed through RPC.LassoApp. The
-Type and -ReturnType tags must be used to specify parameter and return types.

6 8 6

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 5 7 – C u s t o m T a g s

-Type	 Specifies the type for the preceding -Required or
-Optional parameter. If the tag is called with a parameter that is not of the proper
type then an error is generated.

		

See the section on Libraries for information about how to create libraries of tags, load tags in LassoStartup,
and create tags which can be used by any Lasso page.

It is not possible to create custom command tags using LassoScript. See the Custom Types chapter for
information about creating custom data types and member tags.

Substitution Tags
A new substitution tag is defined using the [Define_Tag] … [/Define_Tag] container tag within an enclosed [Return]
tag that defines the value of the tag. The opening [Define_Tag] tag requires the name of the new substitution
tag to be defined. All of the LassoScript code between the two tags is stored and is executed each time the tag
is called.

In the following example, a tag [Ex_EmailAddress] is defined which returns an example email address for John
Doe, johndoe@example.com.

[Define_Tag: 'EmailAddress', -Namespace='Ex_']
	 [Return: 'johndoe@example.com']
[/Define_Tag]

This tag can be called like any substitution tag within the Lasso page where the tag is defined. The following
code calls this tag twice, once to provide the address for the HTML anchor tag and a second time to provide
the text of the anchor.

 [Ex_EmailAddress]

�	 johndoe@example.com

Process Tags
A new process tag is defined using the [Define_Tag] … [/Define_Tag] container tags. The opening [Define_Tag] tag
requires the name of the new process tag to be defined. All of the LassoScript code between the two tags is
stored and is executed each time the tag is called. Since process tags do not return a value, the body of the tag
should not contain a [Return] tag.

In the following example, a tag [Ex_SendEmail] is defined which sends an email to an example email address
for John Doe, johndoe@example.com. The tag is defined within a LassoScript.

<?LassoScript
	 Define_Tag: 'SendEmail', -Namespace='Ex_';
		 Email_Send: -Host='mail.example.com',
			 -To='johndoe@example.com',
			 -From='lasso@example.com',
			 -Subject='Sample Email',
			 -Body='This email was sent from a custom tag.';
	 /Define_Tag;
?>

This tag can be called like any process tag within the Lasso page where the tag is defined. The following code
calls this [Ex_SendEmail] so an email will be sent to johndoe@example.com each time the page with this code is
served by Lasso.

[Ex_SendEmail]

Privileged Tags
Custom tags normally run with the permissions of the user that calls the custom tag. Using the -Privileged
keyword a custom tag will instead run with the permissions of the user who defined the custom tag.

6 8 7

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 5 7 – C u s t o m T a g s

This allows the execution of privileged actions to be written into custom tags. The privileged action can be
performed without opening up general permission for performing similar actions to the end-users.

For example, a custom tag which is defined in LassoStartup that has the -Privileged keyword will always execute
as the global administrator of the machine. Privileged custom tags can then be used to modify internal
security settings or perform other actions that require global administrator permission.

Returning Values
In order for a custom tag to return a value it needs to use the [Return] tag. The parameter for the [Return] tag
will be returned as the value of the custom tag and no further processing will be performed. A value of any
type can be returned using the [Return] tag including simple decimal or integer numbers, strings, complex
maps and arrays, or even custom types.

Custom tags can also return values by setting variables. See the section on Page Variables that follows for
additional details.

The following custom tag returns a string that informs the site visitor of what day it is. If the current
day is January 1st then Happy New Year! is returned. Note that if the conditional returns True then
the [Return: 'Happy New Year!'] tag is executed and the tag is exited without executing the second [Return] tag that
follows.

[Define_Tag: 'Greeting', -Namespace='Ex_']
	 [If: (Date_GetDay) == 1 && (Date_GetMonth) == 1]
		 [Return: 'Happy New Year!']
	 [/If]
	 [Return: 'The date is ' + (Server_Date: -Long) + '.']
[/Define_Tag]

When executed on any day other than the 1st of January this tag returns the current date.

[Ex_Greeting]

�	 The date is August 27, 2001.

Encoding
Encoding is handled automatically by Lasso when values are returned from a custom tag. Encoding follows
the same rules as for built-in substitution tags. These rules are summarized below.

	 •	If no encoding keyword is specified and the custom tag returns a string value then the tag follows the same
rules as built-in substitution tags. The string value will be HTML encoded if it is output to the Lasso page or
will have no encoding applied if the tag is used as a sub-tag or in an expression.

The following custom tag [Ex_String] would have HTML encoding applied.

[Ex_String]

�	 Bold Text

However, if the same tag is used as a sub-tag, no encoding is applied.

[Variable: 'myString'=(Ex_String)]
[Variable: 'myString', -EncodeNone]

�	 Bold Text

Note: If the tag is used within [Encode_Set] … [/Encode_Set] tags then the default encoding which is set in the
opening [Encode_Set] tag will be used instead of -EncodeHTML when the tag’s value is output directly to a Lasso
page.

	 •	If no encoding keyword is specified and the custom tag returns any data type other than string then no
encoding is applied and the specified data type is returned.

The following custom tag [Ex_Array] has no encoding applied since it returns an array.

6 8 8

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 5 7 – C u s t o m T a g s

[Ex_Array]

�	 (Array: (Bold Text))

Note: Even if the tag is used within [Encode_Set] … [/Encode_Set] tag, no encoding will by applied by default
unless an explicit encoding keyword is specified.

	 •	If an explicit encoding keyword other than -EncodeNone is specified then the return value from the tag is
converted to a string and the specified encoding is applied. Use of an explicit encoding keyword guarantees
that the value from the tag will be of data type string.

The following custom tag [Ex_Array] has explicit HTML encoding applied.

[Ex_Array: -EncodeHTML]

�	 (Array: (Bold Text))

Note: The encoding keyword -EncodeNone instructs Lasso that no encoding is desired for a custom tag. For
custom tags which return any data type other than string, -EncodeNone is equivalent to not specifying an
encoding keyword.

Parameters
Custom tags can accept any mix of named or unnamed parameters. These parameters can be named using the
-Required and -Optional parameters in the opening [Define_Tag] tag. Each parameter is automatically defined as a
local variable within the tag. If a required parameter is omitted from a tag call then an error is generated. If
an optional parameter is omitted then the local variable corresponding to that parameter will not be defined.

	 •	Named Parameters – The -Required and -Optional parameters for a tag can be listed in any order. Each
-Required parameter must have a matching keyword/value parameter in the parameters for the tag. If the
-Copy keyword follows either a -Required or -Optional keyword then that parameter will be passed by copy
rather than by reference.

The following example defines a tag [Ex_Note] which accepts two parameters. -Message is required and is the
message to be displayed. -Font is an optional parameter that changes the font of the displayed message if it
is specified, otherwise Arial is used.

[Define_Tag: 'Note', -Namespace='Ex_', -Required='Message', -Optional='Font']
	 [If: (Local_Defined: 'Font') == False]
		 [Local: 'Font' = 'Arial']
	 [/If]
	 [Return: ' ' + #Message + ' ']
[/Define_Tag]

The parameters can be used in any order when the tag is called, but the -Message parameter must be
present.

[Ex_Note: -Font='Helvetica', -Message='Hello World', -EncodeNone]

�	 Hello World

[Ex_Note: -Message='Hello World', -EncodeNone]

�	 Hello World

Note: Extra named parameters passed into a custom tag will also create local variables automatically even if
the -Required and -Optional parameters are not used.

	 •	Unnamed Parameters – The -Required parameters for a tag should be listed in the order they will be
specified in the tag followed by any optional parameters that may be specified. Each unnamed parameter
of the tag will be assigned in order to the -Required or -Optional parameter in the corresponding position.

The tag [Ex_Note] defined above accepts two parameters. The first parameter is required and is assigned the
name Message. The second parameter is optional and is assigned the name Font if specified.

6 8 9

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 5 7 – C u s t o m T a g s

When the tag is called at least one parameter must be specified. If a second parameter is specified it is used
as the font for the message, otherwise the default font is used.

[Ex_Note: 'Hello World', 'Helvetica', -EncodeNone]

�	 Hello World

[Ex_Note: 'Hello World', -EncodeNone]

�	 Hello World

	 •	Combination Parameters – A combination of named and unnamed parameters can be used. First, all
keyword/value parameters are assigned to the -Required or -Optional parameters specified in the opening
[Define_Tag] tag. Then, any remaining parameters are assigned in order to any -Required or -Optional parameters
that have not yet been assigned values.

For example, the tag [Ex_Note] defined above is called with one unnamed parameter and one keyword/value
-Font parameter. First, the -Font parameter is assigned to the -Optional font parameter. Then, the unnamed
parameter is assigned to the -Required message parameter.

[Ex_Note: 'Hello World', -Font='Helvetica', -EncodeNone]

�	 Hello World

	 •	Parameters Types – The type of each parameter can be specified by including a -Type parameter
immediately after the -Required or -Optional parameter. When the tag is called if the specified parameter is not
of the proper type then an error will be generated.

The [Ex_Note] tag can be redefined to require that the -Message parameter be a string.

[Define_Tag: 'Note', -Namespace='Ex_', -Required='Message', -Type='String',
		 -Optional='Font']
	 [If: (Local_Defined: 'Font') == False]
		 [Local: 'Font' = 'Arial']
	 [/If]
	 [Return: ' ' + #Message + ' ']
[/Define_Tag]

Now if the tag is called with a decimal value for the -Message parameter an error will be generated.

[Ex_Note: -Message=99, -EncodeNone]

�	 Syntax Error

Any tag defined with -Required and -Optional parameters can always be called with a combination of named and
unnamed parameters. Documentation for custom tags should always specify how a tag should be called.

Parameters Array
If greater control is required over the parameters which are passed into a tag then the [Params] array can be
inspected directly. This array contains one element for each parameter that is passed into a custom tag.

	 •	Simple Parameters – Simple parameters are included as single elements within the array. Each parameter
has the same data type as the literal or variable which was passed to the tag.

	 •	Name/Value Parameters – Name/Value parameters are included as elements of the data type pair within
the array. Each part of the pair has the same data type as the literal or variable which was passed to the tag.

	 •	Keyword Parameters – Keyword parameters are included as string parameters. They should be
distinguished by requiring that all keyword names start with a leading hyphen.

	 •	Keyword/Value Parameters – Keyword/Value parameters are included as a pair with a string as the first
element and the value as the second element. They should be distinguished by requiring that all keyword
names start with a leading hyphen.

	 •	Encoding Keywords – Encoding keywords are handled automatically by Lasso. They are not passed to
custom tags within the [Params] array. Custom tags do not need to do anything special to take advantage of
encoding nor is there any way to disable automatic encoding of returned string values.

6 9 0

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 5 7 – C u s t o m T a g s

The [Params_Up] tag is a special purpose tag that allows inspection of the [Params] array from the custom tag
which called the current tag. This tag can only be used if the current tag was called from within a custom tag
and can be used to create tags that change their values based on the parameters to the calling tags.

To inspect the parameters of a custom tag:

The [Params] array provides access to all the parameters of the current tag. The following example shows a
custom tag [Ex_Echo] that outputs information about all the parameters that were passed to the tag by looping
through the [Params] array.

[Define_Tag: 'Echo', -Namespace='Ex_']
	 [Local: 'Output' = '']
	 [Loop: (Params)->Size]
		 [Local: 'Temp' = (Params)->(Get: (Loop_Count))]
		 [If: #Temp->Type == 'pair']
			 [#Output += '
Pair: ']
			 [#Output += '
 ' + #Temp->First->Type + ': ' + (#Temp->First)]
			 [#Output += '
 ' + #Temp->First->Type + ': ' + (#Temp->Second)]
		 [Else]
			 [#Output += '
' + #Temp->Type + ': ' + (#Temp)]
		 [/If]
	 [/Loop]
	 [If: (#Output == '')]
		 [#Output = '
No Parameters']
	 [/If]
	 [Return: #Output]
[/Define_Tag]

When this tag is called with different parameters the following output is created. Note that keywords are
simply strings that start with a hyphen and that the -EncodeNone encoding keyword is not represented in the
output.

[Ex_Echo: 'One', 'Two='Three', -Four, -Five='Six', -Seven=8, -Nine=1.0, -EncodeNone]

�	 String: One
Pair:
	 String: Two
	 String: Three
String: -Four
Pair:
	 String: -Five
	 String: Six
Pair:
	 String: -Seven
	 Integer: 8
Pair:
	 String -Nine
	 Decimal: 1.0

To get the value of a keyword/value parameter:

The following custom tag uses the [Params->Find] tag to retrieve several named keyword/value parameters from
the [Params] array. The tag [Ex_Greeting] accepts two parameters: -First which should have the first name of a
person as its value and -Last which should have the last name of its person as its value. It returns a greeting to
that person.

<?LassoScript
	 Define_Tag: 'Greeting', -Namespace='Ex_';
		 Local: 'First' = Params->(Find: '-First')->(Get: 1);
		 Local: 'Last' = Params->(Find: '-Last')->(Get: 1);
		 Return: 'Dear ' + #First + ' ' + #Last;
	 /Define_Tag;
?>

6 9 1

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 5 7 – C u s t o m T a g s

When the tag is called it parses the two defined parameters and ignores all others.

[Ex_Greeting: -First='John', -Last='Doe'] � Dear John Doe

[Ex_Greeting: -First='John', -Last='Doe', -Title='Mr.'] � Dear John Doe

To get the value of all unnamed parameters:

The [Params] array provides access to all the parameters of the current tag. The following example shows a
custom tag [Ex_Concatenate] that concatenates the value of all simple, unnamed parameters together and
ignores all name/value and keyword/value parameters.

[Define_Tag: 'Concatenate', -Namespace='Ex_']
	 [Local: 'Output' = '']
	 [Loop: (Params)->Size]
		 [Local: 'Temp' = (Params)->(Get: (Loop_Count))]
		 [If: #Temp->Type != 'pair']
			 [#Output += #Temp]
		 [/If]
	 [/Loop]
	 [Return: #Output]
[/Define_Tag]

When this tag is called with different parameters the following output is created. Note that any named
parameters are ignored and that the -EncodeNone encoding keyword is not represented in the output.

[Ex_Echo: 'One', 'Two='Three', -Four, -Five='Six', -Seven=8, -Nine=1.0, -EncodeNone]

�	 One-Four

To get the parameters from the calling tag:

The [Params_Up] tag provides access to the parameters of the calling tag. The following tag
[Ex_UnnamedParams] returns an array of all unnamed parameters from the calling tag. This tag could be used to
filter the [Params] array so only unnamed parameters remained.

[Define_Tag: 'UnnamedParams', -Namespace='Ex_']
	 [Local: 'Output' = (Array)]
	 [Loop: (Params_Up)->Size]
		 [Local: 'Temp' = (Params_Up)->(Get: (Loop_Count))]
		 [If: #Temp->Type != 'pair']
			 [#Output->(Insert: #Temp)]
		 [/If]
	 [/Loop]
	 [Return: #Output]
[/Define_Tag]

The [Ex_UnnamedParams] tag can now be used to rewrite the [Ex_Concatenate] custom tag by looping through the
[Ex_UnnamedParams] array rather than through the [Params] array.

[Define_Tag: 'Concatenate', -Namespace='Ex_']
	 [Local: 'Output' = '']
	 [Local: 'Unnamed_Params' = (Ex_UnnamedParams)]
	 [Loop: (#Unnamed_Params)->Size]
		 [#Output += (#Unnamed_Params)->(Get: (Loop_Count))]
	 [/Loop]
	 [Return: #Output]
[/Define_Tag]

When this tag is called with different parameters the following output is created. Note that any named
parameters are ignored and that the -EncodeNone encoding keyword is not represented in the output.

[Ex_Echo: 'One', 'Two='Three', -Four, -Five='Six', -Seven=8, -Nine=1.0, -EncodeNone]

�	 One-Four

6 9 2

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 5 7 – C u s t o m T a g s

Page Variables
Custom tags can set and retrieve the values of variables which are defined in the current Lasso page. This
provides a method of passing additional parameters to custom tags by setting pre-defined variables and a
method of passing multiple values out of a custom tag.

Any use of page variables should be considered carefully. Local variables, which are defined in the following
section, are usually sufficient for storing data required while executing a tag. If data needs to be stored
between executions of a tag then it might be more efficient to create a custom data type. See the following
section on Custom Types for more information.

If a custom tag must store values in page variables it should precede all variable names with the full name of
the custom tag followed by an underscore. For example, the custom tag [Ex_Concatenate] would create variables
named Ex_Concatenate_Value, Ex_Concatenate_Output, etc.

Local Variables
Each custom tag can create and manipulate its own set of local variables. These variables are separate from
the page variables and are deleted when the custom tag returns. Using local variables ensures that the custom
tag does not alter any variables which other custom tags or the page developer is relying on having a certain
value.

For example, many developers will use the variable Temp to store temporary values. If a page developer is
using the variable Temp and then calls a custom tag which also sets the variable Temp, then the value of the
variable will be different than expected.

The solution is for the custom tag author to use a local variable named Temp. The local variable does not
interfere with the page variable of the same name and is automatically deleted when the custom tag returns.
In the following example, a custom tag returns the sum of its parameters, storing the calculated value in Temp.

<?LassoScript
	 Define_Tag: 'Sum', -Namespace='Ex_';
		 Local: 'Temp'=0;
		 Loop: (Params)->Size;
			 Local: 'Temp'=(Local: 'Temp') + (Params)->(Get: Loop_Count);
		 /Loop;
		 Return: #Temp;
	 /Define_Tag;
?>

The final reference to the local variable temp is as #Temp. The # symbol works like the $ symbol for page
variables, allowing the variable value to be returned using shorthand syntax.

When this tag is called, it does not interfere with the page variable named Temp.

[Variable: 'Temp' = 'Important value:']
[Variable: 'Sum' = (Ex_Sum: 1, 2, 3, 4, 5)]
['
' + $Temp + ' ' + $Sum + '.']

�	
Important value: 15.

Parameter and Return Types
The -Type and -ReturnType parameters can be used to check that the parameters which are being passed to the
tag are of the proper type before the tag is executed and that the return value of the tag is the proper type
when the tag completes.

The -Type parameter is placed immediately after each -Required or -Optional parameter. The corresponding
parameter must be of the specified type when the tag is executed or a syntax error is generated. Using these
tags reduces the amount of double checking of types that is required within the body of the tag.

6 9 3

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 5 7 – C u s t o m T a g s

The -ReturnType parameter specifies the type that the returned value of the tag must be. If the tag attempts to
return a value of a different type then an error is generated. Using this tag is useful as a double check for a
tag that is always expected to return a certain data type. It makes enforcement of the return type explicit rather
than relying on the custom tag author to ensure that the return type is always proper.

[Define_Tag: 'Ex_Bold', -Namespace='Ex_', -Required='theString', -Type='String',
		 -ReturnType='String']
	 [Return: '' + #theString + '']
[/Define_Tag]

If the [Ex_Bold] tag is called with a number then a syntax error will be returned. The following example first
shows a successful call to the tag, then an unsuccessful call.

[Ex_Bold: 'Bold Text'] � Bold Text

[Ex_Bold: 123.456] � Syntax Error

Criteria
The -Criteria parameter allows custom tags to check certain conditions before any code in the tag is executed.
Usually this is used to confirm that the appropriate parameters have been passed to the custom tag. If the
criteria fails then a syntax error will be generated.

The -Criteria parameter requires a conditional expression. If the evaluated expression returns False then the tag
execution is halted and an error is returned.

The code within the -Criteria are executed as if they were specified within the body of the
[Define_Tag] … [/Define_Tag]. Locals can be used to reference -Required or -Optional parameters and the [Params]
array can be inspected. -Criteria can also inspect page variables.

To use criteria to check the parameters of a custom tag:

Specify the -Criteria parameter in the opening [Define_Tag] tag. If the condition in the criteria fails then the tag
will not be executed. The following code checks to be sure that the tag’s required parameter is a string.

[Define_Tag: 'Bold', -Namespace='Ex_', -Required='theString',
		 -Criteria=(#theString->Type == 'string')]
	 [Return: '' + #theString + '']
[/Define_Tag]

If the [Ex_Bold] tag is called with a number then a syntax error will be returned. The following example first
shows a successful call to the tag, then an unsuccessful call.

[Ex_Bold: 'Bold Text'] � Bold Text

[Ex_Bold: 123.456] � Syntax Error

Error Control
Custom tags should use the -Required, -Optional, -Type, -ReturnType, and -Criteria parameters to ensure that the
parameters of the tag are of the proper type and that the return value is of the proper type. These tags ensure
that Lasso developers are alerted of errors when the page is first executed, rather than encountering obscure
runtime errors later.

Errors can be returned from custom tags using the [Error_SetErrorMessage] and [Error_SetErrorCode] tags. A
custom tag which is explicitly returning an error code should always return [Error_NoError] if no error occurred
or an explicit error message otherwise.

6 9 4

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 5 7 – C u s t o m T a g s

Container Tags
A container tag can be created by specifying either the -Container or -Looping keyword within the opening
[Define_Tag] tag. When the tag is used both an opening and a closing tag must be specified or an error will
occur. The return value of the tag replaces the entire container tag. The contents of the container tag can be
accessed using the [Run_Children] tag.

If the -Looping keyword is used the [Loop_Count] will be automatically changed when the custom tag is called. If
the -Container keyword is used then the [Loop_Count] will not be modified by the container tag. This distinction
allows both looping and simple container tags to be created.

Note: The output of a container tag is not encoded. This allows HTML to be output from container tags without
requiring an -EncodeNone tag.

To create a simple container tag:

The following example creates a simple container tag [Ex_Font] … [/Ex_Font] that wraps its parameters with
an HTML tag. The tag takes three optional parameters -Face, -Size, and -Color which correspond to the
parameters of the HTML tag.

[Define_Tag: 'Font', -Namespace='Ex_', -Container,
		 -Optional='Face', -Optional='Size', -Optional='Color']
	 [If: !(Local_Defined: 'Face')][Local: 'Face' = 'Verdana'][/If]
	 [If: !(Local_Defined: 'Size')][Local: 'Size'= 1][/If]
	 [If: !(Local_Defined: 'Color')][Local: 'Color' = 'black'][/If]
	 [Return: ' ' +
		 (Run_Children) + ' ']
[/Define_Tag]

A call to this tag appears like this. The -Face and -Color of the output are specified, but the -Size is left to the
default of 1.

[Ex_Font: -Face='Helvetica', -Color='red'] My Message [/Ex_Font]

�	 My Message

To use the contents of the container tag multiple times:

The following example creates a tag [Ex_Link] that creates a pair of HTML anchor tags with the contents of the
container used as both the URL to be followed and the text of the link. This could be used to automatically
create hyperlinks out of URLs contained in text. The tag does not require any parameters.

[Define_Tag: 'Link', -Namespace='Ex_', -Container]
	 [Return: ' ' + (Run_Children) + ' ']
[/Define_Tag]

A call to this tag appears like this. The specified URL is included in the results twice.

[Ex_Link] http://www.lassosoft.com [/Ex_Link]

�	 http://www.lassosoft.com

To create a looping container tag:

The following example creates a tag that loops ten times repeating its contents. The -Looping keyword is used
in the [Define_Tag] tag to indicate that this is a looping tag rather than a simple container.

[Define_Tag: 'Loop10', -Namespace='Ex_', -Looping]
	 [Local: #Output = '']
	 [Loop: 10]
		 [#Output += Run_Children]
	 [/Loop]
	 [Return: #Output]
[/Define_Tag]

6 9 5

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 5 7 – C u s t o m T a g s

A call to this tag appears like this. The specified contents of the tag is repeated ten times with the
[Loop_Count] updated each time.

[Ex_Loop10]
This is loop [Loop_Count]. [/Ex_Loop10]

�	
This is loop 1.

This is loop 2.
…

This is loop 10.

If the -Container keyword rather than the -Looping keyword had been used the tag still would have repeated its
contents ten times, but the [Loop_Count] would have returned the same value for each repetition.

Web Services, Remote Procedure Calls, and SOAP
Lasso supports remote procedure calls through the XML-RPC and Simple Object Access Protocol (SOAP)
standards. Both types of remote procedure calls allow one server on the Internet to call a function that
is located on another server. The parameters of the function call and the results of the function call are
transmitted between the servers using XML.

Custom tags can be automatically made available to remote servers by specifying the -RPC or -SOAP parameter
when the tag is created. Any tag which is specified as a remote procedure call will be accessible through
RPC.LassoApp which is located in the LassoStartup folder. The LassoApp handles all of the translation of
parameters and the return value to and from XML.

SOAP tags additionally require that each required and optional parameter be assigned a type using the -Type
parameter and that the return type of the tag be specified using the -ReturnType parameter. The parameter and
return types are used to automatically translate incoming SOAP requests into appropriate Lasso data types
and to properly describe the return value.

When called, remote procedure call tags will be executed using the permissions of the Anonymous user. If
the tags require additional permissions a username and password must be written into an [Inline] … [/Inline]
container within the tag or the tag must accept a username and password as parameters.

Tags are called within the context of a page load of the RPC.LassoApp. Tags can access global variables, but will
not be able to access any page variables from the page where they were defined. RPC and SOAP tags function
essentially as asynchronous tags described elsewhere in this chapter.

Remote procedure calls are well suited to a number of different applications. See the XML chapter in the
Lasso 8 Language Guide for more information. Some possible applications of remote procedure calls include:

	 •	Serving news stories to remote servers. For example, creating a system where other Web sites can show the
latest news stories automatically.

	 •	Performing administrative tasks on remote servers. Tags can be created which perform periodic
administrative tasks and then those tasks can be triggered using XML-RPC or SOAP calls.

	 •	Integrating with remote systems that communicate via XML-RPC or SOAP. Both Windows 2000 and Mac
OS X have systems for sending XML-RPC or SOAP calls and processing the results.

To create a remote procedure call tag:

Use the -RPC parameter in the opening [Define_Tag] tag. In the following example a method Example.Fortune
is created which returns a random message each time it is called. Since the tag will not have access to page
variables the array of messages is created inside the tag.

[Define_Tag: 'Example.Fortune', -RPC]
	 [Local: 'Messages' = (Array: 'You will go on a long boat trip.',
		 'You will meet a long lost friend',
		 'You will strike it rich in the stock market')]
	 [Local: 'Index' = (Math_Random: -Min=1, -Max=(#Messages->Size + 1))]
	 [Return: #Messages->(Get: #Index)]
[/Define_Tag]

6 9 6

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 5 7 – C u s t o m T a g s

The tag can be called from a remote Lasso 8 server using the [XML-RPC] tags. A call to the
Example.Fortune remote procedure on the server at http://www.example.com/ would look like as follows.

[Variable: 'Result' = XML_RPC->(Call: -Method='Example.Fortune',
	 -URI='http://www.example.com/RPC.LassoApp')]
[Variable: 'Result']

The result will be one of the messages from the Messages array.

�	 You will meet a long lost friend.

To create a remote procedure call tag with complex data types:

The previous example demonstrated how a remote procedure call tag could be created and called using a
simple tag which accepted no parameters and returned a string result. Remote procedure calls can be used
with any number of parameters including any of Lasso’s built-in data types such as array, map, boolean,
integer, decimal, etc.

In the following example a method Example.TopStories is created that returns an array of formatted URLs for
the top stories from a Web site. An optional -Count parameter allows the number of top stories to be returned
to be specified. The top stories are found by finding all records in the Stories table of the News database and
sorting the results first by Priority then by DateTime.

[Define_Tag: 'Example.TopStories', -Optional='Count']
	 [Local: 'Results' = (Array)]
	 [If: !(Local_Defined: 'Coun't)]
		 [Local: 'Count' = 10]
	 [/If]
	 [Inline: -Findall,
			 -Database='News',
			 -Table='Stories',
			 -SortField='Priority', -SortOrder='Descending',
			 -SortField='DateTime', -SortOrder='Descending',
			 -MaxRecords=#Count]

	 [Records]
		 [#Results->(Insert: '' + (Field: 'Headline') + '')]
	 [/Records]

	 [Return: #Results]	
[/Define_Tag]

The tag can be called from a remote Lasso 8 server using the [XML-RPC] tags. A call to the
Example.TopStories remote procedure on the server at http://www.example.com/ which requests the top 3 stories
would look like as follows.

[Variable: 'Result' = (XML_RPC: (Array: -Count=3))->(Call:
	 -URI='http://www.example.com',
	 -Method='Example.TopStories')]
[Variable: 'Result']

The result will be an array of the top three stories from the database each formatted as a URL linking to the
page which contains the story.

�	 (Array: (Annual Results),
	 (Shareholder Meeting),
	 (Company Picnic!))

To create a SOAP tag:

Use the -SOAP parameter in the opening [Define_Tag] tag. In the following example a method Example.Repeat is
created which returns baseString repeated multiplier number of times. Both -Required parameters are followed by
-Type parameters and the -ReturnType for the tag is specified.

6 9 7

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 5 7 – C u s t o m T a g s

[Define_Tag: 'Example.Repeat', -SOAP,
		 -Required='baseString', -Type='string',
		 -Required='multiplier', -Type='integer,
		 -ReturnType='string']
	 [Return: (#baseString * #multiplier)]
[/Define_Tag]

The tag can be called from a remote server that supports SOAP.

Atomic Tags
Atomic tags only allow one instance of the tag to execute at a time. If the tag is called from multiple page
loads or threads then the latter calls will block automatically until the first instance of the tag has finished
running. Tags which access shared resources such as global variables can be made atomic to automatically
prevent collisions which may result if one instance of the tag modifies data that another instance is reading.

An atomic tag is defined by specifying the -Atomic keyword in the opening [Define_Tag] tag.

The following example uses a global to store an array. The tag inserts a value into the array, sorts the array,
and then returns the first value from the array.

[Global: 'Ex_Array' = (Array)]
[Define_Tag: 'Ex_StoreAndSort', -Required='Value', -Atomic]
	 [(Global: 'Ex_Array')->(Insert: #Value)]
	 [(Global: 'Ex_Array')->Sort]
	 [Return: (Global: 'Ex_Array')->First]
[/Define_Tag]

If multiple instances of this tag executed at the same time then the inserts and sorts could be interleaved
so one instance of the tag inserted a value after the other instance had already sorted the array. The -Atomic
keyword ensures that each tag call completes before the next call to the same tag can begin.

The [Thread_Atomic] … [/Thread_Atomic] tags can also be used to define an atomic operation separate from a
custom tag. See the Threads chapter for more information.

Asynchronous Tags
Asynchronous tags are process tags that are executed in a separate thread from the main portion of the
page. Lasso does not have to wait for completion of an asynchronous tag before processing and serving the
remainder of the Lasso page in which the tag is called.

Since asynchronous tags usually finish executing after a page has been served to the site visitor they cannot
return values or modify the page variables for the Lasso page from which they were called.

Asynchronous tags are usually used in one of the following situations:

	 •	To perform database actions which are a side effect of loading a Lasso page, but the results of which are not
required for serving the file to the current site visitor.

	 •	To create a background process that periodically checks for certain conditions and performs a database
action or sends an email if that condition is met.

Asynchronous tags can be created using the [Define_Tag] … [/Define_Tag] tags. Newly defined tags will be
available below the point where they are defined in a Lasso page. They can be used as many times as needed.

Note: There is no control over when an asynchronous tag will be executed. Depending on how busy the server is
the tag may be executed immediately or may be delayed until after the current page is served to the client. The
order of execution of asynchronous tags should never be assumed.

6 9 8

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 5 7 – C u s t o m T a g s

Defining Tags
A new asynchronous tag is defined using the [Define_Tag] … [/Define_Tag] container tags. The opening [Define_Tag]
tag requires the name of the new substitution tag to be defined and the second parameter should be -Async
which specifies that the tag should be called asynchronously. All of the LassoScript code between the two tags
is stored and is executed each time the tag is called.

In the following example, a tag [Ex_SendEmail] is defined which sends an email to an example email address
for John Doe, johndoe@example.com. The tag is defined within a LassoScript and the second parameter is set to
True to ensure that the tag will be called asynchronously.

<?LassoScript
	 Define_Tag: 'SendEmail', -Namespace='Ex_', -Async;
		 Email_Send: -Host='mail.example.com',
			 -To='johndoe@example.com',
			 -From='lasso@example.com',
			 -Subject='Sample Email',
			 -Body='This email was sent from a custom tag.';
	 /Define_Tag;
?>

This tag can be called like any process tag within the Lasso page where the tag is defined. The following code
calls this [Ex_SendEmail] so an email will be sent to johndoe@example.com each time the page with this code is
loaded in a Web browser.

[Ex_SendEmail]

The code immediately following this tag is executed immediately without waiting for the tag to complete. The
email will be queued for sending shortly after the page is finished executing and is served to the client.

Page Variables
None of the page variables which are defined when an asynchronous tag is called are available within the
asynchronous tag. The only variables which are available to a custom asynchronous tag are server-wide global
variables. Any values which are going to be used by an asynchronous tag should be set using the [Global] tag.

Asynchronous tags can use local variables internally in the same way as any custom tags. These variables will
only be available while the asynchronous tag is running and will be deleted automatically when it completes.

Calling Custom Tags
Only custom tags which are defined in the LassoStartup folder can be called by an asynchronous tag. Tags
which are defined in the same Lasso page as the asynchronous tag definition or call cannot be called by an
asynchronous tag.

Custom tags can be defined within the body of an asynchronous tag if needed. These custom tags will be
deleted as soon as the asynchronous tag finishes executing.

Background Processes
Asynchronous tags can be used to create background processes that continue to run independent of the
visitors to a Lasso-powered Web site. An asynchronous tag will continue executing until the end of the tag
body or a [Return] tag is reached. By putting an asynchronous tag into an infinite loop it will continue to run
until Lasso Service is quit.

Warning: There is no way to stop an asynchronous tag from executing once it is started. Care should be taken to
ensure that any background processes which are implemented with asynchronous tags are well behaved.

The [Sleep] tag can be used to pause execution of an asynchronous tag for a number of milliseconds. The
asynchronous tag consumes virtually no resources while it is paused.

Most background processes are started by a Lasso page within the LassoStartup folder. This ensures that the
background process runs from when Lasso Service starts up until it is quit.

6 9 9

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 5 7 – C u s t o m T a g s

To create a background process:

Place the following code in a Lasso page within the LassoStartup folder. This code will be executed the next
time Lasso Service is started.

Two global variables are created. Since these variables are created in the LassoStartup folder they can be read
and set from any page which is executed by Lasso. The first global variable Ex_Background_Pause can be used to
pause the background task if it is set to True. The second global variable Ex_Background_Kill can be used to kill
the background task if it is set to True.

[Global: 'Ex_Background_Pause' = False]
[Global: 'Ex_Background_Kill' = False]

These variables are not required to create a background task, but are useful for debugging and to kill a
runaway task. By setting the appropriate variable to True in any Lasso page the task can be paused or killed.

The task itself is defined in a [Define_Tag] … [/Define_Tag]. Notice that the naming convention has the name of
the tag which defines the task Ex_Background as the first part of the name of the variables associated with the
task. The task contains a while loop that checks the Ex_Background_Kill variable and a conditional that checks
the Ex_Background_Pause variable. After each execution, the tag pauses for 15 seconds (15000 milliseconds).

[Define_Tag: 'Background', -Namespace='Ex_', -Async]
	 [While: (Global: 'Ex_BackGround_Kill) != True]
		 [If: (Global: 'Ex_Background_Pause') != True)]
			 … Perform Task …
		 [/If]
		 [Sleep: 15000]
	 [/While]
[/Define_Tag]

The task is started by calling the [Ex_Background] tag immediately after it is defined. The task starts executing
and does not stop until Lasso Service is quit or the variable Ex_Background_Kill is set to True.

[Ex_Background]

It is important not to call the [Ex_Background] tag more than once or else multiple instances of the background
task will be created.

Background tasks can be made more robust by:

	 •	Adding a variable which is set when the background task is executed so it cannot be executed again.

	 •	Adding variables which control how long the background task sleeps.

	 •	Outputting to the console window with [Log: -Window] … [/Log] or to a log file in order to track the progress
of a background task.

Overloading Tags
Lasso provides the ability to create several versions of a tag each with a criteria that dictates when it should be
called. Tag overloading makes several advanced techniques possible.

	 •	Data Types – Different tags can be created which operate only when their parameters are of a certain
data type. The logic of each tag can be made simpler by removing laborious [Select] … [Case] … [/Select]
statements.

	 •	Redefine Existing Tags – Existing tags can be redefined with a specified criteria. The new version of the
tag will be called only when the criteria is met, but the old version of the tag is still available. The source
code for the original tag is not needed and even built-in tags can be redefined.

	 •	Debug Tags – Tags can be created which output debugging information when a page variable is set
appropriately. A page can be debugged and then all status messages can be suppressed by resetting the
variable.

Note: Tags must reference the proper namespace in order to overload an existing tag. For example, the [Client_IP]
tag is in the Client_ namespace so -Namespace='Client_' must be included in the new tag definition.

7 0 0

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 5 7 – C u s t o m T a g s

When a given tag is called, Lasso will check each tag with the same name in turn until the criteria of one of
the tags is met. A tag with no criteria will always execute. All built-in tags will always execute when called.

The -Priority and -Criteria parameters of the [Define_Tag] tag will be discussed followed by examples of how to use
those parameters to create systems of overloaded custom tags.

Important: In Lasso Professional 8 many built-in tags which comprise the core of the language can not be
overloaded. See the Lasso Reference for a complete list of tags that cannot be overloaded.

Priority
The placement of each custom tag in the list of tags in the calling chain can be specified using
the -Priority parameter of the [Define_Tag] tag. The following three priorities are available.

	 •	Replace – The tag will replace any tags of the same name. Only the newly defined tag will be called
when a tag of the given name is called. This allows existing tags to be completely redefined. Aliases and
synonyms of the replaced tag will not be redefined.

	 •	High – The tag will be placed at the front of the calling chain. The criteria of this tag will be checked first to
see if it can be called. If another tag is defined with high priority after this tag then that tag will actually be
checked first.

	 •	Low – The tag will be placed at the end of the calling chain. The criteria of this tag will be checked only
after all other tags have been checked. If another tag is defined with low priority after this tag then that tag
will actually be checked last. If the tag is placed after a built-in tag or a custom tag with no criteria then the
tag will never be called.

Note: By default, tags have no priority. They must have unique names and will be the sole tag in the calling
chain.

To replace a built-in tag:

A built-in tag can be replaced by creating a new tag that has a -Priority of Replace. This technique can be used
to redefine a custom tag or to redefine a built-in tag. The definition for the new tag must reference the
namespace in which the pre-existing tag is defined.

Note: LassoSoft does not support systems which have built-in tags replaced. It is always advisable to create new
tag names rather than redefining existing tags.

For example, the [Form_Param] tag could be redefined so it only retrieved parameters that were sent using the
Post method in an HTML form. This is done by inspecting the [Client_PostParams] tag and returning those items
from the array that match the parameter to the tag. Note that the proper Form_ namespace must be referenced
in order to redefine this built-in tag.

<?LassoScript
	 Define_Tag: 'Param', -Namespace='Form_', -Priority='Replace', -Require='name';
		 Local: 'id_array' = (Client_PostParams)->(Find: #name);
		 Local: 'output' = '';
		 Iterate: #id_array, (Local: 'id_item');
			 #output += (Client_PostParams)->(Get: #id_item)->Second + '\r';
		 /Iterate;
		 #output->(RemoveTrailing: '\r');
		 Return: #output;
	 /Define_Tag;
?>

This tag can now be used anywhere on a page to get access to the parameters that were passed through a form
using the Post method. Since the tag uses the [Client_PostParams] tag it can even be used within nested [Inline]
tags.

If this tag is defined on a page then it will replace the [Form_Param] tag only until the end of the page. If this
tag is defined in the LassoStartup folder then it will replace the [Form_Param] tag for all users of the site. The
[Action_Param] tag is not modified by redefining the [Form_Param] tag even though they are aliases.

7 0 1

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 5 7 – C u s t o m T a g s

Criteria
If a tag has a -Criteria parameter defined then it will only be called when the specified criteria are met. If the
criteria are not met then the next tag in the calling chain will be consulted or an error will be generated.

The -Criteria parameter should be a conditional expression that returns True of False. It is called
within the environment of the tag being defined and has access to local variables created by the
-Required and -Optional parameters and to the [Params] array. The -Criteria parameter can also reference page
variables.

Required parameters specified by the -Required tag are checked prior to the -Criteria parameter. If a tag is missing
a -Required parameter then a syntax error is returned and no further checking of the tags in the calling chain
occurs. -Optional parameters should be used with appropriate an appropriate -Criteria expression to require
parameters only on certain tags within a calling chain.

To execute a tag when it is called with a parameter of a given type:

Create the tag with a -Required parameter and a -Criteria expression that checks the type of the local defined
by the -Required parameter. The following tag prints a formatted message only when it is called with a string
parameter.

[Define_Tag: 'Print', -Namespace='Ex_',
		 -Priority='High',
		 -Required='myParam',
		 -Criteria=(#myParam->Type == 'string')]
	 [Return: '(String: \'' + #myParam + '\')]
[/Define_Tag]

When this tag is called with a string parameter the formatted output is generated, otherwise a syntax error is
generated.

[Ex_Print: 'Text'] � (String: 'Text')

[Ex_Print: 123.456] � Syntax Error

Now, an additional tag can be added with the same name that executes when it is called with a parameter of
a different data type. The following version of [Ex_Print] will be called when the parameter is of type decimal.
The -Priority of this tag is set to High ensuring that it is called before the other version of [Ex_Print] in the calling
chain.

[Define_Tag: 'Print', -Namespace='Ex_',
		 -Priority='High',
		 -Required='myParam',
		 -Criteria=(#myParam->Type == 'decimal')]
	 [Return: '(Decimal: ' + #myParam + ')]
[/Define_Tag]

When this tag is called with a decimal parameter the formatted output is generated. When it is called with a
string parameter the prior version of the tag is used and its formatted output is generated. If the tag is called
with a parameter of a different data type then a syntax error is generated.

[Ex_Print: 'Text'] � (String: 'Text')

[Ex_Print: 123.456] � (Decimal: 123.456)

[Ex_Print: 123] � Syntax Error

Additional tags can be created for each of the built-in data types: arrays, dates, maps, pairs, integers, boolean
values, etc.

Rather than returning a syntax error when an unknown data type is specified as a parameter to the tag, a
version of the tag can be created that accepts parameters of any type. The following version of [Ex_Print] is used
for unknown data types. The -Priority is set to Low ensuring that this version of the tag is checked after all other
versions of [Ex_Print] in the calling chain.

7 0 2

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 5 7 – C u s t o m T a g s

[Define_Tag: 'Print', -Namespace='Ex_',
		 -Priority='Low',
		 -Required='myParam']
	 [Return: '(Unknown: ' + (String: #myParam) + ')]
[/Define_Tag]

When this tag is called with a parameter of type date for which no individual version of the tag has been
created the Unknown output is generated.

[Ex_Print: (Date)] � (Unknown: 5/15/2002 12:34:56)

The real power of this type of system of tags—which are only used when called with a parameter of a certain
data type—is that it can be expanded by third parties to include their own custom data types. For example, if
a new data type is created that represents currency then a new version of the [Ex_Print] tag could be created as
well. The end-user will see that [Ex_Print] now works for the currency data type and doesn’t have to be aware of
the mechanism which has been used to extend this tag to the additional data type.

Constants
The [Define_Constant] tag allows a constant literal value to be declared in much the same way as a custom tag. A
constant value works just like a tag except that when the name of the constant is referenced its value is simply
returned.

Lasso defines built-in constants for many commonly used parameter values such as All, Eq, Neq, etc.

Table 3: [Define_Constant] Tag

Tag	 Description	

[Define_Constant]	 Defines a constant. Requires two parameters: the name of the constant to be
defined and the value for the constant. A namespace can also be specified by
inculding a -Namespace parameter between the name and value parameters.

		

To create a constant:

Use the [Define_Constant] tag. The defined constant can then be referenced as if it were a custom tag that
returns the constant value or can be used as a parameter value without quotes. For example, the following
code defines a constant MySiteName which is then output.

[Define_Constant: 'MySiteName', 'www.example.com']

Welcome to [MySiteName]! Enjoy your stay!

➜	 Welcome to www.example.com! Enjoy your stay!

Libraries
Libraries can be used to package custom tags and custom types into a format which is easy for any Lasso
developer to incorporate into a Lasso-powered Web site.

The following types of libraries can be created:

	 •	On-Demand Tag Library – A set of custom tag and custom type declarations can be stored in a Lasso page
or LassoApp and placed in the LassoLibraries folder in the Lasso Professional 8 application folder. The Lasso
page or LassoApp should have the same name (before the .Lasso or .LassoApp file suffix) as the namespace
of the tags defined within. Sub-folders can be used to define nested namespaces.

	 •	Library Lasso Page – A set of custom tag and custom type declarations can be stored in a Lasso page and
then included in any other Lasso page using the [Library: 'library.lasso'] tag. This is a good way to create and
use a library file whose defined tags and types will only be needed on a few pages in a site.

7 0 3

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 5 7 – C u s t o m T a g s

	 •	LassoStartup Lasso Page – A set of custom tag and custom type declarations can be stored in a Lasso
page placed within the LassoStartup folder in the Lasso Professional 8 application folder. After Lasso Service
is restarted all tags, types, and page variables which are defined within the Lasso page will be available to
all Lasso pages which are executed on the server.

7 0 4

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 5 7 – C u s t o m T a g s

58
Chapter 58

Custom Types

This chapter introduces custom data types and shows how they can be created using Lasso tags.

	 •	Overview introduces the concepts behind custom data types.

	 •	Custom Types describes how to create new data types.

	 •	Member Tags describes how to create member tags for a custom data type.

	 •	Prototypes describes how to use prototypes to increase the speed of custom data types.

	 •	Callback Tags describes how to use callback tags to perform instance initialization, how to store custom
data in serialized types, and how to process arbitrary member tag names.

	 •	Symbol Overloading describes how to use callback tags to overload the assignment, comparison, and
mathematical operation symbols for any data type.

	 •	Inheritance describes how custom data types can inherit instance variables and member tags from other
custom data types or from built-in data types.

	 •	Libraries describes how to package sets of custom types for distribution.

Overview
Lasso Professional 8 allows Web developers to extend LassoScript by creating custom data types programmed
using Lasso tags.

Custom data types have the following features:

	 •	Tags for custom types operate just like built-in member tags. They can be used in nested expressions, return
data of any type, and allow the use of encoding keywords.

	 •	Custom types are fully object-oriented. Custom types can inherit properties from other custom types.

	 •	Custom types can provide support for the built-in comparison symbols and automatic casting.

	 •	They can be created in any Lasso page and used instantly.

	 •	They are written in LassoScript. No programming experience or knowledge of a programming language
other than LassoScript is required.

	 •	They can be collected into libraries of tags which can be loaded into any Lasso page using the [Library] tag.

	 •	They can be defined in a Lasso page or library within the LassoStartup folder, making them available to all
pages processed by Lasso.

Naming Conventions
Lasso Professional 8 has support for tag namespaces. All custom types which are created by a developer
should be defined in a namespace unique to the developer. For example, if LassoSoft was providing a custom
type which implemented POP support it might be placed in the LS_ namespace and named [LS_Pop]. All of
the types in this guide will be defined in the Ex_ namespace meaning Example.

7 0 5

L a s s o 8 . 5 L a n g u a g e G u i d e

The member tags of a custom type do note need a prefix since member tags only need to be unique within
each data type. In fact, it is recommended to use the same names as built-in member tags for custom member
tags if the functionality is equivalent. For example, a custom data type might implement [Type->Get] and
[Type->Size] member tags.

If either a member tag or instance variable of a custom tag starts with an underscore then the tag or variable
will be transient in the data type. Transient member tags and instance variables will not be copied when the
type is assigned to a different variable or serialized.

Error Reporting
Lasso has a flexible error reporting system which can be used to control the amount of information provided
to the site visitor when an error occurs. Since custom types are self-contained it is often desirable to develop
and debug them independent of the site on which they are used.

The [Lasso_ErrorReporting] tag can be used with the -Local keyword to set the error reporting level for each
custom member tag. Using this tag the error level can be set to Full while developing a tag in order to see
detailed error messages.

[Lasso_ErrorReporting: 'Full', -Local]

Once the custom type is debugged and ready for deployment the error reporting level can be adjusted to
None in order to effectively suppress any details about the coding of the custom tag from being reported.

[Lasso_ErrorReporting: 'None', -Local]

See the Error Controls chapter in the Language Guide for additional details about the [Lasso_ErrorReporting] tag
and other error control tags.

Custom Types
Custom data types can be created in LassoScript using the [Define_Type] … [/Define_Type] tags. Newly defined
types will be available below the point where they are defined in a Lasso page.

See the section on Libraries for information about how to create libraries of types, load types in LassoStartup,
and create types which can be used by any Lasso page.

Table 1: Tags for Creating Custom Data Types

Tag	 Description	

[Define_Type] … [/Define_Type]	 Defines a new data type. Requires a single parameter, the name of the type to be
defined. Additional string parameters list the custom types which this type inherits
from. Optional -Namespace parameter defined what namespace the custom type
should be placed in. Optional (but recommended) -Prototype parameter specifies
that the type should be defined as a prototype. Optional -Description provides a
description of the type.

[Define_Tag] … [/Define_Tag]	 Defines a new member tag within a type definition.	

[Local]	 Sets or retrieves the value of a member variable within a custom type definition.

[Local_Defined]	 Checks to see if a member variable has been defined within a custom type
definition.

[Locals]	 Returns a map of all the member variables which have been defined within a
custom type definition.

[Params]	 Returns an array of all the parameters which were passed to the custom tag.

[Private] … [/Private]	 Surrounds member tags and variables which are private to the type instance.

[Self]	 Returns a reference to the current data type instance.

[Self->Parent]	 Returns a reference to the parent type for the current data type instance. For use
within custom type declarations with inheritance.

		

7 0 6

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 5 8 – C u s t o m T y p e s

Note: In addition to the listed tags all of the tags which are used for creating custom tags are used when
creating member tags. A custom type shares many characteristics with a custom tag including namespace, calling
methods, etc. A good understanding of custom tags (described in the prior chapter) is essential to understanding
custom types.

Defining a Type
A new data type is defined by specifying its name in the opening [Define_Type] tag. The body of the
[Define_Type] … [/Define_Type] tags contains code which will be executed each time a new instance of the data
type is created.

For example, a new data type Ex_Dollar could be created which will store dollar amounts. The basic type
definition is as follows. Each of the parts of this definition are discussed in more detail in the sections that
follow.

[Define_Type: 'Dollar', -Namespace='Ex_']
	 [Local: 'Amount' = 0]
	 [Define_Tag: 'onCreate', -Optional='Amount']
		 [If: (Local_Defined: 'Amount')]
			 [Self->'Amount' = (Decimal: #Amount)]
			 [Self->'Amount'->(SetFormat: -DecimalChar=',', -Precision=2)]
		 [/If]
	 [/Define_Tag]

	 … Member Tags …

[/Define_Type]

The [Define_Type] … [/Define_Type] tags define a tag with the same name as the data type. Each time a new
instance of [Ex_Dollar] is created the [Ex_Dollar->onCreate] tag is called to initialize the instance.

The code within [Define_Type] … [/Define_Type] should be used only to define instance variables and to create
member tags. The code within [Ex_Dollar->onCreate] should be used to create a specific instance of the t ype
based on the parameters passed to the [Ex_Dollar] tag.

Instance Variables
A data type can contain definitions for local variables within the [Define_Type] … [/Define_Type] tags. These local
variables are called instance variables since their values are stored separately for each instance of the data type
which is created.

In the example above, the local variable Amount is created. This variable will store a dollar amount, the current
value of the data type. Each time a new instance of [Ex_Dollar] is created, a new instance of the Amount instance
variable will be created. For example, the following two lines create two variables each of which stores a value
of type Ex_Dollar. Each stores its own independent Amount.

[Variable: 'Price' = (Ex_Dollar: 10)]

[Variable: 'Tax' = (Ex_Dollar: 0.93)]

Instance variables can be referenced explicitly by name using the member symbol -> with the name
of the instance variable. The values for the Amount instance variable can be retrieved from each of the
Ex_Dollar amounts defined above using the following code.

[(Variable: 'Price')->'Amount'] ➜ 10.00

[(Variable: 'Tax')->'Amount'] ➜ 0.93

The quotes around the variable name Amount can be omitted if the type does not define a tag with the same
name as the member variable. Usually, $Price->'Amount' is equivalent to $Price->Amount however for clarity it is
best to use quotes around the member variable name when possible.

7 0 7

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 5 8 – C u s t o m T y p e s

Private Variables
The [Private] …[/Private] container tags can be used to designate one or more instance variables as private to the
type. These variables can only be accessed from one of the member tags of the type.

Important: The properties map of the data type must be frozen when private instance variables are used.
Freezing the properties map ensures that no additional instance variables or member tags can be added to the
data type after it is created.

The example above can be rewritten so that Amount is a private variable. The variable can be accessed as
follows using [Self->'Amount'], but cannot be accessed using (Variable: Price')->'Amount'.

[Define_Type: 'Dollar', -Namespace='Ex_']
	 [Private]
		 [Local: 'Amount' = 0]
	 [/Private]
	 [Define_Tag: 'onCreate', -Optional='Amount']
		 [If: (Local_Defined: 'Amount')]
			 [Self->'Amount' = (Decimal: #Amount)]
			 [Self->'Amount'->(SetFormat: -DecimalChar=',', -Precision=2)]
		 [/If]
		 [Self->Properties->First->FreezeValue]
		 [Self->Properties->Second->FreezeValue]
	 [/Define_Tag]

	 … Member Tags …

[/Define_Type]

Private variables are not output using the [Null->Properties] or [Null->Dump] tags, are not output when a data type
is serialized, and are not accessible by sub-types of the current type. The [Null->onSerialize] and [Null->onDeserialize]
callbacks could be used to encrypt private variables and decrypt when the type is restored.

Transient Variables
Instance variables which start with an underscore are transient variables that will not be copied when the
instance is assigned to another variable or serialized. Transient variables should only be used to store static
data that does not need to be propagated to new instances of the data type and does not need to survive
being stored in a session and retrieved.

The [Null->onSerialize] and [Null->onDeserialize] callbacks can be used to clean up or close any resources referenced
by transient variables and to set them back up when the type is restored. The [Null->onAssign] callback can be
used similarly when an instance is copied to another variable.

Serialization
Lasso serializes custom data types without member tags. When Lasso deserializes a type it creates a new
instance of the type and copies all the data members from the serialized data into this new instance. A
custom type must be defined on the page before it is deserialized.

	 •	Custom types which are stored in sessions must be defined before the [Session_Start] tag is called which
implicitly deserializes the stored custom types.

	 •	Custom types which are stored in database fields must be defined before the [Null->Unserialize] tag is called.

The [Null->onSerialize] and [Null->onDeserialize] callbacks can be used for any special pre- or post-processing
required before and after serializing a custom type.

7 0 8

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 5 8 – C u s t o m T y p e s

Member Tags

Built-In Member Tags
Each custom type can automatically make use of any of the tags of the null data type. These tags are detailed
in Table 2: Built-In Tags. These tags are used by Lasso to provide information about data of any type and
to provide efficient storage for custom data types. None of the tags in this table should be overriden by the
custom data type.

In addition to these built-in member tags there are several tags that are defined as placeholders on the null
data type. The [Null->Size] and [Null->SetFormat] tags are defined for every data type. [Null->Size] always returns
0 and [Null->SetFormat] is a placeholder that returns no value if called. Either of these tags can be overridden
using custom member tags.

Note: It is desirable for custom data types to create custom [Type->Get] and [Type->Size] member tags so the
[Iterate] … [/Iterate] tags will function properly.

Table 2: Built-In Member Tags

Tag	 Description	

[Null->DetachReference]	 Detaches the variable from the instance of the data type.

[Null->FreezeType]	 Freezes the type of a variable. After calling this tag the current variable cannot be
cast to another data type.

[Null->FreezeValue]	 Freezes the value of a variable, essentially creating a read-only variable. After
calling this tag the current variable cannot have its value changed.

[Null->FullType]	 Returns the full type name for an instance including namespace.

[Null->Invoke]	 This member tag normally calls the creator of the data type, but can be
overridden to provide type specific behavior.

[Null->IsA]	 Accepts a single parameter which is the name of a type. Returns True if the
parameter matches the name of the current data type or any of its parent data
types.

[Null->Parent]	 Returns a references to the parent type of the current data type instance.

[Null->Properties]	 Returns a pair which contains a map of all the instance variables and a map of
all the member tags defined for the data type. Private instance variables and
member tags are not returned by this tag.

[Null->RefCount]	 Returns the number of variables that currently point at the instance of the data
type.

[Null->Serialize]	 Returns a bit-stream representation for the data type. This tag can be used
to store a custom data type in a database or to pass it from page to page as
an action parameter. Note that private and transient instance variables are not
automatically serialized.

[Null->Type]	 Returns the type which was specified when the custom type was created.

[Null->Unserialize]	 Accepts a single parameter which is a bit-stream created by [Null->Serialize].
This tag modifies the variable on which it is called by setting it to the custom data
type represented by the bit-stream parameter.

		

Custom Member Tags
Each custom type can define member tags which can be called to modify the value stored in an instance of
the custom type or to output values from an instance of the custom type.

Member tags are defined within the [Define_Type] … [/Define_Type] tags for the custom type using
[Define_Tag] … [/Define_Tag] tags. The syntax for creating member tags is the same as that for creating custom
tags. However, member tags cannot be called asynchronously. The [Define_Tag] tag for a member tag should
never have -Async as the value for the second parameter.

7 0 9

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 5 8 – C u s t o m T y p e s

The [Self] tag allows member tags to reference the current instance of the data type. This allows member tags
to call other defined member tags or to set or retrieve values stored in instance variables. See the example
of defining a custom member tag below for more information. The [Self] tag also allows access to instance
variables that are stored within the custom data type.

Custom member tags which are named starting with an underscore are transient member tags. These tags will
not be copied when the data type instance is copied to another variable or serialized. The [Null->onAssign] and
[Null->onDeserialize] callbacks can be used to redefine transient member tags.

To define custom member tags:

Two custom tags will be defined for the Ex_Dollar custom type. The [Ex_Dollar->Set] tag will accept a single
parameter, cast it to decimal, and store it in the Amount instance variable. The [Ex_Dollar->Get] tag will simply
return the value of the Amount instance variable formatted as a dollar amount.

	 •	The [Ex_Dollar->Set] member tag is defined within the body of the [Define_Type] … [/Define_Type] tags. It checks
that there is at least one parameter in the [Params] array. The [Self] tag is a reference to the current instance of
the Ex_Dollar data type, so the (Self->'Amount') statement is a reference to the Amount instance variable.

<?LassoScript
	 Define_Tag: 'Set';
		 If: (Params) && ((Params)->Size > 0);
			 (Self->'Amount') = (Decimal: (Params)->(Get:1));
		 /If;
	 /Define_Tag;
?>

	 •	The [Ex_Dollar->Get] member tag is defined within the body of the [Define_Type] … [/Define_Type] tags. It
appends a dollar sign $ to the value in the Amount instance variable and returns the value. The [Self] tag is a
reference to the current instance of the Ex_Dollar data type, so the (Self->'Amount') statement is a reference to
the Amount instance variable.

<?LassoScript
	 Define_Tag: 'Get';
		 Return: '$' + (Self->'Amount');
	 /Define_Tag;
?>

To call a custom member tag:

Custom member tags are called in the same way that the member tags of the built-in data types are called.
The Ex_Dollar type has two member tags [Ex_Dollar->Get] and [Ex_Dollar->Set]. They are used to set and retrieve
dollar amounts in the following example.

[Variable: 'Price' = (Ex_Dollar: 100)]

[(Variable: 'Price')->Get]
[(Variable: 'Price')->(Set: 19.95)]

[(Variable: 'Price')->Get]

➜	
$100.00

$19.95

Private Member Tags
The [Private] …[/Private] container tags can be used to designate one or more member tags as private to the type.
These member tags can only be accessed from one of the member tags of the type. Private member tags are
not output using the [Null->Properties] or [Null->Dump] tags, are not output when a data type is serialized, and are
not accessible by sub-types of the current type.

Important: The properties map of the data type must be frozen when private instance variables are used.
Freezing the properties map ensures that no additional instance variables or member tags can be added to the
data type after it is created. See the example in the Private Variables section above.

7 1 0

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 5 8 – C u s t o m T y p e s

Atomic Member Tags
Member tags which are created with the -Atomic keyword will hold a lock on the type instance. Only
one atomic member tag will be able to execute at a time per instance. This allows access to the instance
variables within a type to be controlled. However, an atomic custom tag outside of the type (or
[Thread_Atomic] … [/Thread_Atomic] tags) must be used in order to control access to a shared resource. See the
prior chapter for more information about atomic tags.

Prototypes
Lasso can use type prototypes to dramatically increase the performance of custom types. When Lasso creates a
new instance of a type it normally runs all of the code within the [Define_Type] … [/Define_Type] tags in order to
create instance variables and member tags. When the -Prototype keyword is used Lasso runs the code with the
type definition once and stores a reference to the pre-compiled prototype. This prototype is copied each time
an instance of the type is created.

Any data type which follows these guidelines can be used as a prototype. It is recommended that all custom
data types be created as prototypes.

	 •	The custom type definition must only contain [Local] tags to define instance variables and
[Define_Tag] … [/Define_Tag] tags to define member tags within the [Define_Type] … [/Define_Type] tags.

	 ˆ•	The -Prototype keyword must be referenced in the opening [Define_Type] tag.

[Define_Type: 'Ex_MyPrototype', -Prototype]
	 [Local: 'MemberVariable' = '']
	 [Define_Tag: 'MemberTag']
		 … Code can reference local, page, or global variables …
	 [/Define_Tag]
[/Define_Type]

In addition, it is possible to use the [Define_Prototype] tag to create a prototype out of any data type. This tag
takes two parameters: the name of the desired prototype and a reference to a data type which will be used
as the prototype. The data type is copied into the tag map as a prototype. Any time the prototype name is
referenced a copy of the prototype will be made.

Table 3: Prototype Tag

Tag	 Description	

[Define_Prototype]	 Installs a prototype in the tag map. Requires two parameters: the name by which
the prototype will be referenced (the tag name) and a reference to the data
type that will be copied as the prototype. A namespace can also be specified by
inculding a -Namespace parameter between the name and reference parameters.

		

For example a map could be created that had some pre-defined values which would be used over and over
again. This map can be installed as a prototype and then referenced as if it were a custom type.

[Var: 'Prototype_Map' = (Map: 'First_Name' = '', 'Last_Name'='')]
[Define_Prototype: 'Ex_Person', $Prototype_Map]

[Var: 'myMap' = (Ex_Person)]

Callback Tags
Each custom type can define a number of callback tags using the [Define_Tag] … [/Define_Tag] tags within the
[Define_Type] … [/Define_Type] definition for the type. These callback tags will be executed with appropriate
parameters when the data type is cast to another type, a new instance is created, or an instance is destroyed.

7 1 1

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 5 8 – C u s t o m T y p e s

Table 3: Callback Tags details the tags that are available. These tag names are reserved. No member tags
with these names should be defined. These tags are not normally called by a Lasso developer, they are called
automatically by Lasso in the specified situation. Although there is no protection to prevent a Lasso developer
from calling these tags directly, results should be considered undefined if they do.

The primary callback tags are shown in Table 3: Callback Tags. Additional callback tags allow the overriding
of built-in symbols. These tags are described in the next section.

Table 4: Callback Tags

Tag	 Description	

[Null->onConvert]	 Called when the instance is cast to a built-in data type. Accepts a single
parameter, the name of the type to which the value should be converted (string,
integer, or decimal). The return value should be the converted value or Null if no
conversion was possible.

[Null->onCreate]	 Called immediately after a new instance is created. This tag has full access to the
variables and member tags defined within the [Define_Type] … [/Define_Type]
tags.

[Null->onDestroy]	 Called before the custom type is destroyed, usually at the end of the current
Lasso page or tag execution.

[Null->onSerialize]	 Called when the custom type is serialized. The return value is stored with the
serialized data and passed to [Null->onDeserialize].

[Null->onDeserialize]	 Called when the custom type is deserialized. The return value of [Null-
>onSerialize] is passed as the first parameter to this tag.

[Null->_UnknownTag]	 Called when an unknown member tag is referenced. The [Tag_Name] tag can be
used to decide what tag name was referenced.

		

Note: These callback tags are not included in the Lasso tag list. They are intended to be called by Lasso
automatically rather than being called like other member tags.

onCreate Callback
The [Null->onCreate] callback tag is called after a new instance of a type is created. It is called once for each
instance of a type with any parameters that were passed to the tag that created the type.

For example, when the tag [Ex_Dollar] is used to create a new instance of the dollar type the following steps are
performed.

	 1	The code within the [Define_Type] … [/Define_Type] container is executed, creating all the custom tags and
instance variables for the type.

	 2	The [Ex_Dollar->onCreate] tag is called with the parameters passed to the [Ex_Dollar] tag to set up the particular
instance of the type.

Since the callback tag is called after the code within the [Define_Type] … [/Define_Type] container is processed, the
[Null->onCreate] tag has access to the [Self] tag and to each of the member tags which have been defined for the
current type.

Order of operation:

A new instance of a custom type is created by calling the creator tag for the type which has the same name as
the type. For example, to create a new Ex_Dollar type the [Ex_Dollar] tag must be called.

[Ex_Dollar: 10]

	 1	The body of the [Define_Type] … [/Define_Type] tags for the Ex_Dollar type are executed. Local instance variables
are defined and all member tags are defined.

	 2	If the [Ex_Dollar->onCreate] callback tag is defined then it is called.

7 1 2

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 5 8 – C u s t o m T y p e s

To define a [Null->onCreate] callback tag:

The Ex_Dollar data type is too simple to require an [Ex_Dollar->onCreate] callback tag. All the initialization which
is needed is performed in the creator tag. However, for debugging purposes it might be nice to know each
time an instance of the new data type is created. The following [Ex_Dollar->onCreate] tag logs the current value
of the instance variable Amount each time a new instance of the data type is created.

[Define_Tag: 'onCreate']
	 [Log: -Window] Create Ex_Dollar: [Self->'Amount'].[/Log]
[/Define_Tag]

It is generally possible to modify a custom type instance after it has been created by modifying the maps
provided by the [Null->Properties] tag. For example, instance variables and member tags can be inserted into a
single type instance. This is often undesirable because it allows one custom type instance to be different from
another, not just in the data it stores, but in the actual instance variables and member tags it defines! The
two freeze value tags shown below can be used in the [Null->onCreate] callback in order to lock the data type
instance once it is created.

[Define_Tag: 'onCreate']
	 … Perform Initialization …
	 [Self->Properties->First->FreezeValue]
	 [Self->Properties->Second->FreezeValue]
[/Define_Tag]

onConvert Callback
The [Null->onConvert] callback tag is called when an instance of a custom type is cast to a built-in data type. This
tag will be called when an instance of a custom type is used in an expression with built-in data types that
requires an integer, decimal, or string value. Each custom type must support being cast to the string data type
and should support being cast to the decimal or integer data types if possible.

The [Null->onConvert] callback is called with the name of the type to which the current instance is being
converted (either string, integer, or decimal). If the name of the type is not recognized then the [Null->onConvert]
tag should return Null. Lasso will attempt to convert the custom data type using another method or will throw
an error.

To define a [Null->onConvert] callback tag:

The [Ex_Dollar->onConvert] callback tag is called when an Ex_Dollar amount is cast to a built-in data type. If
the value is cast to a decimal or an integer then the callback tag will cast the value in the Amount instance
variable to the appropriate data type. If the value is cast to a string then the [Ex_Dollar->Get] member tag which
was defined previously will be called. Otherwise, the callback tag will return Null instructing Lasso that the
conversion is not supported.

<?LassoScript
	 Define_Tag: 'onConvert';
		 Local: 'Type' = (Params)->(Get: 1);
		 If: (Local: 'Type') == 'String';
			 Return: (Self->Get);
		 Else: (Local: 'Type') == 'Integer';
			 Return: (Integer: (Self->'Amount'));
		 Else: (Local: 'Type') == 'Decimal';
			 Return: (Decimal: (Self->'Amount'));
		 /If;
		 Return Null;
	 /Define_Tag;
?>

In the following code a variable Price is set to a value of type Ex_Dollar. Then that variable is cast to different
data types.

7 1 3

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 5 8 – C u s t o m T y p e s

[Variable: 'Price' = (Ex_Dollar: 19.95)]

[String: (Variable: 'Price')]

[(Integer: (Variable: 'Price'))]

[(Decimal: (Variable: 'Price'))]

➜	
$19.95

20

19.95

onDestroy Callback
The [Null->onDestroy] callback tag is the last member tag called for each instance of a custom type. The
[Null->onDestroy] callback tag allows any cleanup code that needs to be performed to be executed before the tag
is purged from memory. The [Null->onDestroy] tag is called once for each instance of a custom type.

The [Null->onDestroy] callback tag is called in the following instances.

	 •	If a custom type literal is created and not stored in a variable, the instance is destroyed as soon as the
current tag completes.

[(Ex_Dollar: 10.0)]

	 •	If a custom tag is created within the [Define_Tag] … [/Define_Tag] tags of a custom tag declaration and stored in
a local variable then the instance is destroyed as soon as the custom tag completes.

	 •	If a custom tag is created within the [Define_Type] … [/Define_Type] tags of a custom type or is stored in an
instance variable within a custom type then the instance is destroyed as soon as the custom type within
which it is stored is destroyed.

	 •	If a custom type is stored within a page variable then it will be destroyed as soon as the page finishes
executing, but before it is served to the site visitor.

To define a [Null->onDestroy] callback tag:

The Ex_Dollar data type is too simple to require an [Ex_Dollar->onDestroy] callback tag. The instance variable
Amount and each of the member tags will be destroyed automatically by Lasso. However, for debugging
purposes it might be nice to know each time an instance of the new data type is destroyed. The following
[Ex_Dollar->onDestroy] tag logs the current value of the instance variable Amount each time a new instance of the
data type is destroyed.

[Define_Tag: 'onDestroy']
	 [Log: -Window] Destroy Ex_Dollar: [Self->'Amount'].[/Log]
[/Define_Tag]

Unknown Tag Callback
The [Null->_UnknownTag] callback tag is called when a tag that does not exist for the current data type is
referenced. This callback tag allows a custom data type to respond to member tags which are not explicitly
created. The tag name which was called can be retrieved using the [Tag_Name] tag.

None of the callback tags are ever passed to the [Null->_UnknownTag] callback. Callback tags must be defined
explicitly in order to be implemented.

Order of operation:

When a member tag is called on a custom type:

	 1	If a member tag with that name is defined then it is executed.

	 2	If no member tag with that name is defined then the [Null->_UnknownTag] callback is executed.

	 3	If an instance variable with that name is defined then its value is returned.

	 4	If the unknown tag callback is not defined then an error is returned.

7 1 4

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 5 8 – C u s t o m T y p e s

Note: If desired the _UnknownTag callback can check the properties of the type and return a reference to a
member variable. This allows the _UnknownTag callback to simulate the built-in behavior of returning an instance
variable even when it is referenced without quotes.

To define a [Null->_UnknownTag] callback tag:

The Ex_Dollar data type could implement a conversion to different currencies using the unknown tag callback.

Assume that there is a tag [Currency_Convert] which accepts a value, a -From parameter with the code for what
currency to convert from, and a -To parameter with the code for what currency to convert to. The tag uses data
from a site on the Internet to get accureate real-time conversion rates.

Rather than coding in all currency codes explicitly and unknown tag callback can be used to pass any
unknown member tags to the [Currency_Convert] tag. An error will be returned if the tag name is not a valid
currency code.

[Define_Tag: '_UnknownTag']
	 [Local: 'Code' = (Tag_Name)]
	 [Local: 'Result' = (Currency_Convert: (Decimal: Self->'Amount'),
		 -From='USD', -To=#Code)]
	 [Return: (Decimal: #Result)]
[/Define_Tag]

The following code would now work to convert the U.S. currency represented by the [Ex_Dollar] type to U.K.
Pounds represented by UKP.

[Variable: 'Price' = (Ex_Dollar: 19.95)]

[(Variable: 'Price')->(UKP)]

➜	
31.24

Symbol Overloading
Lasso allows complex expressions using math and string symbols to be specified as tag parameters. In
addition, a set of assignment symbols allow a variable to be modified in place without returning a value. A
list of common symbols is shown in Table 4: Overloadable Symbols.

Each data type can assign its own meanings to each of the symbols that Lasso provides. For example, the
built-in integer and decimal data types use the + symbol for addition while the built-in string data type
uses the + symbol for concatenation. In general it is wisest to match the common meanings of the symbols
whenever possible. Ideally, the user will be able to use each data type’s custom symbols interchangeably with
the symbols provided by the built-in data types.

The meaning of corresponding assignment symbols, unary symbols, and binary symbols should be
compatible whenever possible. The operation [(Variable: 'myVariable') += 'Value'] should be the same as the
operation [Variable 'myVariable' = $myVariable + 'Value'].

Table 5: Overloadable Symbols

Symbol	 Description	

+	 Unary/Binary symbol for addition or concatenation.

-	 Unary/Binary symbol for subtraction or deletion.

*	 Binary symbol for multiplication or repetition.

/	 Binary symbol for division.

%	 Binary symbol for modulus.

++	 Unary increment symbol prefix or postfix.

--	 Unary decrement symbol prefix or postifx.

==	 Binary symbol for equality. Returns boolean.

!=	 Binary symbol for inequality. Returns boolean.

>	 Binary symbol for greater than. Returns boolean.

7 1 5

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 5 8 – C u s t o m T y p e s

>=	 Binary symbol for greater or equal. Returns boolean.

<	 Binary symbol for less than. Returns boolean.

<=	 Binary symbol for less or equal. Returns boolean.

>>	 Binary symbol for contains. Returns boolean.

=	 Assignment symbol.

+=	 Addition assignment symbol.

-=	 Subtraction assignment symbol.

*=	 Multiplication assignment symbol.

/=	 Division assignment symbol.

%=	 Modulus assignment symbol.
		

Each of these symbols can be redefined or overloaded for a custom data type. The data type of the left
parameter to a binary operator determines which tag is used to perform the operation. If a data type does not
support the symbol then the parameter is cast to string and the string symbol is used instead.

Other symbols such as $, #, @ cannot be overloaded. These are core language constructs. The logical symbols
||, &&, and ! cannot be overloaded, but a custom behavior can be defined when a custom data type is cast to
boolean.

Callback Tags
Each custom type can define a number of callback tags using the [Define_Tag] … [/Define_Tag] tags within the
[Define_Type] … [/Define_Type] definition for the type. These callback tags will be executed with appropriate
parameters when the data type is used in a complex expression.

Table 5: Comparison Callback Tags, Table 6: Symbol Callback Tags, and Table 7: Assignment Callback
Tags detail the tags that are available. These tag names are reserved. No member tags with these names
should be defined. These tags are not normally called by a Lasso developer, they are called automatically by
Lasso in the specified situation. Although there is no protection to prevent a Lasso developer from calling
these tags directly, results should be considered undefined if they do.

Table 6: Comparison Callback Tags

Tag	 Description	

[Null->onCompare]	 Called when the current instance is used in a comparison expression. Accepts
a single parameter, the value to be compared against. Should return 0 if the
parameter is equal to the current instance, a positive number if the parameter is
greater, or a negative number if the parameter is less. Called for the ==, !=, <, <=,
>, >= symbols.

[Null->>>]	 Called when an instance is used as the left parameter of a contains symbol.
Accepts a single parameter which is the right parameter of the symbol. This tag
should return True if the right parameter is contained in the current instance.

		

Note: These callback tags are not included in the Lasso tag list. They are intended to be called by Lasso
automatically rather than being called like other member tags.

onCompare Callback
The [Null->onCompare] callback tag is called when an instance of a custom type is used as the left parameter of a
comparison symbol ==, !=, <, <=, >, or >=. The callback tag is called with the value of the right parameter of the
symbol. The result of the tag should be one of the following.

	 •	Equality – If the value of the right parameter is equal to the value of the current instance of the custom
type then the return value should be 0. This will evaluate to True for the ==, <=, and >= symbols.

	 •	Less Than – If the value of the right parameter is less than the value of the current instance of the custom
type then the return value should be any number less than 0. This will evaluate to True for the <, <=, and !=
symbols.

7 1 6

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 5 8 – C u s t o m T y p e s

	 •	Greater Than – If the value of the right parameter is greater than the value of the current instance of the
custom type then the return value should be any number greater than 0. This will evaluate to True for the >,
>=, and != symbols.

If a comparison cannot be made then Null should be returned instead. Lasso will attempt to perform a cast in
order to compare the two values instead. If no [Null->onCompare] callback tag is defined then Lasso will attempt
to perform a cast in order to compare the two values as well.

The value of the left parameter determines the type of comparison which is used. If a custom type is used as
the right parameter in a comparison expression and a built-in data type is used as the left parameter then the
custom type is cast to the appropriate built-in data type and the values are compared.

Note: The [Array->Find] and [Array->Sort] member tags use comparisons to determine the found set or order
of elements in the array. A custom data type will be searched or sorted according to the results of the
[Null->onCompare] callback tag.

To define a [Null->onCompare] callback tag:

The [Ex_Dollar->onCompare] callback tag will simply cast any value that is assigned to it to the decimal data type
then compare that value to the value stored in the Amount instance variable.

<?LassoScript
	 Define_Tag: 'onCompare';
		 Local: 'Temp' = (Decimal: (Params)->(Get: 1));
		 If: (Local: 'Temp') == (Self->'Amount');
			 Return: 0;
		 Else: (Local: 'Temp') < (Self->'Amount');
			 Return -1;
		 Else: (Local: 'Temp') > (Self->'Amount');
			 Return 1;
		 /If;
	 Return Null;
	 /Define_Tag;
?>

In the following code a variable Price is set to a value of type Ex_Dollar. Then that variable is compared to
different data types.

[Variable: 'Price' = (Ex_Dollar: 19.95)]

[(Variable: 'Price') == (String: '19.95')]

[(Variable: 'Price') == (Integer: 20)]

[(Variable: 'Price') == (Decimal: 19.95)]

➜	
True

False

True

Contains Callback
The [Null->>>] callback tag is called when an instance of a custom type is used as the left parameter of a >>
comparison symbol. The callback tag is called with the value of the right parameter of the symbol. The result
of the tag should be one of the following.

	 •	True – If the value of the right parameter is contained within the current instance.

	 •	False – If the value of the right parameter is not contained within the current instance.

If the contains operation cannot be performed then Null should be returned instead. Lasso will attempt to
perform a cast in order to perform the contains operation. If no [Null->>>] callback tag is defined then Lasso
will attempt to perform a cast in order to perform the contains operation as well.

If a custom type is used as the right parameter in a contains expression and a built-in data type is used as the
left parameter then the custom type is cast to the appropriate built-in data type and the values are compared.

7 1 7

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 5 8 – C u s t o m T y p e s

To define a [Null->>>] callback tag:

The [Ex_Dollar->>>] callback tag will cast any value that is assigned to it to the string data type. If the output
from [Ex_Dollar->Get] run on the [Self] tag contains the parameter then True is returned.

<?LassoScript
	 Define_Tag: '>>';
		 Local: 'Temp' = (String: (Params)->(Get: 1));
		 Return: (Self->Get) >> #Temp;
	 /Define_Tag;
?>

In the following code a variable Price is set to a value of type Ex_Dollar. Then that variable is checked to see if it
contains $ which it does.

[Variable: 'Price' = (Ex_Dollar: 19.95)]

[(Variable: 'Price') >> '$']

➜	
True

Table 7: Symbol Callback Tags

Tag	 Description	

[Null->+]	 Called when an instance is used as the left parameter of an addition symbol.
Accepts a single parameter which is the right parameter of the symbol. If no
parameter is specified then the unary symbol is being used.

[Null->-]	 Called when an instance is used as the left parameter of a subtraction symbol.
Accepts a single parameter which is the right parameter of the symbol. If no
parameter is specified then the unary symbol is being used.

[Null->*]	 Called when an instance is used as the left parameter of a multiplication symbol.
Accepts a single parameter which is the right parameter of the symbol.

[Null->/]	 Called when an instance is used as the left parameter of a division symbol.
Accepts a single parameter which is the right parameter of the symbol.

[Null->%]	 Called when an instance is used as the left parameter of a modulus symbol.
Accepts a single parameter which is the right parameter of the symbol.

[Null->++]	 Called when an instance is used as the left or right parameter of a unary
increment symbol.

[Null->--]	 Called when an instance is used as the left or right parameter of a unary
decrement symbol.

		

Note: These callback tags are not included in the Lasso tag list. They are intended to be called by Lasso
automatically rather than being called like other member tags.

Symbol Callback Tags
The symbol callback tags are called whenever the custom data type is used as the left parameter to one of the
built-in symbols +, -, *, /, or % or when the custom data type is used as the lone parameter to the + , ++, - or
-- unary symbols. These tags usually return a value of the custom data type, but can return a value of any data
type.

For the binary operators, the right parameter to the symbol is provided as the parameter of the callback
function and could be of any data type. For the unary operators, no parameter is specified.

If no callback tag is defined for a given symbol then Lasso will attempt to cast values to string and will use
the built-in string symbols.

To define a [Null->-] callback tag:

The [Ex_Dollar->-] callback tag will create a new [Ex_Dollar] data type. The value of the new type will be found by
either subtracting a value from the Amount instance variable if a parameter is specified or by changing the sign
of the Amount instance variable if no parameter is specified.

7 1 8

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 5 8 – C u s t o m T y p e s

<?LassoScript
	 Define_Tag: '-';
	 If: (Params->Size > 0);
		 Return: (Ex_Dollar: (Self->'Amount') - (Decimal: Params->(Get: 1)));
	 Else;
		 Return: (Ex_Dollar: (Self->'Amount') * (-1));
	 /If;
	 /Define_Tag;
?>

In the following code a variable Price is initialized with a value of 19.95. Then, 5.95 is subtracted from variable
and the result is output. Notice that even though the amount subtracted is a decimal, the result is of type
Ex_Dollar and outputs with proper formatting.

[Variable: 'Price' = (Ex_Dollar: 19.95)]

[(Variable: 'Price') - 5.95]

➜	
$14.00

Table 8: Assignment Callback Tags

Tag	 Description	

[Null->onAssign]	 Called when an assignment is made to the current instance from any other data
type using the = symbol. This tag should return True if the assignment was
successful.

[Null->+=]	 Called when an instance is used as the left parameter of an addition assignment
symbol. Accepts a single parameter which is the right parameter of the symbol.
This tag should return true if the assignment was successful.

[Null->-=]	 Called when an instance is used as the left parameter of a subtraction
assignment symbol. Accepts a single parameter which is the right parameter of
the symbol. This tag should return true if the assignment was successful.

[Null->*=]	 Called when an instance is used as the left parameter of a multiplication
assignment symbol. Accepts a single parameter which is the right parameter of
the symbol. This tag should return true if the assignment was successful.

[Null->/=]	 Called when an instance is used as the left parameter of a division assignment
symbol. Accepts a single parameter which is the right parameter of the symbol.
This tag should return true if the assignment was successful.

[Null->%=]	 Called when an instance is used as the left parameter of a modulus assignment
symbol. Accepts a single parameter which is the right parameter of the symbol.
This tag should return true if the assignment was successful.

		

Note: These callback tags are not included in the Lasso tag list. They are intended to be called by Lasso
automatically rather than being called like other member tags.

onAssign Callback
The [Null->onAssign] callback tag is called when an instance of a custom type is used as the left parameter of
the assignment symbol =. The callback tag is called with the value of the right parameter of the symbol. The
tag should attempt to store the value of the right parameter as the new value of the current instance of the
custom type. It should return one of the following values.

	 •	True – The callback tag should return True if the assignment was successful. This is the sign to Lasso that no
further work needs to be done.

	 •	False – If for any reason the assignment cannot be performed then the callback tag should return False.
Lasso will instead attempt to cast the value of the right parameter to the data type of the left parameter and
try the assignment again.

7 1 9

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 5 8 – C u s t o m T y p e s

If no [Null->onAssign] callback tag is defined then Lasso will attempt to cast values to the current data type by
calling the [Null->onConvert] tag of the right parameter of the assignment operator. For maximum compatibility,
each data type should support at least all built-in data types for assignment and conversion.

To define a [Null->onAssign] callback tag:

The [Ex_Dollar->onAssign] callback tag will simply cast any value that is assigned to it to the decimal data type
then store that value in the Amount instance variable. This mimics the behavior of the [Ex_Dollar->Set] member
tag which was defined previously.

<?LassoScript
	 Define_Tag: 'onAssign';
		 (Self->'Amount') = (Decimal: (Params)->(Get: 1));
	 /Define_Tag;
?>

In the following code a variable Price is initialized with a value of type Ex_Dollar. The variable is then assigned
a string value 19.95 which is cast to a decimal value by the [Ex_Dollar->onAssign] tag called implicitly by Lasso to
perform the assignment operator.

[Variable: 'Price' = (Ex_Dollar)]
[(Variable: 'Price') = '19.95']

[(Variable: 'Price')->Get]

➜	
$19.95

Assignment Symbols Callbacks
The [Null->+=], [Null->-=], [Null->*=], [Null->/=], and [Null->%] callback tags are called when an instance of a custom
type is used as the left parameter of the corresponding assignment symbol +=, -=, *=, /=, or %=. The callback tag
is called with the value of the right parameter of the symbol. The tag should attempt to perform the desired
operation and store the value of the right parameter as the new value of the current instance of the custom
type. It should return one of the following values.

	 •	True – The callback tag should return True if the assignment was successful. This is the sign to Lasso that no
further work needs to be done.

	 •	False – If for any reason the assignment cannot be performed then the callback tag should return False.
Lasso will instead attempt to cast the value of the right parameter to the data type of the left parameter and
try the assignment again.

If no callback tag for a given assignment symbol is defined then Lasso will attempt to cast values to the
current data type by calling the [Null->onConvert] tag of the right parameter of the assignment operator.

To define a [Null->+=] callback tag:

The [Ex_Dollar->=+] callback tag will simply cast any value that is assigned to it to the decimal data type and
add that value to the Amount instance variable.

<?LassoScript
	 Define_Tag: '+=';
		 (Self->'Amount') += (Decimal: (Params)->(Get: 1));
	 /Define_Tag;
?>

In the following code a variable Price is initialized with a value of type Ex_Dollar and a value of 19.95. Finally,
the += symbol is used to add an additional 5.95 to the variable.

[Variable: 'Price' = (Ex_Dollar: '19.95')]
[(Variable: 'Price') += '5.95']

[(Variable: 'Price')->Get]

➜	
$19.95

7 2 0

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 5 8 – C u s t o m T y p e s

Inheritance
Custom types can be created which inherit properties from other custom types. Each type which the custom
type should inherit from is specified after the name of the custom type in the opening [Define_Type] tag. These
are called parent types and the current type being defined is called a child type.

[Define_Type: 'myType', 'ParentType'] … [/Define_Type

If a custom type inherits from multiple types then it must list each type explicitly. For example, if a custom
type ParentType itself inherits from the built-in Array type then both ParentType and Array must be listed
explicitly in the custom type definition.

[Define_Type: 'myType', 'ParentType', 'Array'] … [/Define_Type

All instance variables and member tags of the parent types are inherited by the child type. If the child type
defines an instance variable or member tag with the same name as one of the parent types then the child’s
definition overrides the parent’s definition.

Custom types can inherit properties from built-in data types. A custom type will inherit any member tags
which the built-in type defines, but will not inherit any of the features that require callback functions. It will
be necessary to create custom casting and assignment callbacks and to implement any symbols which are
desired.

All custom data types inherit from the null data type. The tags of the null data type such as [Null->Type] can be
used by any data type within Lasso. These tags can be overridden, but doing so can cause unexpected results.

The member tags and instance variables of the parent tag can be accessed using the [Parent] tag. This tag works
like the [Self] tag, but returns the value of the current data type instance as it would be if it were of the parent
type.

The creator tag [Null->onCreate] and destructor tag [Null->onDestroy] for each parent data type is called
automatically when a new instance of the child data type is created.

To define a custom type that inherits from another custom type:

The Ex_Dollar type which is defined in this chapter only works with U.S. currency and outputs values using
the dollar sign $. It is possible to create a sub-type that works with a different type of currency. For example, a
new type Ex_UKPounds could be created which inherited from Ex_Dollar, but output values with a British pound
symbol £. by overriding the [Ex_Dollar->Get] tag with a new [Ex_UKPounds->Get] tag.

The type is defined as inheriting from Ex_Dollar by specifying Ex_Dollar after the name of the new type in the
opening [Define_Type] tag. All the member tags of Ex_Dollar are automatically defined as is the instance variable
Amount.

The [Ex_UKPounds->Get] member tag is defined and overrides the equivalent [Ex_Dollar->Get] member tag. The
[Self->Parent] tag is used to reference the Amount instance variable from the parent type.

<?LassoScript
	 Define_Type: 'UKPounds', 'Ex_Dollar', -Namespace='Ex_';

		 Define_Tag: 'Get';
			 Return: '£' + (Self->Parent->'Amount');
		 /Define_Tag;

	 /Define_Type;
?>

The following example sets two variables, one to a value of Ex_Dollar type and the other to a value of
Ex_UKPounds type, then outputs both values. The types are converted to strings when they are output and the
appropriate [Ex_Dollar->Get] or [Ex_UKPounds->Get] tag is called to format the output.

[Variable: 'American'= (Ex_Dollar: 100)]

[Variable: 'American']
[Variable: 'British'= (Ex_UKPounds: 100)]

[Variable: 'British']

7 2 1

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 5 8 – C u s t o m T y p e s

�	
$100.00

£100.00

Libraries
Libraries can be used to package custom tags and custom types into a format which is easy for any Lasso
developer to incorporate into a Lasso-powered Web site.

The following types of libraries can be created:

	 •	On-Demand Tag Library – A set of custom tag and custom type declarations can be stored in a Lasso page
or LassoApp and placed in the LassoLibraries folder in the Lasso Professional 8 application folder. The Lasso
page or LassoApp should have the same name (before the .Lasso or .LassoApp file suffix) as the namespace
of the tags defined within. Sub-folders can be used to define nested namespaces.

	 •	Library Lasso Page – A set of custom tag and custom type declarations can be stored in a Lasso page and
then included in any other Lasso page using the [Library: 'library.lasso'] tag. This is a good way to create and
use a library file whose defined tags and types will only be needed on a few pages in a site.

	 •	LassoStartup Lasso Page – A set of custom tag and custom type declarations can be stored in a Lasso
page placed within the LassoStartup folder. After Lasso Service is restarted all tags, types, and page variables
which are defined within the Lasso page will be available to all Lasso pages which are executed on the
server.

7 2 2

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 5 8 – C u s t o m T y p e s

59
Chapter 59

Custom Data Sources

Data sources can be implemented entirely in LassoScript using the techniques and tags documented in this
chapter.

	 •	Overview describes the basic methodology of creating a LassoScript data source and how to install a
LassoScript data source.

	 •	Data Source Tags describes the tags that are available to help make a LassoScript data source.

	 •	Data Source Type describes the data type that must be implemented to create a new LassoScript data
source.

Overview
Lasso provides the ability to create a data source entirely in LassoScript code. This makes it possible to easily
implement entirely new types of data source modules without using either C/C++ or Java code.

	 •	Custom data sources can use the net type to connect to a remote data source. Incoming data can be parsed
using string or XML tags.

	 •	Custom data sources can use XML-RPC or SOAP to connect to remote procedures. Searching remote
application servers can be made as easy as searching local databases.

	 •	Custom data sources can use the file tags to provide access to files on the local machine through standard
Lasso actions. For example, the XML tags could be used to search local XML files.

	 •	Custom data sources can be used as a wrapper around other Lasso data sources providing round-robin load
balancing, intelligent fail over behavior, or caching.

A LassoScript data source is implemented as a custom type that must define certain member tags. The data
source is registered with Lasso at Lasso Startup using the [DataSource_Register] tag and then appears within
Lasso Administration along with the standard data sources, JDBC drivers, and any third-party data sources
implemented in LCAPI or LJAPI.

The LassoScript data source must provide a list of databases to Lasso. When any of these database names are
used within an inline action a new instance of the LassoScript data source type is instantiated and a member
tag is called to perform the action. Once the action is performed the instance of the LassoScript data source
type is deleted.

Data Source Register
The following table shows the tag that is used to register a LassoScript data source. This tag should be called
in LassoStartup once for each LassoScript data source.

7 2 3

L a s s o 8 . 5 L a n g u a g e G u i d e

Table 1: Data Source Register

Tag	 Description	

[Datasource_Register]	 Registers a data type as a new data source. The tag requires one parameter
which is the name of the data source that implements the data source. The
specified data source must implement the tags described in the following section.

		

To register a LassoScript data source:

Use the [Datasource_Register] tag with the name of the custom data source that implements the LassoScript data
source. This tag should be called once by a file in the LassoStartup folder. In the following example a custom
data source Ex_DataSource is registered.

<?LassoScript
	 Define_Type: 'DataSource', -Namespace='Ex_';
		 … Data Source Definition …
	 /Define_Type;
	 Datasource_Register: 'Ex_DataSource';
?>

Data Source Type
Each custom type that implements a LassoScript data source must define the following member tags. Lasso
calls these tags in order to retrieve the list of databases, tables, schemas, or fields from the data source host
and to perform database actions when an [Inline] is called with one of the data source’s databases. Each of
these member tags is described in more detail below.

Note: It is recommended that each data source implement each of these member tags even if they contain no
statements.

Table 2: Data Source Member Tags

Tag	 Description	

Initialize	 Called once immediately after the data source is registered. This allows the data
source to perform an initialization routine if required.

Terminate	 Called once immediately before Lasso Service is quit. This tag allows the data
source to perform a global cleanup routine if required.

onCreate	 Called when a new instance of the data source is created. The tag is passed an
array of information about the host for the data source.

DatabaseNames	 Called when Lasso needs a list of the databases that the data source provides.
The return value must be an array of strings.

DatabaseExists	 Pased a single parameter which is the name of a database. The return value
should be True or False depending on whether this data source can handle the
database.

SchemaNames	 Passed a single parameter which is the name of a database. The return value
should be an array of strings representing the schemas (if any) this data source
supports.

TableNames	 Passed a single parameter which is the name of a database. The return value
should be an array of strings representing the table names (if any) this data
source supports.

Info	 Passed two parameters: the name of the database and name of the table. The
return value should be an array of arrays for each field in the specified table.
Each field array should contain four elements (field name, required true/false,
type, protected true/false).

Action	 Passed a single parameter which is an array of action parameters. The data
source must interpret the action and provide an appropriate response.

7 2 4

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 5 9 – C u s t o m D a t a S o u r c e s

Tickle	 This tag is called by Lasso periodically to keep a connection alive to a remote
data source.

		

Initialize and Terminate
The Initialize and Terminate tags are provided so that a data source can perform global initialization and cleanup
routines if requires. Most data sources will probably not need to implement these.

For example, a data source that stores values in a global variable could set up the variable in the Initialize
member tag.

<?LassoScript
	 Define_Type: 'DataSource', -Namespace='Ex_';

		 Define_Tag: 'Initialize;
			 Global: 'Ex_DataSource_Storage' = (Map);
		 /Define_Tag;

		 … Additional Member Tags …
	 /Define_Type;
?>

Note: If Lasso Service crashes the Terminate tag will never be called. A data source which relies on this tag being
called could suffer from data loss if Lasso Service crashes.

onCreate and onDestroy
The onCreate tag is called when Lasso creates a new instance of a data source. This happens when an opening
[Inline] tag references a database provided by the data source or when the data source is refreshed in Lasso
Administration. The onDestroy tag is called when the data source instance is destroyed.

Lasso does not create new data source instances for nested inlines that reference the same data source host. A
single data source instance may be asked to perform actions for a series of different databases and tables on
the same host.

The onCreate tag is passed an array of information about the host defined in Lasso Administration for the
referenced database. The elements of the array are defined in the following table.

Table 3: Host Information

Tag	 Description	

Host	 Usually the URL of the desired data source host.

Port	 The port number for the host.

Schema	 The default schema for the host.

Username	 The username for the host.

Password	 The password for the host.
		

The information provided to onCreate is set in Lasso Administration. The fields do not have to be used for
the purpose their label suggests. If a LassoScript data source does not require host or port information the
documentation for the data source can instruct the end-user to enter whatever information is desired in Lasso
Administration.

<?LassoScript
	 Define_Type: 'DataSource', -Namespace='Ex_';

		 Define_Tag: 'onCreate', -Required='HostInfo';
			
		 /Define_Tag;

7 2 5

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 5 9 – C u s t o m D a t a S o u r c e s

		 … Additional Member Tags …
	 /Define_Type;
?>

Usually, the data source type will need to store some of the information passed to the onCreate tag in order
to remember what host the data source is connected to when an action occurs. For data sources that establish
connections with remote hosts or open files the reference to the remote host or local files can sometimes
serve as the state for subsequent database actions.

Database, Schema, and Table Names
The DatabaseNames, SchemaNames, and TableNames tags are all used by Lasso Administration to create the
entries in Lasso Security for the data source. The database entries in particular are used to route [Inline]
database actions to the LassoScript data source so must be accurate.

This tag will always be called after an onCreate tag which contains the host information for the current data
source connection. The onCreate tag needs to store enough state so a subsequent call to DatabaseNames can
list the databases for the desired host. Both the SchemaNames and TableNames tags must operate similarly in
addition to being passed a specific database name as a parameter.

In the following example the DatabaseNames tag is hard coded to return two databases Database_One
and Database_Two. The TableNames tags returns Table_One and Table_Two for Database_One or Table_Two and
Table_Three for Database_Two. In an actual LassoScript data source the database and table names would usually
be generated based on what data was actually available on the remote data source.

<?LassoScript
	 Define_Type: 'DataSource', -Namespace='Ex_';

		 Define_Tag: 'DatabaseNames';
			 Return: (Array: 'Database_One', 'Database_Two');
		 /Define_Tag;

		 Define_Tag: 'TableNames', -Required='Database';
			 Select: #Database;
				 Case: 'Database_One';
					 Return: (Array: 'Table_One', 'Table_Two');
				 Case: 'Database_Two';
					 Return: (Array: 'Table_Three', 'Table_Four');
			 /Select;
		 /Define_Tag;

		 … Additional Member Tags …
	 /Define_Type;
?>

SchemaNames is not shown in the example above, but can be coded in exactly the same fashion as TableNames.

Field Info
The Info tag is used by Lasso Administration to create the entries in Lasso Security for the data source. It is
also used after a database action to establish a correspondence between field names and the positions in the
results array.

The Info tag is passed the name of the database and the name of the table. The return value from the Info tag is
an array of arrays. Each element of the returned array represents one field with a four element array. All four
elements are required including:

	 •	Field Name – A string representing the name of the field.

	 •	Required – A boolean value indicating if the field is required or not. Should be set to False by default.

	 •	Field Type – A string representing the type of the field. The types can be data source specific. They are
displayed in the database browser and may be used by some solutions.

	 •	Protected – A boolean value indicating if the field is read-only or not. Should be set to False by default.

7 2 6

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 5 9 – C u s t o m D a t a S o u r c e s

A generic array for a field is shown below. A data source should use this at a minimum to ensure Lasso has all
the information it needs about each field.

[Array: 'Field Name', False, 'Text', False]

In the following example the Info tag returns an array of fields Field_One, Field_Two, Field_Three, and Field_Four
for Database_One and Table_One. The tag could be extended to return field info for the other databases and
tables as well. In an actual LassoScript data source the field info would usually be generated based on what
data was actually available on the remote data source.

<?LassoScript
	 Define_Type: 'DataSource', -Namespace='Ex_';

		 Define_Tag: 'Info', -Required='Database', -Required='Table';
			 Select: #Database + '.' + #Table;
				 Case: 'Database_One.Table_One';
					 Return: (Array:
						 (Array: 'Field_One', False, 'Text', False);
						 (Array: 'Field_Two', False, 'Number', False);
						 (Array: 'Field_Three', False, 'Date', False);
						 (Array: 'Field_Four', False, 'Binary', False);
);
				 … Cases For Other Databases and Tables
			 /Select;
		 /Define_Tag;

		 … Additional Member Tags …
	 /Define_Type;
?>

Database Actions
The Action tag is called whenever a LassoScript data source is used in an inline tag by the end-user. The tag is
passed an array of parameters which has the same content as [Action_Params] called inside of an [Inline] … [/Inline]
container tag.

The array of parameters will contain one action (listed below), one each of -Database, -Table, -KeyField,
-MaxRecords, -SkipRecords, and -OperatorLogical tags, and additional parameters as specified by the user. It is the
LassoScript data source’s responsibility to interpret these parameters, decide what action to perform, and
return appropriate results.

The list below explains how Lasso interprets each of the built-in database actions. For best results custom data
sources should try to match these meanings as close as possible. Custom data sources should also respect the
-MaxRecords and -SkipRecords values if possible. However, it is not necessary for a LassoScript data source to
implement every action or to provide exactly the same behavior as built-in data sources.

	 •	-Search – The parameters specified with the action should be interpreted as search terms. -MaxRecords
specifies the maximum number of records that should be returned and -SkipRecords specifies an offset into
the found set at which to start returning records. See the section on Result Sets below for details about
how to return records and set the [Found_Count] and [Total_Count].

Lasso supports a number of optional parameters that a LassoScript data source should process if possible.
These include -Op parameters that immediately precede name/value parameters and specify what search
operator to use, -OpBegin and -OpEnd parameters that allow sophisticated And/Or groupings, -SortField and
-SortOrder parameters, as well as -GroupBy, -Distinct, and -SortRandom parameters. The experience of the end-
user will be richer if more of these parameters are provided by a LassoScript data source.

	 •	-FindAll – The same as a -Search action, but none of the search parameters should be regarded. Other
parameter like -MaxRecords, -SkipRecords, -SortField, etc. should still be processed.

	 •	-Random – The same as a -Search action, but a random selection of records is returned. The behavior of
-Random differs from data source to data source. It can either be based on -FindAll or -Search. Not all data
sources support the -Random action.

7 2 7

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 5 9 – C u s t o m D a t a S o u r c e s

	 •	-Add – Add a record to the database. The parameters specify the record that is to be added. The result of an
-Add action will often contain the single record that was just added to the database. Some data sources use
-MaxRecords=0 to suppress returning this record.

	 •	-Update – Update a single record within a database. A -KeyField and -KeyValue must in general be specified
in order to determine what record to update. The parameters specify the new values for the updated
record. The result of an -Update action will often contain the single record that was just updated within the
database. Some data sources use -MaxRecords=0 to suppress returning this record.

	 •	-Delete – Delete a single record from the database. A -KeyField and -KeyValue must in general be specified in
order to determine what record to delete. The parameters are generally disregarded. The result of a -Delete
action will usually be an empty set.

	 •	-Duplicate – Duplicate a record within the database. A -KeyField and -KeyValue must in general be specified
in order to determine what record to duplicate. The parameter may be disregarded or may be used to
update the duplicated record. The result of a -Duplicate action will often contain the single record that was
just added to the database. Some data sources use -MaxRecords=0 to suppress returning this record. Not all
data sources support the -Duplicate action.

	 •	-SQL – Execute a raw SQL statement on the data source. This action is used for data sources that support
SQL, but may reasonably be used for raw database commands for any data source (e.g. XPath statements or
data source specific low-level commands). Most of the parameters of the action are generally disregarded
except for -MaxRecords and -SkipRecords.

	 •	-Nothing – This is the default action if no other valid action is defined. A LassoScript data source should
in general not perform any action when a -Nothing action is specified. However, some data sources will use a
-Nothing action to send a keep-alive ping to a data source.

Some data sources may define additional actions beyond those listed here. Those actions will be reported
as a -Nothing action with the actual action specified within the parameters passed to the Action tag.

The actual implementation of each of the actions is up to the LassoScript data source developer. Custom data
sources can run from simple implementations that support only a couple actions to full-fledged modules that
support all of the rich set of actions and additional parameters that Lasso provides.

The example below uses a [Select] … [Case] … [/Select] tag to choose which action to perform based on the
contents of the #Action_Params array. Any actions that are not supported by the data source are caught by the
default -Nothing action option at the end. See the Result Sets section below for an example of how a -Search
action can return results.

<?LassoScript
	 Define_Type: 'DataSource', -Namespace='Ex_';

		 Define_Tag: 'Action', -Required='Action_Params';
			 Select: True;
				 Case: (#Action_Params >> -Search);
					 … Search Action (See Result Sets below for an example) …
				 Case: (#Action_Params >> -FindAll);
					 … FindAll Action …
				 Case: (#Action_Params >> -Add);
					 … Add Action …
				 Case: (#Action_Params >> -Update);
					 … Update Action …
				 Case: (#Action_Params >> -Delete);
					 … Delete Action …
				 Case;
					 … Nothing Action …
			 /Select;
		 /Define_Tag;

		 … Additional Member Tags …
	 /Define_Type;
?>

7 2 8

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 5 9 – C u s t o m D a t a S o u r c e s

Result Sets
Most database actions return results to the end-user. These results are returned in the same way no matter if
the action is a -Search or -Add.

The current result set is set using the [Action_AddRecord] tag once for each record in the result set. Usually,
the entire result set is not returned, but only up to a maximum of -MaxRecords records starting at the offset
defined by -SkipRecords. The [Action_AddRecord] tag requires one parameter which is an array of values for
each field in a single returned record.

The field names returned by the Info tag should correspond to the same order as the results passed to the
[Action_AddRecord] tag. This allows Lasso to return the proper field value for each [Field] tag.

Lasso will automatically calculate [Shown_Count], [Shown_First], and [Shown_Last] based on the number of
times [Action_AddRecord] is called and the value for -SkipRecords. The value for [Found_Count] can be set by
calling [Action_SetFoundCount]. In addition, some databases can set [Total_Count] to the total number of records
in the database using [Action_SetTotalCount].

Finally, when processing an -Add or -Update action the current [RecordID_Value] can be set using
[Action_SetRecordID]. This is separate from the key field value which is set automatically based on the value for
-KeyField and the mapping from field names to field values. Some Custom data sources may want to set this
value in order to return an internally generated ID that may be different from the key field value.

The following table shows the tags that are available for returning database action results.

Table 4: Result Set Tags

Tag	 Description	

[Action_AddRecord]	 Adds a record to the found set after a database action. Requires one parameter
which is an array of strings representing the results for one record of the found
set.

[Action_AddInfo]	 Reports the names of fields in the result set. Requires one parameter which is an
array of arrays. Each field array needs name, required, type, and protection. The
output of the ->Info member tag matches the required parameter of this tag.

[Action_SetFoundCount]	 Sets the number of records found in a database during a search action. Requires
one integer parameter.

[Action_SetTotalCount]	 Sets the total number of records that are in a database during a search action.
Requires one integer parameter.

[Action_SetRecordID]	 Sets the record ID value. This is the value returned by [RecordID_Value].
Requires one integer parameter.

		

The example below returns a set of eight records from a -Search action. It is hard-coded to return eight records
and set the found count to 32 records and the total count to 256 records. In an actual LassoScript data source
the field values would usually be generated based on what data was actually available on the remote data
source.

<?LassoScript
	 Define_Type: 'DataSource', -Namespace='Ex_';

7 2 9

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 5 9 – C u s t o m D a t a S o u r c e s

		 Define_Tag: 'Action', -Required='Action_Params';
			 Select: True;
				 Case: (#Action_Params >> -Search);
					 [Action_SetFoundCount: 32]
					 [Action_SetTotalCount: 256]
					 [Action_AddInfo: Self->(Info:
						 #Action_Params->(Find: -Database)->First->Second,
						 #Action_Params->(Find: -Table)->First->Second)]
					 [Action_AddRecord: (Array: 'One', 'Two', 'Three', 'Four')]
					 [Action_AddRecord: (Array: 'Five', 'Six', 'Seven', 'Eight')]
					 [Action_AddRecord: (Array: 'Nine', 'Ten', 'Eleven', 'Twelve')]
					 [Action_AddRecord: (Array: 'Thirteen', 'Fourteen', 'Fifteen', 'Sixteen')]
					 [Action_AddRecord: (Array: 'One', 'Two', 'Three', 'Four')]
					 [Action_AddRecord: (Array: 'Nine', 'Ten', 'Eleven', 'Twelve')]
					 [Action_AddRecord: (Array: 'Five', 'Six', 'Seven', 'Eight')]
					 [Action_AddRecord: (Array: 'Thirteen', 'Fourteen', 'Fifteen', 'Sixteen')]
				 … Cases For Other Actions …
			 /Select;
		 /Define_Tag;

		 … Additional Member Tags …
	 /Define_Type;
?>

7 3 0

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 5 9 – C u s t o m D a t a S o u r c e s

IX
Section IX

Lasso C/C++ API

This section includes instructions for extending the functionality of Lasso by creating new tags, data types,
and Web server connectors written in C/C++.

	 •	Chapter 60: LCAPI Introduction includes general information about extending Lasso’s functionality.

	 •	Chapter 61: LCAPI Tags discusses how to create new tags in LCAPI including substitution tags, asynchro-
nous tags, and remote procedures.

	 •	Chapter 62: LCAPI Data Types discusses how to create new data types in LCAPI including sub-classing
and symbol overloading.

	 •	Chapter 63: LCAPI Data Sources discusses how to create new data sources in LCAPI.

	 •	Chapter 64: LCAPI References includes information about each of the function calls available in LCAPI.

Lasso can also be extended using LassoScript or Java. See the preceding section on the LassoScript API or the
following section on the Lasso Java API (LJAPI) for more information..

7 3 1

L a s s o 8 . 5 L a n g u a g e G u i d e

60
Chapter 60

LCAPI Introduction

This chapter provides an introduction to the Lasso C/C++ API (LCAPI) which allows new tags, data types, and
data source connectors to be written in C/C++.

	 •	Overview includes a description of what types of modules can be built with LCAPI.

	 •	Requirements describes the basic system requirements for building LCAPI modules

	 •	Getting Started includes a walktrhough of building a sample tag module on both Mac OS X and
Windows.

	 •	Debugging describes how the debugging tools can be used on an LCAPI module in either Mac OS X or
Windows.

	 •	Frequently Asked Questions includes a series of common questions that new users of LCAPI have and
answers.

Overview
The Lasso C/C++ Application Programming Interface (LCAPI) lets you write C or C++ code to add new Lasso
substitution tags, data types, and data source connectors to Lasso Professional 8.

Writing tags in LCAPI offers advantages over LJAPI and custom Lasso tags in speed and system performance.
However, tags must be compiled separately for Windows 2000/XP and Mac OS X in order to support each
platform. See the Custom Tags and Custom Types chapters for more information on writing custom tags
in Lasso. LCAPI is functionally similar to LJAPI. See the Lasso Java API chapter for more information about
writing tags, data types, and data source connectors in Java using LJAPI.

This chapter provides a walk-through for building an example substitution tag, data source
connector, and data type in LCAPI. Source code for the Lasso MySQL module as well as the
code for the substitution tag, data type, and data source connector examples are included in the
Lasso Professional 8/Documentation/3 - Language Guide/Examples/LCAPI folder on the hard drive.

Requirements
In order to write your own Lasso substitution tags or data source connectors in C or C++, you need the
following:

Windows

	 •	Microsoft Windows 2000 or Microsoft Windows XP Professional.

	 •	Microsoft Visual C++ .NET.

	 •	Lasso Professional 8 for Windows 2000/XP.

7 3 2

L a s s o 8 . 5 L a n g u a g e G u i d e

Mac OS X

	 •	Mac OS X 10.3 with GNU C++ compiler and linker (Dev Tools) installed.

	 •	Lasso Professional 8 for Mac OS X.

Getting Started
This section provides a walk-through for building sample LCAPI tag modules in Windows 2000/XP and Mac
OS X.

To build a sample LCAPI tag module in Windows 2000/XP:

	 1	Locate the following folder in the hard drive.

C:\Program Files\OmniPilot Software\Lasso Professional 8\ Documentation\3 - Language Guide\Examples\LCAPI\Tags\
MathFuncsTags

	 2	In the MathFuncsTags folder, double-click the MathFuncsCAPI.sln project file (you need Microsoft Visual C++
.NET in order to open it).

	 3	Choose Build > Build Solution to compile and make the MathFuncsCAPI.DLL.

	 4	After building, a Debug folder will have been created inside your MathFuncsCAPI project folder.

	 5	Open the MathFuncsTags/Debug folder and drag MathFuncsCAPI.DLL into the Lasso Professional 8/LassoModules
folder on the hard drive.

	 6	Stop and then restart Lasso8Service.

	 7	New tags [Example_Math_Abs], [Example_Math_Sin] and [Example_Math_Sqrt] are now part of the Lasso language.

	 8	Drag the sample Lasso page called MathFuncsCAPI.lasso into your Web server root.

	 9	In a Web browser, view http://localhost/MathFuncsCAPI.lasso to see the new Lasso tags in action.

To build a sample LCAPI tag module in Mac OS X:

	 1	Open a Terminal window.

	 2	Change the current folder to the Lasso Professional 8/Documentation folder using the following command:

	 cd /Library/Lasso Professional 8/Documentation/3 - Language Guide\Examples\LCAPI\Tags\MathFuncsTags

	 3	Build the sample project using the provided makefile (you’ll need to know a Mac OS X administrator
password to use sudo).

sudo make

	 4	After building, a Mac OS X dynamic library file named MathFuncsCAPI.dylib will be in the current folder. This
is the LCAPI module you’ll install into the LassoModules folder.

	 5	Copy the newly-created module to the Lasso modules folder using the following command:

cp MathFuncsCAPI.dylib /Applications/Lasso Professional 8/LassoModules

	 6	Quit Lasso Service if it’s running, so that the next time it starts up, it will load the new module you just
built (you’ll need to know a Mac OS X administrator password to use sudo).

sudo lasso8ctl stop

	 7	Start Lasso Service so it will load the new module.

sudo lasso8ctl start

New tags [Example_Math_Abs], [Example_Math_Sin] and [Example_Math_Sqrt] are now part of the Lasso language.

	 8	Copy the sample Lasso page called MathFuncsCAPI.lasso into your Web server document root.

	 9	Use a Web browser to view http://localhost/MathFuncsCAPI.lasso to see the new Lasso tags in action.

7 3 3

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 6 0 – L C API I n t r o d u c t i o n

Debugging
You can set breakpoints in your LCAPI DLLs or DYLIBs and perform source-level debugging for your own
code. In order to set this up, add path information to your project so it knows where to load executables
from. For this section, we will use the provided substitution tag project as the example.

To debug in Windows 2000/XP:

	 1	Select Processes… from the Debug main menu.

	 2	In the Processes window, select each instance of Lasso8Service.exe and choose to Attach.

	 3	Close the Processes window and set a breakpoint in the tagMathAbsFunc function.

	 4	Use a Web browser to access the sample http://localhost/MathFuncsCAPI.lasso. Visual Studio will stop at the
location that the breakpoint was placed.

To debug in Mac OS X:

	 1	From a Terminal window, change folder into the example LCAPI source code folder by entering the
following:

cd /Applications/Lasso\ Professional\ 8/Documentation/3 - Language Guide\Examples\LCAPI\Tags\MathFuncsTags

	 2	Build with debug options turned on by entering the following:

sudo make "DEBUG += -g3 -O0"

Note: The last two characters of the command are a letter O followed by a zero.

	 3	Copy the built DYLIB into the LassoModules folder by entering the following:

cp MathFuncsCAPI.dylib /Applications/Lasso\ Professional\ 8/LassoModules/

	 4	Change folder into the Lasso Professional 8/Tools folder:

cd /Applications/Lasso\ Professional\ 8/Tools/

	 5	Restart Lasso Service. When it starts up, it will load the new module you just built (you’ll need to know a
root password to use sudo).

sudo lasso8ctl stop

	 6	Start the Lasso Service back up, so it will load the new module.

sudo lasso8ctl start

	 7	Find out the process ID number of Lasso Service so you can attach to it later with GNU Debugger. Make a
note of the process id for Lasso8Service.

ps aux | grep Lasso8Service

	 8	Start the GNU Debugger as a root user. You must be root in order to attach to the running Lasso Service
process.

sudo gdb

	 9	From within GNU Debugger’s command line, attach to the Lasso Service process ID by entering the
following:

attach <type the process id from step 7 here>

	 10	Instruct GNU Debugger to break whenever the function tagMathAbsFunc is called by entering the following:

break tagMathAbsFunc

	 11	Use a Web browser to access the sample http://localhost/MathFuncsCAPI.lasso. An example Lasso page is
provided in the LCAPI folder; you must first copy it into your Web server’s Documents folder, which is
typically /Library/WebServer/Documents.

7 3 4

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 6 0 – L C API I n t r o d u c t i o n

	 12	GNU Debugger breaks at the first line in tagMathAbsFunc() as soon as Lasso Service executes that tag in the
Lasso page

	 13	Type help in GNU Debugger for more information about using the GNU Debugger, or search for gdb
tutorial on the Web for more in-depth tutorials.

Frequently Asked Questions

How do I install my custom tag?

Once you’ve compiled your tag module, you’ll need to move the module to your installed Lasso Professional
LassoModules folder, and then restart Lasso Service. Step-by-step instructions are available in the Getting
Started section.

How do I return text from my custom tag?

Use either lasso_returnTagValueString to return UTF-8 data, or lasso_returnTagValueStringW to return UTF-16
data. Character data in other encoding methods can be returned by first allocating a string type using
lasso_typeAllocStringConv and then returning it using lasso_returnTagValue.

How do I return binary data from my custom tag?

Use lasso_returnTagValueBytes to return binary data.

How do I prevent Lasso from automatically encoding text returned from my custom tag?

Make sure that your tag is registered with the flag_noDefaultEncoding flag. This flag is specified when you call
lasso_registerTagModule at startup.

How do I debug my custom tag?

You can set breakpoints in your code and attach your module DLL to Lasso Service. Read the section on
Debugging LCAPI modules.

How do I get parameters that were passed into my tag?

Most of the parameters passed into your custom tag can be retrieved using the lasso_getTagParam()
and lasso_findTagParam() parameter info APIs. lasso_getTagParam() retrieves parameters by index and
lasso_findTagParam() retrieves them by name. All parameters retrieved using those functions will be returned as
strings. The access the parameters as Lasso type instances, use lasso_getTagParam2 and lasso_findTagParam2.

How do I get the value of unnamed parameters passed into my tag?

While there is no direct way to get unnamed parameters (how do you know what name to ask for?), you
can enumerate through all the parameters by index, and then pick out the ones which do not have names.
If, after retrieving a parameter, you discover that its data member is an empty string, then that means it
is an unnamed parameter, and you can get its value from the name member. An example of this is in the
substitution tag tutorial.

What’s an auto_lasso_value_t and how do I use it?

It’s a data structure which contains both a name and a value (a name/value pair). Many LCAPI APIs fill in
this structure for you, and you can access the name and data members directly as null-terminated C-strings.

What is a lasso_type_t and how do I use it?

A lasso_type_t represents an instance of a Lasso type. Any Lasso type can be represented by a
lasso_type_t, including strings, integers, or custom types. LassoCAPI provides many functions for allocating
or manipulating lasso_type_t instances. All lasso_type_t instances encountered inside a LassoCAPI tag will be
automatically garbage collected after the function returns. Therefore, a lasso_type_t instance should not be
saved unless it if freed from the garbage collector using lasso_typeDetach.

7 3 5

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 6 0 – L C API I n t r o d u c t i o n

How do I access variables from the Lasso page I’m in?

You may need to get or even create Lasso variables (the same variables that a Lasso programmer makes when
using the [var: 'fred'=12] variable syntax in a Lasso page) from within your LCAPI module. You can retrieve a
global variable, as long as it has already been assigned before your custom substitution tag is executed, by
calling lasso_getVariable() with the variable’s name. Using this method, one could directly set the __htmll_reply__
variable.

How do I return fatal and non-fatal error codes?

It is very important that your substitution tag return an error code of osErrNoErr (0) if nothing fatal happened.
An example of a fatal error would be a missing required parameter, for instance. If you encounter a fatal error,
then return a non-zero result code from your tag function, and the Lasso will stop processing the page at that
point, and display an error page.

How do I write code that will compile easily across multiple operating systems?

While we cannot provide a complete cross-platform programming tutorial for you here, we can at least
provide some guidance. The simplest way to make sure things compile across platforms is to make sure you
use standard library functions (from stdio.h and stdlib.h) as much as possible: functions like strcpy(), malloc(), and
strcmp() are always available on all platforms. Also note that Unix platforms are case-sensitive, so when you
#include files, just make sure you keep the case the same as the file on disk. Finally, stay away from platform-
specific functions, such as Windows APIs, which most often are not available on Unix platforms. Take a look
at our Unix makefiles which are provided with the sample projects: notice the same source code is used for
Windows, and all source files are saved with DOS-style cr/lf linebreaks so as not to confuse the Windows
compilers. As a last resort, you can use #ifdef to show/hide portions of source code which are platform-
specific.

7 3 6

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 6 0 – L C API I n t r o d u c t i o n

61
Chapter 61

LCAPI Tags

This chapter includes information about creating tags in C/C++ using the Lasso C/C++ API (LCAPI).

	 •	Substitution Tag Operation introduces the concepts behind substitution tags and how they are loaded and
accessed through Lasso.

	 •	Substitution Tag Tutorial documents a sample project that is shipped with Lasso including a walk-through
of the sample code.

Substitution Tag Operation
When Lasso Professional first starts up, it looks for module files (Windows DLLs or Mac OS X DYLIBS) in its
LassoModules folder. As it encounters each module, it executes that module’s registerLassoModule() function once
and only once. LCAPI developers must write code to register each of the new custom tag (or data source)
function entry points in this registerLassoModule() function. The following function is required in every LCAPI
module. It gets called once when Lasso Professional starts up.

void registerLassoModule() 
{
	 lasso_registerTagModule("CAPITester", "testtag", myTagFunc,  
		 REG_FLAGS_TAG_DEFAULT, "simple test LCAPI tag"); 
}

The preceding example registers a C function called myTagFunc to execute whenever the Lasso
[CAPITester_testtag] is encountered inside a LassoScript. The first parameter CAPITester is the namespace in
which testtag will be placed.

Once the tag function is registered, Lasso will call it at appropriate times while parsing and executing
LassoScripts. The custom tag functions will not be called if none of the custom tags are encountered while
executing a script. When Lasso Professional 8 encounters one of your custom tags, it will be called with two
parameters: an opaque data structure called a ”token”, and an integer ”action” (which is currently unused).
LCAPI provides many function calls which you can use to get information about the environment, variables,
parameters, etc., when provided with a token.

The passed-in token can also be used to acquire any parameters and to return a value from your custom tag
function.

To build a basic custom tag function:

Enter the following code:

osError myTagFunc(lasso_request_t token, tag_action_t action) 
{
	 const char * retString = "Hello, World!";
	 return lasso_returnTagValueString(token, retString, strlen(retString)); 
}

7 3 7

L a s s o 8 . 5 L a n g u a g e G u i d e

Below is the LassoScript needed to get the custom tag to execute:

Here's the custom tag: 
[CAPITester_testtag]
<!-- This should display "Hello, World" when this page executes -->

This will produce the following output:

➜	 Here's the custom tag:
Hello, World

Substitution Tag Tutorial
This section provides a walk-through of building an example tag to show how LCAPI features are used.
This code will be most similar to the sample MathFuncsCAPI project, so in order to build this code, copy the
MathFuncsCAPI project folder and edit the project files inside it.

The tag will simply display its parameters, and will look like the example below when called from a
LassoScript.

Example of the sample tag’s syntax:

[sample_tag: 'some text here', -option1='named param', -option2=12.5]

Notice the tag takes one unnamed parameter, one string parameter named -option1, and a numeric parameter
named -option2. In general, Lasso does not care about the order in which you pass parameters, so plan to
make this tag as flexible as possible by not assuming anything about the order of parameters. The following
variations should work exactly the same:

Example of sample tag with different ordered parameters:

[sample_tag: -option2=12.5, 'some text here', -option1='named param']

[sample_tag: -option2=12.5, -option1='named param', 'some text here']

Substitution Tag Module Code
Shown below is the code for the substitution tag module. This code is referenced in the Substitution Tag
Module Walk Through section.

void registerLassoModule()
{
	 lasso_registerTagModule("sample", "tag", myTagFunc,
		 REG_FLAGS_TAG_DEFAULT, "sample test");
}

osError myTagFunc(lasso_request_t token, tag_action_t action)
{
	 lasso_type_t retString = NULL, opt2 = NULL;
	 lasso_typeAllocString(token, &retString, "", 0);
	 auto_lasso_value_t v;
	 INITVAL(&v);

	 if(lasso_findTagParam(token, "-option1", &v) == osErrNoErr)
	 {
		 lasso_typeAppendString(token, "The value of -option1 is ", 25);
		 lasso_typeAppendString(token, v.data, v.dataSize);
	 }

7 3 8

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 6 1 – L C API T a g s

	 if(lasso_findTagParam2(token, "-option2", &opt2) == osErrNoErr)
	 {
		 double tempValue;
		 char tempText[128];
		 lasso_typeGetDecimal(token, opt2, &tempValue);
		 sprintf(tempText, "%.15lg", tempValue);
		 lasso_typeAppendString(token, " The value of -option2 is ", 26);
		 lasso_typeAppendString(token, tempText, strlen(tempText));
	 }

	 int count = 0;
	 lasso_getTagParamCount(token, &count);

	 for (int i = 0; i < count; ++i)
	 {
		 lasso_getTagParam(token, i, &v);
		 if (v.dataSize == 0)
		 {
			 lasso_typeAppendString(token, " The value of unnamed param is ", 31);
			 lasso_typeAppendString(token, v.name, v.nameSize);
		 }
	 }

	 return lasso_returnTagValue(token, retString);
}

Substitution Tag Module Walk Through
This section provides a step-by-step walk through of the code for the substitution tag module.

To build a sample LCAPI tag module:

	 1	First, register the new tag in the required registerLassoModule() export function.

void registerLassoModule()
{
	 lasso_registerTagModule("sample", "tag", myTagFunc,
		 REG_FLAGS_TAG_DEFAULT, "sample test");
}

	 2	Implement myTagFunc, which gets called when [sample_tag] is encountered. All tag functions have this
prototype. When the tag function is called, it’s passed an opaque “token” data structure.

osError myTagFunc(lasso_request_t token, tag_action_t action)
{

The remainder of the code in the walk through includes the implementation for the myTagFunc function.

	 3	Allocate a string which will be this tag’s return value.

	 lasso_type_t retString = NULL, opt2 = NULL;
	 lasso_typeAllocString(token, &retString, "", 0);

	 4	The auto_lasso_value_t variable named v will be our temporary variable for holding parameter values. Start
off by initializing it.

	 auto_lasso_value_t v;
	 INITVAL(&v);

	 5	Call lasso_FindTagParam() in order to get the value of the -option1 parameter. If it is found (no error while
finding the named parameter), append some information about it to our return value string.

7 3 9

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 6 1 – L C API T a g s

	 if(lasso_findTagParam(token, "-option1", &v) == osErrNoErr)
	 {
		 lasso_typeAppendString(token, "The value of -option1 is ", 25);
		 lasso_typeAppendString(token, v.data, v.dataSize);
	 }

	 6	Look for the other named parameter, -option2 and store its value into variable opt2. Because -option2
should be a decimal value, use lasso_findTagParam2, which will preserve the original data type of the value
as opposed to converting it into a string like lasso_findTagParam will.

	 if(lasso_findTagParam2(token, "-option2", &opt2) == osErrNoErr)
	 {

	 7	Declare a temporary floating-point (double) value to hold the number passed in and then declare a
temporary string to hold the converted number for display. Get the value of op2 as a decimal then print it
to the tempText variable.

		 double tempValue;
		 char tempText[128];
		 lasso_typeGetDecimal(token, opt2, &tempValue);
		 sprintf(tempText, "%.15lg", tempValue);

	 8	Append the parameter’s information to the return string.

		 lasso_typeAppendString(token, " The value of -option2 is ", 26);
		 lasso_typeAppendString(token, tempText, strlen(tempText));
	 }	

	 9	Now, we’re going to look for the unnamed parameter. Because there’s no way to ask for unnamed
parameters, we’re going to enumerate through all the parameters looking for one without a name. The
integer count will hold the number of parameters found. Use lasso_getTagParamCount() to find out how
many parameters were passed into our tag. The variable count now contains the number 3, if we were
indeed passed three parameters.

		 int count = 0;

		 lasso_getTagParamCount(token, &count);

		 for (int i = 0; i < count; ++i) {

	 10	Use lasso_getTagParam() to retrieve a parameter by its index. If you design tags that require parameters
to be in a particular order, then use this function to retrieve parameters by index, starting at index 0. If
the parameter is unnamed, that means it’s the one needed. Note that if the user passes in more than one
unnamed parameter, this loop will find all of them, and will ignore any named parameters.

		 lasso_getTagParam(token, i, &v);
		 if (v.dataSize == 0)
		 {

	 11	Again, append a descriptive line of text about the unnamed parameter and it’s value. Notice that the name
member of the variable is what holds the text we’re looking for, and the data member is empty.

			 lasso_typeAppendString(token, " The value of unnamed param is ", 31);
			 lasso_typeAppendString(token, v.name, v.nameSize);
		 }
	 }

	 12	Returning an error code is very important. If you return a non-zero error code, then the interpreter
will throw an exception indicating that this tag failed fatally and Lasso’s standard page error routines
will display an error message. For non-fatal errors, you can use lasso_setResultCode() and lasso_
setResultMessage() to provide error codes for the caller; just make sure your tag function returns osErrNoErr
from your function, otherwise Lasso’s fatal error routines will be triggered.

	 return lasso_returnTagValue(token, retString);
}

7 4 0

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 6 1 – L C API T a g s

7 4 1

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 6 1 – L C API T a g s

62
Chapter 62

LCAPI Data Types

This chapter includes information about creating data types in C/C++ using the Lasso C/C++ API (LCAPI).

	 •	Data Type Operation discusses how new data types can be implemented in C/C++.

	 •	Data Type Tutorial walks through a sample data type project.

Data Type Operation
Creating a new data type in LCAPI 8 is similar to creating a substitution tag. When Lasso Professional 8 starts
up, it scans the LassoModules folder for module files (Windows DLLs or Mac OS X DYLIBS). As it encounters
each module, it executes the registerLassoModule() function for that module. The developer registers the
LCAPI data types or tags implemented by the module inside this function. Registering data type initializers
differs from registering normal substitution tags in that the third parameter in lasso_registerTagMode is the
value REG_FLAGS_TYPE_DEFAULT.

void registerLassoModule() 
{ 
	 lasso_registerTagModule("test", "type", myTypeInitFunc,
		 REG_FLAGS_TYPE_DEFAULT, "simple test LCAPI type"); 
}

The prototype of a LCAPI type initializer is the same as a regular LCAPI substitution tag function. Lasso will
call the type initializer each time a new instance of the type is created.

osError myTypeInitFunc(lasso_request_t token, tag_action_t action);

When the type initializer function is called, a new instance of the type is created using lasso_
typeAllocCustom. This new instance will be created with no data or tag members.

osError myTypeInitFunc(lasso_request_t token, tag_action_t action) 
{
	 lasso_type_t theNewInstance = NULL;
	 lasso_typeAllocCustom(token, &theNewInstance, "test_type");

Once the type is created, new data and tag members can be added to it using lasso_typeAddMember. Data
members can be of any type and should be allocated using any of the LCAPI type allocation calls. Tag
members are allocated using lasso_typeAllocTag. LCAPI tag member functions are implemented just like any
other LCAPI tag. In the example below, myTagMemberFunction is a function with the standard LCAPI tag
prototype.

7 4 2

L a s s o 8 . 5 L a n g u a g e G u i d e

	 const char * kStringData = "This is a string member.";
	 lasso_type_t stringMember = NULL;
	 lasso_typeAllocString(token, &stringMember, kStringData, strlen(kStringData));
	 lasso_typeAddMember(token, theNewInstance, "member1", stringMember); 
	 lasso_type_t tagMember = NULL; 
	 lasso_typeAllocTag(token, &tagMember, myTagMemberFunction); 
	 lasso_typeAddMember(token, theNewInstance, "member2", tagMember);

The final step in creating a new LCAPI data type instance is to return the new type to Lasso as the tag’s return
value. After the type is returned, Lasso will complete the creation of the type by instantiating the new type’s
parent types.

	 lasso_returnTagValue(token, theNewInstance);
 	 return osErrNoErr; 
}

Data Type Tutorial
This tutorial walks through the main points of creating a custom data type using LCAPI 7. The resulting
data type is a “file” type, and the ability to open, close, read and write to the file are implemented via the
following member tags:

[File->Open]		 [File->Close]	 [File->Read]	 [File->Write]

Data Types Code
The example project and source files contain over 800 lines of code, and are located in the following folder:

Lasso Professional 8/Documentation/3 - Language Guide/Examples/LCAPI/Tags/CAPIFile

Do to the length of the project file (CAPIFile.cpp), the entire code is not shown here. The Data Type Walk
Through section provides a conceptual overview of the operation behind the file type example, and describes
the basic LCAPI functions used to implement it.

Note: This walk through is not fully up-to-date with the sample code in the documentation folder. The walk
through should serve as a useful road map, but the sample code should be read separately to see how it has
been updated for LCAPI 8.

Data Type Walk Through
This section provides a step-by-step conceptual walk through for building a custom file data type.

To build a custom data type:

	 1	The first step in creating a custom type is to register the type’s initializer. Type initializers are registered in
the same way that regular tag functions are registered. The only difference being that flag_typeInitializer
should be passed for the fourth (flags) parameter.

This concept is illustrated in lines 95-129 of the CAPIFile.cpp file.

void registerLassoModule()
{
	 …
	 lasso_registerTagModule("example", "file", file_init,
		 REG_FLAGS_TYPE_DEFAULT, "Initializer for the file type.");
}

	 2	The registered type initializer will be called each time a new file type is created. In the above case, the
LCAPI function file_init was registered as being the initializer. The prototype for file_init should look like
any other LCAPI function.

This concept is illustrated in line 272 of the CAPIFile.cpp file.

7 4 3

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 6 2 – L C API D a t a T y p e s

osError file_init(lasso_request_t token, tag_action_t action)

	 3	The file_init function will now be called whenever the example_file type is used in a script. Within the
type initializer, the type’s member tags are added. Each member tag is implemented by its own LCAPI
tag function. However, before members can be added, the new blank type must be created using lasso_
typeAllocCustom.

lasso_typeAllocCustom can only be used within a properly registered type initializer. The value it produces
should always be the return value of the tag as set by the lasso_returnTagValue function.

This concept is illustrated in lines 273-277 of the CAPIFile.cpp file.

{
	 lasso_type_t file;
	 …	
	 lasso_typeAllocCustom(token, &file, KFileTypeName);

	 4	Once the blank type has been created, members can be added to it. LCAPI data types often need to store
pointers to allocated structures or memory. LCAPI provides a means to accomplish this by using the lasso_
setPtrMember and lasso_getPtrMember functions. These functions allow the developer to store a pointer
with a specific name. The pointer is stored as a regular integer data member. The names of all pointer
members should begin with an underscore. Naming a pointer as such will indicate to Lasso that it should
not be copied when a copy is made of the data type instance. This LCAPI file type will store its private data
in a structure called file_desc_t.

This concept is illustrated in lines 280-281 of the CAPIFile.cpp file.

	 file_desc_t * desc = new file_desc_t;
	 lasso_setPtrMember(token, file, kPrivateMember, desc);

	 5	Members are also added for open, close, read and write.

	 lasso_type_t mem; 
	 lasso_typeAllocTag(token, &mem, file_open); 
	 lasso_typeAddMember(token, file, "open", mem);

	 lasso_typeAllocTag(token, &mem, file_close); 
	 lasso_typeAddMember(token, file, "close", mem);

	 lasso_typeAllocTag(token, &mem, file_read); 
	 lasso_typeAddMember(token, file, "read", mem);

	 lasso_typeAllocTag(token, &mem, file_write); 
	 lasso_typeAddMember(token, file, "write", mem);

This concept is illustrated in lines 286-295 of the CAPIFile.cpp file. The macro ADD_TAG is defined and
used to avoid the more repetitive activities.

	 #define ADD_TAG(NAME, FUNC) { lasso_type_t mem;\
		 lasso_typeAllocTag(token, &mem, FUNC);\
		 lasso_typeAddMember(token, file, NAME, mem);\
	 }

	 …	

	 ADD_TAG(kMemOpen, file_open);
	 ADD_TAG(kMemClose, file_close);
	 ADD_TAG(kMemRead, file_read);
	 ADD_TAG(kMemWrite, file_write);

	 6	The final member tag to add is the onDestroy member. This tag will be called automatically by Lasso when
the type goes away. Adding this tag will ensure that the file on disk is closed properly if the member tag
function file_close is not called.

This concept is illustrated in line 309 of the CAPIFile.cpp file.

	 ADD_TAG(kMemOnDestroy, file_onDestroy);

7 4 4

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 6 2 – L C API D a t a T y p e s

	 7	At this point, the return value should be set. Keep in mind that the new file type is completely blank
except for the members that were added above. No inherited members are available at this point. Inherited
members are only added after the LCAPI type initializer returns.

This concept is illustrated in line 312 of the CAPIFile.cpp file.

lasso_returnTagValue(token, file);

	 8	There were no errors in the type initialization process, so return a “no error” code to Lasso, completing the
type’s initialization.

This concept is illustrated in line 313 of the CAPIFile.cpp file.

return osErrNoErr;

Note: For brevity, this example will not cover accepting parameters in the type’s onCreate member tag. The
full CAPIFile project illustrates accepting parameters in the onCreate member to open the file under various
read and write permissions.

	 9	The new file type has now been initialized and made available to the caller in the script. The first member
of the file type is [File->Open], which is implemented as the LCAPI function file_open.

This concept is illustrated in lines 365-366 of the CAPIFile.cpp file.

osError file_open(lasso_request_t token, tag_action_t action)
{

	 10	The first step in implementing a member tag is to acquire the “self” instance. The self is the instance upon
which the member call was made.

This concept is illustrated in lines 367-370 of the CAPIFile.cpp file.

lasso_type_t self = NULL;
lasso_getTagSelf(token, &self);
if (!self)
	 return osErrInvalidParameter;

	 11	Once the self is successfully acquired and is not null, the rest of the member tag can proceed. This member
tag accepts one parameter, which is the path to the file that will be opened. Since the path is a string value,
it can be acquired using lasso_getTagParam. If the path parameter was not passed to the open member tag,
an error should be returned and indicated to the user.

This concept is illustrated in lines 380-396 of the CAPIFile.cpp file.

	 // see what parameters we are being initialized with
	 int count;
	 lasso_getTagParamCount(token, &count);
	 if (count < 2)
	 {
		 lasso_setResultMessage(token,
			 "file->open requires at least a file path and open mode.");
		 lasso_setResultCode(token, osErrInvalidParameter);
		 return osErrInvalidParameter;
	 }
	 if (count > 0) // we are given *at the least* a path
	 {
		 // first param is going to be a string, so use the LCAPI 7 call to get it
		 auto_lasso_value_t pathParam;
		 pathParam.name = "";
		 lasso_getTagParam(token, 0, &pathParam);

	 12	Now that the path parameter has been successfully acquired, permissions should be checked to make sure
access to the file is permitted by Lasso security.

This concept is illustrated in lines 232-237 of the CAPIFile.cpp file.

7 4 5

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 6 2 – L C API D a t a T y p e s

if (lasso_operationAllowed(token, op, const_cast<char*>(path)) != osErrNoErr)
{
	 lasso_setResultMessage(token,
		 "Permission to open the file was denied by Lasso security.");
	 lasso_setResultCode(token, osErrNoPermission);
	 return NULL;
}

	 13	If the current user has permission, the Lasso internal path should be converted to the platform specific
path. This is a three-step process that begins with fully qualifying the path. This will ensure that relative
paths are converted to root paths. The second step is to resolve the path. This converts root path to a
complete path which will include the hard drive name, or /// if used on a Unix platform. The final step is
to convert the path into a platform-specific format that will be understood by the platform-specific [File-
>Open] calls.

This concept is illustrated in lines 197-203 of the CAPIFile.cpp file.

{
	 osPathname qualifiedPath;
	 osPathname resolvedPath;
	 lasso_fullyQualifyPath(token, inPath, qualifiedPath);
	 lasso_resolvePath(token, qualifiedPath, resolvedPath);
	 lasso_getPlatformSpecificPath(resolvedPath, outPath);
}

	 14	Once security is checked and the path is properly converted, the actual file can be opened using the file
system calls supplied by the operating system.

This concept is illustrated in line 242 of the CAPIFile.cpp file.

FILE * f = fopen(xformPath, openMode);

	 15	The FILE pointer can now be retrieved using the lasso_typeGetCustomPtr LCAPI function. No error has
occurred while opening the file, so complete the function call and return “no error”.

This concept is illustrated in lines 426 of the CAPIFile.cpp file.

return osErrNoErr;

	 16	The remaining tag functions are implemented in a similar manner. Study the CAPIFile example for a more
in-depth and complete example of how to properly construct custom data types in LCAPI 8.

7 4 6

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 6 2 – L C API D a t a T y p e s

63
Chapter 63

LCAPI Data Sources

This chapter includes information about creating data source connectors in C/C++ using the Lasso C/C++ API
(LCAPI).

	 •	Data Source Connector Operation discusses how data source connectors can be implemented in C/C++.

	 •	Data Source Connector Tutorial walks through a sample project included with every Lasso installation.

Data Source Connector Operation
When Lasso Professional 8 starts up, it looks for module files (Windows DLLs or Mac OS X DYLIBS) in
the LassoModules folder. As Lasso encounters each module, it executes the module’s registerLassoModule()
function once and only once. It is your job as an LCAPI developer to write code to register each of your new
data source (or custom tag) function entry points in this registerLassoModule() function. Both substitution
tags and data sources may be registered at the same time, and the code for them can reside in the same
module. The only difference between registering a data source and a substitution tag is whether you call
lasso_registerTagModule() or lasso_registerDSModule().

Data sources are a bit more complex than substitution tags because Lasso Service calls them with many
different actions during the course of various database operations. Whereas a substitution tag only needs
to know how to format itself, a data source needs to enumerate its tables, search through records, add new
records, delete records, etc. Even so, this added complexity is easily handled with a single switch() statement, as
you will see in the following tutorial.

Data Source Connectors and Lasso Administration
Once a custom data source connector module is registered by Lasso, it will appear in the Setup > Data
Sources > Connectors section of Lasso Site Administration. If a connector appears here, then it has been
installed correctly.

The administrator adds the data source connection information to the Setup > Data Sources > Hosts
section of Lasso Site Administration, which sets the parameters by which Lasso connects to the data source
via the connector. This information is stored in the Lasso_Internal Lasso MySQL database, where the connector
can retrieve and use the data via function calls.

The data that the administrator can submit in the Setup > Data Sources > Hosts section of Lasso Site
Administration includes the following:

	 •	Name – The administrator-defined name of the data source host.

	 •	Connection URL – The URL string required for Lasso to connect to a data source via the connector. This
typically includes the IP address of the machine hosting the data source.

	 •	Connection Parameters – Additional parameters passed with the Connection URL. This can include the
TCP/IP port number of the data source.

	 •	Status – Allows the administrator to enable or disable the connector in Lasso Professional 5.

7 4 7

L a s s o 8 . 5 L a n g u a g e G u i d e

	 •	Default Username – The data source username required for Lasso to gain access to the data source.

	 •	Default Password – The data source password required for Lasso to gain access to the data source.

The Connection URL, Connection Parameters, Default Username, and Default Password values are passed to the data
source via the lasso_getDataHost function, which is described later in this chapter.

LCAPICALL osError lasso_getDataHost(lasso_request_t token,
		 auto_lasso_value_t * host, auto_lasso_value_t * usernamepassword);

Data Source Connector Tutorial
This section provides a walk-through of an example data source to show how some of the LCAPI features are
used. This code will be most similar to the sample SampleDataSource project, so if you want to actually build
this code, then you should copy that project folder and edit the project files inside it.

The data source will simply display some simple text as each portion is called from a Lasso inline which
does a simple database search. It is not an effective or useful data source; it’s meant to just provide an
overview of what functions must be implemented. The sample data source will simulate a data source which
has two databases, an Accounting database and a Customers database. Each of those databases in turn will
report that it has a few tables within it. For a more complete example of a data source that is useful, look at
the MySQLDataSource project.

Data Source Connector Code
Below is the code for the substitution tag module. Line numbers are provided to the left of each line of code,
and are referenced in the Data Source Connector Walk Through section.

7 4 8

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 6 3 – L C API D a t a S o u r c e s

	 void registerLassoModule(
	 {
		 lasso_registerDSModule("SampleDatasource", sampleDS_func, 0);
	 }
	 osError sampleDS_func(lasso_request_t token, datasource_action_t action, const auto_lasso_value_t *param)
	 {
		 osError	 err = osErrNoErr;
		 auto_lasso_value_t	 v1, v2;
		 switch(action)
		 {
			 case datasourceInit:
				 break;
			 case datasourceTerm:
				 break;
			 case datasourceNames:
				 lasso_addDataSourceResult(token, "Accounting");
				 lasso_addDataSourceResult(token, "Customers");
				 break;
			 case datasourceExists:
				 if((strcmp(param->data, "Accounting") != 0)
					 && (strcmp(param->data, "Customers") != 0))
					 err = osErrWebNoSuchObject;
				 break;
			 case datasourceTableNames:
			 if(strcmp(param->data, "Accounting") == 0) {
					 lasso_addDataSourceResult(token, "Payroll");
					 lasso_addDataSourceResult(token, "Payables");
					 lasso_addDataSourceResult(token, "Receivables");
				 }
				 if(strcmp(param->data, "Customers") == 0) {
					 lasso_addDataSourceResult(token, "ContactInfo");
					 lasso_addDataSourceResult(token, "ItemsPurchased");
				 }
				 break;
			 case datasourceSearch:
				 lasso_getDataSourceName(token, &v1);
				 lasso_getTableName(token, &v2);
				 if(strcmp(v1.data, "Accounting") == 0) {
					 int	 count, i;
					 lasso_getInputColumnCount(token, &count);
					 for(i=0; i<count; i++) {
						 auto_lasso_value_t	 columnItem;
						 lasso_getInputColumn(token, i, &columnItem);
					
					 if(strcmp(v2.data, "Payroll") == 0) {
						 char *row1[] = {"Samuel Goldwyn", "1955-03-27", "15000.00"};
						 unsigned int sizes1[3] = {14, 10, 8};
						 lasso_addColumnInfo(token, "Employee", false, typeChar, kProtectionNone);
						 lasso_addColumnInfo(token, "StartDate", false, typeDateTime, kProtectionNone);
						 lasso_addColumnInfo(token, "Wages", false, typeDecimal, kProtectionNone);
						 lasso_addResultRow(token, (const char **)&row1, (unsigned int *)&sizes1, (int)3);
						 lasso_setNumRowsFound(token, 1);
					 }
				 }
				 if(strcmp(v1.data, "Customers") == 0) {
				 }
				 break;
			 case datasourceAdd:
				 lasso_outputTagData(token, "datasourceAdd was called to append a record
");
				 break;
			 case datasourceUpdate:

7 4 9

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 6 3 – L C API D a t a S o u r c e s

				 lasso_outputTagData(token, "datasourceUpdate was called to replace a record
");
				 break;
			 case datasourceDelete:
				 lasso_outputTagData(token, "datasourceDelete was called to remove a record
");
				 break;
			 case datasourceInfo:
				 lasso_outputTagData(token, "datasourceInfo was called
");
				 break;
			 case datasourceExecSQL:
				 lasso_outputTagData(token, "datasourceExecSQL was called
");
				 break;
		 }
		 return err;
	 }

Data Source Connector Walk Through
This section provides a step-by-step walk through for building the data source connector.

To build a sample LCAPI Data Source Connector:

	 1	Register the new data source in the required registerLassoModule() export function. It’s similar to the way you
register a substitution tag.

	 void registerLassoModule()
	 {
		 lasso_registerDSModule("SampleDatasource", sampleDS_func, 0);
	 }

	 2	Now implement sampleDS_func, the function which gets called when any database operations are
encountered.

	 osError sampleDS_func(lasso_request_t token, datasource_action_t action, const auto_lasso_value_t *param)

All data source functions have this prototype. When your data source function is called, it’s passed an
opaque “token” data structure, an integer “action” telling it what it should do, and an optional parameter
which sometimes contains extra information (like a database name) needed by the action being requested
at that time.

	 3	Set a default error return value that indicates no error. Returning a non-zero value will cause the Lasso
Professional engine to report a fatal error and stop processing the page.

	 {
		 osError err = osErrNoErr;
		 auto_lasso_value_t v1, v2;
		 switch(action)
	 {

Declare a couple of temporary variables to be used later to retrieve important values such as database
names and table names. This function gets called with various different actions as Lasso Professional
requests information from our data source. This switch statement distinguishes between those various
actions.

	 4	datasourceInit is called once when Lasso Professional starts up. This gives us a chance to initialize any
communications with our database back-end, and set any global variables (including semaphores) we’ll
need later. This is called once when Lasso Professional starts up. Because this data source is so simple, it
needs no special initialization calls.

7 5 0

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 6 3 – L C API D a t a S o u r c e s

	 case datasourceInit:
		 break;
	 case datasourceTerm:
		 break;
	 case datasourceNames:
			 lasso_addDataSourceResult(token, "Accounting");
			 lasso_addDataSourceResult(token, "Customers");
		 break;
	 case datasourceExists:
		 if((strcmp(param->data, "Accounting") != 0)
			 && (strcmp(param->data, "Customers") != 0))
			 err = osErrWebNoSuchObject;
		 break;	

datasourceTerm is called once when Lasso Professional shuts down. Because this data source is so simple, it
needs no special shutdown code. Normally you would close your connection to your back-end data source
and release any semaphores you created.

datasourceNames is called whenever Lasso Professional needs to get a list of databases which your data
source provides access to. The developer must write code that discovers a list of all the databases your
database ’knows about’ and call lasso_addDataSourceResult() once for each found database, passing the name
of the database. If the data source deals with five databases, then you would call lasso_addDataSourceResult()
five times, once for each database name.

Because we are simulating a data source which knows about the Accounting and Customers databases, call
lasso_addDataSourceResult() to add Accounting and Customers to the returned list of database names.

For datasourceExists, Lasso Professional is asking use if we know a particular database exists (meaning, do we
control this database). The name of the database we should look up is passed in the C-string param->data. If
we don’t know about the database in question, then return osErrWebNoSuchObject. The conditional statement
does a simple string comparison against our hard-coded database name Accounting, and then against our
hard-coded database name Customers. If neither of the previous string comparisons matched, then return
the error code osErrWebNoSuchObject indicating that we do not know anything about the requested database.

	 5	Lasso Professional will also need to call on the database tables once per database, passing the database
name in the param->data value. datasourceTableNames enumerates the list of tables within that named
database.

	 case datasourceTableNames:
		 if(strcmp(param->data, "Accounting") == 0) {
			 lasso_addDataSourceResult(token, "Payroll");
			 lasso_addDataSourceResult(token, "Payables");
			 lasso_addDataSourceResult(token, "Receivables");
		 }

The conditional statement checks to see if we are being asked about our Accounting database, and if so adds
the Payroll table to the list of known tables by calling lasso_addDataSourceResult(), and so forth.

	 6	Next, Lasso Professional will need to check to see if there are inquiries regarding the Customers database.

	 if(strcmp(param->data, "Customers") == 0) {
		 lasso_addDataSourceResult(token, "ContactInfo");
		 lasso_addDataSourceResult(token, "ItemsPurchased");
	 }
		 break;

Lasso Professional adds the ContactInfo table to the list of known tables by calling lasso_addDataSourceResult().
Continue adding table names to the Customers database by calling lasso_addDataSourceResult(), this time for
the ItemsPurchased table.

	 7	Use datasourceSearch to perform a search on the database.

7 5 1

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 6 3 – L C API D a t a S o u r c e s

	 case datasourceSearch:
		 lasso_getDataSourceName(token, &v1);
		 lasso_getTableName(token, &v2);
			 if(strcmp(v1.data, "Accounting") == 0) {
				 int	 count, i;
				 lasso_getInputColumnCount(token, &count);
					 for(i=0; i<count; i++) {
					 auto_lasso_value_t columnItem;
					 lasso_getInputColumn(token, i, &columnItem);
					 }
			 }

All of the information (database and table names, search arguments, sort arguments, etc.) can be retrieved,
and a search can be performed by calling various LCAPI functions such as lasso_getDataSourceName() and
lasso_getTableName() to get the name of the database and table, respectively. A complete list of data source
functions is here.

lasso_getDataSourceName asks Lasso Professional to give us the database name which is to be searched.
This is often the value of the -Database parameter value in an inline tag. lasso_getTableName asks Lasso
Professional to give us the table name to be searched. This is often the value from the -Layout or -Table
parameter value from an inline tag.

The conditional statement checks to see if the database being searched is Accounting. If so, declare a couple
of temporary integers, one for holding the number of search parameters. lasso_getInputColumnCount asks Lasso
how many search fields (columns) were specified by the user for this search. For instance, if the Lasso inline
tag passed three different fields to be searched, then lasso_getInputColumnCount() returns 3.

Declare a temporary variable which will receive the name/value pair information from the next line of
code. Retrieve the name/value text for the nth requested search parameter. For instance, an inline will fill
the columnItem variable with the values Employee, fred the first time through the loop, and Wages, 15000 the
second time through the loop.

[Inline: -Database='Accounting', -Table='Payroll', 'Employee'='fred', 'Wages'='15000']

	 8	Next, set a conditional statement to ask if the Payroll table is being searched. If so, we’ll set up some fake
hard-coded data in the next few lines of code. Declare an array of strings which represents the three fields
we will return for this search. Declare an array of field sizes to match the lengths of the strings created on
the previous line.

7 5 2

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 6 3 – L C API D a t a S o u r c e s

	 if(strcmp(v2.data, "Payroll") == 0) {
		 char *row1[] = {"Samuel Goldwyn", "1955-03-27", "15000.00"};
		 unsigned int sizes1[3] = {14, 10, 8};
		 lasso_addColumnInfo(token, "Employee", false, typeChar, kProtectionNone);
		 lasso_addColumnInfo(token, "StartDate", false, typeDateTime, kProtectionNone);
		 lasso_addColumnInfo(token, "Wages", false, typeDecimal, kProtectionNone);
		 lasso_addResultRow(token, (const char **)&row1, (unsigned int *)&sizes1(int)3);lasso_setNumRowsFound(token, 1);
		 }
	 }
	 if(strcmp(v1.data, "Customers") == 0) {
	 }
		 break;
	 case datasourceAdd:
		 lasso_outputTagData(token, "datasourceAdd was called to append a record
");
		 break;
	 case datasourceUpdate:
			 lasso_outputTagData(token, "datasourceUpdate was called to replace a record
");
		 break;
	 case datasourceDelete:
		 lasso_outputTagData(token, "datasourceDelete was called to remove a record
");
		 break;
	 case datasourceInfo:
		 lasso_outputTagData(token, "datasourceInfo was called
");
		 break;
	 case datasourceExecSQL:
		 lasso_outputTagData(token, "datasourceExecSQL was called
");
		 break;
	 }
		 return err;
	 }

lasso_addColumnInfo tells LCAPI what the column names and data types are. Do this by calling
lasso_addColumnInfo() once per column. In this line, the Employee column is described as text (typeChar) with
no protection (kProtectionNone). In the next line, the StartDate column is described as date (typeDateTime) with
no protection (kProtectionNone).

The last column Wages is described as being numeric (typeDecimal), with no protection (kProtectionNone). Now
lasso_addResultRow() can be called as many times as there are rows of data to return. In this case, only one
row is returned. Now LCAPI must be told how many total rows were found.

7 5 3

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 6 3 – L C API D a t a S o u r c e s

64
Chapter 64

Lasso Connector Protocol

This chapter documents Lasso Connector Protocol (LCP) and describes how to develop Lasso Web server
connectors.

	 •	Overview introduces Lasso Connector Protocol.

	 •	Requirements includes platform specific development environment details.

	 •	Lasso Web Server Connectors introduces the theory of operation behind creating Lasso Web server
connectors using LCP.

	 •	Lasso Connector Operation describes the theory and operation behind building Lasso Web server
connectors.

	 •	Lasso Connector Protocol Reference provides a reference of all commands and parameters used in LCP.

Overview
Lasso Web server connectors are small modules written specifically for a particular brand of Web server. Lasso
Professional 8 initially includes connectors for Microsoft IIS (Intel architecture), Apple Mac OS X’s Apache
(PowerPC architecture), and 4D WebSTAR Server Suite V for Mac OS X. A connector for Red Hat Apache
(Intel architecture) is also available.

The purpose of Lasso Connector Protocol (LCP) is to provide an efficient and platform-independent way of
communication between a Lasso connector (client) and Lasso Service (server). Included are sample projects
which give you full source code to the Web server connectors which ship with Lasso (e.g. Lasso Connector for
IIS and Lasso Connector for Apache).

LassoSoft encourages developers to create and distribute new Web server connectors in order to give Lasso
developers as many choices as possible for developing Lasso-based data-driven Web sites.

Requirements
In order to write your own Lasso Web server connector in C or C++, you will need the following:

Windows:

	 •	Microsoft Windows 2000 or Windows XP Professional

	 •	Microsoft Visual C++ .NET.

	 •	Windows Lasso Professional version 8.0 or higher.

Mac OS:

	 •	Mac OS X 10.3 with GNU C++ compiler and linker (Dev Tools) installed.

	 •	Mac OS X Lasso Professional version 8.0 or higher.

7 5 4

L a s s o 8 . 5 L a n g u a g e G u i d e

Lasso Web Server Connectors
All modern Web servers have some form of suffix mapping, where they re-route HTTP requests to various
modules based on their file suffix (e.g. .lasso). Modules have different names depending on which Web server
you’re using: ISAPI DLL, Apache Module, W*API plugin, etc. Once the Web server calls the Lasso Web server
connector, it is the job of the Lasso Web server connector to collect all the information from a particular
request, and pass it all along to a Lasso Service application that it’s set up to talk to. Then it waits for Lasso
Service to finish processing the request, and receives back some MIME headers and HTML body text. At this
point it’s the connector’s job to pass the text back to the Web server, which in turn sends it back out to the
requesting browser. All communication is via TCP/IP, so the Web server connector and Lasso Service may be
on separate machines with different architectures.

Lasso Web server connectors also have another job, which is to decode and write out HTTP-upload files. As
you examine the sample source code, you’ll see that it interprets the incoming POST arguments, writes out
temporary files, and passes a special list of filename arguments through to Lasso Service on the other side of
the TCP connection.

Note: Only a single Lasso Web server connector can connect with Lasso Service at a time in Lasso Professional 8.

Getting Started
This section provides a walk-through for building a custom Web server connector in Windows 2000 and Mac
OS X.

To build a sample Web server connector in Windows 2000/XP:

	 1	Browse to the Lasso Professional 8\Documentation\3 - Language Guide/
Examples/LCAPI/Connectors/Lasso Connector for IIS folder on the hard drive.

	 2	Double-click the ISAPIConnector.sln project file — you need Microsoft Visual C++ .NET in order to open it.

	 3	Choose Build/Build Solution to compile and make the ISAPIConnector.dll.

	 4	After building, Debug and Release folders will have been created inside your ISAPIConnector project folder.

	 5	Open IIS Admin and shut down IIS (so that any previous ISAPIConnector.dll files will not be held open inside
IIS).

	 6	Open the Lasso Connector for IIS/Debug folder and drag ISAPIConnector.dll into your Windows/System32 folder.

	 7	Restart IIS using the Services menu in the windows Control Panel.

	 8	Assuming you already have Lasso installed on this machine, your suffix mappings should all work, and
Lasso should function just as it did before.

	 9	Use a Web browser to view http://your.Web.server/ and make sure the .lasso suffix mapping is still working.

To build a sample Web server connector in Mac OS X:

	 1	Open a Terminal window.

	 2	Change the current folder to the Documentation folder by entering the following:

cd /Applications/Lasso\ Professional\ 7/Documentation/3\ -\ Language\ Guide/Examples/LCAPI/Connectors/Lasso\ Connector\
for\ Apache

	 3	Build the sample project using the provided makefile. You must be logged in as the root user to run this
command.

make

	 4	After building, a Mac OS X dynamic library file will be in the current folder: Lasso8ConnectorforApache.so.
This is the module you’ll install into the ApacheModules folder.

	 5	Copy the newly-created module to the LassoModules folder by entering the following:

cp LassoConnectorforApache.so /usr/libexec/httpd/

	 6	Logged in as root user, restart apache so it loads the new module.

7 5 5

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 6 4 – L a s s o C o n n e c t o r P r o t o c o l

su <enter root password here> apachectl restart

Assuming you already have Lasso installed on this machine, your suffix mappings should all work, and
Lasso should function just as it did before.

	 7	In a Web browser, go to http://your.Web.server/ and try a few things to make sure the .lasso suffix mapping is
still working.

Lasso Connector Operation
Communication between the Lasso Web server connector (client) and Lasso Service (server) is achieved by
means of exchanging messages via a regular TCP/IP socket on port 14552. A typical session is initiated by a
client and consists of the following steps:

	 1	Connect to Lasso Service host on port 14552.

	 2	Send the open request command.

	 3	Handle requests sent back from Lasso.

	 4	Repeat previous step until the close request command is received.

	 5	Close the connection.

All messages to and from Lasso Service begin with the LPCommandBlock structure, and are optionally followed
by an arbitrary number of data bytes if needed. The LPCommandBlock structure is defined as follows:

typedef enum LPCommand; 
typedef int LPRequestID; 
typedef unsigned int LPSequenceNum; 
typedef struct LPCommandBlock  
{ 
	 LPCommand fCmd;
 	 int fResultCode;
 	 unsigned int fDataSize; 
};

The meaning of each LPCommandBlock structure member is explained in the following table.

Table 1: LPCommandBlock Structure Members

Command	 Description	

fCmd	 The command. For a list of currently defined commands see the Command
Reference at the end of this chapter.

fResultCode	 The result of the command. Used if the command is a reply.

fDataSize	 The size of the additional command-specific data to follow (may be zero).
		

Lasso Connector Protocol Reference

LCP Commands
This section lists all of the commands used in LCP.

cmdProtoErr

Indicates that an error has occurred in the use of the protocol.

Data Required	 Four-byte integer indicating the error code. Any additional data will be a textual description of
what went wrong.

Sent By 	 Lasso Service

Reply 	 None

7 5 6

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 6 4 – L a s s o C o n n e c t o r P r o t o c o l

cmdCloseReq

Sent by Lasso Service when there is no more data to be sent to the Web browser.

Data Required	 None

Sent By	 Lasso Service or client.

Reply	 None

cmdGetParam

Request to return the value of a “named” parameter - server/environment variable or an HTTP request.

Data Required 	 RequestParamKeyword as defined in RequestParams.h Then a four-byte integer indicating
the size of the data for the argument. Multiple params may follow.

Sent By	 Lasso Service

Reply	 cmdGetParamRep

cmdGetParamRep

Returns the value of a “named” parameter, as requested by cmdGetParam command.

Data Required 	 RequestParamKeyword as defined in RequestParams.h, then a four-byte integer indicating
the size of the character data for the requested param. If multiple params were requested,
the data for each param should follow in the original order.

Sent By 	 client

Reply 	 None

cmdPushData

Push partially processed data to a Web browser.

Data Required 	 The data that should be sent to the web browser.

Sent By 	 LassoService

Reply	 None

Named Parameters
The following table lists all named parameters used in LCP. These parameters are enumerated in the
RequestParams.h file.

Table 2: Named Parameters

Parameter	 Description	

rpSearchArgKeyword 	 All text in URL after the question mark.

rpUserKeyword 	 Username sent from browser.

rpPasswordKeyword	 Password sent from browser.

rpAddressKeyword 	 IP address of client browser.

rpPostKeyword 	 HTTP object body (form data, etc.).

rpMethodKeyword 	 GET or POST, depending on <form method>.

rpServerName 	 IP address of server on which the Web server is running.

rpServerPort 	 IP port this hit came to (80 is common, 443 for SSL).

rpScriptName 	 Relative path from server root to this Lasso page.

rpContentType 	 MIME header sent from client browser.

rpContentLength 	 The length in bytes of the POST data sent from <form POST>.

rpReferrerKeyword 	 URL of referring page.

rpUserAgentKeyword 	 Browser name and type.

rpClientIPAddress 	 IP address of client browser.

rpFullRequestKeyword 	 All MIME headers, uninterpreted.
		

7 5 7

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 6 4 – L a s s o C o n n e c t o r P r o t o c o l

7 5 8

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 6 4 – L a s s o C o n n e c t o r P r o t o c o l

X
Section X

Lasso Java API

This section includes instructions for extending the functionality of Lasso by creating new tags, data types,
and Web server connectors written in Java.

	 •	Chapter 65: LJAPI Introduction includes general information about extending Lasso’s functionality.

	 •	Chapter 66: LJAPI Tags discusses how to create new tags in LJAPI including substitution tags, asynchro-
nous tags, and remote procedures.

	 •	Chapter 67: LJAPI Data Types discusses how to create new data types in LJAPI including sub-classing and
symbol overloading.

	 •	Chapter 68: LJAPI Data Sources includes information about how to create new data source in LJAPI.

	 •	Chapter 69: LJAPI Reference includes information about each of the function calls available in LJAPI.

Lasso can also be extended using LassoScript or C/C++. See the preceding sections on the LassoScript API or
the Lasso C/C++ API (LCAPI) for more information..

7 5 9

L a s s o 8 . 5 L a n g u a g e G u i d e

65
Chapter 65

LJAPI Introduction

This chapter provides an introduction to the Lasso Java API (LJAPI) which allows new tags, data types, and
data source connectors to be written in Java.

	 •	Overview introduces the Lasso Java API.

	 •	What’s New discusses what’s new in this version of LJAPI.

	 •	LJAPI vs LCAPI discusses when modules should be implemented in C/C++ versus Java.

	 •	Requirements includes system requirements for building LJAPI modules.

	 •	Getting Started includes basic information about how to build LJAPI modules.

	 •	Debugging includes information about how to debug LJAPI modules within Lasso.

	 •	Frequently Asked Questions includes several frequently asked questions and answers.

Overview
The Lasso Java Application Programming Interface (LJAPI) lets you write Java code to add new Lasso tags,
data source connectors, and data types to Lasso Professional 8. LJAPI is similar to LCAPI, but is tailored for
the Java language.

Custom tags written in LJAPI instantly support each platform. One of the important reasons for developing
LJAPI modules is an enormous class library included with each Java VM install, covering almost every single
programming need, from text processing to 2D/3D imaging to various network protocol implementations.

This chapter provides a walk-through for building an example substitution tag in LJAPI. Source code for
the ZipCountTag module, as well as the code for the substitution tag, data source connector, and data type
examples are included in the Lasso Professional 8/Documentation/4-ExtendingLasso/LJAPI folder on the hard drive.

What’s New
Lasso Professional 8 includes some minor enhancements over the version of LJAPI that shipped with Lasso
Professional 6. This section provides a quick summary of the history of LJAPI.

	 •	LJAPI – LJAPI was introduced with Lasso Web Data Engine 3 in October 1998. Modules created using
this version of LJAPI are generally compatible with all versions of Lasso from 3 through 6. This API is
sometimes referred to as LJAPI 5.

Lasso Professional 5 included some minor enhancements to LJAPI from Lasso WDE 3.x, but the API
remained largly unchanged. Lasso Professional 5 also introduced the Lasso C/C++ API (LCAPI) for C/C++
programmers.

	 •	LJAPI 6 – Lasso Professional 6 included a complete rewrite of LJAPI. The most important change in
LJAPI 6 is that it is now built upon LCAPI. Both API’s share the same functionality and provide a single
programming interface, making it easier for developers who wish to learn both APIs.

7 6 0

L a s s o 8 . 5 L a n g u a g e G u i d e

Lasso Professional 6 shipped with support for both LJAPI 5 (and earlier) modules and LJAPI 6 modules.

	 •	LJAPI 7 – Lasso Professional 7 supports all modules created with LJAPI 6. There are some minor
enhancements to the APIs, but no significant changes over the previous version. Lasso Professional 7 did
not support modules written for LJAPI 5 or earlier.

	 •	LJAPI 8 – Lasso Professional 8 supports all modules created with LJAPI 6 or 7. There are some minor
enhancements to the APIs, but no significant changes over the previous version. Lasso Professional 8 does
not support modules written for LJAPI 5 or earlier.

Each new release of Lasso brings enhancements to the Lasso programming language, built-in data types, data
sources, LCAPI, and more. While the basic API for LJAPI is not exepcted to change significantly post-LP6, new
releases of LJAPI may include support for any new features of Lasso or LCAPI that can be expressed in the
API.

Modules written to the LJAPI 6 specifications should be compatible with Lasso Professional 8. Modules
written to the LJAPI 7 specifications should be compatible with Lasso Professional 6 provided that no LP7-
specific features are accessed. Modules written to the LJAPI 5 (or earlier) specifications will not work in Lasso
Professional 8.

LJAPI vs. LCAPI
Developers who have experience creating LCAPI modules will find themselves familiar with the Lasso Java
API. Similarly, Java developers who learn to use LJAPI 7 will find it easy to write LCAPI modules once they are
ready to make a transition to a different language.

The following sections outlines a few basic differences between LCAPI 7 and LJAPI 7.

LJAPI is Object-Oriented
The majority of Lasso API functions must be aware of the current Lasso state in order to operate correctly. In
order to solve the problem resulting from the non-OO nature of the C-based Lasso API, LCAPI introduced the
token concept. When Lasso calls one of the methods implemented by an LCAPI module, it passes an opaque
parameter of type lasso_request_t, which encapsulates the information about the current state of the request.
The module then makes calls to Lasso while passing the token in the first parameter to every API function.

In LJAPI 7, the same state information is stored in an instance of the LassoCall Java class. All LJAPI 7 functions
are implemented as members of the LassoCall class, which eliminates the need to pass a token parameter with
each call.

This results in one of the most notable differences between LJAPI and LCAPI, in that LJAPI methods usually
take one parameter less that their native LCAPI counterparts.

LJAPI Uses Shorter Function Names
In LCAPI, function names begin with the lasso_ prefix, reflecting the name space in which they reside.
However, the corresponding LJAPI methods are implemented as members of LassoCall class. For this reason,
the lasso_ prefix has been removed from all Java method names.

The following shows the lasso_getTagName function in LCAPI:

lasso_getTagName(lasso_request_t token, auto_lasso_value_t &name);

The following shows the equivalent getTagName method in LJAPI:

getTagName(LassoValue name);

Tokenless LCAPI Functions are Static Methods in LJAPI
There are few LCAPI functions that do not take the token state parameter. These functions are implemented
in LJAPI as static methods of the LassoCall class:

7 6 1

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 6 5 – L J API I n t r o d u c t i o n

The following shows the lasso_registerConstant function in LCAPI:

osError lasso_registerConstant(const char * name, lasso_type_t val);

The following shows the equivalent registerConstant method in LJAPI:

int LassoCall.registerConstant(String name, LassoTypeRef val);

LJAPI Does Not Use Function Pointers
Some LCAPI functions use a function pointer parameter of type lasso_tag_func. Since function pointers do not
exist in Java, the corresponding LJAPI methods instead accept a pair of string parameters that specify the class
and method name.

The following shows the lasso_typeAllocTag function in LCAPI:

osError lasso_typeAllocTag (lasso_request_t token, lasso_type_t * outTag, lasso_tag_func nativeTagFunction);

The following shows the equivalent typeAllocTag method in LJAPI:

int typeAllocTag (LassoTypeRef outTag, String className, String methodName);

Requirements
In order to write your own Lasso substitution tags, data source connectors, or custom data types in Java, you
will need the following:

Windows
	 •	Microsoft Windows 2000, Microsoft Windows XP Professional, or better.

	 •	Java 2 SDK 1.4 or higher.

	 •	Windows Lasso Professional 8 or higher.

Mac OS
	 •	Mac OS X with Java 2 SDK installed (included).

	 •	Mac OS X Lasso Professional 8 or higher.

Getting Started
This section provides a walk-through for building sample LJAPI tag modules in Windows 2000/XP and Mac
OS X.

To build a sample LJAPI tag module using Apache Ant:

Apache Ant is a de-facto standard Java-based build tool, part of the Apache open-source initiative.

In order to build the sample code, you will need to install complete Ant package, downloadable from the
following location:

http://ant.apache.org/

If you do not wish to install Apache Ant at this time, you can skip to the next section for instructions on
building the code examples with the javac compiler tool.

Note: All LJAPI examples have been tested with the most recent stable version of the Ant tool (v1.5.2) available
at the time of the Lasso Professional 8 release.

7 6 2

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 6 5 – L J API I n t r o d u c t i o n

To build all included code examples:

	 1	Launch the command prompt (Windows 2000/XP), or open the Terminal application (Mac OS X)

	 2	Locate the following folder in the hard drive:

Lasso Professional 8/Documentation/4-ExtendingLasso/LJAPI/Sample Code

	 3	Make this folder your current working directory.

		 Windows:

 cd "C:\Program Files\OmniPilot Software\Lasso Professional 8\Documentation\4-ExtendingLasso\LJAPI\Sample Code"

		 Mac OS X:

 cd "/Applications/Lasso Professional 8/Documentation/4-ExtendingLasso/LJAPI/Sample Code"

	 4	Invoke Ant tool by entering the “ant” command at the command prompt, optionally followed by the target
(sub-project) name:

ant <target-name>

		 Compiled LJAPI modules will be placed in the Modules (output) folder located inside the Sample Code
directory.

	 5	To install sample LJAPI modules using the Ant tool, enter the following command at the command
prompt:

ant install

		 Sample LJAPI modules can also be installed manually, by dragging one or more Java class/jar files from the
Modules (output) folder to the LassoModules folder.

	 6	Restart Lasso Professional.

Please note that, when launched without an optional target name parameter (step 4), Ant will execute the
default target defined in the “build.xml” descriptor file. This target has been pre-configured to compile all
sample LJAPI modules. Individual modules can be also built separately by specifying one of the following
target names on the command line: zipcount, zip, pdf, nntp, mysql, xml or docs.

Two special targets (clean and install) can be used for deleting the contents of the Modules (output) directory, and
copying LJAPI modules to the LassoModules folder, respectively.

For further details, please see the contents of the build.xml descriptor file.

Alternately, you can also build the ZipCountTag module using the <javac> command-line tool included with
Java SDK from Sun Microsystems.

To build ZipCountTag module using the <javac> command-line tool:

	 1	Launch the Windows 2000/XP command prompt.

	 2	Make the following folder your current directory.

C:\Program Files\OmniPilot Software\Lasso Professional 8\
Documentation\4-ExtendingLasso\LJAPI\Sample Code\Substitution Tags\ZipCountTag

	 3	Enter the path of the Java compiler tool javac, followed by the -classpath option keyword and the path to the
LJAPI.jar file (contains all Java classes used by LJAPI modules), followed by the ZipCountTag module source
file path:

javac -classpath ../../../../../../LassoModules/LJAPI.jar ZipCountTag.java

		 If Java SDK has been installed in the jdk1.4 folder, your command line might look like this:

C:\jdk1.4\bin\javac -classpath ..\LJAPI.jar ZipCountTag.java

	 4	After building, a ZipCountTag.class file will be created inside your ZipCountTag project folder.

	 5	Open the ZipCountTag folder and drag ZipCountTag.class into the Lasso Professional 8\LassoModules folder on the
hard drive.

	 6	Stop and then restart Lasso Service.

7 6 3

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 6 5 – L J API I n t r o d u c t i o n

	 7	The new tag [Zip_Count] is now part of the Lasso language.

	 8	Drag the sample Lasso page called ZipCountTag.lasso and the LJAPITest.zip test file into your Web server root.

	 9	In a Web browser, view http://localhost/ZipCountTag.lasso to see the new Lasso tags in action.

To build a sample LJAPI tag module in Mac OS X:

	 1	Open a Terminal window.

	 2	Change the current folder to the Lasso Professional 8/Documentation folder using the following command:

cd /Applications/Lasso\ Professional\ 7/Documentation/4-ExtendingLasso/LJAPI/Sample\ Code/Substitution\ Tags/
ZipCountTag

	 3	Build the sample project using the provided makefile. This requires that you be logged in as the root user.

make

		 Alternatively, you can build the module by manually invoking the Java compiler:

javac -classpath ../../../../../../LJAPI.jar ZipCountTag.java

	 4	After building, a Java class file named ZipCountTag.class will be created in the current folder. This is the LJAPI
module you’ll install into the LassoModules folder.

	 5	Copy the newly-created module to the Lasso modules folder using the following command:

cp ZipCountTag.class /Applications/Lasso\ Professional\ 7/LassoModules

	 6	Quit Lasso Service if it’s running, so that the next time it starts up, it will load the new module you just
built (you’ll need to know a root password to use sudo).

cd /Applications/Lasso\ Professional\ 7/Tools/
sudo ./stoplassoservice.command

	 7	Start the Lasso Service back up, so it will load the new module.

sudo ./startlassoservice.command

		 The new [Zip_Count] tag is now part of the Lasso language.

	 8	Copy the sample Lasso page called ZipCountTag.lasso and the LJAPITest.zip test file from your
Lasso Professional 8/Documentation/4-ExtendingLasso/LJAPI/Tags/ZipCountTag
folder into your Web server document root.

	 9	Use a Web browser to view http://localhost/ZipCountTag.lasso to see the new Lasso tags in action.

Debugging
You can set breakpoints in your LJAPI class files and perform source-level debugging for your own code. In
order to set this up, add path information to your project so it knows from where to load executables. For
this section, we will use the provided substitution tag project as the example.

To set breakpoints in your LJAPI code:

	 1	Lasso Professional 8 allows you to specify Java Virtual Machine options used for launching JVM upon Lasso
startup. These options are stored in the lasso_internal.global_prefs table as java_vm_options in the store_key field.
To enable remote debugging on port 8000, add the following two options to the data column in the
lasso_internal.global_pref table:

-Xdebug -Xrunjdwp:transport=dt_socket,address=8000,server=y,suspend=n

	 2	After restarting Lasso Professional 8, launch JDB with the following option:

jdb -attach 8000

7 6 4

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 6 5 – L J API I n t r o d u c t i o n

	 3	Once attached to the JVM, you can set the breakpoints, single-step through your code, catch exceptions, etc.
Please note that you can store multiple JVM options in the same column. To monitor the GC activity, add
-verbose:gc option, or use -verbose:jni to print JNI messages to the standard output.

		 For more information on the options available for your platform and JVM, please consult the JVM vendor
documentation. For a list of non-standard options available for your JVM, review the Xusage.txt file:

		 Mac OS X:

/System/Library/Frameworks/JavaVM.framework/Home/lib/Xusage.txt

		 Windows:

 <path-to-jvm.dll>/Xusage.txt

7 6 5

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 6 5 – L J API I n t r o d u c t i o n

66
Chapter 66

LJAPI Tags

This chapter includes information about creating tags in Java using the Lasso Java API (LJAPI).

	 •	Substitution Tag Operation discusses how to create new Lasso tags in Java.

	 •	Substitution Tag Tutorial walks through an example project that ships with every installation of Lasso.

Substitution Tag Operation
An LJAPI module is essentially a regular Java class file. When Lasso Professional 8 first starts up, it looks for
module files (Windows DLLs or Mac OS X DYLIBS) in its LassoModules folder. As it encounters and loads an
LJAPI 7 module, it launches the JVM and proceeds to scan the folder for other LJAPI modules. Upon finding a
Java class file, Lasso attempts to determine if it is derived from the com.omnipilot.lassopro.JavaModule class. If it is,
then Lasso loads the class while performing necessary instantiation and calls the registerLassoModule() function
that is implemented in that class:

public void registerLassoModule()

At this point, the module must call the following method as many times as needed, once for each tag
implemented by the module:

void registerTagModule(String moduleName,
						 String tagName,
						 String methodName,
						 int flags,
						 String description);

After a tag module is registered with Lasso Professional 8, it can provide information about the name of the
tag and the name of the Java method that is implementing that tag. It also can provide a short description,
and any special flags describing unique features implemented by that tag.

All registered information is later used for dispatching the task of executing a particular tag found in a .lasso
Lasso page to an appropriate LJAPI module, or executing a data source action.

For example, the following code tells Lasso to call the Java class called ZipCountTag whenever the code
[Zip_Count] is encountered inside a .lasso Lasso page. The first parameter of the registerTagModule method is the
module name, the second is the tag name, and the third one is the name of the function implementing the
tag. The last two parameters are the tag type flag and a short description:

public void registerLassoModule()
	 {
		 registerTagModule("ZipCountTag", "zip_count", "myZipCountFunc",
 FLAG_SUBSTITUTION, "Count items in a zip file");
	 }

Below is the code needed in a Lasso page in order to get the custom tag to execute:

7 6 6

L a s s o 8 . 5 L a n g u a g e G u i d e

<html>
 <body>
 Count of items in the LjapiTest.zip file:
 [Zip_Count:'LjapiTest.zip']
 <!-- This should display "2" when page executes -->
 </body>
</html>

This will produce the following:

➜	 2

Substitution Tag Tutorial
The following section provides a walk-through of building an example tag to show how LJAPI features are
used. This code will be most similar to the sample ZipCountTag LJAPI project. In order to build this project,
copy the ZipCountTag project folder and edit the project files inside it.

The module relies on a Java class library to do most of the work, particularly the java.util.zip package which
provides a variety of functions for manipulating the contents of Zip files—standard compressed archives
widely used on the Internet.

The [Zip_Count] tag implemented in the ZipCountTag LJAPI module simply displays the number of files and
directories stored in a Zip file when called from a Lasso page.

Example sample tag Lasso syntax:

[Zip_Count: -Zipfile='LJAPITest.zip', -FilesOnly]

Notice the required convention of placing a dash in front of all named parameters in order to make them
easier to spot in the Lasso code, and prevent ambiguities in the Lasso parser. Notice the tag takes one string
parameter named -Zipfile, and an optional keyword parameter named -FilesOnly. In general, Lasso does not
care about the order in which you pass parameters, so plan to make this tag as flexible as possible by not
assuming anything about the order of parameters. The following variations should work exactly the same.

Example of sample tag with different ordered parameters:

[Zip_Count: -Zipfile='LJAPITest.zip', -FilesOnly]

[Zip_Count: -FilesOnly, -Zipfile='LJAPITest.zip']

Substitution Tag Module Code
Shown below is the code for the substitution tag module. Line numbers are provided to the left of each line
of code, and are referenced in the Substitution Tag Module Walk-Through section.

Note: The line numbers shown refer to the line numbers of the code in the actual file being created, not as
shown in this page. Some single lines of code may carry into two or more lines as shown on this page.

Substitution Tag Module Code

	 1	 import com.omnipilot.lassopro.*;
	 2	 import java.io.*;
	 3	 import java.util.*;
	 4	 import java.util.zip.*;
	 5	 public class ZipCountTag extends LassoTagModule
	 6	 {
	 7 	 public void registerLassoModule()
	 8 	 {
	 9 		 registerTagModule("Zip", "zip_count", "myZipCountFunc",
	 10		 FLAG_SUBSTITUTION, "Count items in a zip file");

7 6 7

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 6 6 – L J API T a g s

	 11	 }
	 12		
	 13		 public int myZipCountFunc(LassoCall lasso, int action)
	 14		 {
	 15			 int err = ERR_NOERR;
	 16			 try {
	 17				 IntValue count = new IntValue();
	 18				 err = lasso.getTagParamCount(count);
	 19				 if (err == ERR_NOERR && count.intValue() > 0)
	 20				 {
	 21					 String zipName = null;
	 22					 boolean filesOnly = false;
	 23					 LassoValue param1 = new LassoValue();
	 24					 LassoValue param2 = new LassoValue();
	 25					 err = lasso.findTagParam("-zipfile", param1);
	 26					 if (err != ERR_NOERR || param1.name() == null)
	 27						 lasso.getTagParam(0, param1);
	 28					 if (param1.name() == null || param1.name().length() == 0)
	 29						 return LassoErrors.InvalidParameter;
	 30					 if (count.intValue() > 1 &&
	 31							 lasso.getTagParam(1, param2) == ERR_NOERR)
	 32						 filesOnly = param2.equalsIgnoreCase("-filesonly");
	 33					 String filePath = lasso.fullyQualifyPath(param1.name());
	 34					 filePath = lasso.resolvePath(filePath);
	 35					 filePath = lasso.getPlatformSpecificPath(filePath);
	 36					 ZipFile zip = new ZipFile(filePath); 	
	 37					 Enumeration enum = zip.entries();
	 38					 ZipEntry entry = null;
	 39					 int zipcount = 0;
	 40					 while (enum.hasMoreElements())
	 41					 {
	 42						 entry = (ZipEntry)enum.nextElement();
	 43						 if (!filesOnly || !entry.isDirectory())
	 44							 ++zipcount;
	 45					 }
	 46					 err = lasso.outputTagData(Integer.toString(zipcount));		
	 47					 zip.close();
	 48				 }
	 49			 }
	 50			 catch (java.io.Exception e)
	 51			 {
	 52				 lasso.setResultMessage(e.getMessage());
	 53				 return LassoErrors.FileNotFound;
	 54			 }
	 55			 return err;
	 56		 }
	 57	 }

Substitution Tag Module Walk-Through
This section provides a step-by-step walk-through for building the substitution tag module.

To write a sample LJAPI tag module:

	 1	First, import com.omnipilot.lassopro.* classes as shown in line 1.

	 1	 import com.omnipilot.lassopro.*;
	 2	 import java.io.*;
	 3	 import java.util.*;
	 4	 import java.util.zip.*;

	 2	Define your class to be a subclass of the omnipilot.lasso.LassoSubstitutionTag class.

7 6 8

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 6 6 – L J API T a g s

	 5	 public class ZipCountTag extends LassoTagModule

	 3	Define the registerLassoModule method.

	 7 	 public void registerLassoModule() {

Every Lasso module must implement the registerLassoModule() method. This method will be called by Lasso
at startup, giving your module a chance to register its tags.

	 4	Register the tags implemented by your module.

	 9 	 registerTagModule("Zip", "zip_count", "myZipCountFunc",
	 10 	 FLAG_SUBSTITUTION, "Count items in a zip file");

Call this method as many times as there are tags implemented in your module. This method takes five
parameters: the module name, the name of Lasso tag, the name of the Java method implemented by your
module (to be called when the corresponding Lasso tag is found on the page), any additional tag feature
flags, and a brief tag description.

	 5	Define the tag formatting method with the same name as indicated in the third parameter of the
corresponding registerTagModule call.

	 13 	 public int myZipCountFunc(LassoCall lasso, int action)

This is the method that does all the work. Every tag registered by your module can have its own formatting
method. Its purpose is to perform an action based on the parameters passed to the tag and/or current
request properties. Most substitution tags would output the data, although some may perform other
actions such as setting page variables, manipulating files, etc.

When Lasso encounters one of the tags registered by your module, it creates new module instance and calls
the corresponding method, passing the LassoCall object which then can be used by the module for calling
back into Lasso.

	 6	Define the variable to hold the result code returned by various LassoCall methods.

	 15	 int err = ERR_NOERR;

	 7	Our [Zip_Count] Lasso tag takes one required and one optional parameter. We need to make sure at least one
parameter (filename) is present, otherwise we won’t be able to continue.

	 17 	 IntValue count = new IntValue();
	 18 	 err = lasso.getTagParamCount(count);
	 19	 if (err == ERR_NOERR && count.intValue() > 0)

	 8	Define the storage for the zip file name, optional -FilesOnly parameter, and LassoValue object to be used with
various LassoCall methods.

	 21 	 String zipName = null;
	 22 	 boolean filesOnly = false;
	 23 	 LassoValue param = new LassoValue();

	 9	Our tag should be flexible enough to accept both named and unnamed versions of the required parameter.
First, try to search for the parameter by a name.

	 25 	 err = lasso.findTagParam("-zipfile", param1);

	 10	If this fails, assume the first unnamed tag parameter to hold the file path name. Call getTagParam() with the
index 0 (tag parameter numbering is zero-based).

	 26 	 if (err != ERR_NOERR || param1.name() == null)
	 27 		 err = lasso.getTagParam(0, param1);

	 11	Next, make sure we’ve got a valid value. If the filename parameter contains an empty string, immediately
return from our method, passing InvalidParameter result code back to Lasso.

	 28 	 if (err != ERR_NOERR || param1.name().length() == 0)
	 29 		 return LassoErrors.InvalidParameter;

	 12	Our tag also accepts an optional boolean parameter -FilesOnly, indicating that directories must be ignored
while counting zip file items. If more than one parameter was supplied to our tag, try determining if it was
the optional -FilesOnly parameter.

	 30 	 if (count.intValue() > 1 &&
	 31			 lasso.getTagParam(1, param2) == ERR_NOERR)
	 32 		 filesOnly = param2.equalsIgnoreCase("-filesonly");

7 6 9

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 6 6 – L J API T a g s

	 13	The path to the zip file is relative to the server root. In order to find out the actual location of the file, you
can use a number of LassoCall class methods suited for converting a file path name into a fully qualified
platform-specific path. fullyQualifyPath() turns a relative path into a from-the-server-root path. resolvePath()
converts a from-the-root path into a full internal path. Finally, getPlatformSpecificPath() will convert an
internal path name into a platform-specific path name.

	 33 	 String filePath = lasso.fullyQualifyPath(param1.name());
	 34 	 filePath = lasso.resolvePath(filePath);
	 35 	 filePath = lasso.getPlatformSpecificPath(filePath);

	 14	Now attempt to instantiate a ZipFile object using a platform-specific path name. Any exceptions thrown by the object constructor
will be caught by the try/catch block wrapping our method's body.

	 36	 ZipFile zip = new ZipFile(filePath);

	 15	Prepare to enumerate items in the zip file.

	 37	 Enumeration enum = zip.entries();

	 16	Define the storage for holding the zip item count.

	 38 	 ZipEntry entry = null;
	 39 	 int zipcount = 0;

	 17	Iterate through the zip archive items, incrementing the counter for all items matching our criteria.

	 40 	 while (enum.hasMoreElements())
	 41 	 {
	 42 		 entry = (ZipEntry)enum.nextElement();
	 43 		 if (!filesOnly || !entry.isDirectory())
	 44 			 ++zipcount;
	 45 	 }

	 18	Output the resulting zip file item count.

	 46 	 err = lasso.outputTagData(Integer.toString(zipcount));

	 19	Close the zip file.

	 47	 zip.close();

	 20	Make sure that any possible exceptions are handled correctly in your code. In this particular case, we simply
pass the message retrieved from the Exception object back to Lasso, and return the FileNotFound error code.
For a complete listing of error codes, see the variables defined in the LassoErrors class.

	 50 	 catch (Exception e)
	 51 	 {
	 52 		 lasso.setResultMessage(e.getMessage());
	 53 		 return LassoErrors.FileNotFound;
	 54 	 }

7 7 0

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 6 6 – L J API T a g s

67
Chapter 67

LJAPI Data Types

This chapter includes information about creating data types in Java using the Lasso Java API (LJAPI).

	 •	Data Type Operation discusses the fundamentals of implementing data types in Java.

	 •	Data Type Tutorial walks through a sample project that is installed with Lasso Professional.

Data Type Operation
Among other new features, Lasso Professional 8 Java API introduces the ability to create custom data types
in Java. Creating a new data type in LJAPI 7 is similar to creating a substitution tag. When Lasso Professional
8 starts up, it scans the LassoModules folder for module files (Windows DLLs or Mac OS X DYLIBS). As it
encounters each module, it executes the registerLassoModule() function for that module. The developer may
register new LJAPI data types implemented by the module inside this function.

Custom data types are analogous to objects used in many other programming languages. They can have
properties (fields) and member tags (methods).

Data Type Tutorial
The following section provides a walk-through of building an example custom type to show how LJAPI
features are used. This code will be most similar to the sample ZipType LJAPI project, so in order to build this
code, copy the ZipType project folder and edit the project files inside it.

The module relies on a Java class library to do most of the work, particularly the java.util.zip package which
provides variety of functions for manipulating the contents of ZIP files—standard compressed archives widely
used on the Internet.

The resulting type will be a “zip” file with the ability to read data from a zip file given a path. The following
member tags will be implemented:

Table 1: Type initializer and Member Tags

Name	 Description	

[Zip:'Pathname'] 	 Type initializer. Creates new instance of a custom type.

[Zip->File] 	 Return the name of this Zip file.

[Zip->Count]	 Return the count of entries in this file.

[Zip->Size]	 Synonym for [Zip->Count].

[Zip->Enumerate]	 Enumerates zip entries, allowing to iterate through stored items via consecutive
calls to [Zip->Next].

[Zip->Next]	 Advance to the next entry, returning True if more items are available.

[Zip->Position]	 Current iterator position, i.e. the index.
		

7 7 1

L a s s o 8 . 5 L a n g u a g e G u i d e

The rest of the member tags are item accessors, operating on the entries stored in a zip file:

Table 2: Accessors

Name	 Description	

[Zip->Name]	 Returns the name of an indexed entry.

[Zip->Get] 	 Synonym for [Zip->Name].

[Zip->Comment] 	 Zip entry comment.

[Zip->Date] 	 Returns the entry creation date.

[Zip->Crc]	 Checksum, or 0xffffffff if not available.

[Zip->Method]	 Compression method: DEFLATED or STORED.

[Zip->Extra]	 Returns any extra data stored with the entry.

[Zip->GetData]	 Returns uncompressed entry data.

[Zip->CSize]	 Returns the size of the compressed data.

[Zip->USize] 	 Returns the size of uncompressed data.

[Zip->IsDir]	 Returns True if the entry is a directory.
		

All zip entry accessor tags, except for [Zip->GetData], can take either one or zero parameters. An integer
parameter can specify the index (position) of the entry in a zip file, while a string parameter could be used to
locate an entry by its name. When no parameters are provided, a corresponding action is performed on the
“current” item, whose index can be obtained via the [Zip->Position] member tag.

Example sample tag Lasso syntax:

The following shows an example of using a Zip custom type.

[Var:'zip' = zip:'/archive.zip']
[$zip->Count]
[$zip->Method]
[$zip->CSize]
[$zip->USize]
[While: $zip->Next]
	 [$zip->CRC]
[/While]

Custom Data Type Module Code
Shown below is the code for the custom type tag module. Line numbers are provided to the left of each line
of code, and are referenced in the Custom Type Tag Module Walk-Through section.

Note: The line numbers shown refer to the line numbers of the code in the actual file being created, not as
shown in this page. Some single lines of code may carry into two or more lines as shown on this page.

Custom Data Type Module Code

	 1	 import com.omnipilot.lassopro.*;
	 2	 import java.util.*;
	 3	 import java.util.zip.*;
	 4	 import java.io.*;
	 5	 import java.text.DateFormat;
	 6	 public class ZipType extends LassoTagModule
	 7	 {
	 8 	 static final DateFormat df =
	 9 		 DateFormat.getDateTimeInstance(DateFormat.SHORT, DateFormat.MEDIUM);
	 10 	 static final String[] members = {
	 11 		 "File","Size","Count","Enumerate","Position","Next",
	 12 		 "GetData","Get","Name","Comment","Date","Crc",
	 13 		 "Method", "Extra", "CSize", "USize", "IsDir" };
	 14 	 ZipFile		 zip = null;

7 7 2

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 6 7 – L J API D a t a T y p e s

	 15 	 Enumeration enum = null;
	 16 	 ZipEntry 	 entry = null;
	 17 	 int 		 index = 0;
	 18 	 public void registerLassoModule()
	 19 	 {
	 20 		 registerTagModule("ZipType", "zip", "format",
	 21 				 FLAG_SUBSTITUTION | FLAG_INITIALIZER, "zip custom type tag");
	 22 	 }	
	 23 	 public int format(LassoCall lasso, int action)
	 24 	 {
	 25 		 int err = ERR_NOERR;
	 26 		 LassoValue param = new LassoValue();
	 27 		 String path name = null;
	 28 		 if (lasso.getTagParam(0, param) != ERR_NOERR ||
	 29 			 param.name().length() < 1)
	 30 		 {
	 31 			 lasso.setResultMessage("[Zip] invalid file path name parameter");
	 32 			 return LassoErrors.InvalidParameter;
	 33 		 }			
	 34 		 try
	 35 		 {
	 36 			 IntValue count = new IntValue();
	 37 			 err = lasso.getTagParamCount(count);
	 38 			 if (err == ERR_NOERR && count.intValue() > 0)
	 39 			 {
	 40 				 String filePath = lasso.fullyQualifyPath(param.name());
	 41 				 filePath = lasso.resolvePath(filePath);
	 42 				 filePath = lasso.getPlatformSpecificPath(filePath);
	 43 				 this.zip = new ZipFile(filePath);
	 44 				 LassoTypeRef self = new LassoTypeRef();
	 45 				 if ((err = lasso.typeAllocCustom(self, "zip")) != ERR_NOERR)
	 46 				 {
	 47 					 lasso.setResultMessage("[Zip] couldn't create new zip type instance.");
	 48 					 return err;
	 49 				 }
	 50 				 LassoTypeRef ref = new LassoTypeRef();
	 51 				 String className = this.getClass().getName();
	 52 				 for (int i = 0; i < this.members.length; i++)
	 53 				 {
	 54 					 if ((err=lasso.typeAllocTag(ref, className, "memberFunc")) != ERR_NOERR ||
	 55 						 (err=lasso.typeAddMember(self, members[i], ref)) != ERR_NOERR)
	 56 					 {
	 57 						 lasso.setResultMessage("[Zip] error adding member: " + members[i]);
	 58 						 return err;
	 59 					 }
	 60 				 }
	 61 				 if (lasso.typeAllocTag(ref, className, "convertFunc") == ERR_NOERR)
	 62 					 lasso.typeAddMember(self, "onConvert", ref);
	 63 				 if (lasso.typeAllocTag(ref, className, "destroyFunc") == ERR_NOERR)
	 64 					 lasso.typeAddMember(self, "onDestroy", ref);	
	 65 				 if ((err = lasso.typeSetCustomJavaObject(self, this)) != ERR_NOERR)
	 66 				 {
	 67 					 lasso.setResultMessage("[Zip] couldn't attach java object to a custom type");
	 68 					 return err;
	 69 				 }
	 70 				 err = lasso.returnTagValue(self);
	 71 			 }
	 72 		 }
	 73 		 catch (Exception e)
	 74 		 {
	 75 			 System.err.println(e.toString());

7 7 3

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 6 7 – L J API D a t a T y p e s

	 76 			 lasso.setResultMessage(e.getMessage());
	 77 			 return LassoErrors.FileNotFound;
	 78 		 }
	 79 		 return err;
	 80 	 }
	 81 	 public int destroyFunc(LassoCall lasso, int action)
	 82 	 {
	 83 		 if (this.zip != null)
	 84 		 {
	 85 			 try { this.zip.close(); }
	 86 				 catch (IOException e) {}
	 87 			 this.zip = null;
	 88 		 }
	 89 		 return ERR_NOERR;
	 90 	 }
	 91 	 public int convertFunc(LassoCall lasso, int action)
	 92 	 {	
	 93 		 LassoValue param = new LassoValue();
	 94 		 if (lasso.getTagParam(0, param) == ERR_NOERR &&
	 95 			 param.name().equalsIgnoreCase("string"))
	 96 		 {
	 97 			 lasso.outputTagData("zip:(" + this.zip.getName() + ")");
	 98 		 }
	 99
	 100 	 return ERR_NOERR;
	 101	 }
	 102	 public int memberFunc(LassoCall lasso, int action)
	 103	 {
	 104 	 LassoValue tag = new LassoValue();
	 105 	 LassoTypeRef out = new LassoTypeRef();
	 106 	 int err = lasso.getTagName(tag);	
	 107 	 if (err != ERR_NOERR || tag.data().length() < 1)
	 108 		 return LassoErrors.InvalidParameter;
	 109 	 if (tag.data().equalsIgnoreCase("file"))
	 110 		 return lasso.outputTagData(zip.getName());
	 111 	 else if (tag.data().equalsIgnoreCase("size") ||
	 112 			 tag.data().equalsIgnoreCase("count"))
	 113 	 {
	 114 		 lasso.typeAllocInteger(out, zip.size());
	 115 		 return lasso.returnTagValue(out);
	 116 	 }	
	 117 	 LassoValue param = new LassoValue();		
	 118 	 ZipEntry item = this.entry;	
	 119 	 if (lasso.getTagParam(0, param) == ERR_NOERR)
	 120 	 {
	 121 		 if (param.type() == LassoValue.TYPE_INT)
	 122 		 {
	 123 			 try {
	 124 				 int idx = Integer.parseInt(param.name());
	 125 				 if (idx < 1 || idx > zip.size())
	 126 				 {
	 127 					 lasso.setResultMessage("[Zip] index out of range: " + idx);
	 128 					 return LassoErrors.InvalidParameter;
	 129 				 }
	 130 				 else if (idx != index)
	 131 				 {
	 132 					 index = idx;
	 133 					 Enumeration enum2 = zip.entries();
	 134 					 while (enum2.hasMoreElements() && idx-- > 0)
	 135 						 item = (ZipEntry)enum2.nextElement();
	 136 					 entry = item;

7 7 4

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 6 7 – L J API D a t a T y p e s

	 137 				 }
	 138 			 } catch (NumberFormatException npe) {}
	 139 		 }
	 140 		 else if (param.type() == LassoValue.TYPE_CHAR)
	 141 			 item = zip.getEntry(param.name());
	 142 	 }
	 143 	 String result = null;	
	 144 	 if (tag.data().equalsIgnoreCase("name") ||
	 145 		 tag.data().equalsIgnoreCase("get"))
	 146 		 result = item.getName();
	 147 	 else if (tag.data().equalsIgnoreCase("comment"))
	 148 		 result = item.getComment();
	 149 	 else if (tag.data().equalsIgnoreCase("crc"))
	 150 		 result = Long.toHexString(item.getCrc());
	 151 	 else if (tag.data().equalsIgnoreCase("method"))
	 152 		 result = (item.getMethod() == ZipEntry.DEFLATED ? "DEFLATED" : "STORED");
	 153 	 if (result != null)
	 154 		 return lasso.outputTagData(result);	
	 155 	 if (tag.data().equalsIgnoreCase("usize"))
	 156 		 lasso.typeAllocInteger(out, item.getSize());
	 157 	 else if (tag.data().equalsIgnoreCase("csize"))
	 158 		 lasso.typeAllocInteger(out, item.getCompressedSize());
	 159 	 else if (tag.data().equalsIgnoreCase("date"))
	 160 		 lasso.typeAllocString(out, df.format(new Date(item.getTime())));
	 161 	 else if (tag.data().equalsIgnoreCase("isDir"))
	 162 		 lasso.typeAllocBoolean(out, entry.isDirectory());
	 163 	 else if (tag.data().equalsIgnoreCase("position"))
	 164 		 lasso.typeAllocInteger(out, index);
	 165 	 else if (tag.data().equalsIgnoreCase("enumerate"))
	 166 	 {
	 167 		 enum = zip.entries();
	 168 		 index = 0;
	 169 	 }
	 170 	 else if (tag.data().equalsIgnoreCase("getdata"))
	 171 	 {	
	 172 		 int max = 0, skip = 0;
	 173 		
	 174 		 if (lasso.findTagParam("-skip", param) == ERR_NOERR)
	 175 			 skip = Integer.parseInt(param.data());
	 176 		 if (lasso.findTagParam("-max", param) == ERR_NOERR)
	 177 			 max = Integer.parseInt(param.data());		
	 178 		 int count = 0;
	 179 		 int toRead = 1024;		
	 180 		 if (max == 0 || max > item.getSize())
	 181 			 max = (int)item.getSize() - skip;
	 182 		 else if (max < 1024)
	 183 			 toRead = max;		
	 184 		 try {			
	 185 			 InputStream is = zip.getInputStream(item);
	 186 			 is.skip(skip);
	 187 			 byte b[] = new byte[toRead];
	 188 			 while ((count=is.read(b, 0, toRead)) > -1 && max > 0)
	 189 			 {
	 190 				 max -= count;
	 191 				 if (count > 0)
	 192 					 lasso.outputTagData(new String(b, 0, count));
	 193 			 }
	 194 			 is.close();
	 195 		 } catch (IOException ioe) {}
	 196 	 }
	 197 	 else if (tag.data().equalsIgnoreCase("next"))

7 7 5

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 6 7 – L J API D a t a T y p e s

	 198 	 {
	 199 		 boolean reset = (enum == null);			
	 200 		 if (enum != null && !enum.hasMoreElements())
	 201 			 enum = null;
	 202 		 else if (reset)
	 203 			 enum = zip.entries();			
	 204 		 boolean hasMore = (enum != null && enum.hasMoreElements());		
	 205 		 lasso.typeAllocBoolean(out, hasMore);		
	 206 		 if (hasMore)
	 207 		 {
	 208 			 entry = (ZipEntry)enum.nextElement();
	 209 			 if (reset)
	 210 				 index = 1;
	 211 			 else
	 212 				 index++;
	 213 		 }
	 214 	 }			
	 215 	 if (!out.isNull())
	 216 		 return lasso.returnTagValue(out);	
	 217 	 return err;
	 218	 }

Custom Data Type Module Walk-Through
This section provides a step-by-step walk-through for building the custom type tag module.

To write a sample LJAPI tag module:

	 1	First, import com.omnipilot.lassopro.* classes as shown in line 1.

	 1	 import com.omnipilot.lassopro.*;
	 2	 import java.util.*;
	 3	 import java.util.zip.*;
	 4	 import java.io.*;
	 5	 import java.text.DateFormat;

	 2	Define the class to be a subclass of the com.omnipilot.lassopro.LassoTagModule class.

	 6	 public class ZipType extends LassoTagModule

	 3	Store the names of member tags implemented by our custom type in a String array variable.

	 10 	 static final String[] members = {
	 11 		 "File","Size","Count","Enumerate","Position","Next",
	 12 		 "GetData","Get","Name","Comment","Date","Crc",
	 13 		 "Method", "Extra", "CSize", "USize", "IsDir" };

	 4	Register the custom type initializer method, passing FLAG_INITIALIZER flag in the fourth parameter of
the registerLassoModule method.

	 18 	 public void registerLassoModule()
	 19 	 {
	 20 		 registerTagModule("ZipType", "zip", "format",
	 21 				 FLAG_SUBSTITUTION | FLAG_INITIALIZER, "zip custom type tag");
	 22 	 }

	 5	Define main tag formatting method with the same name as specified in the third parameter of previously
called registerTagModule method.

	 23 	 public int format(LassoCall lasso, int action)

	 6	Examine parameters passed to our type initializer and create new instance of a java.util.zip.ZipFile object, using
resolved file path name.

	 40 	 String filePath = lasso.fullyQualifyPath(param.name());
	 41 	 filePath = lasso.resolvePath(filePath);
	 42 	 filePath = lasso.getPlatformSpecificPath(filePath);
	 43 	 this.zip = new ZipFile(filePath);

7 7 6

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 6 7 – L J API D a t a T y p e s

	 7	 Create a new com.omnipilot.lassopro.LassoTypeRef variable to store a reference to the custom type,
which is about to be created in the next step.

	 44 	 LassoTypeRef self = new LassoTypeRef();

	 8	Allocate new custom type instance, passing the LassoTypeRef variable and the type name to
LassoCall.typeAllocCustom method.

	 45 	 if ((err = lasso.typeAllocCustom(self, "zip")) != ERR_NOERR)
	 46 	 {
	 47 		 lasso.setResultMessage("[Zip] couldn't create new zip type instance.");
	 48 		 return err;
	 49 	 }

	 9	Add member tags to the newly-allocated custom type. In our example, all member tags will be handled by
the same Java method; however, LJAPI allows each member tag to have its own formatting method.

	 52 	 for (int i = 0; i < this.members.length; i++)
	 53 	 {
	 54 		 if ((err=lasso.typeAllocTag(ref, className, "memberFunc")) != ERR_NOERR ||
	 55 			 (err=lasso.typeAddMember(self, members[i], ref)) != ERR_NOERR)
	 56 		 {
	 57 			 lasso.setResultMessage("[Zip] error adding member: " + members[i]);
	 58 			 return err;
	 59 		 }
	 60 	 }

Note that adding the member tags to a custom type is a two-step process. First, an unnamed tag object is
created and placed in a LassoTypeRef variable. In order to be successful, the second and third parameters in
the LassoCall.typeAllocTag method must specify a valid class and method names used by Lasso for locating a
formatting method in a Java class. Member tag methods have the same signature as a type initializer and
regular substitution tag methods, and although not required they are most likely to be implemented in the
same class with the main type initializer method.

Secondly, LassoCall.typeAddMember is used to add a reference to a newly-created tag (third parameter) to a
custom type (first parameter), with the second parameter being a tag name.

	 10	Add all necessary callback methods, such as onConvert and onDestroy.

	 61 	 if (lasso.typeAllocTag(ref, className, "convertFunc") == ERR_NOERR)
	 62 		 lasso.typeAddMember(self, "onConvert", ref);
	 63 	 if (lasso.typeAllocTag(ref, className, "destroyFunc") == ERR_NOERR)
	 64 		 lasso.typeAddMember(self, "onDestroy", ref);

Callback methods are being triggered by the events that happen to a custom type in the course of its life.
For example, when a type goes out of scope, its onDestroy tag method is called. When a custom type needs
to be converted to a different data type such as string or integer, its onConvert method is invoked.

Callbacks are added to the custom types in a similar fashion as the other members, with only constraint
being their tag names, which must conform to established convention for naming callback tags. For a full
list of intrinsic member tag names, see the Lasso 7 Language Guide.

	 11	Attach this module instance to a custom type.
	 65 	 if ((err = lasso.typeSetCustomJavaObject(self, this)) != ERR_NOERR)
	 66 	 {
	 67 		 lasso.setResultMessage("[Zip] couldn't attach java object to a custom type");
	 68 		 return err;
	 69 	 }

LassoCall.typeSetCustomJavaObject can be used to associate any private data with an instance of a custom
type. Any Java object can be attached to a custom type and later retrieved with a call to a complimentary
LassoCall.typeGetCustomJavaObject method. In the situation were associated object is an instance of
the LassoTagModule subclass, Lasso will also try to invoke formatting methods on this object instead
of creating a new instance (as it does for all substitution tag modules). Aside from producing much
smaller overhead, this allows direct access to all instance (e.g. private) variables from any Java method
implemented in that module.

	 12	Finally, return newly-generated custom type tag instance back to Lasso.

7 7 7

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 6 7 – L J API D a t a T y p e s

	 70 	 err = lasso.returnTagValue(self);

	 13	Implement formatting methods for onDestroy and onConvert callbacks.

	 81 	 public int destroyFunc(LassoCall lasso, int action)
	 82 	 {
	 83 		 if (zip != null)
	 84 		 {
	 85 			 try { zip.close(); }
	 86 				 catch (IOException e) {}
	 87 			 zip = null;
	 88 		 }
	 89 		 return ERR_NOERR;
	 90 	 }

	 14	In the case of onConvert callback, the first parameter passed to our method is the name of the type to which
our custom Zip type should be converted to. If the desired type is a string, return the human-readable
representation of the type, which consists of a type name and a zip file path name.

	 91 	 public int convertFunc(LassoCall lasso, int action)
	 92 	 {
	 93 		 LassoValue param = new LassoValue();
	 94 		 if (lasso.getTagParam(0, param) == ERR_NOERR &&
	 95 			 param.name().equalsIgnoreCase("string"))
	 96 		 {
	 97 			 lasso.outputTagData("zip:(" + this.zip.getName() + ")");
	 98 		 }
	 99
	 100 	 return ERR_NOERR;
	 101	 }

	 15	Define our main member tag method memberFunc, that will take care of formatting over a dozen member
tags. If tag name is File, return the full path name to the zip file.

	 109	 if (tag.data().equalsIgnoreCase("File"))
	 110 	 return lasso.outputTagData(zip.getName());

	 16	If the member tag name is Count or Size, return an integer Zip entry count value.

	 111	 else if (tag.data().equalsIgnoreCase("size") ||
	 112 		 tag.data().equalsIgnoreCase("count"))
	 113	 {
	 114 	 lasso.typeAllocInteger(out, zip.size());
	 115 	 return lasso.returnTagValue(out);
	 116	 }

	 17	Tags that output plain text can be processed first.

	 143 	 String result = null;
	 144	 if (tag.data().equalsIgnoreCase("name") ||
	 145 	 tag.data().equalsIgnoreCase("get"))
	 146 	 result = item.getName();
	 147	 else if (tag.data().equalsIgnoreCase("comment"))
	 148 	 result = item.getComment();
	 149	 else if (tag.data().equalsIgnoreCase("crc"))
	 150 	 result = Long.toHexString(item.getCrc());
	 151	 else if (tag.data().equalsIgnoreCase("method"))
	 152 	 result = (item.getMethod() == ZipEntry.DEFLATED ? "DEFLATED" : "STORED");
	 153	 if (result != null)
	 154 	 return lasso.outputTagData(result);

	 18	Tags that return data types, such as integers or booleans, should allocate corresponding values using various
LassoCall.typeAlloc… methods before passing them back to Lasso.

	 155	 if (tag.data().equalsIgnoreCase("usize"))
	 156 	 lasso.typeAllocInteger(out, item.getSize());
	 157	 else if (tag.data().equalsIgnoreCase("csize"))
	 158 	 lasso.typeAllocInteger(out, item.getCompressedSize());
	 159	 else if (tag.data().equalsIgnoreCase("date"))

7 7 8

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 6 7 – L J API D a t a T y p e s

	 160 	 lasso.typeAllocString(out, df.format(new Date(item.getTime())));
	 161	 else if (tag.data().equalsIgnoreCase("isDir"))
	 162 	 lasso.typeAllocBoolean(out, entry.isDirectory());
	 163	 else if (tag.data().equalsIgnoreCase("position"))
	 164 	 lasso.typeAllocInteger(out, index);

	 19	The Enumerate member restarts a previously used enumeration. Unless it is called in a middle of iterating
through the Zip entries, this tag has the same effect as calling Next for the very first time, or immediately
after advancing past the very last enumerated item in a Zip file.

	 165	 else if (tag.data().equalsIgnoreCase("enumerate"))
	 166	 {
	 167 	 enum = zip.entries();
	 168 	 index = 0;
	 169	 }

	 20	The GetData member tag reads uncompressed data from one of the zipped items. This tag accepts two
optional parameters, -Skip and -Max, which are used to specify starting offset and maximum number of
bytes to be read from the Zip archive entry.

	 170	 else if (tag.data().equalsIgnoreCase("getdata"))
	 171	 {
	 172 	 int max = 0;
	 173 	 int skip = 0;
	 174 	 if (lasso.findTagParam("-skip", param) == ERR_NOERR)
	 175 		 skip = Integer.parseInt(param.data());
	 176 	 if (lasso.findTagParam("-max", param) == ERR_NOERR)
	 177 		 max = Integer.parseInt(param.data());
	 178 	 int count = 0;
	 179 	 int toRead = 1024;
	 180 	 if (max == 0 || max > item.getSize())
	 181 		 max = (int)item.getSize() - skip;
	 182 	 else if (max < 1024)
	 183 		 toRead = max;
	 184 	 try {
	 185 		 InputStream is = zip.getInputStream(item);
	 186 		 is.skip(skip);
	 187 		 byte b[] = new byte[toRead];
	 188 		 while ((count=is.read(b, 0, toRead)) > -1 && max > 0)
	 189 		 {
	 190 			 max -= count;
	 191 			 if (count > 0)
	 192 				 lasso.outputTagData(new String(b, 0, count));
	 193 		 }
	 194 		 is.close();
	 195 	 } catch (IOException ioe) {}
	 196	 }

	 21	The last member tag Next iterates through Zip archive entries, placing the internally maintained pointer
at the next selected item. This tag provides fast sequential access to items stored in the Zip archive, and
should be used in concert with various accessor tags implemented in this module. When the end of the file
is reached and no more items are available, the tag returns False and restarts the iteration, positioning the
internal pointer immediately before the first Zip item.

	 197	 else if (tag.data().equalsIgnoreCase("next"))
	 198	 {
	 199 	 boolean reset = (enum == null);
	 200 	 if (enum != null && !enum.hasMoreElements())
	 201 		 enum = null;
	 202 	 else if (reset)
	 203 		 enum = zip.entries();
	 204 	 boolean hasMore = (enum != null && enum.hasMoreElements());
	 205 	 lasso.typeAllocBoolean(out, hasMore);
	 206 	 if (hasMore)

7 7 9

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 6 7 – L J API D a t a T y p e s

	 207 	 {
	 208 		 entry = (ZipEntry)enum.nextElement();
	 209 		 if (reset)
	 210 			 index = 1;
	 211 		 else
	 212 			 index++;
	 213 	 }
	 214	 }

	 22	Finally, if any of the previous operations produced a valid result, pass the resulting value back to Lasso,
returning an ERR_NOERR error code to flag a successful member tag execution.

	 215	 if (!out.isNull())
	 216 	 return lasso.returnTagValue(out);
	 217	 return err;

7 8 0

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 6 7 – L J API D a t a T y p e s

68
Chapter 68

LJAPI Data Sources

This chapter includes information about creating data source connectors in Java using the Lasso Java API
(LJAPI).

	 •	Data Source Connector Operation discusses the theory of creating data source connectors in Java.

	 •	Data Source Connector Tutorial walks through a sample project that ships with every installtion of Lasso
Professional.

Data Source Connector Operation
When Lasso Professional 8 starts up, it looks for module files (Windows DLLs or Mac OS X DYLIBS) in the
LassoModules folder. As Lasso encounters each module, it executes the module’s registerLassoModule() function
once and only once. It is the job of the LJAPI developer to write code to register each new data source (or
custom tag) methods in this registerLassoModule() function. Both substitution tags and data sources may
be registered at the same time, and the code for them can reside in the same module. The only difference
between registering a data source and a substitution tag is whether registerTagModule() or registerDSModule() is
called.

Data sources are typically more complex than substitution tags because Lasso Service calls them with many
different actions during the course of various database operations. Whereas a substitution tag only needs
to know how to format itself, a data source needs to enumerate its tables, search through records, add new
records, delete records, and more. Even so, this added complexity is easily handled with a single switch()
statement, as you will see in the Data Source Connector Tutorial section of this chapter.

Data Source Connectors and Lasso Administration
Once a custom data source connector module is registered by Lasso, it will appear in the Setup > Data
Sources > Connectors section of Lasso Site Administration. If a connector appears here, then it has been
installed correctly.

The administrator adds the data source connection information to the Setup > Data Sources > Hosts
section of Lasso Site Administration, which sets the parameters by which Lasso connects to the data source
via the connector. This information is stored in the Lasso_Internal Lasso MySQL database, where the connector
can retrieve and use the data via function calls.

The data that the administrator can submit in the Setup > Data Sources > Hosts section of Lasso Site
Administration includes the following:

	 •	Name – The administrator-defined name of the data source host.

	 •	Connection URL – The URL string required for Lasso to connect to a data source via the connector. This
typically includes the IP address of the machine hosting the data source.

	 •	Connection Parameters – Additional parameters passed with the Connection URL. This can include the
TCP/IP port number of the data source.

7 8 1

L a s s o 8 . 5 L a n g u a g e G u i d e

	 •	Status – Allows the administrator to enable or disable the connector in Lasso Professional 8.

	 •	Default Username – The data source username required for Lasso to gain access to the data source.

	 •	Default Password – The data source password required for Lasso to gain access to the data source.

The Connection URL, Connection Parameters, Default Username, and Default Password values are passed to the data
source via data source function methods in the com.omnipilot.lassopro.LassoCall class, which are described in the
LJAPI Class Reference section of chapter.

Data Source Connector Tutorial
The following section provides a walk-through of an example data source to show how some of the LJAPI
features are used. This code will be most similar to the sample NNTPDataSource project, which is provided with
Lasso Professional 8 in the following folder.

Lasso Professional 8/Documentation/3 - Lasso Langage Guide/exammples/LJAPI/
DataSourceConnectors/Nntp_ds

The example data source connector bridges a news (NNTP) server and Lasso Professional 8. Network News
Transfer Protocol (NNTP) is used to read and post articles on Usenet news servers. This specific example has
been tested with the Microsoft NNTP Service 5.0, and it provides a good start for any developer desiring to
build a data source connector module supporting a large variety of other NNTP servers.

While an NNTP server is not exactly an RDBMS, there are some advantages to implementing the NNTP
client as a data source connector. The hierarchy of a news storage is somewhat similar to that of a traditional
RDBMS. News articles (rows) are organized in groups (tables), which in turn are parts of distributions
(databases). However, due to a sheer number of news groups available on an average news server (2000-
50000+), treating groups as database tables would put a big load on the internal Lasso security mechanism,
which is required to keep track of permissions for every registered database table. Therefore, the hierarchy has
been adopted to minimize the stress put on Lasso security.

The NNTP connector adds a single News database containing two static tables: Groups and Articles. Performing
a search on the Group table returns a list of groups available on the server. Similarly, executing a query on the
Articles table retrieves a range of articles from a specific newsgroup.

Updating groups or articles is not supported by the NNTP protocol, so only search and insert data source
actions are implemented by this connector. SQL actions are also not supported, although it is possible to
build a simple parser for translating SQL statements into commands understood by NNTP servers.

Data Source Connector Code
Below is the code for the data source module. Line numbers are provided to the left of each line of code, and
are referenced in the Data Source Connector Walk-Through section.

Data Source Connector Code

	 1	 import com.omnipilot.lassopro.*;
	 2	 import java.net.*;
	 3	 import java.io.*;
	 4	 import java.util.*;
	 5	 public class NNTP_DS extends LassoDSModule
	 6	 {
	 7 	 Socket sock;
	 8 	 PrintStream printer;
	 9 	 BufferedReader reader;
	 10 	 String host = null;
	 11 	 int port = 0;
	 12 	 String user = null, pass = null;
	 13 	 String hostInfo = "";
	 14 	 Vector headers = new Vector(10);	
	 15 	 int refsIdx = -1;

7 8 2

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 6 8 – L J API D a t a S o u r c e s

	 16 	 int xrefIdx = -1;
	 17 	 int bytesIdx = -1;
	 18 	 boolean useXpat = false;
	 19 	 String groupFilter = "";
	 20 	 String group = "";
	 21 	 String article = "";
	 22 	 int groupCount = -1;
	 23 	 int articleCount = -1;
	 24 	
	 25 	 public void registerLassoModule () {	
	 26 		 registerDSModule("NNTP", "dsFunc", 0, "Lasso Connector for NNTP",
				 "Simple Usenet client");
	 27 	 }
	 28 	 public int dsFunc (LassoCall lasso, int cmd, LassoValue value) {
	 29 		 int err = ERR_NOERR;
	 30 		 switch (cmd) {
	 31 			 case ACTION_INIT:
	 32 				 err = doInit(lasso);
	 33 				 break;	
	 34 			 case ACTION_TERM:
	 35 				 err = doTerm(lasso);
	 36 				 break;	
	 37 			 case ACTION_EXISTS:
	 38 				 if (!value.data().equalsIgnoreCase("News"))
	 39 					 err = LassoErrors.WebNoSuchObject;
	 40 				 break;					
	 41 			 case ACTION_DB_NAMES:
	 42 				 err = doDBNames(lasso);
	 43 				 break;	
	 44 			 case ACTION_TABLE_NAMES:
	 45 				 err = doTableNames(lasso, value.data());
	 46 				 break;			
	 47 			 case ACTION_INFO:
	 48 				 err = doInfo(lasso, true);
	 49 				 break;
	 50 			 case ACTION_SEARCH:
	 51 				 err = doSearch(lasso);
	 52 				 break;
	 53 		 }
	 54 		 return err;
	 55 	 }	
	 56 	 int doInit(LassoCall lasso) {
	 57 		 return ERR_NOERR;
	 58 	 }
	 59 	 int doTerm(LassoCall lasso) {
	 60 		 close();			
	 61 		 return ERR_NOERR;
	 62 	 }
	 63 	 int doDBNames(LassoCall lasso) {
	 64 		 return lasso.addDataSourceResult("News");
	 65 	 }
	 66 	 int doTableNames(LassoCall lasso, String db) {	
	 67 		 if (!db.equalsIgnoreCase("News"))
	 68 			 return -1;
	 69 		 lasso.addDataSourceResult("Groups");
	 70 		 lasso.addDataSourceResult("Articles");		
	 71 		 return ERR_NOERR;
	 72 	 }
	 73 	 int doInfo(LassoCall lasso, boolean listAllCols) {
	 74 		 int err = ERR_NOERR;
	 75 		 LassoValue tbl = new LassoValue();

7 8 3

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 6 8 – L J API D a t a S o u r c e s

	 76 		 err = lasso.getTableName(tbl);
	 77 		 if (err != ERR_NOERR || tbl.data().length() == 0)
	 78 			 return LassoErrors.InvalidParameter;
	 79	 if (!connect(lasso))
	 80 			 return LassoErrors.Network;
	 81 		 if (tbl.data().equalsIgnoreCase("Groups")) {
	 82 			 lasso.addColumnInfo("Group", 0,
						 LassoValue.TYPE_CHAR, PROTECTION_READ_ONLY);
	 83 			 lasso.addColumnInfo("Last", 0,
						 LassoValue.TYPE_INT, PROTECTION_READ_ONLY);
	 84 			 lasso.addColumnInfo("First", 0,
						 LassoValue.TYPE_INT, PROTECTION_READ_ONLY);
	 85 			 lasso.addColumnInfo("AllowPost", 0,
						 LassoValue.TYPE_CHAR, PROTECTION_READ_ONLY);	
	 86 		 } else if (tbl.data().equalsIgnoreCase("Articles")) {		
	 87 			 if (!this.headers.isEmpty()) {	
	 88 				 String str;
	 89 				 int type, count = headers.size();
	 90 				 lasso.addColumnInfo("Number", 0,
						 LassoValue.TYPE_INT, PROTECTION_READ_ONLY);
	 91 				 for (int i = 0; i < count; ++i) {
	 92 					 str = (String)this.headers.elementAt(i);
	 93 					 if (str.equalsIgnoreCase("Lines") ||
							 str.equalsIgnoreCase("Bytes"))
	 94 						 type = LassoValue.TYPE_INT;
	 95 					 else if (str.equalsIgnoreCase("Date"))
	 96 						 type = LassoValue.TYPE_DATETIME;
	 97 					 else
	 98 						 type = LassoValue.TYPE_CHAR;
	 99 					 err = lasso.addColumnInfo((String)headers.elementAt(i), 0,
								 type, PROTECTION_READ_ONLY);		
	 100 				 }	
	 101 				 if (listAllCols) {
	 102 					 lasso.addColumnInfo("Headers", 0,
								 LassoValue.TYPE_CHAR, PROTECTION_READ_ONLY);
	 103 					 lasso.addColumnInfo("Body", 0,
								 LassoValue.TYPE_CHAR, PROTECTION_READ_ONLY);
	 104 				 }
	 105 			 }
	 106 		 }
	 107 		 return err;
	 108 	 }
	 109 	 int doSearch(LassoCall lasso) {
	 110 		 int err = ERR_NOERR;
	 111 		 int skip = 0;
	 112 		 int max = 50;
	 113 		 int totalcount = 0;
	 114 		 String filter = "", reply = "";
	 115 		 LassoValue tbl = new LassoValue();
	 116 		 LassoValue val = new LassoValue();
	 117 		 IntValue ival = new IntValue();	
	 118 		 if (lasso.getSkipRows(ival) == ERR_NOERR)
	 119 			 skip = ival.intValue();
	 120 		 if (lasso.getMaxRows(ival) == ERR_NOERR)
	 121 			 max = ival.intValue();	
	 122 		 lasso.getTableName(tbl);
	 123 		 lasso.getInputColumnCount(ival);	
	 124 		 if (!connect(lasso))
	 125 			 return LassoErrors.Network;
	 126 		 if ((err = doInfo(lasso, max == 1)) != ERR_NOERR)
	 127 			 return err;

7 8 4

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 6 8 – L J API D a t a S o u r c e s

	 128 		 try {			
	 129 			 if (tbl.data().equalsIgnoreCase("GROUPS")) {			
	 130 				 if (lasso.findInputColumn("group", val) == ERR_NOERR) {
	 131 					 if (val.type() == LassoOperators.OP_ENDS_WITH)
	 132 						 filter = '*' + val.data();
	 133 					 else if (val.type() == LassoOperators.OP_CONTAINS)
	 134 						 filter = '*' + val.data() + '*';
	 135 					 else if (val.type() == LassoOperators.OP_EQUALS)
	 136 						 filter = val.data();
	 137 					 else
	 138 						 filter = val.data() + '*';
	 139 				 }
	 140 				 this.printer.print("LIST ACTIVE " + filter + "\r\n");	
	 141 				 reply=reader.readLine();
	 142 				 if (!reply.startsWith("2"))
	 143 					 return setError(lasso, reply);
	 144 				 if (!this.groupFilter.equalsIgnoreCase(filter)) {	
	 145 					 this.groupFilter = filter;
	 146 					 this.groupCount = -1;
	 147 				 }
	 148 				 err = addGroups(lasso, skip, max);	
	 149 			 } else if (tbl.data().equalsIgnoreCase("ARTICLES")) {
	 150 				 if (lasso.findInputColumn("-group", val) == ERR_NOERR ||
	 151 					 lasso.findInputColumn("group", val) == ERR_NOERR) {
	 152 					 if (val.data().length() > 0) {
	 153 						 if (!val.data().equalsIgnoreCase(this.group))
	 154 							 this.articleCount = -1;
	 155 						 this.group = val.data();
	 156 					 }
	 157 				 }
	 158 				 if (this.group == null || this.group.length() < 1) {
	 159 					 lasso.setResultMessage("Missing group parameter.");
	 160 					 return LassoErrors.InvalidParameter;
	 161 				 }
	 162 				 String id = null;
	 163 				 ival.setInt(0);
	 164 				 if (lasso.getRowID(ival) == ERR_NOERR && ival.intValue() != -1)
	 165 					 id = Integer.toString(ival.intValue());
	 166 				 else if (lasso.getPrimaryKeyColumn(val) == ERR_NOERR &&
	 167 						 (val.name().equalsIgnoreCase("message-id") ||
	 168 						 val.name().equalsIgnoreCase("number")))
	 169 					 filter = val.data();
	 170 				 else if (lasso.findInputColumn("message-id", val) == ERR_NOERR ||
	 171 						 lasso.findInputColumn("number", val) == ERR_NOERR)
	 172 					 filter = val.data();
	 173 				 if (this.articleCount == -1) {
	 174 					 err = selectGroup(lasso);
	 175 					 if (err != ERR_NOERR)
	 176 						 return err;
	 177 				 }	
	 178 				 if (max == 1 && (filter == null || filter.length() < 1))
	 179 					 id = getRange(lasso, skip, 1);
	 180 				 if (filter.startsWith("<") || filter.indexOf('-') == -1)
	 181 					 id = filter;
	 182 				 if (id != null && id.length() > 1) { // detail
	 183 					 this.printer.print("ARTICLE " + id + "\r\n");
	 184 					 reply=reader.readLine();
	 185 					 if (!reply.startsWith("2"))
	 186 						 return setError(lasso, reply);
	 187 					 int idx=0, i=0, bytes=0;
	 188 					 String str;

7 8 5

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 6 8 – L J API D a t a S o u r c e s

	 189 					 String[] data = new String[headers.size()+3];
	 190 					 data[0] = reply.substring(4, reply.indexOf(' ', 4));
	 191 					 data[data.length-1] = ""; // body
	 192 					 data[data.length-2] = ""; // headers
	 193 					 while(!(reply=reader.readLine()).startsWith(".")) {	
	 194 						 bytes += reply.length() + 2;
	 195 						 i = reply.indexOf(": ");
	 196 						 if (i != -1) { // header
	 197 							 str = reply.substring(0,i);
	 198 							 idx = this.headers.indexOf(str);
	 199 							 if (idx != -1) // known header
	 200 								 data[idx+1] = reply.substring(i+2);
	 201 							 else
	 202 								 data[data.length-2] += reply + '\r';
	 203 						 } else { // body
	 204 							 StringBuffer buf = new StringBuffer();
	 205 							 while (!(reply=reader.readLine()).startsWith(".")) {
	 206 								 bytes += reply.length() + 2;
	 207 								 buf.append(reply).append('\r');
	 208 							 }
	 209 							 data[data.length-1] = buf.toString();
	 210 							 data[this.bytesIdx] = Integer.toString(bytes + 2);
	 211 							 break;
	 212 						 }
	 213 					 }
	 214 					 if (data[0].equals("0") && this.refsIdx != -1) {
	 215 						 idx = data[this.xrefIdx].lastIndexOf(group);
	 216 						 if (idx != -1) {
	 217 							 str = data[this.xrefIdx].substring(idx + group.length() + 1);
	 218 							 if ((idx=str.indexOf(' ')) != -1)
	 219 								 str = str.substring(0, idx);
	 220 							 data[0] = str;
	 221 						 }
	 222 					 }
	 223 					 err = lasso.addResultRow(data);
	 224 				 } else { // GET LIST
	 225 					 if (filter == null || filter.length() == 0)
	 226 						 filter = getRange(lasso, skip, max);
	 227 					 this.printer.print("XOVER " + filter + "\r\n");
	 228 					 reply=reader.readLine();
	 229 					 if (!reply.startsWith("2"))
	 230 						 return setError(lasso, reply);
	 231 					 while(err == ERR_NOERR && !(reply=reader.readLine()).startsWith("."))
	 232 						 err = lasso.addResultRow(split(reply, "\t"));
	 233 				 }						
	 234 				 lasso.setNumRowsFound(this.articleCount);
	 235 			 }	
	 236 		 } catch (Exception e) {
	 237 			 System.err.println(e.toString());
	 238 			 lasso.setResultMessage(e.getMessage());
	 239 			 err = LassoErrors.Network;
	 240 			 try { this.sock.close(); }
	 241 				 catch (Exception e2) {}
	 242 			 this.sock = null;
	 243 		 }
	 244 		 return err;
	 245 	 }
	 246 	 int setError(LassoCall lasso, String reply) {
	 247 		 int err = -1;
	 248 		 try {
	 249 			 err = Integer.parseInt(reply.substring(0, 3));

7 8 6

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 6 8 – L J API D a t a S o u r c e s

	 250 			 lasso.setResultMessage(reply.substring(4));
	 251 		 } catch (Exception e) {};
	 252 		 lasso.setResultCode(err);
	 253 		 return err;
	 254 	 }
	 255 	 String[] split (String str, String ch) {
	 256 		 int i = 0;
	 257 		 int numcols = headers.size() + 1;
	 258 		 String cols[] = new String[numcols];
	 259 		 StringTokenizer tok = new StringTokenizer(str, ch);
	 260 		 int count = tok.countTokens();
	 261 		 while (tok.hasMoreTokens()) {
	 262 			 if (i == this.refsIdx && numcols > count)
	 263 				 cols[i++] = ""; // empty References field
	 264 			 cols[i++] = tok.nextToken();
	 265 		 }	
	 266 		 return cols;
	 267 	 }
	 268 	 boolean connect(LassoCall lasso) {
	 269 		 if (getHostInfo(lasso) != ERR_NOERR)
	 270 			 return false;
	 271 		 try
	 272 		 {
	 273 			 String reply;
	 274 			 if (this.sock != null) {
	 275 				 this.printer.print("MODE READER\r\n"); // probe the connnection
	 276 				 reply = reader.readLine();
	 277 				 if (!reply.startsWith("2")) {
	 278 					 this.sock.close();
	 279 					 this.sock = null;
	 280 				 }
	 281 			 }
	 282 			 if (this.sock == null) {
	 283 				 this.sock=new Socket(this.host,this.port);
	 284 				 this.reader=new BufferedReader(new InputStreamReader(this.sock.getInputStream()), 2500);
	 285 				 this.printer=new PrintStream(new BufferedOutputStream(this.sock.getOutputStream(),2500),true);
	 286 				 this.hostInfo = this.reader.readLine();
	 287 				 login();
	 288 				 this.printer.print("MODE READER\r\n");
	 289 				 reader.readLine();
	 290 				 if (this.headers.isEmpty()) {
	 291 					 printer.print("LIST OVERVIEW.FMT\r\n");
	 292 					 reply = reader.readLine();
	 293 					 if (reply.startsWith("2")) {	
	 294 						 int idx, i = 1;
	 295 						 while(!(reply=reader.readLine()).startsWith(".")) {
	 296 							 idx = reply.indexOf(':');
	 297 							 if (idx != -1)
	 298 								 reply = reply.substring(0, idx);
	 299 							 this.headers.addElement(reply);
	 300 							 if (reply.equalsIgnoreCase("References"))
	 301 								 this.refsIdx = i;
	 302 							 else if (reply.equalsIgnoreCase("Bytes"))
	 303 								 this.bytesIdx = i;
	 304 							 else if (reply.equalsIgnoreCase("Xref"))
	 305 								 this.xrefIdx = i;
	 306 							 ++i;
	 307 						 }
	 308 					 }	
	 309 				 }
	 310 			 }

7 8 7

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 6 8 – L J API D a t a S o u r c e s

	 311 		 } catch (Exception e) {
	 312 			 lasso.setResultMessage(e.getMessage());
	 313 			 this.sock = null;
	 314 			 return false;
	 315 		 }
	 316 		 return true;
	 317 	 }
	 318 	 void close() {
	 319 		 this.host = null;
	 320 		 this.headers.clear();
	 321 		 this.groupCount = this.articleCount = -1;
	 322 		 this.refsIdx = this.xrefIdx = this.bytesIdx = -1;
	 323 		 try
	 324 		 {
	 325 			 this.printer.print("QUIT\r\n");
	 326 			 this.reader.close();
	 327 			 this.printer.close();
	 328 			 this.sock.close();
	 329 			 this.sock = null;
	 330 		 } catch (Exception e) {}
	 331 	 }
	 332 	 boolean login()
	 333 	 {
	 334 		 if (user != null && user.length() > 0) {
	 335 			 try
	 336 			 {
	 337 				 this.printer.print("AUTHINFO USER " + this.user + "\r\n");
	 338 				 this.printer.print("AUTHINFO PASS " + this.pass + "\r\n");
	 339 				 return (reply.startsWith("281"));
	 340 			 } catch (Exception e) {}
	 341 		 }
	 342 		 return false;
	 343 	 }
	 344 	 int getHostInfo(LassoCall lasso) {
	 345 		 int err = ERR_NOERR;
	 346 		 LassoValue hostPort = new LassoValue();
	 347 		 LassoValue userPass = new LassoValue();
	 348 		 err = lasso.getDataHost(hostPort, userPass);
	 349 		 if (err != ERR_NOERR ||
	 350 			 hostPort.name() == null ||
	 351 			 hostPort.name().length() == 0)
	 352 			 return err;	
	 353 		 if (!hostPort.name().equalsIgnoreCase(this.host))
	 354 			 close();	
	 355 		 this.host = hostPort.name();
	 356 		 this.user = userPass.name();
	 357 		 this.pass = userPass.data();
	 358 		 try {
	 359 			 this.port = Integer.parseInt(hostPort.data());
	 360 		 } catch (Exception e) {}	
	 361 		
	 362 		 if (this.port == 0)
	 363 			 this.port = 119; // default NNTP port
	 364 		 return ERR_NOERR;
	 365 	 }
	 366 	 int addGroups(LassoCall lasso, int skip, int max) {			
	 367 		 int err = ERR_NOERR;
	 368 		 int count = 0;
	 369 		 boolean getFirst = (max == 1 || this.group == null || this.group.length() < 1);
	 370 		 String reply = "";		
	 371 		 try {

7 8 8

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 6 8 – L J API D a t a S o u r c e s

	 372 			 while ((skip-- > 0) && !(reply=reader.readLine()).startsWith("."))
	 373 				 count++;
	 374 			 if (!reply.startsWith(".")) {
	 375 				 String row[];
	 376 				 while (err == ERR_NOERR && !(reply=reader.readLine()).startsWith(".") && (max-- > 0)) {
	 377 					 count++;
	 378 					 row = split(reply, " ");
	 379 					 if (getFirst) {
	 380 						 this.group = row[0];
	 381 						 err = lasso.addResultRow(row);
	 382 						 getFirst = false;
	 383 					 } else
	 384 						 err = lasso.addResultRow(row);	
	 385 				 }
	 386 				 if (this.groupCount != -1) {
	 387 					 count = this.groupCount;
	 388 					 this.sock.close();
	 389 					 this.sock = null;
	 390 				 } else if (!reply.startsWith(".")) {
	 391 					 while (!(reader.readLine()).startsWith("."))
	 392 						 count++;
	 393 					 this.groupCount = count;
	 394 				 }
	 395 			 }
	 396 		 } catch (Exception e) { System.err.println(e.toString()); }		
	 397 		 err = lasso.setNumRowsFound(count);
	 398 		 return err;
	 399 	 }
	 400 	 int selectGroup(LassoCall lasso) throws java.io.IOException {
	 401 		 this.printer.print("GROUP " + this.group + "\r\n");
	 402 		 String reply=reader.readLine();
	 403 		 if (!reply.startsWith("2"))
	 404 			 return setError(lasso, reply);
	 405 		 else
	 406 			 return ERR_NOERR;
	 407 	 }
	 408 	 String getRange(LassoCall lasso, int skip, int max) {
	 409 		 this.printer.print("LISTGROUP " + this.group + "\r\n");
	 410 		 StringBuffer result = new StringBuffer();
	 411 		 int count = 0;
	 412 		 try {
	 413 			 String reply=reader.readLine();	
	 414 			 if (reply.startsWith("2")) {
	 415 				 String last = "";
	 416 				 while (!(reply=reader.readLine()).startsWith(".") && (skip-- > 0))
	 417 					 count++;
	 418 				 if (!reply.startsWith(".")) {
	 419 					 result.append(reply);
	 420 					 if (max != 1)
	 421 						 result.append("-");
	 422 					 while (!(reply=reader.readLine()).startsWith(".") && (--max > 0)) {
	 423 						 count++;
	 424 						 last = reply;
	 425 					 }
	 426 					 if (this.articleCount > -1) {
	 427 						 this.printer.println("QUIT\r\n");
	 428 						 this.sock.close();
	 429 						 this.sock = null;
	 430 						 count = this.articleCount;
	 431 						 if (connect(lasso))
	 432 							 selectGroup(lasso);

7 8 9

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 6 8 – L J API D a t a S o u r c e s

	 433 					 } else if (!reply.startsWith(".")) {
	 434 						 while (!(reader.readLine()).startsWith("."))
	 435 							 count++;
	 436 						 result.append(last);
	 437 						 this.articleCount = count;
	 438 					 }
	 439 				 }
	 440 			 }
	 441 		 } catch (Exception e) {} ;
	 442 		 return result.toString();
	 443 	 }
	 444	 }

Data Source Connector Walk-Through
This section provides a step-by-step walk-through for building the described data source connector.

To build a sample LJAPI Data Source Connector:

	 1	First, import com.omnipilot.lassopro.* classes as shown in line 1.

	 1	 import com.omnipilot.lassopro.*;
	 2	 import java.net.*;
	 3	 import java.io.*;
	 4	 import java.util.*;

	 2	Define your module to be a subclass of the com.omnipilot.lassopro.LassoDSModule class:

	 6	 public class NNTP_DS extends LassoDSModule {

Define the storage for global variables, which are objects used to communicate with an NNTP server,
authentication and server info, etc.

	 7 	 Socket sock;
	 8 	 PrintStream printer;
	 9 	 BufferedReader reader;
	 …

	 3	Define the registerLassoModule method.

	 17 	 public void registerLassoModule() {

Every Lasso module must implement the registerLassoModule() method. This method will be called by Lasso
at startup, giving your module a chance to register its data source(s).

	 4	Define your main data source method. This function gets called with various actions as Lasso Professional
requests information from the data source. The method name should be identical to the string passed in
the second parameter of the registerLassoModule() method.

	 28 	 public int dsFunc (LassoCall lasso, int cmd, LassoValue value)

	 5	Dispatch the action to corresponding Java method implemented in the module. The switch statement
distinguishes between various actions. For a complete list of action constant values, see the LassoDSModule
class reference.

	 30 	 switch (cmd) {
	 31 		 case ACTION_INIT:
	 32 			 err = doInit(lasso);
	 33 			 break;
	 34 		 case ACTION_TERM:
	 35 			 err = doTerm(lasso);
	 		 break;

	 6	Among various actions that can be performed by a data source module the, ACTION_EXISTS command is
sent by Lasso Professional to verify that a particular database exists on a specific host. If the name of the
database being looked up is not known, the module must return a LassoErrors.WebNoSuchObject error:

	 37 		 case ACTION_EXISTS:
	 38 			 if (!value.data().equalsIgnoreCase("News"))
	 39 				 err = LassoErrors.WebNoSuchObject;

7 9 0

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 6 8 – L J API D a t a S o u r c e s

	 40 			 break;

	 7	Return the ERR_NOERR result code upon successful completion of the task. Returning a non-zero value will cause the Lasso
Professional engine to report a fatal error and stop processing the page.

	 54 	 return err;

	 8	After successful registration, every data source module receives the ACTION_INIT command, which gives it
a chance to establish connection with a data source or perform any other initialization tasks. Our module
simply returns ERR_NOERR result code:

	 56 	 int doInit(LassoCall lasso) {
	 57 		 return ERR_NOERR;
	 58 	 }

	 9	Similarly, Lasso sends the ACTION_TERM command to all registered data source modules during its
shutdown sequence. The sample data source uses this as a signal to close the connection to a NNTP server
and perform additional clean-up tasks:

	 59 	 int doTerm(LassoCall lasso) {
	 60 		 close();
	 61 		 return ERR_NOERR;
	 62 	 }

	 10	The ACTION_DB_NAMES command is sent whenever Lasso Professional needs to get a list of databases
which the data source provides access to. The developer must write code that discovers all the databases the
module knows of, and call LassoCall.addDataSourceResult() once for each database it encounters:

	 65 	 int doDBNames(LassoCall lasso) {
	 66 		 return lasso.addDataSourceResult("News");
	 67 	 }

	 11	Whenever a data source module receives the ACTION_TABLE_NAMES command, it must examine the
database name passed in the LassoValue parameter, and return the names of all tables available in the
specified database:

	 68 	 int doTableNames(LassoCall lasso, String db) {
	 69 		 if (!db.equalsIgnoreCase("News"))
	 70 			 return -1;
	 71 		 lasso.addDataSourceResult("Groups");
	 72 		 lasso.addDataSourceResult("Articles");
	 73 		 return ERR_NOERR;
	 74 	 }

	 12	Lasso Professional sends the ACTION_INFO command when it needs to retrieve the information about
columns contained in the result set. Inline tag actions like -FindAll and -Search usually return a result set
containing certain number of rows/records, each consisting of one or more columns/fields. When data
source module receives an ACTION_INFO command, it must call LassoCall.addColumnInfo() method once for
each column stored in the result set.

	 73 	 int doInfo(LassoCall lasso, boolean listAllCols) {
	 74 		 int err = ERR_NOERR;
	 75 		 LassoValue tbl = new LassoValue();
	 76 		 err = lasso.getTableName(tbl);
	 77 		 if (err != ERR_NOERR || tbl.data().length() == 0)
	 78 			 return LassoErrors.InvalidParameter;
	 79	 if (!connect(lasso))
	 80 			 return LassoErrors.Network;
	 81 		 if (tbl.data().equalsIgnoreCase("Groups")) {
	 82 			 lasso.addColumnInfo("Group", 0,
	 					 LassoValue.TYPE_CHAR, PROTECTION_READ_ONLY);
	 83 			 lasso.addColumnInfo("Last", 0,
						 LassoValue.TYPE_INT, PROTECTION_READ_ONLY);
	 84 			 lasso.addColumnInfo("First", 0,
						 LassoValue.TYPE_INT, PROTECTION_READ_ONLY);
	 85 			 lasso.addColumnInfo("AllowPost", 0,
						 LassoValue.TYPE_CHAR, PROTECTION_READ_ONLY);
	 86 		 } …

7 9 1

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 6 8 – L J API D a t a S o u r c e s

	 13	The ACTION_SEARCH command is sent whenever Lasso Professional needs to perform the search action on a
data source.

	 109 	 int doSearch(LassoCall lasso) {

	 14	All of the information about the current search parameters (database and table names, search arguments,
sort arguments, etc.) can be retrieved by calling various LJAPI methods such as LassoCall.getDataSourceName()
and LassoCall.getTableName(). Similarly, one can call getSkipRows() and getMaxRows() methods to retrieve the
-SkipRecords and -MaxRecords inline parameter values. For a complete list of available methods, see LassoCall
class reference.

	 117 	 IntValue ival = new IntValue();
	 118 	 if (lasso.getSkipRows(ival) == ERR_NOERR)
	 119 		 skip = ival.intValue();
	 120 	 if (lasso.getMaxRows(ival) == ERR_NOERR)
	 121 		 max = ival.intValue();
	 122 	 lasso.getTableName(tbl);
	 123 	 lasso.getInputColumnCount(ival);

	 15	The module needs to perform different actions depending on the search table name.

	 129 	 if (tbl.data().equalsIgnoreCase("GROUPS")) {

	 16	Some NNTP servers allow retrieval of newsgroup listings filtered by a matching pattern. The module builds
the pattern string based on the value of the inline search operator (beginsWith, endsWith, etc.).

	 130 	 if (lasso.findInputColumn("group", val) == ERR_NOERR) {
	 131 		 if (val.type() == LassoOperators.OP_ENDS_WITH)
	 132 			 filter = '*' + val.data();
	 133 		 else if (val.type() == LassoOperators.OP_CONTAINS)
	 134 			 filter = '*' + val.data() + '*';
	 135 		 else if (val.type() == LassoOperators.OP_EQUALS)
	 136 			 filter = val.data();
	 137 		 else
	 138 			 filter = val.data() + '*';
	 139 	 }

	 17	In case the search is being performed on the ARTICLES table, we need to find out the name of a newsgroup
before we can proceed any further.

	 149 	 } else if (tbl.data().equalsIgnoreCase("ARTICLES")) {
	 150		 if (lasso.findInputColumn("-group", val) == ERR_NOERR ||
	 151 		 lasso.findInputColumn("group", val) == ERR_NOERR) {

	 18	Next, we check if an article number or message ID has been included in the search criteria, either as a
primary keyfield, record ID, or as a named search field.

	 164 	 if (lasso.getRowID(ival) == ERR_NOERR && ival.intValue() != -1)
	 165 		 id = Integer.toString(ival.intValue());
	 166 	 else if (lasso.getPrimaryKeyColumn(val) == ERR_NOERR &&
	 167 			 (val.name().equalsIgnoreCase("message-id") ||
	 168 			 val.name().equalsIgnoreCase("number")))
	 169 		 filter = val.data();
	 170 	 else if (lasso.findInputColumn("message-id", val) == ERR_NOERR ||
	 171 		 lasso.findInputColumn("number", val) == ERR_NOERR)
	 172 	 filter = val.data();

	 19	If none of the above was found, yet the -MaxRecords inline parameter appears to limit the query results to a
single row, we can try finding the desired article ID based on the current -SkipRecords value.

	 178 	 if (max == 1 && (filter == null || filter.length() < 1))
	 179 		 id = getRange(lasso, skip, 1);

	 20	If the article has been identified, proceed with retrieving the message in its entirety.

	 182 	 if (id != null && id.length() > 1) { // detail
	 183 		 this.printer.print("ARTICLE " + id + "\r\n");
	 184 		 reply=reader.readLine();

	 21	Otherwise, select the next group of news articles and retrieve their headers.

	 225 	 if (filter == null || filter.length() == 0)

7 9 2

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 6 8 – L J API D a t a S o u r c e s

	 226 		 filter = getRange(lasso, skip, max);
	 227 	 this.printer.print("XOVER " + filter + "\r\n");
	 228 	 reply=reader.readLine();
	 229 	 if (!reply.startsWith("2"))
	 230 		 return setError(lasso, reply);

	 22	The LassoCall.addResultRow() method is used to return the results of a data source action. It should be called
as many times as there are records in the result set, once for each record.

LassoCall.addResultRow() method takes a single String array parameter. Each array element corresponds to a
record column/field contained in the result set. The total number of array elements must be equal to the
number of times LassoCall.addColumnInfo() method was called for this data source action. Since news article
headers are transmitted in the form of a tab-delimited string, we use our custom split() method to convert
the data to a String array, suitable for passing to addResultRow() method:

	 231 	 while(err == ERR_NOERR && !(reply=reader.readLine()).startsWith("."))
	 232 		 err = lasso.addResultRow(split(reply, "\t"));

	 23	Finally, implement a number of convenience methods, including the setError() routine used for standard
error handling:

	 246 	 int setError(LassoCall lasso, String reply) {
	 247 		 int err = -1;
	 248 		 try {
	 249 			 err = Integer.parseInt(reply.substring(0, 3));
	 250 			 lasso.setResultMessage(reply.substring(4));
	 251 		 } catch (Exception e) {};
	 252 		 lasso.setResultCode(err);
	 253 		 return err;
	 254 	 }

7 9 3

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 6 8 – L J API D a t a S o u r c e s

69
Chapter 69

LJAPI Reference

This chapter provides a reference to all of the types and function in the Lasso Java API (LJAPI).

	 •	LJAPI Interface Reference introduces the interfaces that are provided with LJAPI.

	 •	LJAPI Class Reference documents every class this is provided with LJAPI.

LJAPI Interface Reference
This section provides a listing of all Java interfaces available for use in LJAPI 7. All variables, constructors, and
methods for each interface are organized by category under each interface name.

com.omnipilot.lassopro.LassoJavaModule
This is the base interface implemented by both substitution tag and data source LJAPI modules. Upon Lasso
Service startup, the registerLassoModule method is called for every Java module located inside the LassoModules
folder. Each module returns information about their name, implemented tags or data sources, method
names, etc.

Data source modules are instantiated only once and then used repeatedly to perform various data source
actions. Tag modules are instantiated every time Lasso resolves a tag implemented by a LassoTagModule.

Methods

registerLassoModule()

This method must be defined in all LJAPI modules. Lasso calls this once at startup to allow a module to
register its tags or data sources.

public void registerLassoModule ();

Variables

ERR_NOERR

On success, every method must return ERR_NOERR result code.

public static final int ERR_NOERR

LJAPI Class Reference
This section lists all the Java classes available for use in LJAPI 7. All variables, constructors, and methods for
each interface are organized alphabetically under each interface name, unless specified otherwise.

7 9 4

L a s s o 8 . 5 L a n g u a g e G u i d e

com.omnipilot.lassopro.FloatValue
Wrapper class for a primitive float or double type. Used for returning decimal values from the
LassoCall.typeGetDecimal method.

Constructors

public FloatValue()
public FloatValue(float value)
public FloatValue(double value)

Methods

doubleValue()

Returns the value of a FloatValue object as a double.

public double doubleValue()

floatValue()

Returns the value of a FloatValue object as a float.

public float floatValue()

toString()

Converts an object to a string. Overrides toString() method in class Object.

public String toString()

com.omnipilot.lassopro.IntValue
Wrapper for primitive integer types. Used for returning values from LassoCall methods, which in C would
require passing the pointer-type parameters: int*, long* and LP_TypeDesc*. In addition, this class provides
methods for converting a 4-byte int (LP_TypeDesc type in LCAPI) to a String and back.

Constructors

public IntValue()
public IntValue(int value)
public IntValue(long value)

Methods

byteValue()

Returns the value of an IntValue object as a 1-byte integer.

public byte byteValue()

shortValue()

Returns the value of an IntValue object as a 2-byte integer.

public short shortValue()

intValue()

Returns the value of an IntValue object as a 4-byte integer.

public int intValue()

longValue()

Returns the value of an IntValue object as an 8-byte integer.

public long longValue()

7 9 5

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 6 9 – L J API R e f e r e n c e

setByte()

Sets the value of an IntValue object to a 1-byte integer.

public void setByte(byte value)

setShort()

Sets the value of an IntValue object to a 2-byte integer.

public void setShort(short value)

setInt()

Sets the value of an IntValue object to a 4-byte integer.

public void setInt(int value)

setLong()

Sets the value of an IntValue object to an 8-byte integer.

public void setLong(long value)

toDescType()

Converts the lower 4 bytes of an IntValue value to a 4-char String.

public String toDescType()

toString()

Converts an object to a string. Overrides toString() method in class Object.

public String toString()

IntToFourCharString()

Static method used for converting an int to a 4-char String.

public static String IntToFourCharString(int value)

com.omnipilot.lassopro.LassoCall
Of all Java classes listed in this section, the LassoCall class is of the utmost importance. All the interaction
between an LJAPI module and Lasso Professional 8 is achieved by means of invoking various methods
implemented in the LassoCall class. These functions can be used to do any of the following: register your tags
or data sources, allocate memory, return error messages, get tag or parameter information, get client/server
environment information, output text, read/set MIME headers, access Lasso variables, interpret/execute
arbitrary Lasso tags, store persistent data, check if the user is an administrator, perform data source functions,
and safely access multiuser/multithreaded resources.

All class methods in this section are listed by their category.

Internal Value Methods

getLassoParam()

Fetches an internal server value such as path to LassoModules folder, name of the Lasso error log file, etc. For a
full list of available parameters, please see the listing of constants defined in the LassoParams class.

public int getRequestParam(int key, LassoValue outResult);

getRequestParam()

Fetches an HTTP request value such as server port, cookies, root path, username, etc. For a full list of available
parameters, please see the listing of constants defined in the LassoRequestParams class. Please note that some
of these parameters may not be available on all HTTP servers.

public int getRequestParam(int key, LassoValue outResult);

7 9 6

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 6 9 – L J API R e f e r e n c e

Error Messages and Result Code Methods

setResultCode()

Sets the result code that can be displayed if the Lasso programmer inserts [Error_CurrentError: -ErrorCode] into the
Lasso page after executing a custom LJAPI tag.

public int setResultCode(int err);

setResultMessage()

Sets the error message that can be displayed if the Lasso programmer inserts [Error_CurrentError: -ErrorMessage]
into the Lasso page after executing a custom LJAPI tag.

public int setResultMessage(String msg);

Tag and Parameter Info Methods

getTagName()

Fetches the name of the tag that triggered this call (e.g. in the case of [my_tag: …] the resulting value would be
my_tag). This makes it possible to design a single tag function which can perform the duties of many different
Lasso tags, perhaps ones that all have similar functionality but different names.

public int getTagName(LassoValue result);

getTagParamCount()

Fetches the number of parameters that were passed to the tag. For instance, [my_tag: 'hello', -option=1, -hilite=false]
will report that three parameters were passed (unnamed parameters are treated just like any other parameter).

public int getTagParamCount(IntValue result);

getTagParam()

Gets the name and value of a parameter given its index. Parameters are numbered left-to-right, starting at
index 0: [my_tag: -param0='value0', -param1='value1', -param2=2].

public int getTagParam(int paramIndex, LassoValue result);

getTagParam2()

Get the parameter using the parameter index. This function differs from getTagParam() in that it preserves
the actual type of the parameter instead of automatically converting it to a string. Keyword/value pairs are
returned as a LASSO_PAIR type.

public int getTagParam2(int paramIndex, LassoTypeRef outValue);

tagParamIsDefined()

Returns ERR_NOERR if the parameter was defined. Otherwise, the parameter wasn’t defined.

public int tagParamIsDefined(String paramName);

findTagParam()

Finds and fetches a tag parameter by name. A return value of ERR_NOERR means the parameter was found
successfully.

public int findTagParam(String paramName, LassoValue result);

findTagParam2()

Finds and returns a tag parameter by name while preserving the original type. A returned value of ERR_NOERR
means the parameter was successfully found.

public int findTagParam2(String paramName, LassoTypeRef outValue);

getTagEncoding()

Fetches the encoding method indicated for this tag. This is rarely used, because Lasso handles encoding and
decoding for you.

public int getTagEncoding(IntValue method);

7 9 7

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 6 9 – L J API R e f e r e n c e

childrenRun()

Used to execute the contents of a container tag. Tags become containers when the FLAG_CONTAINER flag is
used. The result parameter will contain the combined result data for all tags contained.

public int childrenRun(LassoTypeRef outValue);

runRequest()

Creates and runs a new LJAPI call on the given method (methodName of the className class). If there is already
an active request on the current thread, the method will be run within the context of that thread. If there is
no active request on the current thread, a new request will be created and run based on the global context.
The tagAction parameter is passed to the methodName and can be used to signal or pass information to the
function.

public static int runRequest(String className,
String methodName,
 int tagAction,
 int unused);

Output Methods

outputTagData()

Outputs any string data to the page. Lasso takes care of encoding, and this can be called as many times as
needed. The second variant of this method is recommended for writing binary data.

public int outputTagData(String data);

public int outputTagData(byte[] data);

returnTagValue()

Specifies the return value for the tag. Note that only a single returnTagValue or outputTagData can be used from
within a tag. returnTagValue is the prefered method for returning tag data as it allows data of any type to be
returned (including binary data), while outputTagData is restricted to printable text data.

public int returnTagValue (LassoTypeRef value);

Data Type Methods

typeAlloc()

This function will allocate a new type instance. The type is specified by the typeName parameter. An array of
parameters can be passed to the type initializer. Types created through this function will be automatically
destroyed after the LJAPI call has returned. In order to prevent this, typeDetach should be used.

	 public int typeAlloc (String typeName,
						 LassoTypeRef[] params,
						 LassoTypeRef outType);

typeFree()

Attempts to free a type created using typeAlloc or any other method. The LassoCall variable may be null if the
provided type has been detached using typeDetach.

public int typeFree (LassoTypeRef inType);

typeDetach()

Prevents the type from being destroyed once the LJAPI call returns. Types that have been detached must
eventually be destroyed using typeFree() (passing null in the LassoCall variable) or a memory leak will occur.

public int typeDetach(LassoTypeRef toDetach);

typeAllocNull()

This method allows new instances of LASSO_NULL data types to be allocated. Types allocated in this manner
will be destroyed once the LJAPI call is returned.

7 9 8

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 6 9 – L J API R e f e r e n c e

public int typeAllocNull (LassoTypeRef outNull);

typeAllocString()

This method allows new instances of string data types to be allocated. Types allocated in this manner will be
destroyed once the LJAPI call is returned.

public int typeAllocString (LassoTypeRef outString, String value);

typeAllocInteger()

This method allows new instances of integer data types to be allocated (Lasso integers are 8-byte signed
INTs). Types allocated in this manner will be destroyed once the LJAPI call is returned.

public int typeAllocInteger (LassoTypeRef outInteger, long value);

typeAllocDecimal()

This method allows new instances of decimal data types to be allocated. Types allocated in this manner will
be destroyed once the LJAPI call is returned.

public int typeAllocDecimal (LassoTypeRef outDecimal, double value);

typeAllocPair()

This method allows new instances of pair data types to be allocated. Types allocated in this manner will be
destroyed once the LJAPI call is returned.

public int typeAllocPair (LassoTypeRef outPair,
							 LassoTypeRef inFirst,
							 LassoTypeRef inSecond);

typeAllocReference()

This method allows new instances of reference data types to be allocated. Types allocated in this manner will
be destroyed once the LCAPI call is returned.

public int typeAllocReference (LassoTypeRef outRef,
							 LassoTypeRef referenced);

typeAllocTag()

This method allows new instances of tag data types to be allocated. Types allocated in this manner will
be destroyed once the LJAPI call is returned. Method methodName should have the same signature as
TAG_METHOD_PROTOTYPE() method in the LassoTagModule class.

public int typeAllocTag (LassoTypeRef outTag,
							 String className,
							 String methodName);

typeAllocArray()

This method allows new instances of array data types to be allocated. Types allocated in this manner will be
destroyed once the LJAPI call is returned.

public int typeAllocArray (LassoTypeRef outArray,
								 LassoTypeRef[] inElements);

typeAllocMap()

This method allows new instances of map data types to be allocated. Types allocated in this manner will be
destroyed once the LJAPI call is returned.

Two versions of the same method are provided: in the first case the count of elements of the inElements array
must be divisible by 2 and contain both keys and values (odd = key, even = value). In the second case, map
keys and values must be passed in a separate parameters.

public int typeAllocMap (LassoTypeRef outMap,
							 LassoTypeRef[] inElements);
public int typeAllocMap (LassoTypeRef outMap,
							 LassoTypeRef[] inKeys,
							 LassoTypeRef[] inValues);

7 9 9

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 6 9 – L J API R e f e r e n c e

typeAllocBoolean()

This method allows new instances of boolean data types to be allocated. Types allocated in this manner will
be destroyed once the LJAPI call is returned.

public int typeAllocBoolean(LassoTypeRef outBool, boolean inValue);

typeGetBytes()

This method returns the data of a type instance as an array of bytes.

public bytes[] typeGetString(LassoTypeRef type);

typeGetString()

This method gets the data from a previously created string instance. When setting a value, the type is
converted if required.

public int typeGetString(LassoTypeRef type, LassoValue outValue);

typeGetInteger()

This method gets the data from a previously created integer instance. When setting a value, the type is
converted if required.

public int typeGetInteger(LassoTypeRef type, IntValue outValue);

typeGetDecimal()

This method gets the data from a previously created decimal instance. When setting a value, the type is
converted if required.

public int typeGetDecimal(LassoTypeRef type, FloatValue outValue);

typeGetBoolean()

This method gets the data from a previously created boolean instance. When setting a value, the type is
converted if required.

public int typeGetBoolean(LassoTypeRef type, BoolValue outValue);

typeSetBytes()

This method sets the data of a type instance. The type is converted if required.

public int typeSetBytes(LassoTypeRef type, byte[] value);

typeSetString()

This method sets the value of a previously created string type instance.

public int typeSetString(LassoTypeRef type, String value);

typeSetInteger()

This method sets the value of a previously created integer instance.

public int typeSetInteger(LassoTypeRef type, long value);

typeSetDecimal()

This method sets the value of a previously created decimal instance.

public int typeSetDecimal(LassoTypeRef type, double value);

typeSetBoolean()

This method sets the value of a previously created boolean instance.

public int typeSetBoolean(LassoTypeRef type, boolean value);

arrayGetSize()

This method gets the size of a previously created array instance.

public int arrayGetSize(LassoTypeRef array, IntValue outLen);

8 0 0

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 6 9 – L J API R e f e r e n c e

arrayGetElement()

This method gets an array element from a previously created array instance.

public int arrayGetElement(LassoTypeRef array,
								 int index,
								 LassoTypeRef outElement);

arraySetElement()

This method sets an array element in a previously created array instance.

public int arraySetElement(LassoTypeRef array,
								 int index,
								 LassoTypeRef element);

arrayRemoveElement()

This method removes an element from a previously created array instance.

public int arrayRemoveElement(LassoTypeRef array, int index);

mapGetSize()

This method gets the size of a previously created map instance.

public int mapGetSize(LassoTypeRef map, IntValue outLen);

mapFindElement()

This method finds an element in a previously created map instance stored under unique key.

public int mapFindElement(LassoTypeRef map,
							 LassoTypeRef key,
							 LassoTypeRef outElement);

mapGetElement()

This method gets an element from a previously created map instance using the element index.

public int mapGetElement(LassoTypeRef map,
							 int index,
							 LassoTypeRef outPair);

mapSetElement()

This function sets an element in a previously created map instance. If no elements were previously stored
under the specified key, the element will be added to the map, otherwise the old element will be replaced by
a new value.

	 public int mapSetElement(LassoTypeRef map,
							 LassoTypeRef key,
							 LassoTypeRef value);

mapRemoveElement()

This method removes an element from a previously created map instance.

public int mapRemoveElement(LassoTypeRef map, LassoTypeRef key);

pairGetFirst()

This method gets the first element from a previously created pair instance.

public int pairGetFirst(LassoTypeRef pair, LassoTypeRef outValue);

pairGetSecond()

This method gets the second element from a previously created pair instance.

public int pairGetSecond(LassoTypeRef pair, LassoTypeRef outValue);

pairSetFirst()

This method sets the first element in a previously created pair instance.

8 0 1

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 6 9 – L J API R e f e r e n c e

public int pairSetFirst(LassoTypeRef pair, LassoTypeRef first);

pairSetSecond()

This function sets the second element in a previously created pair instance.

public int pairSetSecond(LassoTypeRef pair, LassoTypeRef second);

typeGetMember()

This function is used to retrieve a member from a type instance. Members are searched by name with tag
members searched first. Data members are searched if no tag member is found with the given name.

public int typeGetMember(LassoTypeRef fromType,
							 String named,
							 LassoTypeRef outMember);

typeGetProperties()

This method has two uses. If the targetType parameter is not null, it is used to get all data and tag members
from a given type. They are returned as a pair of arrays in the outPair value. The first element of each pair is the
map of data members for the type. The second element is the map of tag members. Each element in the array
represents the members of each type inherited by the targetType.

If the targetType parameter is null, typeGetProperties will return an array containing the variable maps for the
currently active request.

public int typeGetProperties (LassoTypeRef targetType,
								 LassoTypeRef outPair);

typeGetName()

Retrieves the name of the target type.

public int typeGetName(LassoTypeRef target, LassoValue outName);

typeRunTag()

Used to to execute a given tag. The tag can be run given a specific name and parameters, and the return value
of the tag can be accessed. If the tag is a member tag, the instance of which it is a member can be passed
using the final parameter. The params, returnValue, and optionalTarget parameters may all be null.

A slightly modified version of the same method is provided for convenience puproses. It accepts a single
LassoTypeRef parameter instead of a LassoTypeRef array.

public int typeRunTag (LassoTypeRef tagType,
							 String named,
							 LassoTypeRef[] params,
							 LassoTypeRef returnValue,
							 LassoTypeRef optionalTarget);

public int typeRunTag (LassoTypeRef tagType,
							 String named,
							 LassoTypeRef parameter,
							 LassoTypeRef returnValue,
							 LassoTypeRef optionalTarget);

typeAssign()

This performs an assignment of one type to another. The result will be the same as if the following had been
executed in Lasso:#left_hand_side = #right_hand_side

public int typeAssign(LassoTypeRef left_hand_side,
						 LassoTypeRef right_hand_side);

typeStealValue()

This function transfers the data from one type to another type. Both types must be valid and pre-allocated.
After the call, victim will still be valid, but will be of type null.

8 0 2

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 6 9 – L J API R e f e r e n c e

public int typeStealValue(LassoTypeRef thief, LassoTypeRef victim);

handleExternalConversion()

Converts a Lasso type into single-byte or binary data using the specific encoding name. The default for all
database, column, table names should be “iso8859-1”.

public byte[] handleExternalConversion(LassoTypeRef inInstance, String inEncoding);

handleInternalConversion()

Converts a single-byte or binary representation of a Lasso type back into an instance of that type.

public int handleInternalConversion(byte[] inData, String inEncoding, int inClosestLassoType, LassoTypeRef outType);

typeInheritFrom

This function changes the inheritance structure of a type. Sets inNewParent to be the new parent of the child.
Any parent that child currently has will be destroyed.

public int typeInheritFrom(LassoTypeRef inChild, LassoTypeRef inNewParent);

Custom Type Methods

typeAllocCustom()

This function is used within module methods that were registered as being a type initializer
(FLAG_INITIALIZER). It initializes a blank custom type and sets the type’s __type_name__ member to the
provided value. The new type does not yet have a lineage and has no members added to it besides
__type_name__. New data or tag members should be added using typeAddMember. The new custom type should
be the return value of the type initializer. Any inherited members will be added to the type after the LJAPI call
returns.

Warning: Do not call this unless you are in a type initializer. If you are not in a type initializer, the result will be a
type that will never be fully initialized.

public int typeAllocCustom(LassoTypeRef outCustom, String name);

typeAddMember()

This is used to add new members to type instances. The member can be any sort of type including tags or
other custom types.

public int typeAddMember(LassoTypeRef to,
							 String named,
							 LassoTypeRef member);

typeAllocFromProto()

Allocate a new type based on the given type. The given type’s tag members will be referenced in the new type.
No data members are added except for the typename member. Proto must be a custom type.

public int typeAllocFromProto(LassoTypeRef inProto, LassoTypeRef outType);

typeAllocOneOff()

Allocate a new type with the given name. The type does not have to have been registered as a type initializer
or registered at all. The new type will have no tag or data members, but those may be added using the appro-
priate LCAPI call at any time. If no parent type is provided (a NULL pointer or empty string is passed in),
type null will be the default. If a parent type is provided, it must have been a validly registered type initializer.
onCreate will be called for the parent and beyond.

public int typeAllocOneOff(String inName, String inParentTypeName, LassoTypeRef outType);

typeGetCustomJavaObject()

Custom types can have Java objects attached to them. The object can be retrieved at any point during the
instance’s lifetime. typeSetCustomJavaObject method retrieves the Java object associated with a custom type, or
returns null if no object has been attached to this type.

8 0 3

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 6 9 – L J API R e f e r e n c e

 public Object typeGetCustomJavaObject(LassoTypeRef type);

typeSetCustomJavaObject()

typeSetCustomJavaObject permits attachment of Java objects to custom types. Java object is retained until
typeFreeCustomJavaObject is called, or the type is destroyed.

public int typeSetCustomJavaObject(LassoTypeRef type, Object object);

typeFreeCustomJavaObject()

Releases the Java object previously attached to a custom type. Must be called to free the Java object that is no
longer needed, or to detach an old Java object before attaching a new one to the same custom type.

public int typeFreeCustomJavaObject(LassoTypeRef type);

Logging Function Methods

log()

Logs a message. The message goes to the prefered destination for the message level. Messages sent to a file
are limited to 2048 bytes in length. Messages sent to the console are limited to 512 bytes in length. Messages
sent to the database are limited a little less than 2048 bytes since the total length of the sql statement
used to insert the message is limited to 2048 bytes. The msgLevel parameter must be one of the following:
LOG_LEVEL_CRITICAL, LOG_LEVEL_WARNING, or LOG_LEVEL_DETAIL.

public static int log (int msgLevel, String message);

logSetDestination()

Changes the system-wide log destination preference. You can log messages to more than one destination at
a time by passing several flags in the destination parameter: FLAG_DEST_CONSOLE, FLAG_DEST_FILE, and/or
FLAG_DEST_DATABASE.

public static int logSetDestination(int msgLevel, int destination);

MIME Header Methods

getResultHeader()

Retrieves current value of the result (HTTP) header. Part of the header that is returned to browsers is
automatically built by Lasso, and can be modi-fied or added to by Lasso tags on the page. This function
retrieves the current set of MIME headers that would be sent back to the browser if page processing were to
stop now.

public int getResultHeader(LassoValue result);

setResultHeader()

Sets the result header, any data will be validated so as to be in the proper format.

public int setResultHeader(String header);

addResultHeader()

Simply appends the supplied data to the header, any data will be validated so as to be in the proper format.

public int addResultHeader(String data);

getCookieValue()

Retrieves a cookie value from the passed-in data sent by the client browser.

public int getCookieValue(String named, LassoValue value);

8 0 4

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 6 9 – L J API R e f e r e n c e

Page Variable Methods

getVariableCount()

Retrieves the number of array values which the named global variable has. Returns 1 if the global
variable is not an array. Global variables are the same variables which you create in Lasso statements, like
[var: 'fred'=1234.56]. These variables last only as long as the current Lasso page is executing; as soon as the hit
gets sent back to the browser, these variables all get destroyed.

public int getVariableCount(String named, IntValue count);

getVariable()

Retrieves the value of the named global variable. If the global variable is an array, then the index specifies
which array value to retrieve. If the global variable is not an array, then 0 is the only valid index. Array indices
start at 0.

public int getVariable(String named, int index, LassoValue value);

getVariable2()

Retrieves the value of the named global variable while preserving the variable type.

public int getVariable2(String named, LassoTypeRef outValue);

setVariable()

Stores a new value into the named global variable. If the global variable is an array, then the 0-based index
determines which array item to replace.

public int setVariable(String named, String value, int index);

setVariable2()

Stores a new global variable while preserving the type.

public int setVariable2(String named, LassoTypeRef inValue);

removeVariable()

Removes the specified variable (destroys it so it becomes undefined, as though it had never been created). If
the named variable is an array, then you may pass in an index (0-based) to remove that array element. Once
the array has 0 elements, then calling removeVariable on it will destroy the array itself.

public int removeVariable(String named, int index);

Lasso tag Interpreter Methods

formatBuffer()

Formats the supplied buffer and puts the resulting data in the data field of the LassoValue. The buffer should
consist of plain text and bracketed Lasso tags.

public int formatBuffer(String buffer, LassoValue output);

Persistent Storage Tag Methods

storeHasData()

Returns ERR_NOERR if the data, specified by key, exists. The length of the stored data can be returned in the
outLength parameter if you pass a valid IntValue object. You may pass null if you don’t want to retrieve the length
of the stored data.

public int storeHasData(String key, IntValue outLength);

storeGetData()

Fetches data that has been stored under the unique identifier key. The data will be returned in the data field of
the LassoValue object.

8 0 5

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 6 9 – L J API R e f e r e n c e

public int storeGetData(String key, LassoValue outValue);

storePutData()

Adds the data to Lasso’s storage. Key is the unique identifier for the data.

public int storePutData(String key, String data);
public int storePutData(String key, byte[] data);

Administration Methods

isAdministrator()

Returns ERR_NOERR if the current user has administrator privileges. This is useful for doing module
administration that only the administrator should be able to do.

public int isAdministrator();

Data Source Function Methods

getDSConnection()

This function accesses the current datasource connection.

public Object getDSConnection();

setDSConnection()

This function sets the current connection for the data source. May recurse to deliver the ACTION_CLOSE
message if there is already a valid connection set.

public int setDSConnection(Object inConnection);

addDataSourceResult()

Sometimes Lasso Professional will query a data source function to return information, such as a list of
database names or table names which the data source module controls. The module will call this function
once for each name you add to the list, so if you have three database names you want to report back to Lasso
Professional, you would call this function three times, once per database name.

public int addDataSourceResult(String data);

getDataSourceName()

Use this function when you want to ask Lasso Professional what database is being operated on. For instance,
if you’re being asked to perform a search, then you would call this function to retrieve the name of the
data-base which Lasso Professional is asking you to search. It corresponds to the value of the parameter
-Database='blah' passed to inlines. Optionally, you can use the second (outUseHostDefault) parameter to
determine whether the current database inherits its host default settings.

Note: Even though the name of the method is getDataSourceName, it really retrieves the database name. This is
purely cosmetic, and just happens to be how the APIs were spelled when they were originally designed.

public int getDataSourceName(LassoValue outName,
								 BoolValue outUseHostDefault,
								 LassoValue outUsernamePassword);

getDataHost()

Use this function when you want to ask Lasso Professional 8 what database host is being operated on. On
return, LassoValue will contain the name and port of the database host.

public int getDataHost(LassoValue outHost,
							 LassoValue outUsernamePassword);

getDataHost2()

Same as getDataHost() but allows the usage of a host schema parameter for JDBC data sources.

8 0 6

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 6 9 – L J API R e f e r e n c e

public int getDataHost2(LassoValue outHost,
							 LassoValue outSchema,
							 LassoValue outUsernamePassword);

getSchemaName()

Use this function when you want to ask Lasso Professional what schema is being operated on for a JDBC data
source. For instance, if you’re being asked to perform a search, then you would call this function to retrieve
the name of the schema which Lasso Professional is asking you to use for the search. It corresponds to the
value of the parameter -Schema='blah' passed to inlines.

public int getSchemaName(LassoValue outName);

getTableName()

Use this function when you want to ask Lasso Professional what table is being operated on. For instance, if
you’re being asked to perform a search, then you would call this function to retrieve the name of the table
which Lasso Professional is asking you to search. It corresponds to the value of the parameter -Layout='blah' or
-Table='blah' passed to inlines.

public int getTableName(LassoValue outName);

getSkipRows()

You can ask Lasso Professional to tell you how many records should be skipped during a search by calling
this function. It corresponds to the value of the -SkipRecords parameter in the inline search which is being
executed at the moment your data source function is being called.

public int getSkipRows(IntValue outRows);

getMaxRows()

You can ask Lasso Professional to tell you the maximum number of records to be returned during a search
by calling this function. It corresponds to the value of the -MaxRecords parameter in the inline search which is
being executed at the moment your data source function is being called.

public int getMaxRows(IntValue outRows);

getPrimaryKeyColumn()

You can ask Lasso Professional to tell you which field is being used as the primary key. This value corresponds
to the -KeyField parameter value used in the inline.	

public int getPrimaryKeyColumn(LassoValue outColumn);

getInputColumnCount()

Tells how many fields were sent as parameters to the inline. For instance, if a Lasso programmer wants to
append a new record to a table, and passes in name, address, city, state, zip with values for each field, then
this function will return the number 5 to indicate that five fields were passed to the inline. You can then
retrieve the values of each of these parameters by calling getInputColumn by index, once per field. This function
is smart enough to ignore parameters which are not fields, such as -Database, -Layout, etc.

public int getInputColumnCount(IntValue outCount);

getInputColumn()

Retrieve the name and value of field data parameters from the inline, starting at index zero. If five fields were
entered into the inline, then you can retrieve each of their names and values by calling this function five
times, once per field.

[Inline: -Database='MyDatabase', -Table='Main', 'MyFirstField'='Bill', 'MySecondField'='Ted', -Search]

In the above example, calling getInputColumn(0, v) will fill the v variable with v.name=MyFirstField, v.data=Bill.
Notice it is smart enough to ignore well-known parameters such as -Table, thus only retrieving field
information.

public int getInputColumn(int index, LassoValue outColumn);

8 0 7

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 6 9 – L J API R e f e r e n c e

getSortColumnCount()

Analogous to getInputColumnCount, this method retrieves the number of sort columns which were specified in
the inline code. It basically counts how many -SortField parameters were passed. You can use this count to tell
you how many times to enumerate through calls to getSortColumn.

public int getSortColumnCount(IntValue outCount);

getSortColumn()

Analogous to lasso_getInputColumn(), this function retrieves the names of sort parameters, starting at index zero.
After calling this, the data field of outColumn variable will contain a String with the name of the sort field.

public int getSortColumn(int index, LassoValue outColumn);

getRowID()

Retrieves the current specified record ID (datasource-specific).

public int getRowID(IntValue outId);

setRowID()

Sets the record ID of the added record. After your custom LCAPI data source finishes adding a record to a
database, it can call this function to let the caller know what the unique record ID of the added record was.

In FileMaker, this record ID is a standard feature of all records in its tables. In MySQL, this value is 0 unless
there exists an AUTO_INCREMENT column. Results are not guaranteed for all database server software.

public int setRowID(int id);

findInputColumn()

Analogous to getInputColumn, except that it searches by name instead of index. If you already know the name
of a field parameter you’re interested in, then you can ask for the value of that parameter which was passed
into the inline.

[Inline: -Database='MyDatabase', -Table='Main', 'MyFirstField'='Bill', 'MySecondField'='Ted', -Search]

In the example above, calling findInputColumn("MySecondField", outColumn) will fill the outColumn variable’s data
member with v.data=Ted.

public int findInputColumn(String name, LassoValue outColumn);

getLogicalOp()

Call this to retrieve the logical operator (OP_AND, OP_OR) which was passed to this inline. It corresponds
to the value of -LogicalOperator passed into the inline. This function simply retrieves a single logical operator
parameter. For more complex logical operations, with multiple operators, you will have to design a
convention whereby you name your input fields in some unique way, and then retrieve those custom logical
operators using the getInputColumn function in a particular order that matches your convention.

public int getLogicalOp(IntValue outOp);

getReturnColumnCount()

Queries Lasso Professional to return the number of columns (fields) that are expected to be returned from a
search operation. This counts how many -ReturnField parameters were encountered.

public int getReturnColumnCount(IntValue outCount);

getReturnColumn()

Once you know how many return columns are expected (from getReturnColumnCount), then you can enumerate
through them to get their fieldnames. Use this information to retrieve field data from your database table,
and populate the result rows when asked to perform a search operation.

public int getReturnColumn(int index, LassoValue outColumn);

8 0 8

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 6 9 – L J API R e f e r e n c e

addColumnInfo()

In order to return a row of data from your data source (perhaps as a result of a search), you must first
indicate what the structure of the table columns is. Call this function for as many table columns as your
database has, providing the fieldname, true/false if nulls are OK in this field, the field type (numeric, string,
date, etc), and field protection (readonly, writeable, etc).	

	 public int addColumnInfo(String name,
							 int nullOK,
							 int type,
							 int protection);

addResultRow()

Call this method once per row of records you want to return (perhaps from a search operation). You may
choose to return an array of Strings, or construct an array of byte arrays that contain data for each of your
fields (binary data is OK).

public int addResultRow(String[] columns);
public int addResultRow(byte[][] columns);

setNumRowsFound()

Corresponds to [Found_Count] in Lasso. Call this when you know how many records your data source is going
to return, and make sure you call addResultRow this many times in order to populate the rows.

public int setNumRowsFound(int num);

Semaphore Methods
createSem()

Creates a named semaphore sufficient for synchronizing multithreaded operations, which should be deleted
after they are used. The Lasso Connector for MySQL example creates one of these at initialization time, and
destroys it at terminate time.

public int createSem(String name);

destroySem()

Destroys a named semaphore that was created by the createSem method.

public int destroySem(String name);

acquireSem()

Attempts to acquire a lock on a semaphore, and waits until the owning thread has released the semaphore
before acquiring the lock and continuing execution.

public int acquireSem(String name);

releaseSem()

Releases a locked semaphore so that other threads waiting for the semaphore can continue execution.

public int releaseSem(String name);

com.omnipilot.lassopro.LassoDSModule
Base class for all datasource modules. LassoDSModules are used to manipulate data sources. LassoDSModules are
looked up by the datasource names they claim to support. They are instantiated once and used repeatedly by
Lasso.

registerDSModule()

Your code must call this once at startup (from within your registerLassoModule() method) to register a data
source with Lasso Professional. When Lasso encounters a data source request for moduleName, it calls the Java
method methodName.

8 0 9

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 6 9 – L J API R e f e r e n c e

	 protected void registerDSModule(String datasourceName,
									 String methodName,
									 int flags,
									 String moduleName,
									 String description);

DS_METHOD_PROTOTYPE()

A prototype for all datasource action methods registered by registerDSModule. Since methods are being looked
up by name, they must match exactly the values passed in a methodName parameter of the registerDSModule call.

	 public int DS_METHOD_PROTOTYPE(LassoCall lasso,
									 int action,
									 LassoValue data);

com.omnipilot.lassopro.LassoEncodings
Constants for the various text encoding methods.

ENCODE_BREAK

Static variable in class omnipilot.lasso.LassoTagEncodings.

public static final int ENCODE_BREAK

ENCODE_DEFAULT

Static variable in class com.omnipilot.lassopro.LassoEncodings.

public static final int ENCODE_DEFAULT

ENCODE_NONE

Static variable in class com.omnipilot.lassopro.LassoEncodings.

public static final int ENCODE_NONE

ENCODE_RAW

Static variable in class com.omnipilot.lassopro.LassoEncodings.

public static final int ENCODE_RAW

ENCODE_SMART

Static variable in class com.omnipilot.lassopro.LassoEncodings.

public static final int ENCODE_SMART

ENCODE_STRICT_URL

Static variable in class com.omnipilot.lassopro.LassoEncodings.

public static final int ENCODE_STRICT_URL	

ENCODE_URL

Static variable in class com.omnipilot.lassopro.LassoEncodings.

public static final int ENCODE_URL

ENCODE_XML

Static variable in class com.omnipilot.lassopro.LassoEncodings.

public static final int ENCODE_XML

com.omnipilot.lassopro.LassoErrors
Constants for the various error codes which can be returned by your module.

NO_ERR

Static variable in class com.omnipilot.lassopro.LassoErrors.

8 1 0

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 6 9 – L J API R e f e r e n c e

public static final int NO_ERR

Assert

Static variable in class com.omnipilot.lassopro.LassoErrors.

public static final int Assert

StreamReadError

Could not write to stream.

public static final int StreamReadError

StreamWriteError

Could not read from stream.

public static final int StreamWriteError

Memory

Generic memory error.

public static final int Memory

InvalidMemoryObject

Invalid memory object.

public static final int InvalidMemoryObject

OutOfMemory

Not enough memory.

public static final int OutOfMemory

OutOfStackSpace

Stack overflow error.

public static final int OutOfStackSpace

CouldNotDisposeMemory

Error disposing an object.

public static final int CouldNotDisposeMemory

File	

Generic file error.

public static final int File

FileInvalid

Trying to work with an invalid file.

public static final int FileInvalid

FileInvalidAccessMode

Trying to access a file in a mode that it doesn’t support.

public static final int FileInvalidAccessMode

CouldNotCreateOrOpenFile

Could not create or open the file.

public static final int CouldNotCreateOrOpenFile

CouldNotCloseFile

Could not close the file.

public static final int CouldNotCloseFile

8 1 1

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 6 9 – L J API R e f e r e n c e

CouldNotDeleteFile	

Could not delete the file.

public static final int CouldNotDeleteFile

FileNotFound

File does not exist.

public static final int FileNotFound

FileAlreadyExists

Trying to create a file that already exist.

public static final int FileAlreadyExists

FileCorrupt

File is corrupted.

public static final int FileCorrupt

VolumeDoesNotExist

Bad volume name.

public static final int VolumeDoesNotExist

DiskFull

No room left on disk.

public static final int DiskFull

DirectoryFull

No more items allowed in the directory.

public static final int DirectoryFull

IOError

I/O error.

public static final int IOError

InvalidPathname

Pathname is invalid.

public static final int InvalidPathname

InvalidFilename

Filename is invalid.

public static final int InvalidFilename

FileLocked

File is locked.

public static final int FileLocked

FileUnlocked

File is unlocked.

public static final int FileUnlocked

FileIsOpen

File is open.

public static final int FileIsOpen

8 1 2

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 6 9 – L J API R e f e r e n c e

FileIsClosed

File is closed.

public static final int FileIsClosed

BOF

Beginning of file reached.

public static final int BOF

EOF

End of file reached.

public static final int EOF

CouldNotWriteToFile

Unable to complete a write operation to the file.

public static final int CouldNotWriteToFile

CouldNotReadFromFile

Unable to complete a read operation from the file.

public static final int CouldNotReadFromFile

Resource

Unknown resource error.

public static final int Resource

ResNotFound

Resource not found.

public static final int ResNotFound

Network

Unknown networking error.

public static final int Network

InvalidUsername

The username supplied for the action is not valid.

public static final int InvalidUsername

InvalidPassword

The password supplied for the action is not valid.

public static final int InvalidPassword

InvalidDatabase

The database name supplied is not valid.

public static final int InvalidDatabase

NoPermission

General permissions error.

public static final int NoPermission

FieldRestriction

The specified action is restricted.

public static final int FieldRestriction

WebAddError

Add record error.

8 1 3

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 6 9 – L J API R e f e r e n c e

public static final int WebAddError

WebUpdateError

Update record error.

public static final int WebUpdateError

WebDeleteError

Delete record error.

public static final int WebDeleteError

InvalidParameter

An invalid parameter was passed to a function.

public static final int InvalidParameter

Overflow

Allocated memory was too small to hold the results.

public static final int Overflow

NilPointer

A pointer was null when it shouldn’t have been.

public static final int NilPointer

UnknownError

Default when none of the cross-platform errors seem to fit.

public static final int UnknownError

FormattingLoopAborted

A looping tag was aborted; all looping tags must catch this exception.

public static final int FormattingLoopAborted

FormattingSyntaxError

Bad syntax used in a Lasso page; parsing of the file was aborted.

public static final int FormattingSyntaxError

WebRequiredFieldMissing

Value missing for required field for Add.

public static final int WebRequiredFieldMissing

WebRepeatingRelatedField

Adding repeating related fields isn’t supported.

public static final int WebRepeatingRelatedField

WebNoSuchObject

No records found.

public static final int WebNoSuchObject

WebTimeout

Operation timed out.

public static final int WebTimeout

WebActionNotSupported

Action not supported.

public static final int WebActionNotSupported

8 1 4

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 6 9 – L J API R e f e r e n c e

WebConnectionInvalid

The specified database was not found.

public static final int WebConnectionInvalid

WebModuleNotFound

The module was not found.

public static final int WebModuleNotFound

HTTPFileNotFound

The file was not found.

public static final int HTTPFileNotFound

DatasourceError

Third-party generic datasource error.

public static final int DatasourceError

com.omnipilot.lassopro.LassoOperators
Operator constants used throughout LJAPI.

Variables

OP_AND

Logical operator AND.

public static final int OP_AND

OP_ANY

Used for -Random database action.

public static final int OP_ANY

OP_BEGINS_WITH

Field search operator BW.

public static final int OP_BEGINS_WITH

OP_CONTAINS

Field search operator CN.

 public static final int OP_CONTAINS

OP_DEFAULT

Same as OP_BEGINS_WITH.

public static final int OP_DEFAULT

OP_ENDS_WITH

Field search operator EW.

public static final int OP_ENDS_WITH

OP_EQUALS

Field search operator EQ.

public static final int OP_EQUALS

OP_GREATER_THAN

Field search operator GT.

public static final int OP_GREATER_THAN

8 1 5

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 6 9 – L J API R e f e r e n c e

OP_GREATER_THAN_EQUALS

Field search operator GTE.

public static final int OP_GREATER_THAN_EQUALS

OP_IN_FULL_TEXT

Field search operator FT.

public static final int OP_IN_FULL_TEXT

OP_IN_LIST

Static variable in class com.omnipilot.lassopro.LassoOperators.

public static final int OP_IN_LIST

OP_IN_REGEXP

Field search operator RX.

public static final int OP_IN_REGEXP

OP_LESS_THAN

Field search operator LT.

public static final int OP_LESS_THAN

OP_LESS_THAN_EQUALS

Field search operator LTE.

public static final int OP_LESS_THAN_EQUALS

OP_NO

Same as OP_NOT.

public static final int OP_NO

OP_NOT

Logical operator NOT.

public static final int OP_NOT

OP_NOT_BEGINS_WITH

Field search operator NBW.

public static final int OP_NOT_BEGINS_WITH

OP_NOT_CONTAINS

Field search operator NCN.

public static final int OP_NOT_CONTAINS

OP_NOT_ENDS_WITH

Field search operator NEW.

public static final int OP_NOT_ENDS_WITH

OP_NOT_EQUALS

Field search operator NEQ.

public static final int OP_NOT_EQUALS

OP_NOT_IN_LIST

Static variable in class com.omnipilot.lassopro.LassoOperators.

public static final int OP_NOT_IN_LIST

OP_NOT_IN_REGEXP

Field search operator NRX.

8 1 6

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 6 9 – L J API R e f e r e n c e

public static final int OP_NOT_IN_REGEXP

OP_OR

Logical operator OR.

public static final int OP_OR

com.omnipilot.lassopro.LassoParams
These constants signify the different parameters which can be retrieved from the LassoCall.getLassoParam
method.

ModulesFolderPath

Path to the LassoModules folder.

public static final int ModulesFolderPath

StartupItemsFolderPath

Path to LassoStartup folder.

public static final int StartupItemsFolderPath

LassoErrorsFilePath

Path to Lasso error log file.

public static final int LassoErrorsFilePath

StorageHost

Location of Lasso MySQL datasource.

public static final int StorageHost

ScriptsRoot

Relative path to scripts root.

public static final int ScriptsRoot

ScriptsSiteRoot

Relative path to site scripts root (most likely includes ScriptsRoot).

public static final int ScriptsSiteRoot

com.omnipilot.lassopro.LassoTagModule
Base class for any tag module. Most tag modules output data onto the Web page, though some tags may
perform other actions based on the parameters passed to them.

Every LassoTagModule must implement registerLassoModule method, and one or more methods with the same
signature as TAG_METHOD_PROTOTYPE.

Lasso calls registerLassoModule once at startup to give the module a chance to register its tags. LassoTagModule
must then call registerTagModule as many times as there are tags implemented by this module.

Variables

FLAG_INITIALIZER

Type initializer tags can have their own members.

public static final int FLAG_INITIALIZER

FLAG_SUBSTITUTION

Regular substitution tags.

public static final int FLAG_SUBSTITUTION

8 1 7

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 6 9 – L J API R e f e r e n c e

FLAG_ASYNC

Async tags run asynchronously in their own thread.

public static final int FLAG_ASYNC

FLAG_CONTAINER

Container tags have opening and closing. This flag will cause Lasso Professional to raise an error if the closing
tag can’t be found.

public static final int FLAG_CONTAINER

Methods

registerTagModule()

Use this method to register substitution tags implemented by your module. You should call registerTagModule
as many times as there are tags implemented in your module.

moduleName parameter is the name of the module as returned by [Lasso_TagModuleName] Lasso tag. tagName is
the name of the custom Lasso tag implemented by this module. One or more OR logical FLAG constants can
be passed in the flags parameter to specify unique tag features. Finally, a description parameter can be used to
provide optional tag info, such as brief description of the tag usage.

protected void registerTagModule(String moduleName,

									 String tagName,
									 String methodName,
									 int flags,
									 String description);

com.omnipilot.lassopro.LassoTypeRef
This class is used for creating and manipulating custom Lasso types. Unlike LassoValue or IntValue objects
which store copies of the data, LassoTypeRef is merely a reference to a native object instance. Native objects
exist for a fraction of a second while Lasso is processing a page, therefore the LassoTypeRef objects should
never be stored or reused across multiple module invocations.

Variables

LASSO_ARRAY

The name of the built-in array type in Lasso Professional 8.

public static final String LASSO_ARRAY

LASSO_BOOLEAN

The name of the built-in boolean type in Lasso Professional 8.

public static final String LASSO_BOOLEAN

LASSO_DATE

The name of the built-in date type in Lasso Professional 8.

public static final String LASSO_DATE

LASSO_DECIMAL

The name of the built-in decimal type in Lasso Professional 8.

public static final String LASSO_DECIMAL

LASSO_INTEGER

The name of the built-in integer type in Lasso Professional 8.

public static final String LASSO_INTEGER

8 1 8

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 6 9 – L J API R e f e r e n c e

LASSO_MAP

The name of the built-in map type in Lasso Professional 8.

public static final String LASSO_MAP

LASSO_NULL

The name of the built-in null type in Lasso Professional 8.

public static final String LASSO_NULL

LASSO_PAIR

The name of the built-in pair type in Lasso Professional 8.

public static final String LASSO_PAIR

LASSO_STRING

The name of the built-in string type in Lasso Professional 8.

public static final String LASSO_STRING

LASSO_TAG

The name of the built-in tag type in Lasso Professional 8.

public static final String LASSO_TAG

Methods

isNull()

Returns true if this object does not refer to a valid type instance, which most likely would be a result of a
failed LassoCall method.

public boolean isNull();

toString()

Returns string representation of the LassoTypeRef object. Overrides toString method in the class Object.

public String toString();

com.omnipilot.lassopro.LassoValue
Used for retrieving values from various LassoCall methods. Has name and data member variables of type String.
The type member is set to one of the TYPE constants, reflecting the original type of the value before it was
converted to string.

Variables

TYPE_ARRAY

Array type.

public static final int TYPE_ARRAY

TYPE_BLOB

Binary data.

public static final int TYPE_BLOB

TYPE_BOOLEAN

Boolean type.

public static final int TYPE_BOOLEAN

TYPE_CHAR

String type.

8 1 9

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 6 9 – L J API R e f e r e n c e

public static final int TYPE_CHAR

TYPE_CODE

Substitution tag code.

public static final int TYPE_CODE

TYPE_CUSTOM

Custom type.

public static final int TYPE_CUSTOM

TYPE_DATETIME

Date type.

public static final int TYPE_DATETIME

TYPE_DECIMAL

Decimal type.

public static final int TYPE_DECIMAL

TYPE_INT

Integer type.

public static final int TYPE_INT

TYPE_MAP

Map type.

public static final int TYPE_MAP

TYPE_NULL

Null type.

public static final int TYPE_NULL

TYPE_PAIR

Pair type.

public static final int TYPE_PAIR

TYPE_REFERENCE

Reference type.

public static final int TYPE_REFERENCE

Constructors

public LassoValue();
public LassoValue(int type);
public LassoValue(String data);
public LassoValue(String name, String data);
public LassoValue(String name, String data, int type);

Methods

data()

Returns the String object stored in the data field.

public String data();

8 2 0

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 6 9 – L J API R e f e r e n c e

name()

Returns the String object stored in the name field.

public String name();

setData()

Sets the value of the data field.

public String setData(String data);

setName()

Sets the value of the name field.

public String setName(String name);

setType()

Sets the value of the type field.

public int setType(int type);

toString()

Converts this object to String.

public String toString()

type()

Returns the original type of the data retrieved from one of the LassoCall methods: TYPE_CHAR for strings,
TYPE_INT for integers, and so on.

For unnamed tag parameters, the type field is set to the type of the data stored in the data field. For named tag
parameters, it reflects the type of the value member.

public int type();

com.omnipilot.lassopro.RequestParams
These constants signify the different parameters which can be retrieved from the LassoCall.getRequestParam
method.

AddressKeyword

IP address of client browser.

public static final int AddressKeyword

ActionKeyword

Type of HTTP request (GET, POST, etc.).

public static final int ActionKeyword

ClientIPAddress

IP address of client browser.

public static final int ClientIPAddress

ContentLength

The length in bytes of the POST data sent from <form POST>.

public static final int ContentLength

ContentType

MIME header sent from client browser.

public static final int ContentType

8 2 1

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 6 9 – L J API R e f e r e n c e

FullRequestKeyword

All MIME headers, uninterpreted.

public static final int FullRequestKeyword

MethodKeyword

GET or POST, depending on <form method>.

public static final int MethodKeyword

PasswordKeyword

Password sent from browser.

public static final int PasswordKeyword

PostKeyword

HTTP object body (form data, etc.).

public static final int PostKeyword

ReferrerKeyword

URL of referring page.

public static final int ReferrerKeyword

ScriptName

Relative path from server root to a Lasso page.

public static final int ScriptName

SearchArgKeyword

All text in URL after the question mark.

public static final int SearchArgKeyword

ServerName

IP address or host name of the server on which the Web server is running.

public static final int ServerName

ServerPort	

IP port this hit came to (80 is common, 443 for SSL).

public static final int ServerPort

UserAgentKeyword

Browser name and type.

public static final int UserAgentKeyword

UserKeyword

Username sent from browser.

public static final int UserKeyword	

8 2 2

L a s s o 8 . 5 L a n g u a g e G u i d e

C h a p t e r 6 9 – L J API R e f e r e n c e

A
Appendix A

Error Codes

This appendix contains a list of all known error codes that Lasso Professional 8, Lasso MySQL, or FileMaker
Pro will return.

	 •	Lasso Professional 8 Error Codes contains a list of all error codes which are generated by Lasso
Professional 8.

	 •	Lasso MySQL Error Codes contains a list of all error codes which are generated by Lasso MySQL or
another MySQL data source.

	 •	FileMaker Pro Error Codes contains a list of known error codes which are generated by FileMaker Pro
when used as a data source.

In addition to the error codes described in this appendix, Lasso Professional 8 will report any unknown errors
it receives from the operating system, Web server applications, or data source applications it communicates
with. Please consult the documentation for the operating system and each application for more information
about the error codes they may report.

For information about how to gracefully handle and recover from errors, please see the Error Control chapter.

Lasso Professional 8 Error Codes
The following Table 1: Lasso Professional Error Codes lists all of the native error codes of Lasso Professional
8. The error codes are listed in numerical order and are divided into general categories for easier reading.
Many of the error codes descriptions contain helpful information about what to do to correct or prevent the
error.

8 2 3

L a s s o 8 . 5 L a n g u a g e G u i d e

Table 1: Lasso Professional 8 Error Codes

Error Code	 Description	

0	 No Error.

-609	 The specified database was not found. Lasso could not find the specified
database. This error usually occurs when a database is not open or not
accessible by Lasso. Make sure the specified database is open.

-700	 Could not find email Lasso page. The Lasso page specified by an -Email.Format
command tag could not be found. Check the spelling of the file name. Make sure
the path to the file is specified properly.

-701	 All email tags must be assigned a value. In order for an email message to be
sent, all five of the email parameters (-Email.Host, -Email.From, -Email.To,
-Email.Subject, and -Email.Format) must be specified. Make sure you have
specified values for all five parameters in your HTML form. Make sure the
parameter names are spelled correctly.

Database Errors		

-800	 Value missing for required field. The value of one or more required field was not
specified. Make sure that all required fields are supplied with a value.

-801	 Repeating related fields are not supported. An attempt to retrieve data from
a repeating related field failed. Lasso does not support retrieving data from
repeating related fields.

-802	 Action not supported. The specified Lasso action is not supported by the
specified database or data source.

-1712	 Timeout. A database action timed out.

-1728	 No records found. No records were found in the specified database.

-2000	 The module was not found. The requested module was not found. Make sure that
the module is located in the "Lasso Modules" folder and relaunch the Web server
and/or Lasso.

-3000	 A data source error has occured.

		 continued

8 2 4

L a s s o 8 . 5 L a n g u a g e G u i d e

A p p e n d i x A – E r r o r C o d e s

Syntax Errors		

-9951	 A syntax error occurred. Invalid or incorrect syntax was used. Correct the syntax.

-9952	 A looping tag was aborted.

-9953	 Unknown error.

Internal Errors		

-9954	 A pointer was nil when it should not have been.

-9955	 Overflow: Some memory passed to a function that was too small to hold the
results.

-9956	 An invalid parameter was passed to a function.

Action Errors		

-9957	 Delete error. An error occurred while deleting a record from the specified
database. Make sure that the database or data source is set to allow record
deletion.

-9958	 Update error. An error occurred while updating a record from the specified
database. Make sure that the database or data source is set to allow records to
be updated.

-9959	 Add error. An error occurred while adding a record to the specified database.
Make sure that the database or data source is set to allow records to be added.

-9960	 Field restriction. A field security restriction prevented the action from being
executed. Edit field security restrictions as configured within Lasso security.

Security Errors		

-9961	 No permission. The current user is not allowed to perform the specified action.
This could mean that a file suffix is not allowed by Lasso security. Edit user
security permissions as configured within Lasso security.

-9962	 Invalid database. The database or data source name is not valid.

-9963	 Invalid password. The password supplied is not valid.

-9964	 Invalid user name. The user name supplied is not valid.

-9965	 Network error. An error occurred accessing the network connection. This error
usually occurs while communicating with FileMaker Pro over TCP/IP. Try quitting
and restarting the FileMaker Pro client.

-9966	 Resource error.

-9967	 Resource not found.

		 continued

8 2 5

L a s s o 8 . 5 L a n g u a g e G u i d e

A p p e n d i x A – E r r o r C o d e s

File Errors		

-9968	 Could not read from file.

-9969	 Could not write to file.

-9970	 End of file reached.

-9971	 Beginning of file reached.

-9972	 File is closed.

-9973	 File already open with write permission.

-9974	 File Unlocked.

-9975	 File locked.

-9976	 Invalid filename.

-9977	 Invalid pathname.

-9978	 I/O error.

-9979	 Directory full.

-9980	 Disk full.

-9981	 Volume does not exist.

-9982	 The file is corrupt.

-9983	 File already exists.

-9984	 Unauthorized file suffix or file not found.The error -9984 can be seen if you
specify a Lasso page with a file suffix which is not included in the Lasso Security
settings. Also returned by file management tags.

-9985	 Could not delete file.

-9986	 Could not close file.

-9987	 Could not create or open file.

-9988	 Invalid access mode.

-9990	 File error.

		 continued

Memory Errors		

-9991	 Could not dispose memory.

-9992	 Could not unlock memory.

-9993	 Could not lock memory.

-9994	 Lasso ran out of stack space. This error may occur when a Lasso page contains
too many deeply nested container tags. The [Variable] tag can be used in order to
significantly reduce the number on nested tags in a Lasso page.

-9995	 Lasso ran out of memory. Increase the memory which is available to the server
running Lasso.

-9996	 Invalid memory object.

-9997	 Memory error.

-9998	 Error writing to stream.

-9999	 Error reading from stream.

		

8 2 6

L a s s o 8 . 5 L a n g u a g e G u i d e

A p p e n d i x A – E r r o r C o d e s

Lasso MySQL Error Codes
All of the known error codes in Lasso MySQL are listed in Table 2: Lasso MySQL Error Codes. Additional
error codes may be reported if Lasso MySQL encounters an operating system error. If Lasso receives one of
these error codes from Lasso MySQL or another MySQL data source then it will be passed on to the site
visitor.

Table 2: Lasso MySQL Error Codes

Error Code	 Description	

1	 Operation not permitted.

2	 No such file or directory.

3	 No such process.

4	 Interrupted system call.

5	 Input/output error.

6	 Device not configured.

7	 Argument list too long.

8	 Exec format error.

9	 Bad file descriptor.

10	 No child processes.

11	 Resource deadlock avoided.

12	 Cannot allocate memory.

13	 Permission denied.

14	 Bad address.

15	 Block device required.

16	 Device busy.

17	 File exists.

18	 Cross-device link.

19	 Operation not supported by device.

20	 Not a directory.

21	 Is a directory.

22	 Invalid argument.

23	 Too many open files in system.

24	 Too many open files.

25	 Inappropriate ioctl for device.

		 continued

8 2 7

L a s s o 8 . 5 L a n g u a g e G u i d e

A p p e n d i x A – E r r o r C o d e s

26 – 50		

26	 Text file busy.

27	 File too large.

28	 No space left on device.

29	 Illegal seek.

30	 Read-only file system.

31	 Too many links.

32	 Broken pipe.

33	 Numerical argument out of domain.

34	 Result too large.

35	 Resource temporarily unavailable.

36	 Operation now in progress.

37	 Operation already in progress.

38	 Socket operation on non-socket.

39	 Destination address required.

40	 Message too long.

41	 Protocol wrong type for socket.

42	 Protocol not available.

43	 Protocol not supported.

44	 Socket type not supported.

45	 Operation not supported.

46	 Protocol family not supported.

47	 Address family not supported by protocol family.

48	 Address already in use.

49	 Can't assign requested address.

50	 Network is down.

		 continued

8 2 8

L a s s o 8 . 5 L a n g u a g e G u i d e

A p p e n d i x A – E r r o r C o d e s

51 – 75		

51	 Network is unreachable.

52	 Network dropped connection on reset.

53	 Software caused connection abort.

54	 Connection reset by peer.

55	 No buffer space available.

56	 Socket is already connected.

57	 Socket is not connected.

58	 Can't send after socket shutdown.

59	 Too many references: can't splice.

60	 Operation timed out.

61	 Connection refused.

62	 Too many levels of symbolic links.

63	 File name too long.

64	 Host is down.

65	 No route to host.

66	 Directory not empty.

67	 Too many processes.

68	 Too many users.

69	 Disc quota exceeded.

70	 Stale NFS file handle.

71	 Too many levels of remote in path.

72	 RPC struct is bad.

73	 RPC version wrong.

74	 RPC prog. not avail.

75	 Program version wrong.

		 continued

8 2 9

L a s s o 8 . 5 L a n g u a g e G u i d e

A p p e n d i x A – E r r o r C o d e s

76 – 150		

76	 Bad procedure for program.

77	 No locks available.

78	 Function not implemented.

79	 Inappropriate file type or format.

80	 Authentication error.

81	 Need authenticator.

82	 Device power is off.

83	 Device error.

84	 Value too large to be stored in data type.

85	 Bad executable (or shared library).

86	 Bad CPU type in executable.

87	 Shared library version mismatch.

88	 Malformed Mach-O library file.

120	 Didn't find key on read or update.

121	 Duplicate key on write or update.

123	 Someone has changed the row since it was read.

124	 Wrong index given to function.

126	 Index file is crashed / Wrong file format.

127	 Record-file is crashed.

131	 Command not supported by database.

132	 Old database file.

133	 No record read before update.

134	 Record was already deleted (or record file crashed).

135	 No more room in record file.

136	 No more room in index file.

137	 No more records (read after end of file).

138	 Unsupported extension used for table.

139	 Too big row (>= 16 M).

140	 Wrong create options.

141	 Duplicate unique key or constraint on write or update.

142	 Unknown character set used.

143	 Conflicting table definition between MERGE and mapped table.

144	 Table is crashed and last repair failed.

145	 Table was marked as crashed and should be repaired.
		

FileMaker Pro Error Codes
All of the known error codes for the FileMaker Pro Web Companion as of FileMaker Pro 5.5v3 are listed in
Table 3: FileMaker Pro Error Codes. Additional error codes may be reported if FileMaker Pro encounters an
operating system error. If Lasso receives one of these error codes from a FileMaker Pro data source, it will be
passed on to the site visitor.

8 3 0

L a s s o 8 . 5 L a n g u a g e G u i d e

A p p e n d i x A – E r r o r C o d e s

Table 3: FileMaker Pro Error Codes

Error Code	 Description	

-1	 Unknown Error.

0	 No Error.

1	 User cancelled action.

2	 Memory error.

3	 Command is unavailable.

4	 Command is unknown.

5	 Command is invalid.

100 – 199		

100	 File is missing.

101	 Record is missing.

102	 Field is missing.

103	 Relation is missing.

104	 Script is missing.

105	 Layout is missing.

200 – 299		

200	 Record access is denied.

201	 Field cannot be modified.

202	 Field access is denied.

203	 No records in file to print or password doesn't allow print access.

204	 No access to field(s) in sort order.

205	 Cannot create new records; import will overwrite existing data.

		 continued

300 – 399		

300	 The file is locked or in use.

301	 Record is in use by another user.

302	 Script definitions are in use by another user.

303	 Paper size is in use by another user.

304	 Password definitions are in use by another user.

305	 Relationship or value list definitions are locked by another user.

400 – 499		

400	 Find criteria is empty.

401	 No records match the request.

402	 Not a match field for a lookup.

403	 Exceeding maximum record limit for demo.

404	 Sort order is invalid.

405	 Number of records specified exceeds number of records that can be omitted.

406	 Replace/Reserialize criteria is invalid.

407	 One or both key fields are missing (invalid relation).

408	 Specified field has inappropriate data type for this operation.

409	 Import order is invalid.

410	 Export order is invalid.

411	 Cannot perform delete because related records cannot be deleted.

412	 Wrong version of FileMaker Pro used to recover file.

		 continued

8 3 1

L a s s o 8 . 5 L a n g u a g e G u i d e

A p p e n d i x A – E r r o r C o d e s

500 – 599		

500	 Date value does not meet validation entry options.

501	 Time value does not meet validation entry options.

502	 Number value does not meet validation entry options.

503	 Value in field does not meet range validation entry options.

504	 Value in field does not meet unique value validation entry options.

505	 Value in field failed existing value validation test.

506	 Value in field is not a member value of the validation entry option value list.

507	 Value in field failed calculation test of validation entry option.

508	 Value in field failed query value test of validation entry option.

509	 Field requires a valid value.

510	 Related value is empty or unavailable.

600 –699		

600	 Print error has occurred.

601	 Combined header and footer exceed one page .

602	 Body doesn't fit on a page for current column setup .

603	 Print connection lost.

700 – 799		

700	 File is of the wrong file type for import.

701	 Data Access Manager can't find database extension file.

702	 Data Access Manager was unable to open the session.

704	 Data Access Manager failed when sending a query.

705	 Data Access Manager failed when executing a query.

706	 EPSF file has no preview image.

707	 Graphic translator can not be found.

708	 Can't import the file or need color computer.

709	 QuickTime movie import failed.

710	 Unable to update Quicktime file reference, read-only.

711	 Import Translator can not be found.

712	 XTND version is incompatible.

713	 Couldn't initialize the XTND system.

714	 Insufficient password privileges to allow the operation.

		 continued

8 3 2

L a s s o 8 . 5 L a n g u a g e G u i d e

A p p e n d i x A – E r r o r C o d e s

800 – 899		

800	 Unable to create file on disk.

801	 Unable to create temporary file on System disk.

802	 Unable to open file .

803	 File is single user or host cannot be found .

804	 File cannot be opened as read-only in its current state .

805	 File is damaged; use Recover command.

806	 File cannot be opened with this version of FileMaker Pro.

807	 File is not a FileMaker Pro file or is severely damaged .

808	 Cannot open file because of damaged access privileges

809	 Disk/volume is full.

810	 Disk/volume is locked.

811	 Temporary file cannot be opened as FileMaker Pro file.

812	 Cannot open the file because it exceeds host capacity.

813	 Record Synchronization error on network.

814	 File(s) cannot be opened because maximum number is open.

815	 Couldn't open lookup file.

816	 Unable to convert file.

900 – 999		

900	 General spelling engine error.

901	 Main spelling dictionary not installed.

902	 Could not launch the Help system.

903	 Command cannot be used in a shared file.

904	 Command can only be used in a file hosted under FileMaker Server.

950	 Adding repeating related fields is not supported.

951	 An unexpected error occurred.

971	 The user name is invalid.

972	 The password is invalid.

973	 The database is invalid.

974	 Permission denied.

975	 The field has restricted access.

976	 Security is disabled.

977	 Invalid client IP address (FileMaker Pro 5.x only).

978	 The number of allowed guests has been exceeded (FileMaker Pro 5.x only).
		

JDBC Error Codes
All error codes specific to JDBC data sources are listed in Table 4: JDBC Error Codes. Additional error codes
may be reported if the JDBC data source encounters an operating system error. If Lasso receives one of these
error codes from a JDBC data source, it will be passed on to the site visitor.

Table 4: JDBC Error Codes

Error Code	 Description	

-11000 	 Invalid Token Error. Invalid Lasso state token passed from Java.

-10999 	 Null Parameter Error. One of the required parameters was Null.
		

8 3 3

L a s s o 8 . 5 L a n g u a g e G u i d e

A p p e n d i x A – E r r o r C o d e s

B
Appendix B

Copyright Notice

Copyright © 1996-2008 LassoSoft, LLC.

This copyright notice applies to all source code, examples and documentation provided with the Lasso 8
Language Guide provided with the Lasso Professional 8 software product from LassoSoft, LLC.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated
documentation files (the “Software”), to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and
to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions
of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL THE COMPANY BE LIABLE
FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.

Except as contained in this notice, the name of LassoSoft, LLC. shall not be used in advertising or otherwise
to promote the sale, use or other dealings in this Software without prior written authorization from
LassoSoft, LLC.

Lasso, Lasso Professional, Lasso Studio, Lasso Dynamic Markup Language, LDML, Lasso Service, Lasso
Connector, Lasso Web Data Engine, OmniPilot and OmniPilot Software are trademarks of LassoSoft, LLC.

8 3 4

L a s s o 8 . 5 L a n g u a g e G u i d e

C
Appendix C

Index

Symbols
^

Regular expressions 351
-

Date Subtraction 384
Keyword prefix 81
Mathematical subtraction 365
String deletion 333
Symbol overloading 718

--
Symbol overloading 718

-=
Mathematical subtraction 366
String deletion 333

->
Member symbol 82

,
Tag delimiter 81

;
LassoScript delimiter 55, 59
Tag delimiter 82

:
Naming related fields 178
Tag delimiter 81

!
Boolean not 244

!=
Boolean inequality 244
Mathematical inequality 366
String inequality 334

?
Regular expressions 349
URL delimiter 82

?>
LassoScript delimiter 55

.
Regular expressions 347

‘
String delimiter 81

“
HTML delimiter 82

()
Regular expressions 349

[]
Regular expressions 347
Tag delimiter 81

{ }
Compound expressions 59, 582
Compound Expressions 82

Regular expressions 349
@ 232

References 230
*

Mathematical multiplication 365
Regular expressions 349
String repetition 333
Symbol overloading 718

*=
Mathematical multiplication 366
String repetition 333

/
Mathematical division 365
Symbol overloading 718
URL delimiter 82

//
LassoScript 55
LassoScript comment 82

/=
Mathematical division 366

\
Escape Character 497
Line Endings 323, 434
Regular Expressions 347

&
URL delimiter 82

&&
Boolean and 244

229, 693
URL delimiter 82

%
Mathematical modulus 365
Symbol overloading 718

%=
Mathematical modulus 366

+
Date Addition 384
Mathematical addition 365
Regular expressions 349
String concatenation 333
Symbol overloading 718

++
Symbol overloading 718

+=
String concatenation 333

<
HTML delimiter 82
Mathematical less than 366
String order 334

<=

8 3 5

L a s s o 8 . 5 L a n g u a g e G u i d e

A p p e n d i x C – I n d e x

Mathematical less than or equal 366
String order 334

=
Mathematical assignment 366
Parameter delimiter 81
URL delimiter 82
Variable assignment 223

==
Boolean equality 244
Mathematical equality 366
String equality 334

>
Mathematical greater than 366
String order 334

>=
Mathematical greater than or equal 366
String order 334

>>
String contains 333
Symbol overloading 717

|
Regular expressions 349

||
Boolean or 244
Logical expressions 80

$
Page variable 223
Regular expressions 351

<?LassoScript 55
[Net_WaitTimeout] 461
-Schema 195
-Table 109
#TOKEN# 596

A
Abbreviation 69
[Abort] 243
Absolute Paths 47
Accessing PDF File Information 491
Action Errors 257
Action.Lasso 42, 678

HTML forms 95
Paths 47

Action Methods 41
[Action_Param] 98

Database searches 119
Inline actions 94

Action Parameters 98
[Action_Params] 98

Displaying the current action parameters 99
HTML forms 94
Inline actions 94
Linking to data 135
Results schema 100

[Action_Statement] 91, 98
-Add 141

Requirements 143
Adding Content to Table Cells 503
Adding Records 143

Classic Lasso 142
FileMaker Pro 144
Security 142
Using an HTML form 145
Using an inline 144
Using a URL 145

[Admin_ChangeUser] 555

[Admin_CreateUser] 555
[Admin_GroupAssignUser] 555
[Admin_GroupListUsers] 555
[Admin_GroupRemoveUser] 555
Administration Tags 555
[Admin_LassoServicePath] 556
[Admin_ListGroups] 555
[Admin_RefreshSecurity] 556
[Admin_ReloadDatasource] 556
[Admin_UserListGroups] 556
AND 121

Performing an and search 121
[Array] 390
[Array] 214
[Array->Contains] 390
[Array->Difference] 391
[Array->Find] 391
[Array->FindPosition] 391
[Array->First] 391
[Array->ForEach] 391
[Array->Get] 240, 391
[Array->Insert] 391
[Array->InsertFirst] 391
[Array->InsertFrom] 391
[Array->InsertLast] 391
[Array->Intersection] 391
[Array->Iterator] 391
[Array->Join] 391
[Array->Last] 391
[Array->Merge] 391

Parameters 395
Array Parameters 98
[Array->Remove] 391
[Array->RemoveAll] 391
[Array->RemoveFirst] 391
[Array->RemoveLast] 391
[Array->Reserve] 391
[Array->Reverse] 391
[Array->ReverseIterator] 391
Arrays 74, 386, 389

Automatic string casting 332
Compressing an array 552
Converting a string to an array 344
Creating 390
Creating an empty array 390
Creating a pair array 397
Finding an element 396
Finding a pair within an array 397
Getting an element 392
Getting the size 392
Inserting an element 393
Iterating through an array 392
Joining into a string 394
Looping through an array 392
Members tags 390
Merging arrays 395
Pair arrays 397
Passing values into an inline 98
Removing an element 394
Setting an element 393
Sorting 398
Types 389

[Array->Second] 392
[Array->Size] 392
[Array->Size] 240
[Array->Sort] 392

8 3 6

L a s s o 8 . 5 L a n g u a g e G u i d e

A p p e n d i x C – I n d e x

[Array->SortWith] 392
[Array->Union] 392
Asynchronous Tags 698

Accessing variables 699
Calling custom tags 699
Creating background processes 699

Attachments 612
[Auth] 554
[Auth_Admin] 554
Authentication 32

B
Background Processes 699
Barcodes 507
Base 64 Encoding 248
Binary Formats 45
Binary Operations 369
Bit Operations 369
Blowfish 546

Seeds 547
Storing data securely 547

[Boolean] 214, 243
Data Type 243
False 243
Symbols 244
True 243

Boolean Operations 369
bw 120
Byte Order Mark 40
[Bytes] 214, 359
[Bytes->Append] 360
[Bytes->BeginsWith] 360
[Bytes->Contains] 360
[Bytes->EndsWith] 360
[Bytes->ExportString] 360
[Bytes->Find] 360
[Bytes->Get] 359
[Bytes->GetRange] 359
[Bytes->ImportString] 360
[Bytes->Position] 360
[Bytes->Remove] 360
[Bytes->RemoveLeading] 360
[Bytes->RemoveTrailing] 360
[Bytes->Replace] 360
[Bytes->SetPosition] 360
[Bytes->SetRange] 360
[Bytes->SetSize] 359
[Bytes->Size] 359
[Bytes->Split] 360
[Bytes->SwapBytes] 360
[Bytes->Trim] 360
Bytes Types 359

C
[Cache] 624
[Cache_Delete] 627
[Cache_Empty] 627
[Cache_Exists] 627
[Cache_Fetch] 627
[Cache_Store] 627
Caching 624
Callback Tags 711
[Case] 237
Casting

String 332

Cellular Phones 652
CGI 615
Character Encoding 40, 116, 141
character set 629
Character Sets 30
Check Boxes 166
[Checked] 163, 184

Displaying selected values 187
Cipher Tags 549
Classic Lasso

Adding records 142
Database searches 117
Deleting records 142
Tokens 96
Updating records 142

[Client_Address] 632
[Client_Browser] 632
[Client_ContentLength] 631
[Client_ContentType] 631
[Client_CookieList] 621
[Client_Cookies] 621
[Client_FormMethod] 631
[Client_GETArgs] 631
[Client_GETParams] 631
[Client_Headers] 631
[Client_IP] 632
[Client_Password] 631
[Client_POSTArgs] 631
[Client_PostParams] 701
[Client_POSTParams] 631
Client Tags 632
[Client_Type] 632
[Client_URL] 632
[Client_Username] 631
cn 120
Color

Creating a random color 372
Command Tags 66

Action tags 92
Email sending tags 591

Comments
LassoScript 54, 56

Comparators 388, 420
Complex Expressions 79
Compound Data Types 386

Common Tags 388
How to Select 387

Compound Expressions 582
Evaluation rules 59, 582
Running compound expressions 59, 582
Tag data type 579

[Compress] 551
Compression 551

Compressing an array 552
Compressing a string 551

Conditional Expressions 79
Symbols 80

Conditional Logic 233
Complex conditionals 235
If else conditionals 234
Iterations 241
Loops 238
Nested conditionals 235
Select statements 237
While loops 242

Configuration Tags 564

8 3 7

L a s s o 8 . 5 L a n g u a g e G u i d e

A p p e n d i x C – I n d e x

Connection Parameters 747, 781
Connection URL 747, 781
Container Fields 188
Container Tags 65

Defining 695
Encoding 695
LassoScript 54, 56
Link tags 132

[Content_Body] 563
[Content_Encoding] 563
[Content_Header] 563, 629
Content Type 629
[Content_Type] 29, 30, 629

Serving images and multimedia 454
Serving WML 653
XML data 480

Control Tags 553
[Cookie] 621
Cookies 31, 621

Checking for cookie support 624
Retrieving cookies 623
Setting cookies 621

[Cookie_Set] 621
Parameters 622

Creating Barcodes 507
Creating PDF Documents 487, 490
Creating Tables 502
Creating Text Content 492
Credit Cards

Checking whether a number is valid 588
Criteria 694
[Currency] 373
Custom Error Pages 258

Defining 261
Testing 261

Custom Errors
Using the [Protect] … [/Protect] tags 268

Custom Tags 683
Creating background processes 699
Criteria 694, 702
Defining asynchronous tags 698
Defining container tags 695
Defining process tags 687
Defining substitution tags 687
Encoding 688, 695
Error control 694
Getting a parameter value 691
Inspecting parameters 691
Libraries 703
Local variables 693
Named parameters 689, 691
Naming conventions 684
Optional parameters 689
Overloading 700
Page variables 693
Parameters 689
Parameters array 690
Parameters of the calling tag 692
Possible uses 684
Priority 701
Redefining 700
Referencing LassoApp Files 679
Remote procedure calls 696
Required parameters 689
Returning values 687, 688
Tag data type 579

Tags 685
Unnamed parameters 689, 692
Using global variables 229
Using references 232
XML-RPC 637, 649

Custom Types 705
Assignment tags 719
Automatic type conversions 713
Callback tags 711
Calling custom member tags 710
Comparison tags 716
Contains tag 717
[Define_Type] 707
Defining a >> callback 718
Defining an onAssign callback 720
Defining an onCompare callback 717
Defining an onConvert callback 713
Defining an onCreate callback 713, 715
Defining an onDestory callback 714
Defining an unknown tag callback 715
Defining a Type 707
Defining custom member tags 710
Destructor tags 714
Inheritance 721
Initialization tags 712
Instance variables 707
Libraries 722
Member tags 709
Naming conventions 705
Symbol overloading 715, 718, 720
Tag module code 772
Tag module walk-through 776
Tags 706
Unknown tags 714

D
-Database 109, 114
Database Actions 92

Action parameters 98
Displaying the current parameters 99
Error codes 824
FileMaker Pro error codes 830
Finding all records 93
HTML forms 94
Inline method 90
JDBC error codes 833
Lasso MySQL error codes 827
Response tags 95
Results 101
Searching for records 93
Tags 92
Tokens 96

DatabaseBrowser.LassoApp 673
Database Errors 257
[Database_FMContainer] 188
[Database_Name] 98
[Database_NameItem] 105
[Database_Names] 105
[Database_Names] … [/Database_Names]

Listing available databases 105
[Database_RealName] 109, 110
Databases

Listing available databases 105
Listing fields 106
Required fields 107

Database Schema

8 3 8

L a s s o 8 . 5 L a n g u a g e G u i d e

A p p e n d i x C – I n d e x

Showing 104
[Database_SchemaNameItem] 195
[Database_SchemaNames] 195
Database Searches 115

Classic Lasso 117
Complex queries 122
Detail links 138
Displaying data 127
Displaying results from a named inline 128
Displaying results out of order 129
Displaying search results 128
Error reporting 116
Field operators 120
Finding all records 125
Finding random records 126
HTML forms 119
Limiting returned fields 125
Linking to data 129
Logical operators 121
Manipulating the found set 123
Navigation links 135
Operators 119
Performing a logical not search 122
Random sorting 127
Results 123
Returning part of a found set 124
Returning unique field values 126
Searching records 118
Security 117
Security command tags 117
Sorting links 137
Sorting results 123, 124
Specifying field operators 120
Specifying username and password 117
Using a logical and operator 121
Using a logical or operator 121
Using inline tags 118

[Database_TableNameItem] 105
[Database_TableNames] 105
[Database_TableNames] … [/Database_TableNames]

Listing available tables 106
Data Output 207
Data Source Connector Code 782
Data Source Connector Operation 747, 781
Data Source Connector Tutorial 748, 782
Data Source Connector Walk-Through 790
Data Source Host 747, 781
Data Type

Boolean 243
Data Type Operation 771
Data Types 213

Casting 215, 216
Custom member tags 709
Decimal 364
Integer 363
Member tags 709
Returning the type of a variable 562
XML 466
XML-RPC 636

Data Type Tutorial 771
[Date] 214, 376
[Date_Add] 382
[Date->Add] 383
Date Data Type 374
[Date->Day] 380
[Date->DayofWeek] 380

[Date->DayofYear] 380
[Date_Difference] 382
[Date->Difference] 383
[Date->DST] 380
[Date_Format] 376
[Date->Format] 379
Date Format Symbols 377, 379
[Date_GetLocalTimeZone] 376
[Date->GMT] 380
[Date_GMTToLocal] 376
[Date->Hour] 380
[Date_LocalToGMT] 376
Date Math Symbols 384
Date Math Tags 382, 383
[Date_Maximum] 376
[Date->Millisecond] 380
[Date_Minimum] 376
[Date->Minute] 380
[Date->Month] 380
[Date_Msec] 376
Dates 73, 374

Accessors 379
Formatting 377
Math Operations 382, 384

[Date->Second] 380
[Date->Set] 379
[Date_SetFormat] 376
[Date->SetFormat] 379
[Date_Subtract] 382
[Date->Subtract] 383
Date Tags 375
[Date->Time] 380
[Date->Week] 380
[Date->Year] 380
Daylight Savings Time 374, 382
[Decimal] 214, 364
Decimals 73, 364

Assignment symbols 366
Automatic string casting 332
Casting 364
Comparing values 367
Comparison symbols 366
Formatting 367
Formatting as currency 368
Member tags 367
Random numbers 371
Rounding values 371
Scientific notation 367
Substitution tags 370
Trignometry 372
Using assignment symbols 366
Using mathematical symbols 365

[Decimal->SetFormat] 367
Parameters 367

[Decode_Base64] 249
[Decode_BHeader] 249
[Decode_Hex] 249
[Decode_HTML] 249, 250
[Decode_QHeader] 250
[Decode_QuotedPrintable] 250
[Decode_URL] 250
[Decompress] 551
[Define_Tag] 685, 706

Asynchronous tags 699
Container tags 695
Criteria 694, 702

8 3 9

L a s s o 8 . 5 L a n g u a g e G u i d e

A p p e n d i x C – I n d e x

Defining custom member tags 710
Parameters 686
Priority 701
RPC 696
XML-RPC 637, 649

[Define_Type] 706
Defining a type 707

-Delete 141
Requirements 150

Deleting Records 150
Classic Lasso 142
Deleting several records 151
Security 142
Using an inline tag 151

Delimiters 81
LassoScript 55

[Deserialize] 550
Detail Links 129

Inline Lasso 138
Displaying data 127
-Distinct 123, 160
Documentation 25
Documentation Conventions 26
Document Type Definition 465, 466
Domain Name Server 587
Downloading Files 619, 620
Drawing Graphics Direct to PDF Pages 506
DTD 466
-Duplicate 141

Requirements 152
Duplicating Records 152

Using an inline tag 153
[Duration] 381
[Duration] 214
Duration Data Type 374
[Duration->Day] 381
[Duration->Hour] 381
Duration Math Tags 383
[Duration->Minute] 381
[Duration->Month] 381
Durations 74, 374

Math Operations 382, 384
[Duration->Second] 381
Duration Tags 380
[Duration->Week] 381
[Duration->Year] 381

E
[Else] 234

Complex conditionals 235
Email 590

Attachments 595, 612
Command tags 591
Composing 599
Downloading 604
HTML 593
Multiple recipients 593
Parsing 607
Examples 609
POP 604
Queuing 599, 600
Sending 591
Sending a message 592
SMTP 602
Structure 607

[Email_Batch] 600

[Email_Compose] 600
[Email_Compose->AddAttachment] 600
[Email_Compose->AddHTMLPart] 600
[Email_Compose->AddPart] 600
[Email_Compose->AddTextPart] 600
[Email_Compose->Data] 600
[Email_Compose->From] 600
[Email_Compose->Recipients] 600
[Email_Extract] 614
[Email_FindEmails] 614
[Email_Immediate] 600
[Email_Merge] 601
[Email_MXLookup] 602
[Email_Parse] 609

Attachments 612
[Email_Parse->Body] 609
[Email_Parse->Data] 609
[Email_Parse->Get] 609
[Email_Parse->Header] 609
[Email_Parse->Headers] 609
[Email_Parse->Mode] 609
[Email_Parse->RawHeaders] 609
[Email_Parse->Recipients] 609
[Email_Parse->Size] 609
[Email_POP] 605

Attachments 612
[Email_POP->Authorize] 605
[Email_POP->Cancel] 605
[Email_POP->Close] 605
[Email_POP->Delete] 605
[Email_POP->Get] 605
[Email_POP->Headers] 605
[Email_POP->NOOP] 605
[Email_POP->Retrieve] 605
[Email_POP->Size] 605
[Email_POP->UniqueID] 605
[Email_Queue] 600
[Email_Result] 599
[Email_SafeEmail] 614
[Email_Send] 591

Parameters 592, 598
[Email_SMTP] 602
[Email_SMTP->Close] 602
[Email_SMTP->Command] 602
[Email_SMTP->Open] 602
[Email_SMTP->Send] 602
[Email_Status] 599
Email Tags 280
[Email_Token] 596
[Email_TranslateBreaksToCRLF] 614
[Encode_Base64] 250
[Encode_Break] 250

HTML encoding 247
-EncodeBreak 248

HTML encoding 247
[Encode_CRC32] 250
[Encode_HTML] 250

HTML encoding 247
-EncodeHTML 248

Default encoding 246
HTML encoding 247

[Encode_HTMlToXML] 250
-EncodeNone 248
[Encode_QHeader] 250
[Encode_QuotedPrintable] 250
[Encode_Set]

8 4 0

L a s s o 8 . 5 L a n g u a g e G u i d e

A p p e n d i x C – I n d e x

Encoding for WML 654
Setting encoding within a LassoScript 54, 57

[Encode_Set] … [/Encode_Set] 249
Setting default encoding 249

-EncodeSmart 248
HTML encoding 247

[Encode_Smart] 250
HTML encoding 247

[Encode_SQL] 110, 250
[Encode_SQL92] 110, 250
[Encode_StrictURL] 250

URL encoding 248
-EncodeStrictURL 248

URL encoding 248
[Encode_URL] 250

URL encoding 247
-EncodeURL 248

URL encoding 247
[Encode_XML] 250

XML encoding 247
-EncodeXML 248

Encoding for WML 654
XML encoding 247

Encoding 246
Base 64 encoding 248
Container tags 695
Controls 249
Custom tags 688
Default encoding 246
HTML 247
HTML encoding 247
Keywords 248
LassoScripts 247
Rules for encoding 246
Substitution tags 246
Tags 249
URL encoding 247
Using encoding tags 250
WML 654
XML 480

Encoding Keywords 71
Encryption 546

BlowFish 546
Cipher Tags 549
MD5 hash function 546
Storing and checking passwords 548
Storing data securely 547

ENUM MySQL Data Type 163
EQ 120
Error Codes 823

FileMaker Pro 830
JDBC 833
Lasso MySQL 827

Error Control 211, 257, 265
Checking for an error 265
Displaying the current error message 263
Executing code if an error is encountered 266
Fail tags 267
Handle tags 266
Outputting debugging messages 266
Post-processing 266
Protecting a portion of a page 268
Protect tags 267
Reporting an error 267
Response tags 262
Setting the current error message 263

Standard error tags 264
Tags 262, 265

[Error_CurrentError] 262
Error Messages 258

Built-In 258
Custom 260

[Error_NoRecordsFound] 265
Error Pages 262

Custom 260
Error Reporting 205

Adding records 142
Checking for an error 116
Database searches 116
Deleting records 142
Displaying the current error 116
Updating records 142

Errors
Types 257

[Error_SetErrorCode] 262
[Error_SetErrorMessage] 262
Event Administration 558
Events 577

Waiting for a signal 577
[Event_Schedule] 558

Parameters 558
Scheduled actions 43

Event Tags 558
EW 120
Example PDF Files 509
Examples

[Ex_Background] 700
[Ex_Bold] 694
[Ex_Concatenate] 692
[Ex_Echo] 691
[Ex_EmailAddress] 687
[Ex_Font] 695
[Ex_Fortune] 647, 696, 698
[Ex_Greeting] 688, 691
[Ex_Link] 695
[Ex_Note] 689, 690
[Ex_Print] 702
[Ex_SendMail] 687, 699
[Ex_Sum] 229, 693
[Ex_TopStories] 697
[Ex_UnnamedParams] 692
[Form_Param] 701

-Exec 114
Expressions 75
Extensible Markup Language 466
Extensible Stylesheet Language 466

F
False 243
[Field] 127, 178

Database searches 119
Displaying results out of order 129
Displaying search results 128
Returning related fields 178

[Field_Name] 105, 240
Listing fields 106
Parameters 106

[Field_Names] 102, 105
Field Operators 120
Fields

Required fields 107
[File] 435

8 4 1

L a s s o 8 . 5 L a n g u a g e G u i d e

A p p e n d i x C – I n d e x

[File_Chmod] 431
[File->Close] 436
[File_Copy] 431
[File_Create] 431
[File_CreationDate] 431
[File_CurrentError] 431
[File_Delete] 431
[File->Delete] 436
[File_Exists] 431
[File->Get] 436
[File_GetLineCount] 431
[File->GetPosition] 436
[File_GetSize] 431
[File_IsDirectory] 431
[File->IsOpen] 437
[File_ListDirectory] 431
FileMaker

Container Fields 188
FileMaker Pro 168

Adding a record through a portal 180
Adding a record with repeating fields 182
Adding records 144
Checking for databases 175
Compatibility tips 171
Deleting a record through a portal 181
Deleting repeating field values 183
Displaying a value list 185
Displaying data 178
Duplicating a record 152
Error codes 830
Executing a script 190
Field operators 120
Key fields 176
Listing databases 175
Logical operators 121
Performance tips 170
Portals 179
Record IDs 176
Referencing a record by ID 176
Related fields 178
Repeating fields 182
Returning a random record 127
Returning the current record ID 176
Returning values from a repeating field 182
Scripts 189
Sorting records 177
Terminology 169
Updating a record within a portal 180
Updating a record with repeating fields 183
Value lists 184
XML templates 481

FileMaker Server Advanced
-LayoutResponse 96, 171
-NoValueLists 123, 171, 184

[File_ModDate] 431
[File_Move] 431
[File->MoveTo] 436
[File->Name] 436
[File->Open] 436
[File->Path] 436
File Permissions 443
[File_ProbeEOL] 431
[File_Read] 431
[File->Read] 436
[File_ReadLine] 432
[File_Rename] 432

Files 428
Error codes 826
Management 45
Paths 29, 428
Security 430
Tags 428

[File_Serve] 440
[File->SetMode] 436
[File->SetPosition] 436
[File_SetSize] 432
[File->SetSize] 436
[File->Size] 436
[File_Stream] 440
[File_StreamCopy] 431
File Suffixes 211, 430
File Uploads 438
[File_Uploads] 439
[File_Write] 432
[File->Write] 436
-FindAll 115

Inline action 93
Requirements 125

-FMScript 189
-FMScriptPre 189
-FMScriptPreSort 189
Format Files 38, 204

Action methods 41
Character Encoding 40
Editing 40
File management 45
Functional types 40
HTML form actions 42
Inline actions 42
Naming 40
Output formats 44
Post-processing 266
Scheduled actions 43
Securing 44
Specificing paths 46
Startup actions 43
Storage types 39
Unicode 40
URL actions 41

[Form_Param]
Redefining 701

Form Parameters 219
Forms 219
Form Tags

Preparing LassoApps 678
[Found_Count]

Displaying the current found count 102
FT 120, 159
FTP 619
[FTP_GetFile] 620
[FTP_GetListing] 620
[FTP_PutFile] 620
Full-Text Search 159

G
GET Method 34
GIF

Serving image files 454
[Global] 226
[Global_Defined] 226
[Global_Remove] 226
[Globals] 226

8 4 2

L a s s o 8 . 5 L a n g u a g e G u i d e

A p p e n d i x C – I n d e x

Global Variables 226
Defining at startup 226
Overriding a value 227
Retrieving a value 227
Setting a value 227
Using within custom tags 229

GroupAdmin.LassoApp 673
-GroupBy 160
GT 120
GTE 120

H
[Handle] … [/Handle] 266
[Header] … [/Header] 629
Header Tags 629
Hexadecimals 369

Creating a random color 372
Host Name 28

Looking up an IP address 587
HTML 466

Email 593
Encoding 247
Output formats 44

[HTML_Comment] 207
HTML Delimiters 82
HTML Format Files 39
HTML Forms 34

Actions 42
Adding a record 145
Creating a pop-up menu 185
Creating radio buttons 186
Executing a FileMaker Pro script 190
Format files 95
GET method 34
Inline actions 93
Input syntax 58
POST method 35
Response tags 95
Searching databases 119
Setting values 96
Updating a record 147

HTTP 619
HTTP Content and Controls 615
HTTP Delimiters 82
[HTTP_GetFile] 619
HTTP Requests 29
HTTP Responses 29
HTTPS 615, 617
HyperText Markup Language 466

I
[If] 234

Complex conditionals 235
Error control 235
LassoScript 235
Nested conditionals 235

Illegal Characters 83
[Image] 443, 444
[Image->AddComment] 446
[Image->Annotate] 450
[Image->Blur] 449
[Image->Comments] 445
[Image->Composite] 451
[Image->Contrast] 448
[Image->Crop] 447

[Image->Depth] 445
[Image->Describe] 445
[Image->Enhance] 449
[Image->File] 445
[Image->FlipH] 447
[Image->FlipV] 447
[Image->Format] 445
Image Formats 443
image/gif 454
[Image->Height] 445
image/jpeg 454
ImageMagick 442
[Image->Modulate] 448
[Image->Pixel] 445
[Image->ResolutionH] 445
[Image->ResolutionV] 445
[Image->Rotate] 447
Images 442

Generating the path to a file 453
MIME types 454
Serving an image file 454

[Image->Scale] 447
[Image->Sharpen] 449
Image Tags

Preparing LassoApps 678
[Image->Width] 445
[Include]

Preparing LassoApps 678
[Include] 212
[Include_CurrentPath] 631
[Include_Once] 212
Include Paths 211
[Include_Raw]

Serving images and multimedia 454
[Include_Raw] 212
Includes 210
[Include_URL] 616

Parameters 616
Include URLs 615
Index 835
Inheritance 721
[Inline] 430
[Inline] … [/Inline] 90

Action parameters 98
Actions 42
Adding a record 144
Array parameters 98
Checking for an error 265
Database actions 90
Deleting a record 151
Deleting several records 151
Displaying results from a named inline 128
Displaying search results 128
Duplicating a record 153
Executing a FileMaker Pro script 190
-FindAll action 93
Finding all records 125
HTML forms 94
Linking to data 134
Nesting tags 97
Passing array parameters 98
-Search action 93
Searching databases 118
Specifying field operators 120
Specifying username and password 117
Updating a record 147

8 4 3

L a s s o 8 . 5 L a n g u a g e G u i d e

A p p e n d i x C – I n d e x

Updating several records 149
Inline Lasso 90

Detail links 138
Navigation links 135
Sorting links 137

Inline Log Level 90
Inline Name 90
-InlineName

Displaying results 128
Inline Tag 90
Installation Problems 258
[Integer] 363
Integer

Substitution tags 370
[Integer] 214
[Integer->BitAnd] 368
[Integer->BitClear] 368
[Integer->BitFlip] 368
[Integer->BitNot] 368
[Integer->BitOr] 368
[Integer->BitSet] 368
[Integer->BitShiftLeft] 368
[Integer->BitShiftRight] 368
[Integer->BitTest] 368
[Integer->BitXOr] 368
Integers 72, 363

Assignment symbols 366
Automatic string casting 332
Bit operations 369
Casting to integer 364
Comparing values 367
Comparison symbols 366
Formatting 368
Formatting as hexadecimals 369
Hexadecimal output 369
Member tags 368
Random numbers 371
Rounding numbers 371
Using assignment symbols 366
Using mathematical symbols 365

[Integer->SetFormat] 368
Parameters 369

IP Address
Looking up a host name 587

ISO 8859-1 294
ISO-8859-1 29, 40, 116, 142, 279
[Iterate]

Implementing for custom types 709
[Iterate] … [/Iterate] 241, 242

Array elements 242
Iterating through a map 402, 418
Iterating through an array 392
String characters 242

Iterators 389, 423
iText 484

J
[Java_Bean] 515
JavaBeans 514
JavaScript

Not processing square brackets 561
JDBC 192

Certification 194
Data sources 192
Error codes 833
Tips for usage 193

JDBC Schema Tags 194
JPEG

Serving image files 454

K
-KeyField

Using with FileMaker Pro 144
Using with MySQL 144

[KeyField_Name] 98
[KeyField_Value] 99

Using with FileMaker Pro 147
Using with MySQL 147

Keywords
Encoding 248

L
Lasso

Converting to LassoScript 57
Format files 39
Tag categories 67
Tag types 62

Lasso 8 Documentation 25
Lasso 8 Reference 84

Components 84
Navigation 85
Sections of the interface 85

Lasso 8 Tag Language 61
Lasso Administration 679, 747, 781
LassoApp

Removing all LassoApps from the cache 675
[LassoApp_Create]

Building LassoApps 680
Parameters 680

[LassoApp_Link] 675
Preparing <form> Tags 678
Preparing Tags 678
Preparing [Include] Tags 678
Preparing [Library] Tags 678
Preparing Links 677
Preparing [Link_…] Tags 678

LassoApps 672
Administration 674
Auto-Building databases 681
Benefits 672
Building 679
Cache 674
Compiling 679
Database Action Responses 676
DatabaseBrowser.LassoApp 673
Defaults 673
Disabling 674
Enabling 674
GroupAdmin.LassoApp 673
Lasso Administration 674
Lasso Security 681
Lasso Startup 682
Lasso Startup folder 677
LDMLReference.LassoApp 674
Naming conventions 681
Preloading 675
Preparing links 677
Preparing solutions 677
Referencing files within a LassoApp 676
Removing a LassoApp from the cache 674
RPC.LassoApp 646, 674, 696

8 4 4

L a s s o 8 . 5 L a n g u a g e G u i d e

A p p e n d i x C – I n d e x

Run-time errors 681
Serving 675
Startup.LassoApp 674
Tags 673
Tips and techniques 681
Uses 673
Using the LassoApp Builder 679
Using the [LassoApp_Create] tag 680

[Lasso_CurrentAction] 99
[Lasso_DatasourceIsFileMaker] 564
[Lasso_DataSourceIsFileMaker] 175
[Lasso_DatasourceIsMySQL] 564
[Lasso_DatasourceIsODBC] 564
[Lasso_DatasourceIsOpenBase] 564
[Lasso_DatasourceIsOracle] 565
[Lasso_DatasourceIsPostgreSQL] 565
[Lasso_DatasourceIsSpotlight] 565
[Lasso_DatasourceIsSQLite] 565
[Lasso_DatasourceIsSQLServer] 565
[Lasso_DatasourceModuleName] 565
Lasso_Internal Database 747, 781
Lasso Java API

Debugging 764
Getting started 762
Requirements 762

Lasso MySQL
Error codes 827
Field operators 120
Logical operators 121
Random sorting 127
Returning unique field values 126
SQL encoding 248

[Lasso_Parser] 583
Lasso Parser Token Types 585
Lasso Parser Type 584
LassoScript

Compound expressions 59, 582
LassoScripts

Comments 54, 56
Container tags 54, 56
Converting from square bracket syntax 57
Delimiters 55
Encoding 247
Setting default encoding 54, 57, 249
Single tag 56
Suppressing output 54, 57

Lasso Security
Databases and tables 682
Groups and tables 682
LassoApps 681
Tags 681

Lasso Service 45
Paths 48

Lasso Startup
Defining global variables 226

LassoStartup 699, 701, 704
Lasso Startup Folder 677
[Lasso_TagExists] 565
[Lasso_TagModuleName] 565
[Lasso_UniqueID] 588
[Lasso_Version] 565
Lasso Web Server Connector 45
Latin-1 30, 40, 116, 142, 294
-LayoutResponse 96, 171
[LDML] 583
LDML 205

LDMLReference.LassoApp 674
Leap Years 374
libCURL 616, 619
Libraries 703, 722
[Library]

Preparing LassoApps 678
[Library] 212
Library Files 41, 210
[Library_Once] 212
Line Endings 434
[Link_CurrentAction] … [/Link_CurrentAction] 133

Linking to the current record 138
[Link_CurrentActionURL] 132
[Link_Detail] … [/Link_Detail] 133

Linking to the current record 138
[Link_DetailURL] 132
[Link_FirstGroup] … [/Link_FirstGroup] 133

Creating sort links 137
[Link_FirstGroupURL] 132
[Link_FirstRecord] … [/Link_FirstRecord] 133
[Link_FirstRecordURL] 132
Linking to Data 129

Container tags 132
Tag parameters 130
URL tags 131

Linking to PDF Files 512
[Link_LastGroup] … [/Link_LastGroup] 133
[Link_LastGroupURL] 132
[Link_LastRecord] … [/Link_LastRecord] 133
[Link_LastRecordURL] 132
[Link_NextGroup] … [/Link_NextGroup] 133

Creating next links 135
[Link_NextGroupURL] 132
[Link_NextRecord] … [/Link_NextRecord] 133
[Link_NextRecordURL] 132
[Link_PrevGroup] … [/Link_PrevGroup] 133

Creating previous links 135
[Link_PrevGroupURL] 132
[Link_PrevRecord] … [/Link_PrevRecord] 133
[Link_PrevRecordURL] 132
Link Tags

Preparing LassoApps 678
[List] 398
List Array 389
[List->Contains] 399
[List->Difference] 399
[List->Find] 399
[List->First] 399
[List->ForEach] 399
[List->Insert] 399
[List->InsertFirst] 399
[List->InsertFrom] 399
Lists 386, 398

Members tags 399
Literals 76
LJAPI 6 vs. LCAPI 6 761
LJAPI Class Reference 794
LJAPI Interface Reference 794
[Local] 229, 685, 693, 706

symbol 229, 693
[Local_Defined] 685, 706
[Locale_Format] 373
[Local_Remove] 686
[Locals] 686, 706
Local Variables 693

symbol 229, 693

8 4 5

L a s s o 8 . 5 L a n g u a g e G u i d e

A p p e n d i x C – I n d e x

Lock
Controlling access to a resource 574
Thread lock 574

[Log] 543
[Log_Always] 542
[Log_Critical] 542
[Log_Deprecated] 542
Log_Destination_Console 544
Log_Destination_Database 544
Log_Destination_File 544
[Log_Detail] 542
Logging 541

Changing log destination preferences 544
Destination codes 544
Message level codes 544
Preferences 543
Resetting log destination preferences 544

Logical Errors 258
Logical Expressions 80

Symbols 80
Logical Operators 121

Performing an and search 121
Performing an or search 121
Performing a not search 122

Log_Level_Critical 544
Log_Level_Deprecated 544
Log_Level_Detail 544
Log_Level_SQL 544
Log_Level_Warning 544
[Log_SetDestination] 544
[Log_SQL] 542
[Log_Warning] 542
[Loop] … [/Loop] 239, 240

Array elements 240
Display field names 240
Looping through a map 403, 418
Looping through an array 392
Parameters 239

[Loop_Abort] 239, 240, 243
[Loop_Continue] 240
[Loop_Count] 239, 240, 243
Lower Case

Strings 338
LT 120
LTE 120

M
Mac OS X File Permissions 431
[Map] 401
[Map] 214
Maps 75, 387, 401

Automatic string casting 332
Comparison to pair arrays 404
Creating a map 401, 417
Displaying an element 404, 419
Getting a value 402, 418
Inserting an element 403, 419
Iterating through a map 402, 418
Looping through a map 403, 418
Member tags 402
Removing an element 403, 419

Matchers 389, 421
Math 363

Addition 366
Expressions 78
Scientific notation 367

Symbols 78, 365
Trigonometry 372

[Math_Abs] 370
[Math_ACos] 372
[Math_Add] 370
[Math_ASin] 372
[Math_ATan] 372
[Math_ATan2] 372
[Math_Ceil] 370

Rounding numbers 371
[Math_ConvertEuro] 370
[Math_Cos] 372
[Math_Div] 370
[Math_Exp] 372
[Math_Floor] 370

Rounding numbers 371
[Math_Ln] 372
[Math_Log10] 372
[Math_Max] 370
[Math_Min] 370
[Math_Mod] 370
[Math_Mult] 370
[Math_Pow] 372
[Math_Random] 370

Parameters 371
[Math_RInt] 370

Rounding numbers 371
[Math_Roman] 370
[Math_Round] 370

Rounding numbers 371
[Math_Sin] 372
[Math_Sqrt] 372
[Math_Sub] 370
[Math_Tan] 372
-MaxRecords 109, 123
[MaxRecords_Value] 99
MD5 546
MD5 Hash Function

Storing and checking passwords 548
Member Tags 64, 76, 218, 709

Built-in 709
Custom 709
Decimal tags 367
Integer tags 368

Member Tag Types 219
Memory Session Driver 280
MIME Type

Image files 454
Miscellaneous Tags 587
Multimedia 442

Generating the path to a file 453
MIME types 454
Serving a multimedia file 455

MySQL
Adding and updating records 162
Error codes 827
Field operators 120
Logical operators 121
Random sorting 127
Returning unique field values 126
Search command tags 160
Search field operators 158
Searching records 158
Security 155
SQL encoding 248
Tips for usage 155

8 4 6

L a s s o 8 . 5 L a n g u a g e G u i d e

A p p e n d i x C – I n d e x

MySQL 4.1 Character Sets 279

N
Named Inlines

Displaying results 128
Name Server 587
[Namespace_Import] 539
[Namespace_Load] 539
Namespaces 537

Scope 537
Search Order 537
Third-Party 538

[Namespace_Unload] 539
[Namespace_Using] 539
Naming Conventions

Custom tags 684, 705
RPC tags 684

Navigation Links 129
Inline Lasso 135

NEQ 120
Nesting Tags 97
[Net->Accept] 461
[Net->Bind] 462, 463
[Net->Close] 460, 462
[Net->Connect] 459, 460
[Net_ConnectInProgress] 459
[Net_ConnectOK] 459
[Net->Listen] 462
[Net->LocalAddress] 458
[Net->Read] 459, 460, 462
[Net->ReadFrom] 463
[Net->ReadString] 459, 460, 462
[Net->RemoteAddress] 458
[Net->SetBlocking] 458
[Net->SetEncoding] 458
[Net->SetType] 458
[Net_TypeSSL] 458
[Net_TypeTCP] 458
[Net_TypeUDP] 458
[Net->Wait] 460
[Net_WaitWrite] 461
[Net->Write] 459, 460, 462
[Net->WriteTo] 463
[NoProcess] … [/NoProcess] 560
NOT 121

Performing a not search 122
-Nothing 98
-NoValueLists 123, 171, 184
NRX 120, 159
[NSLookup] 587
[Null]

Member tags 709
Null

Data type 562
Value 161, 162

[Null] 562
[Null->DetachReference] 232, 709

Detaching a reference 231
[Null->DetachReference] 562
[Null->FreezeType] 709
[Null->FreezeType] 562
[Null->FreezeValue] 709
[Null->FreezeValue] 562
[Null->FullType] 709
[Null->Invoke] 709
[Null->IsA] 709

[Null->onConvert] 712
[Null->onCreate] 712
[Null->onDeserialize] 712
[Null->onDestroy] 712
[Null->onSerialize] 712
[Null->Parent] 709
[Null->Properties] 709
[Null->Properties]

Finding a tag 579
[Null->Properties] 562
[Null->RefCount] 232
[Null->RefCount] 709
[Null->Serialize] 709

Compressing an array 552
[Null->Serialize] 562
[Null->Type] 709
[Null->Type] 213, 562
[Null->_UnknownTag] 712
[Null->Unserialize] 709
[Null->UnSerialize] 562

O
On-Demand Libraries 538
-OpBegin

Complex queries 122
-OpEnd

Complex queries 122
OpenSSL 616
Operating System Errors 258
-Operator 119
-OperatorBegin 119
-OperatorEnd 119
-OperatorLogical 119

Performing an and search 121, 122
[Operator_LogicalValue] 99
Operators

Database searches 119
Field operators 120
Logical operators 121

[Option] 163, 184
Creating a pop-up menu 185

OR 121
Performing an or search 121

[Output] 207
Automatic string casting 332

Output Formats 44
[Output_None] 207

Suppressing LassoScript output 57
Output Suppressing 207
Outputting Values 207

P
Page Variables 563, 693
[Pair] 214
Pair Arrays 389, 397

Comparison to maps 404
Pairs 387, 404

Automatic string casting 332
Creating a pair 404
Displaying an element 405
Getting an element 405
Member tags 405
Setting an element 405

Parameters
Array 690

8 4 7

L a s s o 8 . 5 L a n g u a g e G u i d e

A p p e n d i x C – I n d e x

Array objects 98
Inspecting 691
Named 689
Optional 689
Required 689
Unnamed 689, 692

[Params] 686, 706
Parameters array 690

[Params_Up] 686, 691
Parameters from calling tag 692

[Parent] 721
-Password 117
Paths

Absolute 47
Action.Lasso 47
Lasso Service 48
Relative 47
Specifying 46

PDF 484
Output Formats 45

[PDF_Barcode] 508
[PDF_Doc] 444, 487
[PDF_Doc->AddChapter] 489
[PDF_Doc->AddCheckBox] 497
[PDF_Doc->AddComboBox] 498
[PDF_Doc->AddHiddenField] 498
[PDF_Doc->AddList] 496
[PDF_Doc->AddPage] 489
[PDF_Doc->AddPasswordField] 497
[PDF_Doc->AddRadioButton] 498
[PDF_Doc->AddRadioGroup] 498
[PDF_Doc->AddResetButton] 498
[PDF_Doc->AddSelectList] 498
[PDF_Doc->AddSubmitButton] 498
[PDF_Doc->AddText] 489, 494
[PDF_Doc->AddTextArea] 497
[PDF_Doc->AddTextField] 497
[PDF_Doc->Circle] 506
[PDF_Doc->Close] 492
[PDF_Doc->CurveTo] 506
[PDF_Doc->DrawArc] 506
[PDF_Doc->DrawText] 495
[PDF_Doc->GetColor] 491
[PDF_Doc->GetHeaders] 491
[PDF_Doc->GetMargins] 491
[PDF_Doc->GetPageNumber] 489
[PDF_Doc->GetSize] 491
[PDF_Doc->InsertPage] 490
[PDF_Doc->Line] 506
[PDF_Doc->Rect] 506
[PDF_Doc->SetColor] 506
[PDF_Doc->SetFont] 491
[PDF_Doc->SetLineWidth] 506
[PDF_Doc->SetPageNumber] 489
[PDF_Font] 492
[PDF_Font->GetColor] 493
[PDF_Font->GetEncoding] 493
[PDF_Font->GetFace] 493
[PDF_Font->GetPSFontName] 493
[PDF_Font->GetSize] 493
[PDF_Font->GetFullFontName] 493
[PDF_Font->GetSupportedEncodings 493
[PDF_Font->IsTrueType] 493
[PDF_Font->SetColor] 493
[PDF_Font->SetEncoding] 493
[PDF_Font->SetFace] 493

[PDF_Font->SetSize] 493
[PDF_Font->SetUnderline] 493
[PDF_Image] 505
PDF, Introduction to Creating PDF Files 443, 484
[PDF_List->Add] 496
[PDF_Read] 485
[PDF_Serve] 513
[PDF_Table] 502
[PDF_Table->GetAbsWidth] 502
[PDF_Table->GetColumnCount] 502
[PDF_Table->GetRowCount] 502
[PDF_Table->Insert] 503
[Percent] 373
Performance Tips

FileMaker Pro 170
Personal Digital Assistants 652
Pipes 577

Processing messages 578
POP 604

Examples 606
Methodology 605

Pop-Up Menu 166
Portable Document Format 484
[Portal] … [/Portal] 178

Returning portal values 179
Portals

Adding a record through a portal 180
Deleting a record through a portal 181
FileMaker Pro 179
Updating a record within a portal 180

Port Number 28
Post-Lasso 41
POST Method 35
Post-Processing 266
Pre-Lasso 40
-Prepare 114
Priority Queue 387, 405

Member Tags 406
[PriorityQueue] 406
[Private] 706
[Process] 560

Processing code stored in a field 561
Processing code stored in a variable 561

Process Tags 63, 560
Defining 687

Programming Fundamentals 204
[Protect] … [/Protect] 267
Protocol 28

Q
[Queue] 409
Queue 387, 408

Member Tags 409

R
-Random 115

Requirements 126
Random Numbers 371
Read/Write Lock 576

Controlling access to a resource 576
Record ID 176
[RecordID_Value] 176
[Records] … [/Records] 127

Database actions 91
Database searches 119

8 4 8

L a s s o 8 . 5 L a n g u a g e G u i d e

A p p e n d i x C – I n d e x

Displaying results from a named inline 128
Displaying search results 128

[Records_Array] 101, 102
[Records_Map] 101, 103
[Redirect_URL] 618
[Reference] 230, 232
References 230

Detaching a reference 231
Types 231
Using with custom tags 232

[Referrer] 133
[Referrer_URL] 132
Regular Expressions 159

Combination symbols 349, 351
Finding expressions 357
Matching symbols 347
Replacement symbols 350
Replacing expressions 356

Relative Paths 47
Remote Procedure Call 466
Remote Procedure Calls 696

Naming conventions 684
[Repeating] … [/Repeating] 178

Returning values from a repeating field 182
Repeating Fields 182

Adding a record 182
Deleting values 183
Returning values 182
Updatinga a record 183

[Repeating_ValueItem] 178
[Repetition] 240

Two column display 241
Request Tags 631
[Required_Field] 105

Parameters 107
-Response

Action.Lasso 95
-ResponseAnyError 262
[Response_FileExists] 631
[Response_FilePath] 99, 631
-ResponseLassoApp 676
[Response_LocalPath] 631
[Response_Path] 631
[Response_Realm] 631
Response Tags 95

Command tags 96
Error control 262

Results
Database searches 123

[Return] 686
Returning Values 687, 688

-ReturnField 123
Limiting returned fields 125

RPC 466
RPC.LassoApp 646, 674, 696
[Run_Children] 686

Defining container tags 695
RX 120, 159

S
Scheduled Events 43
Scheduling Events 558
Schema 465, 466
[Schema_Name] 195
[Scientific] 373
Scientific Notation 367

Scope 537
Scripts

Executing a Script 190
FileMaker Pro 189

-Search 115
Inline Action 93
Requirements 118

[Search_Arguments] 99
[Search_Arguments] … [/Search_Arguments]

Displaying search arguments 101
[Search_FieldItem] 99
[Search_OperatorItem] 99
[Search_ValueItem] 99
Security

Adding records 142
Command tags 117
Database searches 117
Deleting records 142
Duplicating records 142
Error codes 825
Violations 258

[Select] 237
Data type 237

[Selected] 163, 184
Displaying selected values 186

[Self] 706, 707
[Self->Parent] 706
Semaphore 575

Controlling access to a resource 575
[Serialize] 550
Series 387
[Server_Port] 633
Server Push 628
[Server_Push] 628
[Server_SiteIsRunning] 569
[Server_SiteStart] 569
[Server_SiteStop] 569
Server Tags 632
Serving PDF Files 512
Serving PDF Files to Client Browsers 513
-Session 252
[Session_Abort] 252
[Session_AddVariable] 252
[Session_DeleteExpired] 252
[Session_End] 252
[Session_ID] 252
[Session_RemoveVariable] 252
[Session_Result] 252
Sessions 251, 279

Adding variables 254
Deleting 255
Example 255
Removing variables 255
Starting a session 253
Tags 252
Using cookies 254
Using links 254

[Session_Start] 251, 252
Parameters 253

[Set] 412
Set 411

Member Tags 412
SET MySQL Data Type 163
Sets 387
SGML 466
-Show 240

8 4 9

L a s s o 8 . 5 L a n g u a g e G u i d e

A p p e n d i x C – I n d e x

Listing fields 106
Listing required fields 107
Requirements 105
Showing database schema 104

[Shown_Count]
Displaying the current shown count 102

Simple Object Access Protocol 639
[Site_AtBegin] 568
[Site_ID] 568
[Site_Name] 568
[Site_Restart] 568
-SkipRecords 110, 123
[SkipRecords_Value] 99
[Sleep] 700
[Sleep] 560
Smart HTML Encoding 247
SMTP 602
[Sort_Arguments] 99
[Sort_Arguments] … [/Sort_Arguments]

Displaying sort arguments 101
-SortField 123

Sorting FileMaker Pro results 177
[Sort_FieldItem] 99
Sorting

Arrays 398
Sorting Links 129

Inline Lasso 137
Sorting Records

FileMaker Pro 177
-SortOrder 123
[Sort_OrderItem] 99
-SortRandom 123, 160
Specifying Paths 46
-SQL 109
SQL

Encoding 248
SQL injection 109, 111
SQL Server

XML templates 481
SQL Statements 109
Square Brackets

Converting to LassoScript 57
SSL 615
[Stack] 414
Stack 414

Member Tags 414
Stacks 387
Standard Generalized Markup Language 466
Startup Actions 43
Startup.LassoApp 674
Statement Only Inline 91
Storage Array 389
Storage Types 39
[String] 332
[String] 213
[String_FindRegExp]

Examples 357
[String_ReplaceRegExp]

Examples 356
Strings 72, 331

Assignment 333
Automatic casting 332
Casting values to string 332
Comparisons 335
Concatenation 334
Converting case 338

Converting to an array 344
Deleting a substring 334
Expressions 77
Extracting part of a string 340
Finding regular expressions 357
Joining an array 394
Lenth 340
Manipulation tags 337
Repeating a string 334
Replacing regular expressions 356
Splitting a string into an array 390
Symbols 78, 333

[String->Split]
Creating an array 390

Style Sheets 475
Submitting Form Data to Lasso-Enabled Databases

501
Substitution Tags 62

Defining 687
Encoding 246
Module code 767
Module walk-through 768
Operation 766
Tutorial 767

Sub-Tags 76
Symbols 75, 217

Assignment 218
Boolean 244
Math 365
Overloading 715, 718, 720
Strings 333
symbol 229, 693

Synonym 69
Syntax 61
Syntax Coloring 586
Syntax Errors 257
System.ListMethods 635
System.MethodHelp 635
System.MethodSignature 635
System.MultiCall 635

T
-Table 279
Table Batch Change 279
[Table_Name] 99
[Table_RealName] 105
[Table_RealName] 110
Tables

Listing available tables 106
Listing fields 106
Required fields 107

[Tag->asAsync] 580
[Tag->asType] 580
Tag Data Type 579

Member tags 580
Running a tag 580

[Tag->Description] 580
[Tag->Eval] 580

Evaluating compound expressions 59, 582
[Tag->Invoke] 580
[Tag->Run] 580

Parameters 580
Running compound expressions 59, 582

[Tags]
Finding tags 579

Tags

8 5 0

L a s s o 8 . 5 L a n g u a g e G u i d e

A p p e n d i x C – I n d e x

Categories and naming 67
Naming conventions 68
Synonynms and abbreviations 69

[Tags] 563
Tag Types 62
[TCP_Open] 457
[TCP_Send] 461
Templates

XML 481
Test.Echo 635
Text Format Files 39
Text Formats 44
Third-Party Namespaces 538
[Thread_Abort] 572
[Thread_Atomic] 228, 571
[Thread_Event] 577

Member Tags 577
[Thread_Event->Signal] 577
[Thread_Event->SignalAll] 577
[Thread_Event->Wait] 577
[Thread_Exists] 572
[Thread_GetCurrentID] 572
[Thread_GetPriority] 572
[Thread_Info] 572
[Thread_List] 572
[Thread_Lock] 574

Member tags 574
[Thread_Lock->Lock] 574
[Thread_Lock->Unlock] 574
[Thread_Pipe] 577

Member Tags 577
[Thread_Pipe->Get] 578
[Thread_Pipe->Set] 577
[Thread_RWLock] 574

Member tags 576
[Thread_RWLock->ReadLock] 576
[Thread_RWLock->ReadUnlock] 576
[Thread_RWLock->WriteLock] 576
[Thread_RWLock->WriteUnlock] 576
[Thread_Semaphore] 574
[Thread_Semaphore->Decrement] 575
[Thread_Semaphore->Increment] 575
[Thread_SetPriority] 572
[Thread_Semaphore]

Member tags 575
Thread Tools

Communications 576
Controlling access to a resource 574, 575, 576
Events 577
Lock 574
Pipes 577
Processing messages 578
Read/write lock 576
Semaphore 575
Waiting for a signal 577

Time 374
Time Zone 374
Tokens 96
[Token_Value] 99
Transient 706
Transient Member Tags 710
Transient Variable 708
Tree Map 417

Member Tags 417
[TreeMap] 417
Tree Maps 387

Trigonometry 372
True 243

U
UCS Transformation Format 31
Unicode 30, 40, 116, 142, 629
-Unique

Returning unique field values 126
Unique ID 588
Universal Character Set 31
Unknown Tag Callback 714
-Update 141

Requirements 146
Updating Records 146

Classic Lasso 142
Security 142
Updating several records 149
Using an HTML form 147
Using a URL 148
Using inline tags 147

Upgrading
Email command tags 591

Uploading Files 620
Upper Case

Strings 338
URLs 28, 219

Action.Lasso 96
Actions 41
Adding a record 145
Encoding 247
Executing a FileMaker Pro script 190
Format files 95
Link Tags 131
Parameters 34, 220
Response tags 95
Syntax 58
Updating a record 148

-UseLimit 123, 160
Use MySQL 4.1 Character Sets 279
-Username 117
Using Fonts 492
UTF-8 29, 30, 40, 116, 142, 279, 629

V
Validation Tags 587
[Valid_CreditCard] 588
[Valid_Email] 588
[Valid_URL] 588
[Value_List] … [/Value_List] 163, 184
[Value_ListItem] 163, 184

Displaying selected values 186
Value Lists 163, 184

Creating a pop-up menu 185
Creating radio buttons 186
Displaying all values 185
Displaying selected values 186

[Var] 223
[Var_Defined] 223
[Variable] 223
[Variable_Defined] 223
Variables 208, 223

Accessing in asynchronous tags 699
Checking 225
Creating 208, 224
Local 693

8 5 1

L a s s o 8 . 5 L a n g u a g e G u i d e

A p p e n d i x C – I n d e x

Page 693
Returning data types 214
Returning the type of a variable 562
Returning values 209, 224
Server-side 251
Setting 209, 225

[Variables] 563
[Var_Remove] 223

W
WAP 652

Tags 655
[WAP_IsEnabled]

Checking to see if current browser is WAP enabled
655

Web Application Servers 36
Web Browsers 28

Authentication 32
Cookies 31

Web Companion 168
Web Servers 33

Connectors 45
Errors 257

Web Serving Folder
Serving LassoApps 675

[While] 242, 243
Wireless Application Protocol 652
Wireless Devices 652
Wireless Markup Language 466, 652
WML 466, 652

Encoding 654
Example 655
Formatting 652, 653
Forms 654
Links 653
Output formats 44
Serving 653

X
XML 465, 466

Attributes 469
Children 469, 472, 474
Contents 469
Customizing templates 483
Data type 466
Descendants 474
Document type definition 465
Encoding 247, 480
Extracting tags using an XPath 472
Extracting tags using XPath 473
Format files 39
Formatting 480
Member tags 467, 476, 477, 478
Output formats 44
Parameters 472, 474
Root tag 472
Schema 465
Serving 479
Templates 481
Transformations 475
Wireless Markup Language 652
XPath 465, 469

[XML_Extract] 470
XML-RPC 465, 466, 696

Built-in data types 636

Built-in methods 635
Calling a remote procedure 634
Calling multiple methods 635
Calling remote procedured (low-level) 636
Custom Tags 637, 649
Data Type 636
Listing available methods 635
Naming conventions 684
Processing incoming requests 637, 649
Processing tags 638

[XML_RPCCall] 634
[XML_Serve] 479

Serving WML 653
[XML_Transform] 475
XPath 465, 466, 469

Conditional expressions 473
Extracting XML Tags 472, 473
Simple expressions 471

XSL 466
Transforming XML data 475

XSLT 466, 475
XSL Transformations 466

8 5 2

L a s s o 8 . 5 L a n g u a g e G u i d e

A p p e n d i x C – I n d e x

	Lasso Overview
	Introduction
	Lasso 8.5 Documentation
	Lasso 8.5 Language Guide
	Documentation Conventions

	Web Application Fundamentals
	Web Browser Overview
	Web Server Overview
	URL Rewrite
	HTML Forms and URL Parameters
	HTML, XHTML, and XML
	AJAX
	Web Application Servers
	Web Application Server Languages
	Error Reporting

	Lasso Pages
	Introduction
	Storage Types
	Naming Lasso Pages
	Character Encoding
	Editing Lasso Pages
	Functional Types
	Action Methods
	Table 1: Action Methods
	Securing Lasso Pages
	Output Formats
	File Management
	Specifying Paths
	Page Execution Time Limit
	Code Compilation and Caching

	Lasso 8.5 Syntax
	Overview
	Colon Syntax
	Table 1: Colon Syntax Delimiters
	Parentheses Syntax
	Table 2: Parentheses Syntax Delimiters
	Square Brackets
	Table 3: Square Bracket Delimiters
	LassoScript
	Table 4: LassoScript Delimiters
	HTML Form Inputs
	URLs
	Compound Expressions
	Table 5: Compound Expression Delimiters

	Lasso 8.5 Tag Language
	Introduction
	Tag Types
	Table 1: Lasso 8 Tag Types
	Tag Categories and Naming
	Table 2: Lasso 8 Tag Categories
	Table 3: Lasso 8 Synonyms
	Table 4: Lasso 8 Abbreviations
	Parameter Types
	Table 5: Parameter Types
	Encoding
	Table 6: Encoding Keywords
	Data Types
	Table 7: Primary Lasso 8 Data Types
	Expressions and Symbols
	Table 8: Types of Lasso 8 Expressions
	Table 9: Member Tag Symbol
	Table 10: Retarget Symbol
	Table 11: String Expression Symbols
	Table 12: Math Expression Symbols
	Table 13: Conditional Expression Symbols
	Table 14: Logical Expression Symbols
	Table 15: Logical Expression Symbols
	Delimiters
	Table 16: Lasso 8 Delimiters
	Table 17: HTML/HTTP Delimiters
	Illegal Characters
	Table 18: Illegal Characters

	Lasso 8.5 Reference
	Overview
	Figure 1: Lasso 8.5 Reference
	LassoScript
	Figure 2: Tag Detail Page
	Utility

	Database Interaction
	Database Interaction Fundamentals
	Inlines
	Table 1: Inline Tag
	Table 2: Inline Database Action Parameters
	Table 3: Response Parameters
	Action Parameters
	Table 4: Action Parameter Tags
	Table 5: [Action_Params] Array Schema
	Results
	Table 6: Results Tags
	Table 7: [Records_Map] Parameters
	Showing Database Schema
	Table 8: -Show Parameter
	Table 9: -Show Action Requirements
	Table 10: Schema Tags
	Table 11: [Field_Name] Parameters
	Table 12: [Required_Field] Parameters
	Inline Hosts
	SQL Statements
	Table 14: SQL Inline Parameters
	Table 15: -SQL Helper Tags
	SQL Transactions
	Prepared Statements
	Table 16: Prepared Statements

	Searching and Displaying Data
	Overview
	Table 1: Command Tags
	Table 2: Security Command Tags
	Searching Records
	Table 3: -Search Action Requirements
	Table 4: Operator Command Tags
	Table 5: Field Operators
	Table 6: Results Command Tags
	Finding All Records
	Table 7: -FindAll Action Requirements
	Finding Random Records
	Table 8: -Random Action Requirements
	Displaying Data
	Table 9: Field Display Tags
	Linking to Data
	Table 10: Link Tags
	Table 11: Link Tag Parameters
	Table 12: Link URL Tags
	Table 13: Link Container Tags
	Table 14: Link Parameter Tags

	Adding and Updating Records
	Overview
	Table 1: Command Tags
	Table 2: Security Command Tags
	Adding Records
	Table 3: -Add Action Requirements
	Updating Records
	Table 4: -Update Action Requirements
	Deleting Records
	Table 5: -Delete Action Requirements
	Duplicating Records
	Table 6: -Duplicate Action Requirements

	SQL Data Sources
	Overview
	Table 1: Data Sources
	Feature Matrix
	Table 2: MySQL Data Source
	Table 3: OpenBase Data Source
	Table 4: Oracle Data Source
	Table 5: PostgreSQL Data Source
	Table 6: Microsoft SQL Server Data Source
	Table 7: SQLite Data Source
	SQL Data Source Tags
	Table 8: SQL Data Source Tags
	Searching Records
	Table 9: MySQL Search Field Operators
	Table 10: Search Command Tags
	Adding and Updating Records
	Value Lists
	Table 11: MySQL Value List Tags

	FileMaker Data Sources
	Overview
	Table 1: Data Sources
	Feature Matrix
	Table 2: FileMaker Pro Data Source
	Table 3: FileMaker Server Data Source
	Performance Tips
	Compatibility Tips
	FileMaker Queries
	Table 4: FileMaker Operators
	Table 5: FileMaker Search Symbols
	Table 6: FileMaker Server 9 Logical Operators
	Table 7: FileMaker Server 9 Additional Commands
	FileMaker Tags
	Table 8: FileMaker Data Source Tags
	Primary Key Field and Record ID
	Sorting Records
	Displaying Data
	Table 9: FileMaker Data Display Tags
	Value Lists
	Table 10: FileMaker Value List Tags
	Container Fields
	Table 11: Container Field Tags
	FileMaker Scripts
	Table 12: FileMaker Scripts Tags

	JDBC and ODBC Data Sources
	Overview
	Table 1: Data Sources
	Feature Matrix
	Table 2: JDBC Data Sources
	Table 3: ODBC Data Sources
	Using JDBC Data Sources
	Table 4: JDBC Schema Tags
	Using ODBC Data Sources

	Other Data Sources
	Overview
	Table 1: Data Sources
	Feature Matrix
	Table 2: Spotlight Data Source
	Table 3: Custom Data Sources
	Spotlight Data Source
	Table 4: Common Spotlight Field Names
	Custom Data Sources

	Programming
	Programming Fundamentals
	Overview
	Figure 1: Error Page
	Logic vs. Presentation
	Data Output
	Table 1: Output Tags
	Variables
	Includes
	Table 2: Include Tags
	Data Types
	Table 3: Data Type Tags
	Symbols
	Member Tags
	Forms and URLs
	Custom Tags

	Variables
	Overview
	Page Variables
	Table 1: Page Variable Tags
	Table 2: Page Variable Symbols
	Global Variables
	Table 3: Global Tags
	Local Variables
	Table 4: Local Tags
	Table 5: Local Variable Symbols
	References
	Table 6: Reference Tags and Symbols

	Conditional Logic
	If Else Conditionals
	Table 1: If Else Tags
	If Else Symbol
	Table 2: If Else Symbol
	Select Statements
	Table 3: Select Tags
	Conditional Tags
	Table 4: Conditional Tags
	Loops
	Table 5: [Loop] Tag Parameters
	Table 6: Loop Tags
	Iterations
	Table 7: Iteration Tags
	While Loops
	Table 8: While Tags
	Abort Tag
	Table 9: Abort Tag
	Boolean Type
	Table 10: Boolean Tag
	Table 11: Boolean Symbols

	Encoding
	Overview
	Encoding Keywords
	Table 1: Encoding Keywords
	Encoding Controls
	Table 2: Encoding Controls
	Encoding Tags
	Table 3: Encoding Tags

	Sessions
	Overview
	Session Tags
	Table 1: Session Tags
	Table 2: [Session_Start] Parameters
	Session Example

	Error Control
	Overview
	Error Reporting
	Figure 1: Built-In None Error Message
	Figure 2: Built-In Minimal Error Message
	Figure 3: Built-In Full Error Message
	Table 1: Error Level Tag
	Figure 4: Lasso Service Error Message
	Figure 5: Authentication Dialog
	Custom Error Page
	Figure 6: Custom Error Page
	Error Pages
	Table 2: Error Response Tags
	Error Tags
	Table 3: Error Tags
	Table 4: Error Type Tags
	Error Handling
	Table 5: Error Handling Tags

	Upgrading
	Upgrading From Lasso Professional 8
	Introduction
	New Data Sources
	Syntax Changes
	Table 1: Syntax Changes
	Security Enhancements
	Lasso Professional 8.0.x

	Upgrading From Lasso Professional 7
	Introduction
	SQLite
	Multi-Site
	Namespaces
	Digest Authentication
	On-Demand LassoApps
	Syntax Changes
	Tag Name Changes
	Table 1: Tag Name Changes

	Upgrading From Lasso Professional 6
	Introduction
	Error Reporting
	Unicode Support
	Bytes Type
	Table 1: Tags That Return the Bytes Type
	Table 2: Byte and String Shared Member Tags
	Table 3: Unsupported String Member Tags
	Syntax Changes
	Table 4: Syntax Changes
	Tag Name Changes
	Table 5: Unsupported Tags
	Table 6: Tag Name Changes
	Table 7: Deprecated Tags

	Upgrading From Lasso Professional 5
	Introduction
	Tag Name Changes
	Table 1: Unsupported Tags
	Table 2: Tag Name Changes
	Table 3: Deprecated Tags
	Syntax Changes
	Table 4: Syntax Changes
	Lasso MySQL
	Table 5: Lasso MySQL Syntax Changes

	Upgrading From Lasso WDE 3.x
	Introduction
	Syntax Changes
	Table 1: Syntax Changes
	Table 2: Line Endings
	Tag Name Changes
	Table 3: Command Tag Name Changes
	Table 4: Substitution, Process, and Container Tag Name Changes
	Unsupported Tags
	Table 5: Unsupported Tags
	FileMaker Pro

	Data Types
	String Operations
	Overview
	Table 1: String Tag
	String Symbols
	Table 2: String Symbols
	String Manipulation Tags
	Table 3: String Manipulation Member Tags
	Table 4: String Manipulation Tags
	String Conversion Tags
	Table 5: String Conversion Member Tags
	Table 6: String Conversion Tags
	String Validation Tags
	Table 7: String Validation Member Tags
	Table 8: String Validation Tags
	String Information Tags
	Table 9: String Information Member Tags
	Table 10: String Information Tags
	Table 11: Character Information Member Tags
	Table 12: Unicode Tags
	String Casting Tags
	Table 13: String Casting Member Tags

	Regular Expressions
	Overview
	Table 1: Regular Expression Wild Cards
	Table 2: Unicode Properties
	Table 3: Regular Expression Combination Symbols
	Table 4: Regular Expression Grouping Symbols
	Table 5: Regular Expression Replacement Symbols
	Table 6: Regular Expression Advanced Symbols
	Regular Expression Type
	Table 7: Regular Expression Type
	Table 8: Regular Expression Accessors
	Table 9: Regular Expression Convenience Tags
	Table 10: Regular Expression Interactive Tags
	String Tags
	Table 11: Regular Expression String Tags

	Bytes
	Bytes Type
	Table 1: Byte Stream Tag
	Table 2: Byte Stream Member Tags

	Math Operations
	Overview
	Table 1: Integer Tag
	Table 2: Decimal Tag
	Mathematical Symbols
	Table 3: Mathematical Symbols
	Table 4: Mathematical Assignment Symbols
	Table 5: Mathematical Comparison Symbols
	Decimal Member Tags
	Table 6: Decimal Member Tag
	Table 7: [Decimal->SetFormat] Parameters
	Integer Member Tags
	Table 8: Integer Member Tags
	Table 9: [Integer->SetFormat] Parameters
	Math Tags
	Table 10: Math Tags
	Table 11: [Math_Random] Parameters
	Table 12: Trigonmetric and Advanced Math Tags
	Locale Formatting
	Table 13: Locale Formatting Tags

	Date and Time Operations
	Overview
	Date Tags
	Table 1: Date Substitution Tags
	Table 2: Date Format Symbols
	Table 3: Date Format Member Tags
	Table 4: Date Accessor Tags
	Duration Tags
	Table 5: Duration Tags
	Date and Duration Math
	Table 6: Date Math Tags
	Table 7: Date and Duration Math Tags
	Table 8: Date Math Symbols

	Arrays, Maps, and Compound Data Types
	Overview
	Arrays
	Table 1: Array Tag
	Table 2: Array Member Tags
	Table 3: [Array->Merge] Parameters
	Lists
	Table 4: List Tag
	Table 5: List Member Tags
	Maps
	Table 6: Map Tag
	Table 7: Map Member Tags
	Pairs
	Table 8: Pair Tag
	Table 9: Pair Member Tags
	Priority Queues
	Table 10: Priority Queue Tag
	Table 11: Priority Queue Member Tags
	Queues
	Table 12: Queue Tag
	Table 13: Queue Member Tags
	Series
	Table 14: Series Tag
	Sets
	Table 15: Set Tag
	Table 16: Set Member Tags
	Stacks
	Table 17: Stack Tag
	Table 18: Stack Member Tags
	Tree Maps
	Table 19: Tree Map Tag
	Table 20: Tree Map Member Tags
	Comparators
	Table 21: Comparators
	Matchers
	Table 22: Matchers
	Iterators
	Table 23: Iterator Tags
	Table 24: Iterator and Reverse Iterator Member Tags

	Files
	File Tags
	Table 1: File Tags
	Table 2: Line Endings
	File Data Type
	Table 3: [File] Tag
	Table 4: File Open Modes
	Table 5: File Read Modes
	Table 6: File Streaming Tags
	File Uploads
	Table 7: File Upload Tags
	Table 8: [File_Uploads] Map Elements
	File Serving
	Table 9: File Serving Tags

	Images and Multimedia
	Overview
	Table 1: Tested and Certified Image Formats
	Casting Images as Lasso Objects
	Table 2: [Image] Tag:
	Table 3: [Image] Tag Parameters:
	Getting Image Information
	Table 4: Image Information Tags
	Converting and Saving Images
	Table 5: Image Conversion and File Tags
	Manipulating Images
	Table 6: Image Size and Orientation Tags
	Table 7: Image Effects Tags
	Table 8: Annotate Image Tag
	Table 9: Composite Image Tag
	Table 10: Composite Image Tag Operators
	Extended ImageMagick Commands
	Table 11: ImageMagick Execute Tag
	Serving Image and Multimedia Files
	Table 12: Image Serving Tag

	Networking
	Network Communication
	Table 1: [Net] Tags
	Table 2: [Net] Type Member Tags
	Table 3: [Net] Type Constants
	Table 4: [Net] TCP Non-Blocking Member Tags
	Table 5: [Net] Connect Constants
	Table 6: [Net] TCP Blocking Member Tags
	Table 7: [Net] Wait Constants
	Table 8: [Net] TCP Listener Member Tags
	UDP Connections
	Table 9: [Net] UDP Member Tags

	XML
	Overview
	XML Glossary
	XML Data Type
	Table 1: XML Data Type Tag
	Table 2: XML Member Tags
	XPath Extraction
	Table 3: [XML_Extract] Tag
	Table 4: Simple XPath Expressions
	Table 5: Conditional XPath Expressions
	XSLT Style Sheet Transforms
	Table 6: [XML_Transform] Tag
	XML Stream Data Type
	Table 7: XML Stream Data Type Tag
	Table 8: XML Stream Node Types
	Table 9: XML Stream Navigation Member Tags
	Table 10: XML Stream Member Tags
	Serving XML
	Table 11: [XML_Serve] Serving Tags
	Formatting XML
	XML Templates
	Table 12: FileMaker Pro XML Templates
	Table 13: SQL Server XML Templates

	Portable Document Format
	Overview
	Working With PDF Documents
	Table 1: [PDF_Read] Tag and Members
	Creating PDF Documents
	Table 2: [PDF_Doc] Tag and Parameters
	Table 3: [PDF_Doc->Add] Tag and Parameters
	Table 4: PDF Page Tags
	Table 5: Page Insertion Tag and Parameters
	Table 6: PDF Accessor Tags
	Table 7: [PDF_Doc->Close] Tag
	Creating Text Content
	Table 8: PDF Font Tag and Parameters
	Table 9: [PDF_Font] Member Tags
	Table 10: [PDF_Text] Tag and Parameters
	Table 11: [PDF_Doc->DrawText] Tag
	Table 12: [PDF_List] Tags and Parameters
	Table 13: Special Characters
	Creating and Using Forms
	Table 14: [PDF_Doc] Form Member Tags
	Table 16: Form Placement Parameters
	Creating Tables
	Table 17: [PDF_Table] Tag and Parameters
	Table 18: [PDF_Table] Member Tags
	Table 19: Cell Content Tags
	Creating Graphics
	Table 20: [PDF_Image] Tag and Parameters
	Table 21: [PDF_Doc] Drawing Member Tags
	Creating Barcodes
	Table 22: [PDF_Barcode] Tag and Parameters
	Example PDF Files
	Serving PDF Files
	Table 23: PDF Serving Tags

	JavaBeans
	Overview
	Installing JavaBeans
	JavaBeans Type
	Table 1: JavaBeans Type
	Creating JavaBeans

	iCalendar
	Introduction
	iCalendar Types
	Table 1: iCalendar Tags and Types
	Table 2: iCalendar Member Tags
	Table 3: [iCal_Attribute] Member Tags
	Table 4: [iCal_Attribute] Value Data Types
	Table 5: RECUR Map Elements

	Process and Shell Support
	Overview
	Installation
	Security
	OS Process Type
	Table 1: OS Process Type

	LDAP
	Overview
	LDAP Type
	Table 1: LDAP Tags
	Table 2: [LDAP->Search] Query Parameters
	Table 3: [LDAP->Code] Return Codes

	Concepts
	Namespaces
	Overview
	Namespace Tags
	Table 1: Namespace Tags

	Logging
	Overview
	Log Tags
	Table 1: Lasso Error Log Tags
	Log Files
	Table 2: File Log Tags
	Log Routing
	Table 3: Log Preference Tag
	Table 4: Log Message Levels
	Table 5: Log Destination Codes

	Encryption
	Overview
	Encryption Tags
	Table 1: Encryption Tags
	Cipher Tags
	Table 2: Cipher Tags
	Table 3: Cipher Algorithms
	Table 4: Digest Algorithms
	Serialization Tags
	Table 5: Serialization Tags
	Compression Tags
	Table 6: Compression Tags

	Control Tags
	Authentication Tags
	Table 1: Authentication Tags
	Administration Tags
	Table 2: Administration Tags
	Scheduling Events
	Table 3: Scheduling Tag
	Table 4: Scheduling Parameters
	Process Tags
	Table 5: Process Tags
	Null Data Type
	Table 6: Null Member Tags
	Page Content Tags
	Table 7: Page Variable Tags
	Configuration Tags
	Table 8: Configuration Tags
	Page Execution Time Limit
	Table 9: Time Limit Tags
	Code Compilation and Caching
	Table 10: Time Limit Tags
	Page Pre- and Post-Processing
	Table 11: Pre and Post-Process Tags
	Site Tags
	Table 12: Site Tags
	Table 13: Server Tags

	Threads
	Introduction
	Atomic Operations
	Table 1: Atomic Tags
	Thread Tools
	Table 2: Thread Tools
	Table 3: Thread Priorities
	Thread Synchronization
	Table 4: Thread Synchronization Tools
	Table 5: [Thread_Lock] Member tags:
	Table 6: [Thread_Semaphore] Member Tags
	Table 7: [Thread_RWLock] Member Tags
	Thread Communication
	Table 8: Thread Communication Tools
	Table 9: [Thread_Event] Member Tags:
	Table 10: [Thread_Pipe] Member Tags:

	Tags and Compound Expressions
	Tag Data Type
	Table 1: Tag Data Type Member Tags
	Table 2: [Tag->Run] Parameters
	Compound Expressions
	LassoScript Parsing
	Table 3: Lasso Parser Type Tag
	Table 4: Lasso Parser Type Member Tags
	Table 5: Lasso Parser Token Types

	Miscellaneous Tags
	Name Server Lookup
	Table 1: Name Server Lookup Tag
	Validation Tags
	Table 2: Valid Tags
	Unique ID Tags
	Table 3: Unique ID Tag
	Server Tags
	Table 4: Server Tags

	Protocols
	Sending Email
	Overview
	Sending Email
	Table 1: Email Tag
	Table 2: [Email_Send] Parameters
	Table 3: HTML Message [Email_Send] Parameters
	Table 4: Attachment [Email_Send] Parameters
	Table 5: Email Merge [Email_Send] Parameters
	Table 6: Email Tokens
	Table 7: Advanced [Email_Send] Parameters
	Table 8: SMTP Server [Email_Send] Parameters
	Email Status
	Table 9: Email Composing and Queuing Tags
	Composing Email
	Table 10: Email Composing and Queuing Tags
	SMTP Type
	Table 11: SMTP Tags

	POP
	Overview
	POP Type
	Table 1: [Email_POP] type
	Email Parsing
	Table 2: [Email_Parse] type
	Helper Tags
	Table 3: Email Helper Tags

	HTTP/HTML Content and Controls
	Include URLs
	Table 1: Include URL Tag
	Table 2: [Include_URL] Parameters
	Redirect URL
	Table 3: Redirect URL Tag
	HTTP Tags
	Table 4: HTTP Tags
	FTP Tags
	Table 5: FTP Tags
	Cookie Tags
	Table 6: Cookie Tags
	Table 7: [Cookie_Set] Parameters
	Caching Tags
	Table 8: [Cache] Tag
	Table 9: [Cache] Tag Parameters
	Table 11: Cache Control Tags
	Server Push
	Table 12: Server Push Tag
	Header Tags
	Table 13: Header Tags
	Request Tags
	Table 14: Request Tags
	Client Tags
	Table 15: Client Tags
	Server Tags
	Table 16: Server Tags

	XML-RPC
	Overview
	Calling a Remote Procedure
	Table 1: [XML_RPCCall] Tag
	Table 2: XML-RPC Built-In Methods
	Table 3: XML-RPC and Built-In Data Types
	Table 4: XML-RPC Data Type
	Table 5: [XML_RPC] Call Tag
	Creating Procedures
	Processing an Incoming Call
	Table 6: [XML_RPC] Processing Tags

	SOAP
	Overview
	Calling SOAP Procedures
	Table 1: SOAP Tags
	Table 2: [SOAP_DefineTag] Parameters
	Table 3: Built-In Processors
	Defining SOAP Procedures
	Low-Level Details

	Wireless Devices
	Overview
	Formatting WML
	WAP Tags
	Table 1: WAP Tags
	WML Example

	AJAX and LJAX
	Overview
	LJAX Methodology
	LJAX JavaScript Library
	Table 1: LJAX JavaScript Functions
	Table 2: Lasso.includeTarget() Options
	LJAX Tags
	Table 3: LJAX Tags
	LJAX Example

	DNS
	Overview
	DNS Lookup
	Table 1: DNS Lookup Tags
	Table 2: [DNS_Lookup] Parameters
	Table 3: [DNS_Response] Member Tags

	LassoScript
	LassoScript Introduction
	Overview
	LassoApps
	Custom Tags
	Custom Types
	Custom Data Sources

	LassoApps
	Overview
	Table 1: LassoApp Tags
	Default LassoApps
	Administration
	Serving LassoApps
	Preparing Solutions
	Building LassoApps
	Table 2: [LassoApp_Create] Tag Parameters
	Tips and Techniques

	Custom Tags
	Overview
	Custom Tags
	Table 1: Tags For Creating Custom Tags
	Table 2: [Define_Tag] Parameters
	Container Tags
	Web Services, Remote Procedure Calls, and SOAP
	Atomic Tags
	Asynchronous Tags
	Overloading Tags
	Constants
	Table 3: [Define_Constant] Tag
	Libraries

	Custom Types
	Overview
	Custom Types
	Table 1: Tags for Creating Custom Data Types
	Member Tags
	Table 2: Built-In Member Tags
	Prototypes
	Table 3: Prototype Tag
	Callback Tags
	Table 4: Callback Tags
	Symbol Overloading
	Table 5: Overloadable Symbols
	Table 6: Comparison Callback Tags
	Table 7: Symbol Callback Tags
	Table 8: Assignment Callback Tags
	Inheritance
	Libraries

	Custom Data Sources
	Overview
	Data Source Register
	Table 1: Data Source Register
	Data Source Type
	Table 2: Data Source Member Tags
	Table 3: Host Information
	Table 4: Result Set Tags

	Lasso C/C++ API
	LCAPI Introduction
	Overview
	Requirements
	Getting Started
	Debugging
	Frequently Asked Questions

	LCAPI Tags
	Substitution Tag Operation
	Substitution Tag Tutorial

	LCAPI Data Types
	Data Type Operation
	Data Type Tutorial

	LCAPI Data Sources
	Data Source Connector Operation
	Data Source Connector Tutorial

	Lasso Connector Protocol
	Overview
	Requirements
	Lasso Web Server Connectors
	Lasso Connector Operation
	Table 1: LPCommandBlock Structure Members
	Lasso Connector Protocol Reference
	Table 2: Named Parameters

	Lasso Java API
	LJAPI Introduction
	Overview
	What’s New
	LJAPI vs. LCAPI
	Requirements
	Getting Started
	Debugging

	LJAPI Tags
	Substitution Tag Operation
	Substitution Tag Tutorial

	LJAPI Data Types
	Data Type Operation
	Data Type Tutorial
	Table 1: Type initializer and Member Tags
	Table 2: Accessors

	LJAPI Data Sources
	Data Source Connector Operation
	Data Source Connector Tutorial

	LJAPI Reference
	LJAPI Interface Reference
	LJAPI Class Reference

	Error Codes
	Lasso Professional 8 Error Codes
	Table 1: Lasso Professional 8 Error Codes
	Lasso MySQL Error Codes
	Table 2: Lasso MySQL Error Codes
	FileMaker Pro Error Codes
	Table 3: FileMaker Pro Error Codes
	JDBC Error Codes
	Table 4: JDBC Error Codes

	Copyright Notice
	Index

